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A B S T R A C T

The Wiener path integral (WPI) technique for determining the stochastic response of diverse nonlinear systems
is enhanced herein based on a Bayesian compressive sampling (CS) treatment. Specifically, first, sparse
expansions for the system response joint probability density function (PDF) are employed. Next, exploiting
the localization capabilities of the WPI technique for direct evaluation of specific PDF points leads to an
underdetermined linear system of equations for the expansion coefficients. Further, relying on a Bayesian
CS solution formulation yields a posterior distribution for the expansion coefficient vector. In this regard,
a significant advantage of the herein developed methodology relates to the fact that the uncertainty of the
response PDF estimates obtained by the WPI technique is quantified. Furthermore, an adaptive scheme is
proposed based on the quantified uncertainty of the estimates for optimal selection of PDF sample points.
This yields considerably fewer boundary value problems to be solved as part of the WPI technique, and
thus, the associated computational cost is significantly reduced. Two indicative numerical examples pertaining
to a Duffing nonlinear oscillator and to an oscillator with asymmetric nonlinearities are considered for
demonstrating the capabilities of the developed technique. Comparisons with pertinent Monte Carlo simulation
data are included as well.

1. Introduction

Developing mathematical techniques for treating the problem of
uncertainty propagation in the field of stochastic engineering dynamics
has been a persistent challenge for more than six decades. In fact,
complex nonlinear behaviors, high-dimensionality, and sophisticated
excitation modeling require novel potent tools for solving the governing
equations of motion accurately and in a computationally efficient man-
ner. In this regard, diverse solution methodologies have been developed
for determining system response statistics with varying degrees of
success; see, indicatively, [1–3] for a broad perspective.

One of the promising stochastic engineering dynamics techniques,
recently developed by Kougioumtzoglou and co-workers, pertains to the
notion of path integral. From a mathematics point of view, the path
integral concept refers to the generalization of integral calculus to func-
tionals. It was first introduced by Wiener [4] (see also preliminary work
by Daniell [5]), and was reinvented in a different form by Feynman [6]
leading eventually to a reformulation of quantum mechanics [7]. In
the field of stochastic engineering dynamics, the Wiener path integral
(WPI) technique has demonstrated a high degree of accuracy [8], is
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capable of handling diverse system and excitation modeling [9–14],
and can readily treat high-dimensional systems at a relatively low
computational cost [15].

Further, the computational efficiency of the WPI technique was
enhanced recently. This was done by resorting to compressive sampling
(CS) concepts and tools in conjunction with appropriate expansions
for the joint response probability density function (PDF) [16,17]; see
also [18] for a broad perspective. Specifically, first, an appropriately
selected basis was considered for expanding the joint response PDF by
utilizing only a few nonzero terms. Next, a relatively small number
of PDF points were determined directly by relying on the localization
capabilities of the WPI technique. In this regard, an underdetermined
linear system of equations was formulated for the sparse expansion co-
efficient vector. Furthermore, CS procedures in conjunction with group
sparsity concepts and appropriate optimization algorithms were em-
ployed for solving efficiently the underdetermined system of equations
and computing the coefficients of the joint response PDF expansion.

In this paper, the WPI technique is extended based on a Bayesian CS
treatment (e.g., [19–22]). In particular, compared to the deterministic
coefficient vector estimate obtained in the standard CS framework,
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Bayesian CS yields a posterior distribution for the expansion coeffi-
cient vector. Clearly, this provides a tool for uncertainty quantification
associated with the estimated system response PDF. Moreover, this
additional information regarding the estimates is exploited herein for
reducing further the computational cost associated with the WPI tech-
nique. Indeed, based on the quantified uncertainty of the estimates,
an adaptive scheme is developed for optimal selection of PDF sample
points; thus, yielding fewer boundary value problems (BVPs) to be
solved as part of the WPI technique. Two indicative numerical examples
pertaining to a Duffing nonlinear oscillator and to a nonlinear oscillator
with an asymmetric response PDF are considered for demonstrating the
capabilities of the developed technique. Comparisons with pertinent
Monte Carlo simulation (MCS) data are included as well.

2. Wiener path integral technique: selected aspects

2.1. Wiener path integral solution formulation

The dynamics of a 𝑞-degree-of-freedom (𝑞-DOF) nonlinear system
subject to external stochastic excitation is governed by the equation

𝐌𝐱̈ + 𝐂𝐱̇ +𝐊𝐱 + 𝐠(𝐱̇, 𝐱, 𝑡) = 𝐰(𝑡) (1)

where 𝐱(𝑡) =
[
𝑥1(𝑡),… , 𝑥𝑞(𝑡)

]𝑇
is the response displacement vector and

𝐌, 𝐂, 𝐊 denote the mass, damping and stiffness matrices, respectively.
Also, 𝐠(𝐱̇, 𝐱, 𝑡) represents an arbitrary nonlinear function. The excitation
𝐰(𝑡) =

[
𝑤1(𝑡),… , 𝑤𝑞(𝑡)

]𝑇
is modeled next, for notation simplicity, as

a white noise vector process with 𝐸
[
𝐰(𝑡𝑙)

]
= 𝐸

[
𝐰(𝑡𝑙+1)

]
= 0 and

𝐸
[
𝐰(𝑡𝑙)𝐰

𝑇 (𝑡𝑙+1)
]
= 𝐒𝑤𝛿(𝑡𝑙+1 − 𝑡𝑙), where 𝑡𝑙 , 𝑡𝑙+1 are two arbitrary time

instants and 𝐒𝑤 ∈ 𝑅
𝑞×𝑞
+ denotes a constant power spectrum matrix. Note

that alternative, more complex, excitation modeling as a non-white and
non-Gaussian stochastic vector process can be also readily accounted
for by the WPI technique; see [11] for more details.

