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Abstract—We show that the natural Glauber dynamics mixes
rapidly and generates a random proper edge-coloring of a
graph with maximum degree ∆ whenever the number of colors
is at least q ≥

(
10
3 + ε

)
∆, where ε > 0 is arbitrary and the

maximum degree satisfies ∆ ≥ C for a constant C = C(ε)
depending only on ε. For edge-colorings, this improves upon
prior work [Vig99; Che+19] which show rapid mixing when
q ≥

(
11
3 − ε0

)
∆, where ε0 ≈ 10−5 is a small fixed constant.

At the heart of our proof, we establish a matrix trickle-down
theorem, generalizing Oppenheim’s influential result, as a new
technique to prove that a high dimensional simplicial complex
is a local spectral expander.

I. INTRODUCTION

Given an (undirected) graph G = (V,E) with n = |V |
vertices and with maximum degree ∆ ≥ 1 can we generate
a uniformly random proper coloring of vertices of G using
q colors? For q ≤ ∆, there is no efficient algorithm (in
the sense of an FPRAS) to approximately count proper q-
colorings (at least when q is even) unless NP = RP, even
for ∆-regular graphs which are triangle-free [GŠV15]. This
fundamental question in the field of counting and sampling
has puzzled researchers for decades. One can study a natural
Markov Chain (MC), known as the Glauber dynamics, to
generate a random proper coloring: Given a proper vertex
coloring of G, choose a uniformly random vertex v ∈ G and
re-color v, namely choose a uniformly random color which
is not present in any of the neighbors of v.

It is not hard to see that for q ≥ ∆ + 2 this chain is
irreducible and has unique stationary distribution which is
uniform over all proper colorings of G. It is conjectured that
the Glauber dynamics mixes in time O(n log n) for q as low
as ∆ + 2 but despite significant attempts we are still very
far from proving this conjecture.

To this date, the best known result for general graphs is
due Chen, Delcourt, Moitra, Perarnau and Postle [Che+19]
who show that the Glauber dynamics mixes in polynomial
time for q ≥ (11/6−ε)∆ for some universal constant ε > 0;
this slightly improves on the classical works of Jerrum and
Vigoda [Jer95; Vig99] which bounds the mixing time by a
polynomial in n for q ≥ (11/6)∆.

Most of the recent analyses of the Glauber dynamics are
focused on “locally sparse” graphs [HV03; Mol04; HV05;
FV06; FV07; HVV07; Dye+13; Che+21; Fen+21] where it
was typically shown how to break the 11/6 barrier bound
when the underlying graph has a large girth. We note that
these assumptions are typically very strong as it can be seen
that triangle graph free graphs can be colored with as little
as O(∆/ log∆) many colors [Joh96].

The results on locally sparse graphs typically exploit
(strong) correlation decay properties: Roughly speaking,
they imply that if we color a vertex v with a color c, then the
marginal probability of coloring a “far away” vertex u with a
color c′ does not change, or changes very mildly. Although it
is conjectured that vertex coloring exhibits correlation decay,
more formally known as “strong spatial mixing” property,
for q ≥ ∆ + O(1), to this date, we are lacking techniques
to establish such a statement (see e.g., [GMP05; Yin14;
GKM15; Eft+19]).

In this paper, we study random proper edge coloring of
graphs, which equivalently can be seen as a random proper
vertex coloring of line graphs. Unlike most recent trends
which focus on sparse graphs with large girths, line graphs
are very dense locally as they contain induced cliques of
size Ω(∆). To the best of our knowledge, the only previous
result on edge coloring which goes significantly beyond
the 11/6 barrier is recent work of Delcourt, Heinrich and
Perarnau [DHP20] which shows that the Glauber dynamics
mixes rapidly when the underlying graph is a tree and
q ≥ ∆ + 1. Note that for a graph with maximum degree
∆, the maximum degree of the line graph could be as large
as 2∆. Therefore, with the 11/6 barrier, one would need
q ≥ 11/3∆ to guarantee polynomial mixing for all edge
coloring instances. In our main theorem we prove that this
barrier can be broken for edge coloring of any graph with
maximum degree ∆.

Theorem I.1. Let G = (V,E) be a graph of maximum
degree ∆. For any 0 < ε ≤ 1

10 such that ln2 ∆
∆ ≤ ε3

15 ,
and any collection of color lists L = {L(e)}e∈E satisfying
|L(e)| ≥ ∆(e) + (4/3+ 4ε)∆ where ∆(e) is the number of
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neighbors of e in the line graph of G, the spectral gap of the
Glauber dyanmics for sampling proper L-edge-list-colorings
on G is Ω(n−O(1/ε)), so the mixing time is O(nO(1/ε)).
Furthermore, if ∆ ≤ O(1), the modified and standard log-
Sobolev constants are Ωε,∆(1/n).

We remark that our general mixing time bound has no
dependence on ∆ or q. So, the algorithm runs in polynomial
time even for graphs of unbounded degree. In a second con-
tribution we show that for any list vertex coloring instance
where G is a tree with max degree ∆, and the size of the list
of every vertex v is at least ∆(v) + ε∆ for ε = Ω( ln∆√

∆
) the

Glauber dynamics mixes rapidly and generates a uniformly
random vertex coloring of G. The precise statement of this
result is included in the extended version. Although our
theorem is not as strong as [MSW04], it shows that Glauber
dynamics mixes rapidly even when we have a list coloring
problem on a tree and furthermore it gives a possible avenue
to exploit our techniques to prove that Glauber dynamics
mixes rapidly on any graph when q ≥ (1 + ε)∆. We expect
that upon further investigation our techniques can be coupled
with the extensive literature on random proper colorings of
graphs with large girth to break the 11/6− ε barrier.

To establish the above results, we view the Glauber dy-
namics as a high dimensional walk on a simplicial complex
and we prove that this complex is a “local spectral expander”
(see Definition I.2 below). By local-to-global theorems, local
spectral expansion immediately implies a bound on the
spectral gap of the Glauber dynamics and therefore on its
mixing time (see Section II-E and Section II-B below). A
simplicial complex X is a downward closed collection of
sets. Given a graph G and a set of q colors, we build a
simplicial complex as follows: We let each maximal set in
X be a set of vertex color pairs that denote a proper coloring
of vertices of G, then we add all subsets of the maximal sets
to X to make it downward closed. By viewing the Glauber
dynamics can be viewed as a walk on the maximal sets in the
coloring complex X . Unlike recent developments [ALO20;
Che+21; Fen+21; CLV20; CLV21; Fri+21] which exploit the
correlation decay property to prove local spectral expansion,
our proof is a direct method: We use an inductive argument
inspired by the Oppehheim’s trickle-down theorem to bound
local eigenvalues. We expect our technique to find more
applications in analysis of Markov chains as well as in other
applications of simplicial complexes.

A. Main Technical Contributions

A simplicial complex X on a finite ground set U is a
downwards closed collection of subsets of U , i.e. if τ ∈ X
and σ ⊂ τ ⊆ U , then σ ∈ X . The elements of X are
called faces, and then maximal faces are called facets. We
say a face τ is of dimension k if |τ | = k + 1 and write
dim(τ) = k. We write X(k) = {τ ∈ X : dim(τ) = k}. We
say X is a pure d-dimensional complex if every facet has

dimension d. In this paper we only work with pure simplicial
complexes. To keep the notation concise, let X(≤ i) :=
X(−1)∪ · · ·∪X(i). The co-dimension of a face τ is defined
as codim(τ) := d−dim(τ). For a face τ , define the link of
τ as the simplicial complex Xτ = {σ \ τ : σ ∈ X,σ ⊃ τ}.
Note that Xτ is a (codim(τ) − 1)- dimensional complex.
Let πX,d be a distribution on the maximal faces of a pure
d-dimensional simplicial complex X; we may drop X from
the subscript if it is clear in the context. We will refer to
the pair (X,πd) as a weighted simplicial complex. For each
face τ and each integer −1 ≤ i ≤ codim(τ) − 1, we write
πτ,i for the induced distribution on Xτ (i) given by

πτ,i(η) =
1

(codim(τ)
i+1

) Pr
σ∼πd

[σ ⊃ η | σ ⊃ τ ]. (1)

One should view this as a marginal distribution conditioned
on τ . We will often view πτ,i as a vector in RXτ (i)

≥0 . We
remove the subscript τ when τ = ∅. We also omit i from
the subscript when i = 0, i.e πτ := πτ,0.

Given a weighted simplicial complex (X,πd), there is
a natural Markov chain known as the down-up walk (or
high-order walk) [KM17; DK17; KO18b] whose stationary
distribution is πd. Starting at a facet σ ∈ X(d), we transition
to the next facet σ′ ∈ X(d) via the following two-step
process:

1) Select a uniformly random element x ∈ σ and remove
x from σ.

2) Select a random σ′ ∈ X(d) containing σ \ {x} with
probability proportional to πd(σ′).

If P∨d denotes the transition probability matrix of this
Markov chain, then we may write down its entries as follows.

P∨d (σ,σ′) =

{
1

d+1πσ∩σ′,0(σ
′ \ σ) if |σ ∩ σ′| = d,

0 otherwise.

One of the beautiful insights of [KM17; DK17; KO18b]
is that spectral properties of P∨d may be studied through
spectral properties of “local walks”, which are defined using
only pairwise conditional marginals and are more tractable to
analyze. Fix a face τ of co-dimension k ≥ 2; the local walk
for τ is a Markov chain on Xτ (0) with transition probability
matrix PX,τ ∈ RXτ (0)×Xτ (0)

≥0 described by

PX,τ (x, y) =
πτ,1(x, y)

2πτ (x)
= πτ∪{x}(y)

=
1

k − 1
Pr

σ∼πd

[y ∈ σ | σ ⊃ τ ∪ {x}]. (2)

for distinct x, y ∈ Xτ (0); we note that PX,τ has zero
diagonal. We drop X in the subscript when it is clear in the
context. Note that, by definition, the walk is reversible with
stationary distribution πτ . Furthermore, the row correspond-
ing to element x ∈ suppπτ is precisely πτ∪{x}. For our
calculations, it is easier to work with matrices {Pτ}X(≤d−2)

if they all live in RX(0)×X(0). Therefore, we modify the
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definition of Pτ as follows: for any τ ∈ X(≤ d − 2), let
Pτ ∈ RX(0)×X(0) be supported on Xτ (0) × Xτ (0) block
and equal to the transition probability matrix of the local
walk for τ on this block. Similarly, we often need to see πτ
as a probability distribution over X(0) supported on Xτ (0)
entries. Therefore, πτ can be seen as a vector in RX(0).
Furthermore, define Πτ ∈ RX(0)×X(0) as Πτ := diag(πτ ).
We proceed by introducing some terminology related to the
local walks. We say X is totally connected if λ2(Pτ ) < 1
for any τ ∈ X(≤ d − 2), i.e. the local walk for τ is
irreducible/connected for any face τ of co-dimension at
least 2. Furthermore, we define local spectral expansion as
follows.

Definition I.2 (Local Spectral Expansion [DK17; KO18b;
Dik+18] ). We say a weighted simplicial complex (X,πd)
of dimension-d is a (γ−1, . . . , γd−2)-local spectral expander
if for every k and every τ ∈ X(k), λ2(Pτ ) ≤ γk.

Remark I.3. We only work with this “one-sided” version of
local spectral expansion. Many other works [KO18b; Opp18;
KO18a] consider the stronger two-sided local spectral expan-
sion, which further imposes a lower bound on the smallest
eigenvalue of the local walks Pτ .

In almost all applications of high dimensional simplicial
complexes, one first needs to to prove that the underlying
complex is a local spectral expander and then exploit “local-
to-global” theorems to prove global properties of the under-
lying complex X . Perhaps, the main generic technique to
prove that a given complex X is a local spectral expander is
the Oppenheim “trickle-down method” [Opp18], where one
can show that if γd−2 , 1

d and X is “well connected” then
all γi’s are at most 2γd−2.

In our main technical contribution, we give recursive
framework for bounding the local spectral expansion of a
weighted simplicial complex X which significantly general-
izes Oppenheim’s result.

Theorem I.4 (Inductive Matrix Trickle-Down Method). Let
(X,πd) be a totally connected weighted simplicial complex.
Suppose {Mτ ∈ RX(0)×X(0)}τ∈X(≤d−2) is a family of
symmetric matrices satisfying the following:

1) Base Case: For every τ of co-dimension 2, we have
the spectral inequality

ΠτPτ − 2πτπ
,
τ -Mτ -

1

5
Πτ .