As shown in [11,23] (see also [7] for a broader perspective), the
joint response transition PDF 𝑝(𝐱𝑓 , 𝐱̇𝑓 , 𝑡𝑓 |𝐱𝑖, 𝐱̇𝑖, 𝑡𝑖) corresponding to the
system of Eq. (1) can be expressed as a functional integral in the form

𝑝(𝐱𝑓 , 𝐱̇𝑓 , 𝑡𝑓 |𝐱𝑖, 𝐱̇𝑖, 𝑡𝑖) = ∫ exp(−∫
𝑡𝑓

𝑡𝑖

 (𝐱, 𝐱̇, 𝐱̈) d𝑡)[d𝐱(𝑡)] (2)

where  = {𝐱𝑖, 𝐱̇𝑖, 𝑡𝑖; 𝐱𝑓 , 𝐱̇𝑓 , 𝑡𝑓 } is the set of all possible paths with
initial condition {𝐱𝑖, 𝐱̇𝑖, 𝑡𝑖} and final condition {𝐱𝑓 , 𝐱̇𝑓 , 𝑡𝑓 }, d𝐱(𝑡) denotes
a functional measure, and  represents the Lagrangian of the system
given by

(𝐱, 𝐱̇, 𝐱̈) = 1

2
{𝐌𝐱̈ + 𝐂𝐱̇ +𝐊𝐱 + 𝐠(𝐱̇, 𝐱, 𝑡)}𝑇 𝐒−1

𝑤
{𝐌𝐱̈ + 𝐂𝐱̇ +𝐊𝐱 + 𝐠(𝐱̇, 𝐱, 𝑡)}

(3)

Due to considerable difficulties in evaluating analytically the func-
tional integral in Eq. (2), researchers resort routinely to approxi-
mate schemes involving the concept of the ‘‘most probable path" [7].
This is the trajectory 𝐱𝑐 (𝑡) for which the integral of the Lagrangian
∫ 𝑡𝑓
𝑡𝑖

 (𝐱, 𝐱̇, 𝐱̈) d𝑡, known also as stochastic action, is minimized. This
leads to the Euler–Lagrange equations

𝑥𝑗
−

d

d𝑡
𝑥̇𝑗

+
d2

d𝑡2
𝑥̈𝑗

= 0, 𝑗 ∈ {1,… , 𝑞} (4)

subject to 4 × 𝑞 boundary conditions

𝐱𝑗 (𝑡𝑖) = 𝐱𝑗,𝑖, 𝐱̇𝑗 (𝑡𝑖) = 𝐱̇𝑗,𝑖, 𝐱𝑗 (𝑡𝑓 ) = 𝐱𝑗,𝑓 and 𝐱̇𝑗 (𝑡𝑓 ) = 𝐱̇𝑗,𝑓 (5)

Eqs. (4) and (5) constitute a BVP to be solved for determining the
most probable path 𝐱𝑐 (𝑡). Following solution of Eq. (4) and substituting
𝐱𝑐 (𝑡) into Eq. (2), a specific point of the joint response transition PDF
is determined approximately as

𝑝(𝐱𝑓 , 𝐱̇𝑓 , 𝑡𝑓 |𝐱𝑖, 𝐱̇𝑖, 𝑡𝑖) ≈ C exp(−∫
𝑡𝑓

𝑡𝑖

 (
𝐱𝑐 , 𝐱̇𝑐 , 𝐱̈𝑐

)
d𝑡) (6)

where C is a normalization constant. Although it is clear by comparing
Eq. (2) and (6) that only one trajectory (i.e., the most probable path

𝐱𝑐 (𝑡)) is accounted for in the evaluation of the WPI, it has been shown
in various diverse applications (e.g., [9–14]) that the accuracy degree
exhibited by this kind of approximation is relatively high. In fact, as
proved in [24], for the case of linear multi-DOF systems the most prob-
able path approximation yields the exact joint response PDF. Further,
note that the accuracy degree of the WPI technique has been enhanced
recently by considering a quadratic approximation to account also for
fluctuations around the most probable path; see [8] for details.

Clearly, in the general case, the Euler–Lagrange Eqs. (4) and (5)
are not amenable to an analytic solution treatment, and therefore,
numerical schemes are required. In this regard, adopting a brute-force
solution approach, for a specific time instant 𝑡𝑓 the values of the joint
response PDF are computed based on Eq. (6) over a discretized PDF
domain of 𝑁 points in each dimension. This yields 𝑁2𝑞 BVPs to be
solved for a 𝑞-DOF system.

2.2. Joint response PDF sparse representations

It can be readily seen that, by relying on the aforementioned brute-
force solution approach, the WPI technique becomes computationally
prohibitive with increasing number of dimensions. This is due to the
fact that the number 𝑁2𝑞 of BVPs to be solved increases exponentially
with respect to 𝑞. To address this challenge, a polynomial expansion of
the log-PDF was employed in [25] of the form

𝑙𝑜𝑔(𝑝(𝐱, 𝐱̇)) ≈

𝑛∑
𝑖=1

𝑐𝑖𝑏𝑖(𝐱, 𝐱̇) (7)

where 𝑐𝑖 are the polynomial expansion coefficients to be determined
and 𝑏𝑖 are the basis functions, with 𝑖 ∈ {1,… , 𝑛}. Further, following
the selection of 𝑛 locations to perform the approximation, Eq. (7) takes
the form of a linear system of 𝑛 equations, i.e.,

𝐲0 = 𝐁𝐜 (8)

where 𝐲0 ∈ R
𝑛×1 is a vector of 𝑛 samples of 𝑙𝑜𝑔(𝑝(𝐱, 𝐱̇)), 𝐁 ∈ R

𝑛×𝑛 is the
basis matrix and 𝐜 = [𝑐1,… , 𝑐𝑛]

𝑇 ∈ R
𝑛×1 is the expansion coefficient

vector. Therefore, in comparison to the brute-force approach, which
requires 𝑁2𝑞 BVPs to be solved numerically, the approach based on the
PDF representation of Eq. (7) requires the solution of only 𝑛 =

(𝑝+2𝑞)!

(2𝑞)!𝑝!
BVPs, where 𝑝 is the order of the polynomial approximation. For the
vast majority of applications, 𝑛 ≪ 𝑁2𝑞 , and thus, the gain in terms of
computational efficiency is significant.

In [16], it was shown that the computational efficiency of the WPI
technique can be further enhanced by resorting to sparse representa-
tions and compressive sampling concepts and tools; see also [18] for
a broad perspective. Specifically, it was shown that for a large class
of nonlinear systems the joint PDF expansion of Eq. (7) exhibits group
sparsity, and thus, only 𝑚 < 𝑛 PDF samples are required via the WPI
technique. In this regard, Eq. (8) takes the form

𝐲 = 𝐃𝐲0 = 𝐃𝐁𝐜 = 𝜱𝐜 (9)

where 𝐲 ∈ R
𝑚×1 is a vector of 𝑚 < 𝑛 samples of 𝑙𝑜𝑔(𝑝(𝐱, 𝐱̇)) and the

matrix 𝐃 ∈ R
𝑚×𝑛 deletes rows randomly from the polynomial basis 𝐁.