2) Recursive Condition: For every τ of co-dimension at
least k ≥ 3, Mτ satisfies

Mτ -
k − 1

2k − 1
Πτ and

Ex∼πτMτ∪{x} -Mτ −
k − 1

k − 2
MτΠ

−1
τ Mτ .

Then λ2(Pτ ) ≤ ρ(Π−1
τ Mτ ) for all τ ∈ X(≤ d − 2),

where ρ represents the spectral radius. In particular, (X,πd)

is a (µ−1, . . . , µd−2)-local spectral expander with µk =
maxτ∈X(k) ρ(Π

−1
τ Mτ ).

Remark I.5. The original “trickle-down method” is a special
case of our result by taking the matrix Mτ to be a multiple
of Πτ . We justify this formally through a quick calculation
in the extended version of the paper.
Remark I.6. It also turns out for our applications to proper
colorings we will need a slight extension of the above
theorem. However, one should take the above theorem as
the heart of our technical contributions. See Theorem III.5
below and the surrounding discussion for more details on
the slight extension.

Typically, it is not difficult to construct some family of
matrices {Mτ} satisfying the assumptions of Theorem I.4.
The key challenge is choose Mτ ’s such that one can bound
ρ(Π−1

τ Mτ ) ≤ O(1/ codim(τ)). One of our second key
insights is that the matrices Mτ can be designed to have
convenient sparsity patterns depending on (X,πd) which al-
low for straightforward bounds on ρ(Π−1

τ Mτ ). For instance,
in our application to proper colorings, our matrices Mτ

will have rows and columns corresponding to vertex-color
pairs vc, and they will be supported on the “proper coloring
constraints”, namely pairs uc, vc′ of vertex-color pairs where
the vertices u, v are neighbors and the two colors c, c′ are
identical. We demonstrate the usefulness of this approach on
sampling proper colorings in graphs below.

The rest of the paper is organized as follows. In Sec-
tion III, we prove Theorem I.4 and its extension. Then
we apply these theorems to analyze the Glauber dynam-
ics for sampling a graph coloring. First, to demonstrate
our approach better, we focus on vertex-coloring in in
Section IV. We start by restricting our attention to when
the matrix bounds {Mτ}τ∈X:codim(τ)≥2 in Theorem I.4
are diagonal matrices. Using diagonal matrix bounds, we
show the essence of our technique while retrieving a known
result for vertex-coloring. Finally, in Section V, we prove
Theorem I.1, our main result for edge-coloring.

II. PRELIMINARIES

First, we fix some notational conventions. When it is clear
from context, we write a to denote a singleton {a}. When
we want to add a subscript b to an object denoted by xa, we
write xa,b, i.e. xa,b := (xa)b. We use the same convention
for superscripts. Throughout the paper, adding or removing
∅ as a subscript does not change the object. For an integer
q, we denote {1, . . . , q} by [q]. For a function f : D → R
and a D′ ⊆ D, we write f |D′ to denote the restriction of f
to domain D′.

Matrices and Vectors: Given a set S, we write v ∈ RS

and A ∈ RS×S to respectively denote a vector and a matrix
indexed by S. We see a probability distribution p over a set S
as a vector p ∈ RS

≥0. For a n×n matrix A, with eigenvalues
λ1, . . . ,λn, we write ρ(A) = max1≤i≤n |λi| to denote the
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spectral radius of A and ‖A‖∞ = max1≤i≤n{
∑n

j=1 |Aij |}.
We write - to denote the Loewner order, i.e. for any
symmetric matrices A,B ∈ RS×S , we write A - B if B−A
is positive semidefinite. For any matrix A ∈ RS×S and any
S′ ⊆ S, AS′ ∈ RS×S is defined to be AS′(x, y) = A(x, y)
for x, y ∈ S′, and 0 on all other entries. We say a matrix A
is diagonal if A(x, y) = 0 whenever x 0= y. We say matrix
A ∈ RS×S is hollow if A(x, x) = 0 for all x ∈ S. For any
matrix A define A+ as A+(x, y) := max{0, A(x, y)} and
A− := A−A+. Furthermore, diag(A) is a diagonal matrix
whose diagonal elements match those of A, i.e. A(x, x) =
diag(A)(x, x). We define off-diag(A) := A− diag(A).

Graphs: Fix a graph G = (V,E). We denote the degree
of each vertex v by ∆G(v) and the maximum degree of the
graph by ∆G. Let nG := |V | and mG := |E|. Furthermore,
let G[U ] be the induced subgraph of G on U ⊆ V . We may
drop the subscripts when it is clear from context. For any
u, v ∈ V , we write u ∼ v if {u, v} ∈ E. Furthermore, for
any e ∈ E, we write e ∼ v whenever vertex v is an endpoint
of e, and for an edge f 0= e we write e ∼ f when e and
f share an endpoint. For an edge e = {u, v}, define ∆(e)
as the number of edges that share an endpoint with e, i.e.
∆(e) := ∆(u) +∆(v)− 2. The line graph L(G) of a graph
G is defined as follows: every vertex in L(G) corresponds
to an edge in G and there is an edge between two vertices in
L(G) if their corresponding edges in G share an endpoint.

A. Linear Algebra

Fact II.1. For any symmetric matrix A ∈ RS×S where
Ai,j 0= 0 only for i, j ∈ S′ ⊆ S, we have A - ‖A‖∞IS

′
.

Fact II.2. For matrices A,B ∈ Rn×n and positive ε >
0, we have the inequalities AB + BA - εA2 + 1

εB
2 and

(A+B)2 - (1 + ε)A2 + (1 + 1/ε)B2.

Lemma II.3. Let A,B ∈ Rn×n be symmetric matrices such
that A · (I−αA) - B · (I−αB) for a positive real number
α > 0. If A,B - 1

2α ·I , then A - B. Note that we crucially
do not require A,B 2 0.

The above facts and Lemma II.3 are proved in the
extended version of the paper.