The product DB yields the matrix 𝜱 ∈ R
𝑚×𝑛 and 𝐜 ∈ R

𝑛×1 is the sparse
polynomial coefficient vector to be determined. Eq. (9) constitutes an
underdetermined linear system of equations, which can be solved based
on an 𝑙1-norm minimization formulation. This leads to an unconstrained
minimization problem in the form

𝐜̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛𝐜{‖𝐲 −𝜱𝐜‖2
2
+ 𝜆‖𝐜‖1} (10)

where 𝜆 is a hyperparameter. Solving the problem of Eq. (10) yields the
sparse coefficient vector to be substituted into the expansion of Eq. (9)
for approximating the system joint response PDF. The interested reader
is also directed to [16–18] for a more detailed presentation.
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Fig. 1. Comparison between (a) prior of Eq. (15) with uniform hyperprior (b) Laplace prior (c) Gaussian distribution and (d) their contours for 𝑝 = 0.01.

3. A Bayesian compressive sampling solution treatment

In this section, the WPI technique is enhanced by developing a
solution framework based on Bayesian CS (e.g., [18,19]). Specifically,
a significant advantage of the herein developed technique relates to the
fact that not only an estimate is obtained for the coefficient vector c in
Eq. (9), but also the uncertainty of this estimate is quantified. Further,
this capability for uncertainty quantification of the system response
PDF estimates motivates in this section also the development of an
adaptive scheme for optimal selection of PDF sample points. In this
regard, the associated computational cost can be significantly reduced.
In fact, it is shown that fewer BVPs need to be solved as part of the WPI
technique without compromising, in general, the exhibited accuracy.

3.1. Bayesian modeling

Considering noise in the samples vector 𝐲, Eq. (9) is expressed as

𝐲 = 𝜱𝐜 + 𝐞 (11)

where the components of the noise vector 𝐞 ∈ R
𝑚×1 are modeled

as independent and identically distributed Gaussian random variables
with zero mean and unknown variance 𝜎2

𝑒
. Equivalently, 𝐲 ∈ R

𝑚×1

follows a Gaussian likelihood model given by

𝑝(𝐲|𝐜, 𝜎2
𝑒
) = (2𝜋𝜎2

𝑒
)
−

𝑚

2 𝑒𝑥𝑝(−
‖𝐲 −𝜱𝐜‖2

2

2𝜎2
𝑒

) (12)

Next, the objective of the Bayesian solution treatment relates to
obtaining the coefficient vector 𝐜 based on the available samples vec-
tor 𝐲. To this aim, first, a sparsity-promoting prior distribution is
selected for 𝐜. In this regard, employing a hierarchical modeling ap-
proach (e.g., [26]), a Gaussian multivariate prior is considered for the
coefficients 𝐜 in the form

𝑝(𝐜|𝝈2
𝑐
) =

𝑛∏
𝑖=1

𝑁(𝑐𝑖|0, 𝜎2𝑐𝑖) (13)

where 𝝈2
𝑐
= {𝜎2

𝑐𝑖
}𝑛
𝑖=1

is a hyperparameter vector with 𝑛 independent
weights. Note that modeling approaches based on such Gaussian hier-
archical priors are typically referred to as Gaussian automatic relevance
determinators (ARD) in the Bayesian literature (e.g., [27]). ARDs adopt

the following rationale for identifying the ‘‘relevant’’ parameters 𝑐𝑖.
During the tuning process of 𝝈2

𝑐
(see Sections 3.2–3.3), if a non-

zero value is obtained for the unknown hyperparameter 𝜎2
𝑐𝑖
, then the

corresponding parameter 𝑐𝑖 is considered active in the approximation
of 𝐲, whereas if 𝜎2

𝑐𝑖
→ 0, 𝑐𝑖 becomes inactive.

Further, hyperpriors are introduced for the hyperparameters 𝝈2
𝑐
and

𝜎2
𝑒
. Specifically, the inverse Gamma hyperprior constitutes a convenient

choice for 𝑝(𝝈2
𝑐
) from an analytical treatment perspective, since it is the

conjugate prior of the Gaussian distributions in Eq. (13). Consequently,
the convolution integral

𝑝(𝐜) = ∫ 𝑝(𝐜|𝝈2
𝑐
)𝑝(𝝈2

𝑐
)𝑑𝝈2

𝑐
(14)

leads to a Student-𝑡 prior distribution for 𝐜. Alternatively, the hyper-
priors can become non-informative by setting inverse uniform distribu-
tions as the priors of 𝝈2

𝑐
and 𝜎2

𝑒
, i.e., 𝑝(𝜎−2

𝑐𝑖
), 𝑝(𝜎−2

𝑒
) ∝ 1. In this case,

Eq. (14) yields

𝑝(𝐜) ∝

𝑛∏
𝑖=1

1

|𝑐𝑖| (15)

In fact, selecting uniform hyperpriors for 𝝈2
𝑐
and 𝜎2

𝑒
not only simplifies

the computations in the ensuing analysis, but also renders the pre-
dictions scale-invariant; i.e., independent of the measurement units of
the data. Furthermore, the distribution of the coefficient vector 𝑝(𝑐𝑖) ∝
1

|𝑐𝑖| exhibits a sharp peak at the origin, similarly to the Laplace prior
𝑝(𝑐𝑖) ∝ 𝑒𝑥𝑝(−|𝑐𝑖|) that is widely used as a sparse prior in the litera-
ture [28]. Therefore, although 𝑝(𝐜|𝝈2

𝑐
) is Gaussian, and thus, relatively

less sparsity-promoting, the resulting 𝑝(𝐜) following integration over the
hyperparameters via Eq. (14) exhibits significant sparsity-promoting
behavior as shown in Fig. 1.

3.2. Posterior inference

In this section, the posterior distribution 𝑝(𝐜|𝐲) defined as
𝑝(𝐜|𝐲) = ∫ 𝑝(𝐜|𝐲,𝝈2

𝑐
, 𝜎2

𝑒
)𝑝(𝝈2

𝑐
, 𝜎2

𝑒
|𝐲)d𝝈2

𝑐
d𝜎2

𝑒
(16)

is obtained analytically. Applying Bayes’ theorem, 𝑝(𝐜|𝐲,𝝈2
𝑐
, 𝜎2

𝑒
) in

Eq. (16) is expressed as

𝑝(𝐜|𝐲,𝝈2
𝑐
, 𝜎2

𝑒
) =

𝑝(𝐲|𝐜, 𝜎2
𝑒
)𝑝(𝐜|𝝈2

𝑐
)

𝑝(𝐲|𝝈2
𝑐
, 𝜎2

𝑒
)

(17)

3
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Fig. 2. Average relative error of coefficient vector 𝐜 using RVM (top) and Fast RVM (bottom). The white line indicates 5% relative error.

where 𝑝(𝐲|𝝈2
𝑐
, 𝜎2

𝑒
) is the marginal likelihood of 𝐲. Obviously, once the

distribution 𝑝(𝐜|𝐲) is known, the evaluation of 𝑝(𝐲0|𝐲) is straightforward
via the linear relationship of Eq. (8). Thus, the uncertainty of the
WPI-based joint response PDF estimate can be quantified.

Next, according to the Laplace asymptotic approximation [29],
𝑝(𝐜|𝐲) ≈ 𝑝(𝐜|𝐲, 𝝈̂2

𝑐
, 𝜎̂2

𝑒
), where 𝝈̂2

𝑐
, 𝜎̂2

𝑒
are obtained by maximizing

𝑝(𝝈2
𝑐
, 𝜎2

𝑒
|𝐲). Nevertheless, due to the proportionality relationship

𝑝(𝝈2
𝑐
, 𝜎2

𝑒
|𝐲) ∝ 𝑝(𝐲|𝝈2

𝑐
, 𝜎2

𝑒
)𝑝(𝝈2

𝑐
)𝑝(𝜎2

𝑒
) and the uniform distribution model-

ing of 𝑝(𝝈2
𝑐
) and 𝑝(𝜎2

𝑒
), this is equivalent to maximizing 𝑝(𝐲|𝝈2

𝑐
, 𝜎2

𝑒
). This

scheme is referred to in the literature as type-II maximum likelihood
estimation (MLE).

Further, considering Eq. (17), the posterior distribution 𝑝(𝐜|𝐲,𝝈2
𝑐
, 𝜎2

𝑒
)

is evaluated analytically and takes the form of a multivariate Gaussian
distribution, i.e., 𝑝(𝐜|𝐲,𝝈2

𝑐
, 𝜎2

𝑒
) = 𝑁(𝝁,𝜮), where the mean vector and

covariance matrix are expressed as [28]

𝝁 = 𝜎−2
𝑒

𝜮𝜱𝑇 𝑦 and 𝜮 = (𝜎−2
𝑒

𝜱𝑇𝜱 + 𝐀)−1 (18)

respectively. In Eq. (18), 𝜎−2
𝑒
and 𝐀 = 𝐈⋅𝝈−2

𝑐
= 𝑑𝑖𝑎𝑔{𝜎−2

𝑐1
,… , 𝜎−2

𝑐𝑛
} ∈ R

𝑛×𝑛

are the hyperparameters to be evaluated.
Furthermore, due to the linear relationship between c and 𝐲0 in

Eq. (8), the distribution of 𝐲0 is also Gaussian given by [19]

𝑝(𝐲𝟎|𝐲,𝝈2
𝑐
, 𝜎2

𝑒
) = 𝑁(𝐁𝝁,𝐁𝜮𝐁𝑇 ) (19)

Equivalently, the distribution of the WPI-based estimate 𝑝(𝐱, 𝐱̇) at an
arbitrary point (𝐱, 𝐱̇) is log-normal based on the relation 𝐲0 = 𝑙𝑜𝑔(𝑝(𝐱, 𝐱̇))

with

𝐸{𝑝(𝐱, 𝐱̇)} = 𝑒𝑥𝑝(𝐁𝝁 +
1

2
𝑑𝑖𝑎𝑔(𝐁𝜮𝐁𝑇 )) (20)

𝑉 𝑎𝑟{𝑝(𝐱, 𝐱̇)} = 𝑒𝑥𝑝(2𝐁𝝁 + 𝑑𝑖𝑎𝑔(𝐁𝜮𝐁𝑇 ))(𝑒𝑥𝑝(𝑑𝑖𝑎𝑔(𝐁𝜮𝐁𝑇 )) − 1). (21)

Obviously, the uncertainty of the response PDF estimate obtained
by the WPI technique is quantified herein based on the log-normal
distribution described by Eqs. (20) and (21).

3.3. Performance assessment of selected relevance vector machine (RVM)
algorithms

Considering Eqs. (12) and (13), a type-II MLE scheme for obtaining
the optimal values 𝝈̂2

𝑐
, 𝜎̂2

𝑒
pertains to maximizing the logarithm of

𝑝(𝐲|𝝈2
𝑐
, 𝜎2

𝑒
) expressed as

𝑙𝑜𝑔 𝑝(𝐲|𝝈2
𝑐
, 𝜎2

𝑒
) = −

1

2
[𝑚 ⋅ 𝑙𝑜𝑔2𝜋 + 𝑙𝑜𝑔|𝐂| + 𝐲𝑇𝐂−1𝐲] (22)

where 𝐂 = 𝜎2𝐈 + 𝜱𝐀−1𝜱𝑇 . This hyperparameter learning problem
can be solved iteratively by employing a relevance vector machine
(RVM) scheme [28,30]. Specifically, a relatively standard implemen-
tation dictates that the values 𝝈2

𝑐
and 𝜎2

𝑒
are obtained at each step as

𝜎
2 (𝑛𝑒𝑤)
𝑐𝑖

=
𝜇2
𝑖

𝛾𝑖
and 𝜎2(𝑛𝑒𝑤)

𝑒
=

‖𝐲 −𝜱𝐜𝑠‖2
𝑚 − 𝛴𝑖𝛾𝑖

(23)

where 𝑖 ∈ {1, 2,… , 𝑛}, and 𝛾𝑖 = 1 − 𝛴𝑖𝑖∕𝜎
2
𝑐𝑖

∈ [0, 1] with 𝛴𝑖𝑖 being
the variance of the 𝑖th element. Notably, the set of coefficients 𝑐𝑖
corresponding to large values of 𝜎2