B. Markov Chains

Let P be the transition probability matrix of a Markov
chain on a finite state space Ω with stationary distribution
π. We say P is irreducible if P is connected. We say P is
reversible w.r.t. π if for all x, y ∈ Ω, we have π(x)P (x, y) =
π(y)P (y, x). In this case, the matrix P becomes self-adjoint
w.r.t. the natural inner product 〈·, ·〉π induced by π on RΩ

given by 〈φ,ψ〉π = Eπ[φψ].
Throughout, we only work with irreducible reversible

Markov chains. We will be interested in the mixing of our
Markov chains, which quantifies the rate of convergence to
stationarity. Specifically, for an initial starting distribution µ

on Ω and error parameter ε > 0, define

tmix(P, ε, µ)
def
= min{t ≥ 0 :

∥∥µP t − π
∥∥
TV
≤ ε},

where ‖µ− ν‖TV = 1
2

∑
x∈Ω |µ(x)− ν(x)| gives the total

variation distance between two distributions µ, ν on Ω. We
write tmix(P, ε) = supµ tmix(P, ε, µ), where the supremum
is over all possible starting distributions µ. The mixing time
of P is defined as tmix(P ) = tmix(P, 1/4). It is well-known
that the mixing time is controlled by various constants aris-
ing from classical functional inequalities. To introduce one
of these bounds, we first define EP (φ,ψ) = 〈φ, (I −P )ψ〉π
for the Dirichlet form of P , and Varπ(φ) = Eπ[φ2]−Eπ[φ]2

for the variance of φ w.r.t. π. With these in hand, we define
the spectral gap of P as λ(P )

def
= inff .=0

E(f,f)
Varπ(f)

.

Proposition II.4. For an irreducible reversible Markov
chain P on a finite state space Ω with stationary distribution
π, we have the following inequality:

tmix(P ) ≤ O

(
1

λ(P )
log

1

πmin

)
([LPW17])

C. Products of Weighted Simplicial Complexes

Given two pure simplicial complexes X,Y of dimensions
dX , dY respectively with disjoint ground sets, we may form
another pure simplicial complex Z of dimension-dZ for
dZ := dX + dY + 1 called the product X × Y of X,Y
by taking the ground set of X × Y to be the disjoint union
of the ground sets of X,Y , taking the facets of X×Y to be
of the form τ∪σ, where τ,σ are facets of X,Y respectively,
and then taking downwards closure. If πX,dX ,πY,dY are
distributions on the facets of X,Y respectively, we then form
corresponding product distribution πZ,dZ = πX,dX × πY,dY

on the facets of X×Y by taking πZ,dZ (τ ∪σ) = πX,dX (τ) ·
πY,dY (σ) for facets τ,σ of X,Y respectively. A natural
example of product of simplicial complexes is the vertex-
coloring complex of a disconnected graph. Say G = (V,E)
is a graph with n vertex and - connected components
G[U1], . . . , G[U&] and associated complexes X1, . . . X&. If
(X,πn−1) is the complex associated with G and πn−1 is
the uniform distribution over its facets, then we can write
(X,πn−1) = (X1, µ1) × · · · × (Xl, µ&), where µi is the
uniform distribution over facets of Xi. Suppose we have
associated a matrix Aτ ∈ RX(0)×X(0) to any non-empty
face τ of co-dimension at least 2 and assume that for any
1 ≤ i ≤ -, when τ−i and σ−i are two arbitrary colorings of
all connected components except i, then Aτ−i = Aσ−i . We
associate a block-diagonal matrix

f×(X, {Aτ}∅!τ∈X(≤n−3)) :=
∑

1≤i≤&:|Ui|.=1

Aτ−i .

When X is the edge-coloring complex of a graph G, it is
the vertex-coloring complex of the line graph of G, therefore
f×(X, {Aτ}∅!τ∈X(≤n−3)) is given by the above definition.
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D. Garland’s Method
We will need the following simple facts, which follow

simply by applying the Law of Total Probability appro-
priately and using the definition of the local walks P
and local distributions π. Nearly identical equations were
first observed and found to be useful by Garland [Gar73]
in the context of understanding cohomology of simplicial
complexes. They also lie at the heart of understanding
expansion phenomena, in particular local spectral expansion,
in simplicial complexes [Opp18; KO18b].

Lemma II.5 ([Opp18]). Given a weighted simplicial com-
plex (X,πd), we may decompose ΠP as

ΠP = Ex∼πΠxPx

The proof of the above lemma is straightforward and can
be found in the extended version of the paper.

Lemma II.6 ([Opp18]). Given a weighted simplicial com-
plex (X,πd), we may decompose ΠP 2 as

ΠP 2 = Ex∼ππxπ
,
x

Proof: The main observation is that the rows of P
are precisely the vectors πx, and that the rows of ΠP are
precisely the vectors π(x)πx. The claim immediately follows.

E. Local-to-Global Theorems
As alluded to earlier, one of the beautiful insights of

[DK17; KO18b] is that local spectral expansion implies
quantitative bounds on the spectral gap of the down-up walk.

Theorem II.7 ([AL20]). Let (X,πd) be a (γ−1, . . . , γd−2)-
local spectral expander. Then the down-up walk which
samples from πd has spectral gap lower bounded by

λ(P∨d ) ≥ 1

d

d−2∏

j=−1

(1− γj)

Analogous results have also been proved for the decay of
entropy [CLV21; GM20; Ali+21]. We state this result here
since our main technical result Theorem I.4 is a general
method to obtain local spectral expansion for any weighted
simplicial complex.

Theorem II.7 has been used successfully in several
prior works [Ana+19; ALO20; CLV20; Che+21; Fen+21;
Ana+21] to establish polynomial time mixing for various
dynamics. However, the exponent of these running times are
typically large, depending sensitively on the constants in the
γj . Recently, it was shown that for weighted simplicial com-
plexes arising from spin systems on bounded-degree graphs,
we can do significantly better. We will need the following to
establish optimal mixing times in our applications. We state
it specifically for colorings, as we do not analyze any other
spin systems in this paper.

Theorem II.8 ([CLV21; Bla+21]). Let (X,πn−1) be a
weighted simplicial complex arising from the uniform dis-
tribution over proper list-colorings of a graph G = (V,E)
with |V | = n and maximum degree ∆. If for some constant
C independent of n, (X,πn−1) is a (γ−1, . . . , γn−3)-local
spectral expander with γk ≤ C

n−k−1 for all k, then the
spectral gap, standard and modified log-Sobolev constants
are all ΩC,∆(1/n). In particular, the Glauber dynamics
mixes in OC,∆(n log n) steps.