𝑐𝑖
are the ones contributing to the

representation of 𝐲 the most, whereas small values of 𝜎2
𝑐𝑖
correspond to

rather inactive coefficients [31].
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Further, the Fast RVM scheme [32] represents an enhancement of
the standard RVM that is computationally more efficient and promotes
sparser, in general, solutions. According to Fast RVM, the expression
of 𝑝(𝐲|𝝈2

𝑐
, 𝜎2

𝑒
) in Eq. (22) and the matrix 𝐂 are related to a single

hyperparameter 𝜎2
𝑐𝑖
as

𝑙𝑜𝑔 𝑝(𝐲|𝝈2
𝑐
, 𝜎2

𝑒
) = 𝑙𝑜𝑔 𝑝(𝐲|𝝈2

𝑐−𝑖
, 𝜎2

𝑒
) +

1

2
[𝑙𝑜𝑔 𝜎−2

𝑐𝑖
− 𝑙𝑜𝑔(𝜎−2

𝑐𝑖
+ 𝑠𝑖) +

𝑞2
𝑖

𝜎−2
𝑐𝑖

+ 𝑠𝑖

]

(24)

where 𝑞𝑖 = 𝜙𝑇
𝑖
𝐶−1
𝑖

𝑦 and 𝑠𝑖 = 𝜙𝑇
𝑖
𝐶−1
𝑖

𝜙𝑖. The matrix 𝐂 is given by
𝐂 = 𝐂−𝑖 + 𝜎2

𝑐𝑖
𝜙𝑖𝜙

𝑇
𝑖
, implying that the 𝑖th row is neglected in 𝐂−𝑖.

Furthermore, the maximization of Eq. (24) according to [33] yields the
expressions

𝜎2
𝑐𝑖
=

⎧⎪⎨⎪⎩

𝑞2
𝑖
−𝑠𝑖

𝑠2
𝑖

, if 𝑞2
𝑖
> 𝑠𝑖,

0, if 𝑞2
𝑖
≤ 𝑠𝑖

(25)

Based on the value of 𝜎2
𝑐𝑖
, the basis function 𝜙𝑖 is added to or

removed from the basis matrix 𝜱. Note that the Fast RVM yields 𝑚

significant basis functions 𝜙𝑖 to be accounted for in Eq. (18) compared
to the 𝑛 functions 𝜙𝑖 used in the standard RVM. A more detailed
presentation of the scheme can be found in [32].

Next, to assess the performance of the two RVM schemes, an ex-
periment is conducted involving reconstruction of 100 synthetically
generated coefficient vectors 𝐜. In Fig. 2, the average relative errors of
the RVM and the Fast RVM schemes are shown. Note that the error is
defined as ‖𝐜̂−𝐜‖2∕‖𝐜̂‖2, where 𝐜̂ is the reference coefficient vector to be
reconstructed and 𝐜 is the mean of the Bayesian posterior. Comparisons
are made for various values of samples 𝑚 and sparsity 𝑘, for a given
number of coefficients 𝑛. Also, the basis matrix𝜱 is randomly generated
and a zero-mean Gaussian noise with standard deviation 𝜎𝑒 = 0.005 is
added to each of the 𝑚 samples.

Remarkably, for an indicative sparsity ratio of 𝑘∕𝑛 = 0.2 (a value
commonly used in problems considered herein), utilizing a relatively
low sampling ratio of 𝑚∕𝑛 ≈ 0.6 yields a reconstruction error smaller
than 5% for both schemes.

3.4. Optimal selection of sample points

According to Section 2.2, the samples vector 𝐲 in Eq. (9) can be
obtained based on a random selection of points over the effective
domain of the system response log-PDF. However, such an approach
can be further optimized based on a judicious selection of the samples.

In this regard, a scheme is proposed in this section for optimal
selection of points by minimizing the differential entropy of the total
samples vector 𝐲0 [19]. Specifically, the differential entropy of 𝐲0 when
adding a new point in 𝐲 takes the form

ℎ𝑛𝑒𝑤(𝐲0) = ℎ(𝐲0) −
1

2
𝑙𝑜𝑔(1 + (𝜙𝑇

𝑚+1
𝜮𝜙𝑚+1)∕𝜎

2
𝑒
) (26)

where 𝜙𝑚+1 is the new row added to the matrix 𝜱 of Eq. (9). The
minimization of Eq. (26) is equivalent to maximizing the variance of
the new sample vector 𝐲𝑚+1 based on equation

𝜙𝑇
𝑚+1

𝜮𝜙𝑚+1 = 𝜙𝑇
𝑚+1

𝐶𝑜𝑣(𝐜)𝜙𝑚+1 = 𝑉 𝑎𝑟(𝐲𝑚+1) (27)

In practice, this is achieved by adding to the previous sample vector 𝐲𝑚
the point of the log-PDF 𝐲0 with the largest variance, or equivalently,
the point of the PDF with the largest relative variance (𝝈∕𝝁)2. Indeed,
considering Eqs. (20) and (21), as well as Eq. (19), yields

𝑉 𝑎𝑟{𝑝(𝐱̄, ̇̄𝐱)}

𝐸{𝑝(𝐱̄, ̇̄𝐱)}2
= 𝑒𝑥𝑝(𝑑𝑖𝑎𝑔(𝐁𝜮𝐁𝑇 )) − 1 = 𝑒𝑥𝑝(𝑉 𝑎𝑟(𝐲0)) − 1 (28)

The performance of the proposed scheme for optimal selection of
sample points is assessed in the numerical examples of Section 4, where
it is shown that the same relative error of the reconstructed coefficient
vector c can be obtained by using fewer sample points compared to the
standard implementation.

3.5. Mechanization of the technique

The mechanization of the developed WPI technique based on
Bayesian CS comprises the following steps:

(a) The expansion basis matrix B in Eq. (8) is constructed, which is
associated with an 𝑛-dimensional coefficient vector 𝐜 to be determined.

(b) The number 𝑚 < 𝑛 of joint response PDF sample points to be
used in the underdetermined linear system of Eq. (9) is selected. To
this aim, the results shown in Fig. 2 and pertaining to the RVM schemes
presented in Section 3.3 can serve as a guide.

(c) The locations of the 𝑚 samples in Eq. (9) over the effective
domain of the system response log-PDF are selected either randomly,
or based on the optimal sampling scheme proposed in Section 3.4.

(d) The posterior distribution of the coefficient vector 𝐜 is Gaussian
with a mean vector and covariance matrix given by Eq. (18). These are
determined by employing, for instance, the RVM schemes presented
in Section 3.3 in conjunction with the optimal sampling scheme in
Section 3.4.

(e) The distribution of the WPI-based estimate 𝑝(𝐱, 𝐱̇) at an arbitrary
point (𝐱, 𝐱̇) is log-normal with a mean and a variance given by Eqs. (20)
and (21), respectively.

4. Numerical examples

4.1. Duffing nonlinear oscillator

Consider a stochastically excited single-DOF Duffing nonlinear os-
cillator, whose equation of motion is given by

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥(1 + 𝜖𝑥2) = 𝑤(𝑡) (29)

where 𝑚 = 1, 𝑘 = 1, 𝑐 = 0.1, 𝜖 = 0.1, and 𝑤(𝑡) is a white noise excitation
with a constant power spectrum value 𝑆0 = 0.0637. Note that the exact
stationary joint response log-PDF for this oscillator has the closed-form
expression (e.g., [34])

𝐲𝑒𝑥𝑎𝑐𝑡
0

= 𝑙𝑜𝑔(𝑝(𝑥, 𝑥̇)) = −
𝑐

𝜋𝑆0𝑚
(
𝑘𝑥2

2𝑚
+

𝜖𝑘𝑥4

4𝑚
+

𝑥̇2

2
) + C (30)

Clearly, the expression in Eq. (30) represents a 4th order polynomial
with 3 non-zero coefficients, and C is a normalization constant. In this
regard, selecting a 4th order polynomial (𝑝 = 4) as an approximating
basis in Eq. (8) yields 𝑛 = 15, whereas based on the exact solution of
Eq. (30), the sparsity in the stationary phase is 𝑘 = 3.

Next, the two RVM schemes discussed in Section 3.3, as well as their
implementations based on the optimal selection of points presented in
Section 3.4, are compared in conjunction with the Duffing nonlinear
oscillator of Eq. (29). Specifically, the relative error ‖𝐲̂0 − 𝐲0‖2∕‖𝐲̂0‖2
and the variance of 𝐲0 at an arbitrarily chosen time instant 𝑡 = 20 s

(both averaged over 1000 trials) are plotted in Fig. 3. 𝐲̂0 denotes
the estimate obtained by the standard brute-force WPI formulation
presented in Section 2.1, whereas 𝐲0 denotes the mean of the Bayesian
estimate in Eq. (19). It is readily seen that the Fast RVM coupled
with the optimal sampling scheme of Section 3.4 yields the smallest
error and exhibits the lowest uncertainty degree compared to the other
alternatives, particularly for smaller values of the sampling ratio 𝑚∕𝑛.

In the following, the Fast RVM with the optimal sampling scheme is
employed and the value 𝑚∕𝑛 = 0.6 is utilized. This translates into using
𝑚 = 9 points for computing the 𝑛 = 15-dimensional coefficient vector 𝐜,
and thus, for determining the log-PDF 𝐲0. In this regard, the computed
coefficient vector values 𝑐𝑖, with 𝑖 = 1,… , 15, are shown in Fig. 4.
Specifically, the deterministic estimates obtained by the standard WPI
technique with a polynomial PDF approximation are compared with
the estimated distributions obtained by the herein developed Bayesian
framework. The target (exact) expansion coefficient values based on
Eq. (30) are also included for the stationary phase (𝑡 = 20 s). In general,
it is seen that the mean values of the Bayesian estimates compare well
with the respective deterministic estimates, both for the non-stationary
(𝑡 = 1 s) and the stationary (𝑡 = 20 s) phases.
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Fig. 3. Assessing the performance of various RVM schemes for determining the joint response PDF of a Duffing nonlinear oscillator at an arbitrarily chosen time instant 𝑡 = 20 s.
Average relative error (top) and average variance (bottom) of the Bayesian estimates for various sample ratios 𝑚∕𝑛.

Fig. 4. Uncertainty quantification of Duffing nonlinear oscillator joint response PDF expansion coefficient vectors at 𝑡 = 1 s and 𝑡 = 20 s. Comparisons between the standard WPI
technique with a polynomial PDF approximation (deterministic estimates) and the Bayesian WPI formulation (estimates of the coefficient vector distribution based on Eq. (18)).
The exact coefficient values based on Eq. (30) are also included for the stationary phase (𝑡 = 20 s).
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Fig. 5. Joint response PDF of a Duffing nonlinear oscillator at 𝑡 = 1 s (left) and 𝑡 = 20 s (right); standard brute-force WPI formulation (top), and Bayesian formulation — mean
values estimates (bottom).

Fig. 6. Uncertainty quantification of the Duffing nonlinear oscillator joint response PDF estimates based on the proposed Bayesian WPI formulation for 𝑡 = 1 s (left) and 𝑡 = 20 s

(right).
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Fig. 7. WPI-based estimates and uncertainty quantification of a Duffing nonlinear oscillator response displacement PDF at 𝑡 = 1 s (top) and at 𝑡 = 20 s - stationary phase (bottom).
Comparisons with Monte Carlo simulations (20,000 realizations) and the exact solution for the stationary phase.

Fig. 8. WPI-based estimates and uncertainty quantification of a Duffing nonlinear oscillator response velocity PDF at 𝑡 = 1 s (top) and at 𝑡 = 20 s - stationary phase (bottom).
Comparisons with Monte Carlo simulations (20,000 realizations) and the exact solution for the stationary phase.
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Fig. 9. Reduction of the relative variance 𝜎∕𝜇 of the Bayesian WPI estimates with increasing sample ratio 𝑚∕𝑛. The results refer to the joint response PDF of a Duffing nonlinear
oscillator at 𝑡 = 20 s. Comparisons between the standard Fast RVM (top) and the Fast RVM coupled with the proposed optimal sampling scheme of Section 3.4 (bottom).

Further, the joint response PDFs at 𝑡 = 1 s and 𝑡 = 20 s obtained
by a standard brute-force implementation of the WPI are shown in
Fig. 5 (top). This refers to a discretized PDF domain of 𝑁2 = 2601

points. Furthermore, the log-normal distribution of the joint response
PDF estimate at an arbitrary point is obtained by utilizing Eqs. (20) and
(21). In Fig. 5 (bottom), the mean values of the log-normal distribution
are plotted demonstrating excellent agreement with the deterministic
estimates in Fig. 5 (top). Moreover, Fig. 6 shows the log-normal distri-
butions corresponding to each and every point of the joint response
PDF domain. It becomes clear that a significant advantage of the
herein developed technique relates to its capability of quantifying the
uncertainty of the response PDF estimates.