III. A GENERAL MATRIX TRICKLE-DOWN METHOD

Our goal in this section is to prove Theorem I.4. Towards
this, we first elucidate the original “trickle-down method”
of Oppenheim [Opp18], which was the beautiful realization
that one can bound the second eigenvalue of the local
walk P in terms of the second eigenvalues of the local
walks {Px}x∈X(0). This “trickle-down” phenomenon nat-
urally yields an inductive method of bounding the second
eigenvalues of all local walks. We formalize this as follows.

Theorem III.1 (Trickle Down Theorem [Opp18]). Given a
weighted simplicial complex (X,πd), suppose the following
holds:

1) Connectivity: λ2(P ) < 1, i.e. the local walk P is
connected/irreducible.

2) Spectral Bound for Links Above: For some 0 ≤ λ ≤
1/2, we have the bound λ2(Px) ≤ λ for all i ∈ X(0).

Then the local walk P actually satisfies the spectral bound
λ2(P ) ≤ λ

1−λ .

Remark III.2. The original statement in [Opp18] does not
have the assumption λ ≤ 1/2, but the two are completely
equivalent, since if λ > 1/2, then λ

1−λ > 1, making the
statement vacuously true.

In particular, suppose we know that the top-dimensional
links have local walks with second eigenvalue upper
bounded by 1/(d + 1). Then by applying Theorem III.1
in a totally blackbox fashion, it immediately follows that
(X,πd) is a

(
1
2 , . . . ,

1
d+1

)
-local spectral expander and its

high-order walk has spectral gap at least Ω(1/d2). This result
has already had many applications, such as the construction
of bounded-degree high-dimensional expanders [KO18a]
and sampling algorithms for matroids [Ana+19; CGM19;
Ana+21] and other combinatorial structures [AL20].

Unfortunately, when X is the simplicial complex of
proper (partial) colorings, and πn−1 is the uniform dis-
tribution over proper colorings, this standard trickle-down
method is not enough. It turns out that in the worst case,
the second largest eigenvalue of the local walk of a top-
dimensional link is Θ

(
1

q−∆

)
= Θ(1), which is much too

large since Theorem III.1 needs to be applied n− 2 times.
Our main technical contribution is to provide a framework

which significantly generalizes Theorem III.1, and makes
the trickle-down theorem applicable to wider classes of
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weighted simplicial complexes, including those arising from
proper colorings. One of our main insights is to replace
the hypothesis that λ2(Px) ≤ λ, which merely provides
a uniform bound on all nontrivial eigenvalues of Px, by
a matrix bound “Px - Mx”. The hope is that the matrix
Mx itself can simultaneously be easily bounded, as well
as provide information on where the “bad” eigen-spaces
of Px are. So, roughly speaking, although many of the
top dimensional links Pτ ’s may have a constant second
eigenvalue, by carefully choosing Mτ ’s one can “average
out” these bad eigen-spaces to show that the link of a lower
dimensional face has small eigenvalues. We formalize this
as follows.

Theorem III.3 (Matrix Trickle-Down Theorem). Given a
weighted simplicial complex (X,πd), suppose the following
holds:

1) Connectivity: λ2(P ) < 1, i.e. the local walk P is
connected/irreducible.

2) Generalized Spectral Bound for Links Above: There
is a family of symmetric matrices {Mx}x∈X(0) such
that

ΠxPx − απxπ,x -Mx -
1

2α+ 1
Πx

for all i ∈ X(0).
Then the local walk P actually satisfies the spectral bound
ΠP −

(
2− 1

α

)
ππ, - M , and in particular λ2(P ) ≤

ρ(Π−1M), where M is any symmetric matrix satisfying
M - 1

2αΠ and Ex∼πMx -M − αMΠ−1M .

Note that by induction, Theorem I.4 follows as an imme-
diate consequence of this generalized trickle-down result.
Let us now prove Theorem III.3. To do this, we first need
the following lemma.

Lemma III.4. Let (X,πd) be a weighted simplicial com-
plex. Suppose for a symmetric matrix M and an α ≥ 1/2,
the matrix inequalities M,ΠP −

(
2− 1

α

)
ππ, - 1

2αΠ hold
and

ΠP − αΠP 2 -M − αMΠ−1M (3)

Then we have the bound ΠP −
(
2− 1

α

)
ππ, -M .

Proof: Our goal is to apply Lemma II.3 to suitably
chosen A,B. Define Q = P −

(
2− 1

α

)
1π,. A quick

calculation shows that Q − αQ2 = P − αP 2, and so by
multiplying both sides of Eq. (3) by Π−1/2, we see that
Eq. (3) is equivalent to

Π1/2QΠ−1/2 − αΠ1/2Q2Π−1/2

- Π−1/2MΠ−1/2 − αΠ−1/2MΠ−1MΠ−1/2

Taking A = Π1/2QΠ−1/2 and B = Π−1/2MΠ−1/2, we see
by assumption that A,B are symmetric matrices satisfying
A,B - 1

2αI and A(I − αA) - B(I − αB). It follows

by Lemma II.3 that A - B, which is equivalent to ΠP −(
2− 1

α

)
ππ, = ΠQ -M as desired.

With this lemma in hand, let us now prove Theorem III.3.
Proof of Theorem III.3: The conclusion follows im-

mediately from Lemma III.4, and so it suffices to verify the
conditions of the lemma. By assumption, we already have
M - 1

2αΠ. Furthermore, ΠxPx−απxπ,x -Mx - 1
2α+1Πx

implies that λ2(Px) ≤ 1
2α+1 . Since λ2(P ) < 1, by The-

orem III.1 (the original Trickle-Down Theorem), λ2(P ) ≤
1
2α . Combined with the inequality 2 − 1

α ≥ 1 − 1
2α , which

holds since α ≥ 1/2, it follows that ΠP −
(
2− 1

α

)
ππ, -

1
2αΠ.

All that remains is to verify Eq. (3). Observe that

ΠP = Ex∼πΠxPx (Lemma II.5)
- Ex∼π

[
απxπ

,
x +Mx

]
(Assumption)

= αΠP 2 + Ex∼πMx (Lemma II.6)
- αΠP 2 +M − αMΠ−1M (Assumption)

Rearranging, we obtain that ΠP−αΠP 2 -M−αMΠ−1M
as desired.

A. A Slight Extension of Theorem I.4
Here, we prove an extension of the matrix trickle-down

method to take into account when simplicial complexes
factor as products of smaller complexes. This will be useful
in the context of proper colorings when the input graph is
broken into several connect components by coloring some
of the vertices.

Theorem III.5. Let (X,πd) be a totally connected weighted
complex. Suppose {Mτ ∈ RX(0)×X(0)}τ∈X(≤d−2) is a
family of symmetric matrices satisfying the following:

1) Base Case: For every τ of co-dimension 2, we have
the spectral inequality

ΠτPτ − 2πτπ
,
τ -Mτ -

1

5
Πτ .

2) Recursive Condition: For every τ of co-dimension at
least k ≥ 3, at least one of the following holds: Mτ

satisfies

Mτ -
k − 1

3k − 1
Πτ and

Ex∼πτMτ∪{x} -Mτ −
k − 1

k − 2
MτΠ

−1
τ Mτ . (4)

Or, (Xτ ,πτ,k−1) is a product of weighted simplicial
complexes (Y1, µ1), . . . , (Yt, µt) and for every η ∈
Xτ (k − 1),

Mτ =
⊕

1≤i≤t:dYi≥1

dYi(dYi + 1)

k(k − 1)
Mτ∪η−i ,

where η−i = η \ Yi(0).
Then for every τ ∈ X(≤ d − 2), we have the bound
λ2(ΠτPτ ) ≤ ρ(Π−1

τ Mτ ).

166

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 05,2022 at 23:30:12 UTC from IEEE Xplore.  Restrictions apply. 



A proof of this theorem can be found in the extended
version of the paper.

IV. VERTEX COLORING

Fix an integer q and graph G = (V,E) and a function
L that maps each v ∈ V to a subset of [q]. We call (G,L)
a vertex-list-coloring instance. For any u, v ∈ V , we write
u ∼c v when u ∼ v and c ∈ L(u) ∩ L(v). Furthermore,
we define a β-extra color vertex-list-coloring instance as
follows.

Definition IV.1. We say a vertex-list-coloring instance
(G,L) is a β-extra-color instance if for each v ∈ V ,
|L(v)| ≥ β +∆G(v).

We call an assignment σ : V → [q] a L-vertex-list-
coloring of G if σ(v) ∈ L(v) for all v ∈ V ; we say σ
is proper if σ(u) 0= σ(v) whenever u ∼ v. When it is clear
from context we say σ is a proper coloring to mean it is
a proper L-vertex-list-coloring. We say τ is proper partial
coloring on U ⊂ V when it is a proper L|U -vertex-list-
coloring for G[U ]. We may view list-colorings σ as sets
of vertex-color pairs (v, c), which we denote by vc for
convenience. When the graph G and color lists L are clear
from context, we write πn−1 for the uniform distribution
over proper L-vertex-list-coloring of G = (V,E). For a
proper partial coloring on U ⊂ V , v ∈ V \U and c ∈ L(v),
define

p(vc|τ) := Pσ∼πn−1(σ(v) = c|∀u ∈ U : σ(u) = τ(u)).

In order to analyze the Glauber dynamics for an vertex-
list-coloring instance (G,L), we can build an (n − 1)-
dimensional simplicial complex such that the down-up walk
on its facets is the same as the Glauber dynamics on (G,L).
Our aim is to apply Theorem III.5 to bound the second
eigenvalue of the transition probability matrix of the local
walks and then use Theorem II.7 to bound the second
eigenvalue of the transition probability matrix of the global
down-up walk on the facets.

Definition IV.2 (Simplicial Complex of a Vertex-List-Color-
ing Instance). Given a vertex-list-coloring instance (G,L),
let X(G,L) be a pure (n− 1)-dimensional simplicial com-
plex specified by the following facets: {(v,σ(v))}v∈V is a
facet if and only if σ is a proper L-vertex-list-coloring for
G.

When it is clear from context, we abbreviate X(G,L) to
X . Note that for all 0 ≤ k ≤ n, any face τ of co-dimension
k is a proper partial coloring on a subset of vertices U of size
n−k, i.e., k vertices remain uncolored. Furthermore, Xτ (0)
can be seen as the set of all vc such that c ∈ L(v), v /∈ U
and for any u ∼ v, uc /∈ τ . We define Vτ := {v : ∃c, vc ∈
Xτ (0)}. Let Gτ := G[Vτ ] and ∆τ (.) be the degree function
of Gτ and ∆τ be its maximum degree. We define Lτ (v) :=
{c ∈ L(v) : vc ∈ Xτ (0)} to be the list of remaining colors

available to v after coloring vertex u with c for each uc ∈ τ .
Let lτ (v) := |Lτ (v)| and lτ (u, v) := |Lτ (u) ∩ Lτ (v)|. We
write v ∼τ,c u for vertices v, u when v ∼ u and c ∈ Lτ (v)∩
Lτ (u). Furthermore, for U ⊆ V \ Vτ , let τ |U := {vc ∈ τ :
v ∈ U}.

Theorem IV.3. Suppose (G,L) is a (1 + ε)∆-extra-color
vertex-list-coloring instance for an 0 < ε ≤ 1 such that
ln(∆)+2

∆ ≤ ε2

40 , and let (X,πn−1) be its associated weighted
simplicial complex. For any 2 ≤ k ≤ n and τ ∈ X of
co-dimension k we have λ2(Pτ ) ≤

5
2ε

k−1 .

Combined with local-to-global theorems (Theorems II.7
and II.8), this yields a mixing time of O(n log n) for
bounded-degree graphs, and nO(1/ε) in general, in this
setting where we have at least (1 + ε)∆ additional colors
available to each vertex. Again, we emphasize that this
mixing result in itself is not new; a simple coupling argument
can already recover O(n log n) mixing for (∆ + 1)-extra-
color vertex-list-coloring instances. However, we will see
later on how our proof technique can be used to obtain new
mixing results for sampling edge colorings which, to the best
of our knowledge, cannot be recovered via simple coupling
arguments.