Next, the response PDF estimates at two indicative time instants
𝑡 = 1 s and 𝑡 = 20 s (stationary phase), obtained by the standard
WPI technique, are shown in Fig. 7 for the displacement 𝑥 and in
Fig. 8 for the velocity 𝑥̇. These are compared both with pertinent MCS-
based estimates (20,000 realizations) and with the closed-form exact
stationary PDF of Eq. (30) for 𝑡 = 20 s. Also, the mean values of the
Bayesian estimates are included as well. Clearly, these are in good
agreement with the respective deterministic WPI-based estimates.

Interestingly, it is observed that the variance, and thus the un-
certainty of the joint response PDF estimates, is larger for 𝑡 = 20 s

compared to 𝑡 = 1 s. This can be attributed, at least partly, to the
larger time interval considered in the BVP of Eq. (4). In other words,
it is anticipated that the uncertainty of the PDF estimate increases for
larger values of the final time instant 𝑡𝑓 , or equivalently, for a final
configuration less correlated with the known deterministic initial state
(𝑥𝑖, 𝑥̇𝑖) at 𝑡𝑖. Further, the uncertainty of the estimates depends, obvi-
ously, also on the amount of missing data. This is seen in Fig. 9, where
the relative standard deviation 𝜎∕𝜇 of the estimates obtained by the
Bayesian WPI decreases with increasing sample ratio 𝑚∕𝑛. Furthermore,
the superior performance of the Fast RVM coupled with the optimal
sampling scheme of Section 3.4 compared to the standard Fast RVM is
demonstrated in Fig. 9. In fact, the former appears to converge faster

Table 1
𝐿2-norm errors of Duffing nonlinear oscillator joint response PDF estimates compared
to MCS data (20,000 realizations). Results refer to various WPI technique formulations
and correspond to indicative time instants.

Relative error (%) of WPI
compared to MCS

t = 1 s t = 10 s t = 15 s t = 20 s

Brute-force implementation
(𝑁2 points)

5.3 6.9 6.9 7.6

Polynomial approximation
(Bayesian CS with 𝑚∕𝑛 = 0.6)

8.4 8.4 8.6 8.8

Polynomial approximation
(Bayesian CS with 𝑚∕𝑛 = 1)

5.5 6.6 6.5 7.3

Polynomial approximation
(Standard linear system of equations
with 𝑚∕𝑛 = 0.6)

5.4 11.5 12.3 11.3

to smaller values of relative variance than the latter for increasing 𝑚∕𝑛.

Note that this is in agreement with similar findings observed in Fig. 3.

Moreover, in Table 1, the performance of the various WPI technique

formulations is assessed in terms of accuracy based on comparisons

with MCS data (20,000 realizations). In this regard, 𝑙2-norm errors

of the estimated joint response PDFs are reported. Specifically, it is

seen that the Bayesian formulation with 𝑚∕𝑛 = 1 exhibits practically

the same high accuracy degree as the brute-force implementation with

𝑁2 = 2601 points. Further, the Bayesian formulation with 𝑚∕𝑛 =

0.6 exhibits a robust behavior with relatively constant error values

with increasing time instants. The largest error values are reported

for the standard WPI formulation coupled with a polynomial PDF

approximation. This can be attributed, at least partly, to the fact that

the resulting linear system of equations becomes ill-conditioned in

many cases, particularly for larger time instants. Notably, the Bayesian

WPI formulation appears capable of meliorating this effect to a certain

extent.
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4.2. Oscillator with asymmetric nonlinearities

Consider next a single-DOF oscillator with asymmetric nonlineari-
ties, whose equation of motion is given by

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥(1 + 𝜖0𝑥) = 𝑤(𝑡) (31)

where 𝑚 = 1, 𝑘 = 1, 𝑐 = 0.2, 𝜖0 = 0.5 and 𝑤(𝑡) is a white noise
excitation with a constant power spectrum value 𝑆0 = 0.0637. Further,
it can be argued that a polynomial expansion used for approximating
the response PDF of the oscillator in Eq. (31) is anticipated to be
less sparse than the respective one used for the Duffing oscillator in
Section 4.1. This is due to the fact that the form of the nonlinearity
function in Eq. (31) produces a response PDF that is asymmetric,
and thus, an increased number of non-zero terms in the polynomial
expansion is required for approximating the PDF shape accurately.
Based on this observation, higher-order polynomial bases are employed
next. In particular, a 6th order polynomial (𝑝 = 6) with 𝑛 = 28 is utilized
in the following for the arbitrarily selected time instants 𝑡 = 1 s and
𝑡 = 2 s, whereas a 12th order polynomial (𝑝 = 12) with 𝑛 = 91 is used
for 𝑡 = 3 s.

Next, the performance of the various RVM schemes described in
Sections 3.3 and 3.4 is assessed in conjunction with the nonlinear
oscillator of Eq. (31). Specifically, the relative error ‖𝐲̂0 − 𝐲0‖2∕‖𝐲̂0‖2
and the variance of 𝐲0 at an indicative time instant 𝑡 = 2 s (both
averaged over 1000 trials) are plotted in Fig. 10. 𝐲̂0 denotes the
estimate obtained by the standard brute-force WPI technique, whereas

𝐲0 represents the mean of the Bayesian estimate in Eq. (19). Obviously,
the RVM schemes coupled with the optimal sampling scheme yield
smaller errors and exhibit a lower uncertainty degree compared to their
standard counterparts.

In the ensuing analysis, the RVM with the optimal sampling scheme
is used with 𝑚∕𝑛 = 0.6. This translates into utilizing 𝑚 = 17 points for
determining the 𝑛 = 28-dimensional coefficient vector 𝐜 for 𝑡 = 1 s

and 𝑡 = 2 s. Further, 𝑚 = 55 points are used for determining the
𝑛 = 91-dimensional coefficient vector 𝐜 for 𝑡 = 3 s. In this regard, the
coefficient vector values obtained by the standard WPI technique are
compared in Fig. 11 with the distributions of the estimates obtained
by the herein developed Bayesian CS framework. In general, it is seen
that the mean values of the Bayesian estimates agree well with the
respective deterministic coefficient vector estimates.