To prove the above statement, first for any τ of co-
dimension 2, we find a diagonal matrix Fτ such that
ΠτPτ - 2πτπ,τ + ΠτFτ . Then, for all τ of co-dimension
at least 3, we apply Theorem III.5 to Mτ = ΠτFτ

k−1 to find
a sufficient condition on the diagonal matrix Fτ based on
matrices Fτ ′ for faces τ ! τ ′, to get λ2(Pτ ) ≤ ρ(Fτ )

k−1 . To
find Fτ for faces τ of co-dimension 2, we state a more
general proposition that is also useful for approaches that
use non-diagonal matrix bounds.

Proposition IV.4. Given a vertex-list-coloring instance
(G,L), consider the weighted complex (X,πn−1). For any
face τ of co-dimension 2 such that Gτ = ({u, v}, {uv}) is
connected we have,

ΠτPτ − 2πτπ
,
τ -

√
ΠτM̃τ

√
Πτ , (5)

where M̃τ is a block diagonal matrix with a block M̃ c
τ for

every color c such that

M̃ c
τ =




1

(lτ (u)−1)(lτ (v)−1)
−1√

(lτ (u)−1)(lτ (v)−1)
−1√

(lτ (u)−1)(lτ (v)−1)

1
(lτ (u)−1)(lτ (v)−1)





and all other entries are 0.

Proof: For clarity, we drop τ from all notation in the
proof. Write M̃ = M̃d + M̃o, where M̃d = diag(M̃) and
M̃o = off-diag(M̃). First observe that for c ∈ L(u),

π(uc) =

{
l(v)−1

2(l(u)l(v)−l(u,v)) if c ∈ L(u) ∩ L(v)
l(v)

2(l(u)l(v)−l(u,v)) otherwise
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and a similar identity holds for any c ∈ L(v). Also, observe
that

ΠP =
J − Ju − Jv

2(l(u)l(v)− l(u, v))
+
√
ΠM̃o

√
Π,

where J, Ju, Jv are the all-ones matrix, all-ones matrix on
uc rows/columns and all-ones matrix on vc rows/columns,
respectively. So, subtracting M̃o from both sides of (5) and
multiplying by 2(l(u)l(v)− l(u, v)) it is enough to show

J − Ju − Jv − 4(l(u)l(v)− l(u, v))ππ, (6)

- 2(l(u)l(v)− l(u, v))
√
ΠM̃d

√
Π =: Nd (7)

Write - = l(v)1u + l(u)1v . Also, let s ∈ Rl(u)+l(v) where
s(xc) = 1 if c ∈ L(u) ∩ L(v) and s(xc) = 0 otherwise for
x ∈ {u, v}. Then, by Fact II.2 we can write,

4(l(u)l(v)− l(u, v))ππ, =
(-− s)(-− s),

l(u)l(v)− l(u, v)

2︸︷︷︸
Fact II.2

--, + ss, − 1
2--

, − 2ss,

l(u)l(v)− l(u, v)

2 --,

2l(u)l(v)
− ss,

l(u)l(v)− l(u, v)

Plugging this into (6) it is enough to show that

J − Ju − Jv +
ss,

l(u)l(v)− l(u, v)

= 1u1v, + 1v1u, +
ss,

l(u)l(v)− l(u, v)

- --,

2l(u)l(v)
+Nd (8)

First, observe that by another application of Fact II.2,
l2(v)1u1u, + l2(u)1v1v, 2 l(u)l(v)(1u1v, + 1v1u,).
So,

--,

2l(u)l(v)
=

(l(v)1u + l(u)1v)(l(v)1u + l(u)1v),

2l(u)l(v)

2 1u1v, + 1v1u,

Let I∩ ∈ R(l(u)+l(v))×(l(u)+l(v)) be the identity matrix
only on entries xc, xc where x ∈ {u, v} and c ∈ L(u)∩L(v).
Finally, (8) simply follows from the fact that

ss,

l(u)l(v)− l(u, v)
- l(u, v)

l(u)l(v)− l(u, v)
I∩ - Nd

where the first inequality uses that the only non-zero rows
of ss, correspond to a common color and the sum of
the entries of any such row is exactly l(u, v) and the
last inequality uses that l(u,v)

l(u)l(v)−l(u,v) ≤
1

max{l(u),l(v)}−1

and that Nd(uc, uc) = 1
l(u)−1 , Nd(vc, vc) = 1

l(v)−1 if
c ∈ L(u) ∩ L(v) and it is zero otherwise.

Note that in the above proposition, M̃τ - ( 1β+
1
β2 )IXτ (0),

which gives us the diagonal matrix Fτ for any τ of co-
dimension 2 such that Gτ is connected. Now, using The-
orem III.5, we derive a set of sufficient conditions on the
family {Fτ}τ∈X:codim(τ)≥2 to get λ2(Pτ ) ≤ ρ(Fτ )

k−1 for all τ
of co-dimension 2 ≤ k ≤ n.

Proposition IV.5. Given a β-extra-color vertex-
list-coloring instance (G,L), with corresponding
weighted simplicial complex (X,πn−1), suppose
{Fτ ∈ RX(0)×X(0)}τ∈X:codim(τ)≥2 is a family of
diagonal matrices supported on Xτ (0) × Xτ (0) such
that Fτ = f×(Xτ , {Fτ∪σ}∅!σ∈Xτ (≤codim(τ)−3)) if Gτ is
disconnected and otherwise,

1) For all τ of co-dimension 2: Fτ (vc, vc) =
1
β + 1

β2 for
all vc ∈ Xτ (0).

2) For all τ of co-dimension k ≥ 3: Fτ - (k−1)2

3k−1 IXτ (0)

and for all vc ∈ Xτ (0)
∑

uc′∈Xτ∪vc(0)

p(uc′|τ ∪ vc)Fτ∪uc′(vc, vc)

≤ (k − 2)Fτ (vc, vc)− F 2
τ (vc, vc).

Then, for all k ≥ 2 and τ of co-dimension k, λ2(Pτ ) ≤
ρ(Fτ )
k−1 .