Further, the joint response PDFs at 𝑡 = 1, 2 and 3𝑠 obtained by a
standard brute-force implementation of the WPI technique with 𝑁2 =

2601 points are shown in Fig. 12 (top). Furthermore, the log-normal
distribution of the joint response PDF estimate at an arbitrary point
is obtained by utilizing Eqs. (20) and (21). In Fig. 12 (bottom), the
mean values of the log-normal distribution are plotted demonstrating
excellent agreement with the deterministic estimates in Fig. 12 (top).
Moreover, Fig. 13 shows the log-normal distributions corresponding to
each and every point of the joint response PDF domain.

Next, the response displacement and velocity PDFs obtained by a
standard brute-force implementation of the WPI technique are plotted
in Figs. 14 and 15, respectively, for various indicative time instants.

Fig. 10. Assessing the performance of various RVM schemes for determining the joint response PDF of an oscillator with asymmetric nonlinearities at an arbitrarily chosen time
instant 𝑡 = 2 s. Average relative error (top) and average variance (bottom) of the Bayesian estimates for various sample ratios 𝑚∕𝑛.
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Fig. 11. Uncertainty quantification of joint response PDF expansion coefficient vectors at 𝑡 = 1, 2 and 3𝑠 for an oscillator with asymmetric nonlinearities. Comparisons between
the standard WPI technique in conjunction with a polynomial PDF approximation (deterministic estimates) and the Bayesian WPI formulation (estimates of the coefficient vector
distribution based on Eq. (18)).

These are compared both with the mean values of Bayesian estimates
and with pertinent MCS data (20,000 realizations), demonstrating a
high degree of agreement. Further, Fig. 16 shows the relative standard
deviation 𝜎∕𝜇 of the estimates obtained by the Bayesian WPI technique
decreasing with increasing sample ratio 𝑚∕𝑛. Note that the RVM cou-
pled with the optimal sampling scheme of Section 3.4 converges faster
to smaller values of 𝜎∕𝜇 than the standard RVM scheme. This enhanced
behavior due to the optimal sampling scheme is anticipated taking also
into account the findings in Fig. 10.

In Table 2, the accuracy degree of the various WPI technique
formulations is assessed based on comparisons with MCS data (20,000
realizations). Specifically, based on calculations of the 𝑙2-norm errors
referring to joint response PDF estimates, it is seen that the Bayesian
approach with 𝑚∕𝑛 = 1 yields the smallest error, approximately equal to
that of the brute-force implementation with 𝑁2 = 2601 points. Further,
the Bayesian WPI technique exhibits a robust behavior, since even for
𝑚∕𝑛 = 0.6 there is only a slight increase in the reported error compared
to the case with 𝑚∕𝑛 = 1.

Table 2
𝐿2-norm errors of joint response PDF estimates compared to MCS data (20,000
realizations) for an oscillator with asymmetric nonlinearities. Results refer to various
WPI technique formulations and correspond to indicative time instants.

Relative error (%) of WPI
compared to MCS

t = 1 s t = 2 s t = 3 s

Brute-force implementation
(𝑁2 points)

5.1 5.5 10.8

Polynomial approximation
(Bayesian CS with 𝑚∕𝑛 = 0.6)

5.4 5.7 13

Polynomial approximation
(Bayesian CS with 𝑚∕𝑛 = 1)

5.1 5.4 11

Polynomial approximation
(Standard linear system of equations
with 𝑚∕𝑛 = 0.6)

5.1 5.7 11.6
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Fig. 12. Joint response PDF of an oscillator with asymmetric nonlinearities at 𝑡 = 1 s (left), 𝑡 = 2 s (middle), and 𝑡 = 3 s (right); standard brute-force WPI formulation (top), and
Bayesian formulation — mean values estimates (bottom).

Fig. 13. Uncertainty quantification of joint response PDF estimates based on the developed Bayesian WPI formulation and corresponding to an oscillator with asymmetric
nonlinearities for 𝑡 = 1 s (left), 𝑡 = 2 s (middle), 𝑡 = 3 s (right).
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Fig. 14. WPI-based estimates and uncertainty quantification of the response displacement PDF of an oscillator with asymmetric nonlinearities corresponding to (top) 𝑡 = 1 s,
(middle) 𝑡 = 2 s, and (bottom) 𝑡 = 3 s. Comparisons with Monte Carlo simulations (20,000 realizations).

5. Concluding remarks

In this paper, the WPI technique for determining the stochastic

response of diverse nonlinear dynamical systems has been enhanced

based on a Bayesian CS treatment. Specifically, sparse expansions of

the polynomial kind have been utilized for representing the system

response joint PDF. Next, obtaining PDF values at specific points based

on the WPI technique localization capabilities has led to an under-
determined linear system of equations for the expansion coefficients.
Further, a solution treatment based on a Bayesian CS formulation has
yielded a posterior distribution for the expansion coefficient vector.
Clearly, a significant advantage of the herein developed methodology
relates to its novel aspect of quantifying the uncertainty of the response
PDF estimates obtained by the WPI technique. Furthermore, an adap-
tive scheme has been proposed based on the quantified uncertainty of
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Fig. 15. WPI-based estimates and uncertainty quantification of the response velocity PDF of an oscillator with asymmetric nonlinearities corresponding to (top) 𝑡 = 1 s, (middle)
𝑡 = 2 s, and (bottom) 𝑡 = 3 s. Comparisons with Monte Carlo simulations (20,000 realizations).

the estimates for optimal selection of PDF sample points. In this regard,

the total number of BVPs to be solved as part of the WPI technique is

reduced, and thus, the associated computational cost decreases. Note

that the developed technique can be construed as a generalization and

enhancement of earlier efforts in the literature (e.g., [16]) that relied

on standard CS tools and provided with deterministic estimates of the

response PDF coefficient vector. The efficiency and reliability of the

technique have been demonstrated based on comparisons with perti-

nent MCS data. This has been done in conjunction with two indicative

numerical examples pertaining to a Duffing nonlinear oscillator and to

an oscillator with asymmetric nonlinearities.
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Fig. 16. Reduction of the relative variance 𝜎∕𝜇 of the Bayesian WPI estimates with increasing sample ratio 𝑚∕𝑛. The results refer to the joint response PDF of an oscillator with
asymmetric nonlinearities at 𝑡 = 2 s. Comparisons between the standard RVM (top) and the RVM coupled with the proposed optimal sampling scheme of Section 3.4 (bottom).
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