Proof: We prove that the conditions of Theorem III.5
hold for Mτ := ΠτFτ

k−1 for any face τ of co-dimension
at least 2. The desired condition holds for any τ of co-
dimension 2 by Proposition IV.4. Now, let k ≥ 3. First
assume that Gτ is disconnected with connected components
Gτ [U1], . . . , Gτ [U&] and associated complexes Y1, . . . Y&. We
can write (X,πτ,k−1) = (Y1, µ1) × · · · × (Y&, µ&), where
µi is the uniform distribution over facets of Yi. For an
α ∈ Xτ (k − 1) let α−i := α \ α|Ui . Therefore,

∑

1≤i≤&:dYi≥1

dYi(dYi + 1)

(k − 1)k
Mτ∪α−i

=
def of Mτ∪α−i

∑

1≤i≤&:dYi≥1

dYi(dYi + 1)

(k − 1)k

Πτ∪α−i

dYi

Fτ∪α−i

=
∑

1≤i≤&:dYi≥1

(Πτ )
Xτ∪α−i (0)

Fτ∪α−i

k − 1
=

def of Fτ

ΠτFτ

k − 1
= Mτ

as desired.
Now, assume that Gτ is connected. Note that since each

entry of Fτ is at most (k−1)2

3k−1 , we have Mτ - k−1
3k−1Πτ .

Therefore, it only remains to show that Evc∼πτMτ∪vc -
Mτ − k−1

k−2MτΠ−1
τ Mτ . This is equivalent to showing that

Π−1
τ Euc′∼πτ

[
Πτ∪uc′

Fτ∪uc′

k − 2

]
- Fτ

k − 1
− F 2

τ

(k − 2)(k − 1)
.

One can check that

Euc′∼πτ

[
Π−1

τ Πτ∪uc′
Fτ∪vc
k − 2

]
(vc, vc)
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=

∑
uc′∈Xτ∪vc(0)

p(uc′|τ ∪ vc)Fτ∪uc′(vc, vc)

(k − 1)(k − 2)
.

Therefore, it is enough that
∑

uc′∈Xτ∪vc(0)
p(uc′|τ ∪ vc)Fτ∪uc′(vc, vc)

(k − 1)(k − 2)

≤ Fτ (vc, vc)

k − 1
− F 2

τ (vc, vc)

(k − 1)(k − 2)
,

which holds by assumption.
Now, to complete the proof of Theorem IV.3 it only

remains to find {Fτ}τ∈X(≤n−2) that satisfies the above
conditions. We find this family of diagonal matrices in the
extended version of the paper. Let us remark why we need
the assumption β > ∆ in this proof. Consider the worst
case example, where G is a complete graph with ∆ + 1
vertices. In that case, by symmetry, Fτ (vc, vc) = 1

β + 1
β2

for all faces of co-dimension 2, and every matrix Fτ is a
multiple of identity on Xτ (0) × Xτ (0). So, the conditions
on Fτ reduces to the following systems of inequalities:

f(1) =
1

β
+

1

β2
and

∀3 ≤ k ≤ ∆,

(k − 1)f(k − 2) ≤ (k − 2)f(k − 1)− f(k − 1)2

It is not hard to see that such a system does not have a
solution up to k = ∆+ 1 when β ≤ ∆.

V. EDGE COLORING

Consider a graph G = (V,E) and a function L : E →
2[q]. The pair (G,L) is called an edge-list-coloring instance.
For a vertex v and an edge e, we write e ∼c v when e ∼ v
and c ∈ L(e). Furthermore, for any e, f ∈ E, we write
e ∼c f when e ∼ f and c ∈ L(e) ∩ L(f). Furthermore, we
define a β-extra-color edge-list-coloring instance as follows.

Definition V.1. We say an edge-list-coloring instance (G,L)
is a β-extra-color instance if for each e ∈ E, |L(e)| ≥
β +∆G(e).

An assignment σ : E → [q] is a L-edge-list-coloring
of G if σ(e) ∈ L(e) for all e ∈ E. We say σ is proper if
σ(e) 0= σ(f) whenever e ∼ f . When it is clear from context
we say σ is a proper coloring to mean it is a proper L-edge-
list-coloring. We say τ is proper partial coloring on H ⊂ E
when it is a proper L|H -edge-list-coloring for (V,H). We
may view a proper coloring as a set of edge-color pairs (e, c)
which we denote by ec for simplicity of notation. We denote
the uniform distribution over proper L-edge-list-colorings of
G by πm−1 when (G,L) are clear from context. For a proper
partial coloring on H ⊂ E and e ∈ E \H , define

p(ec|τ) := Pσ∼πm−1(σ(e) = c|∀f ∈ H : σ(f) = τ(f)).

To analyze the Glauber dynamics on an edge-list-coloring
instance we associate a simplicial complex to it.

Definition V.2 (Simplicial Complex of an Edge-List-Color-
ing Instance). Given an edge-list-coloring instance (G,L),
let X(G,L) be a pure (m − 1)-dimensional simplicial
complex specified by the following facets: {(e,σ(e))}e∈E
is a facet if and only if σ is a proper L-edge-list-coloring
for G.

When it is clear from context, we abbreviate X(G,L)
to X . Note that for all 0 ≤ k ≤ m, any face τ of co-
dimension k is a partial coloring on a subset of edges H
of size m − k (k edges remain uncolored). Furthermore,
Xτ (0) can be seen as the set of all ec such that c ∈ L(e),
e /∈ H and for any f ∼ e, fc /∈ τ . Analogous to vertex-
list-colorings, the Glauber dynamics on (G,L) is the down-
up walk on the facets of (X,πm−1). So, as we did before
for vertex-list-colorings, our aim is to apply Theorem III.5
to the simplicial complex to bound the second eigenvalue
of the transition probability matrix of the local walks and
then apply Theorem II.7 to get a bound for the transition
probability matrix of the down-up walk on the facets. The
following is the main theorem of this section.

Theorem V.3. Let (G,L) be a (43 +4ε)∆-extra-color edge-
list-coloring instance for some 0 < ε ≤ 1

10 such that
ln2(∆)

∆ ≤ ε3

15 , and let (X,πm−1) be its associated weighted
simplicial complex. For any 2 ≤ k ≤ m and τ ∈ X of
co-dimension k we have λ2(Pτ ) ≤

ε+ 1
ε

k−1 .

We remark that our analysis here is not tight and we
expect that the factor 4/3 can be improved with a more
careful analysis.

We proceed by introducing some notation and definitions.
Given a face τ ∈ X , let Eτ be the set of uncolored edges,
i.e. Eτ := {e : ∃c, ec ∈ Xτ (0)}. Let Gτ = (V,Eτ ) and
∆τ (.) be the degree function of Gτ . Similarly, if e = {u, v},
define ∆τ (e) to be number of edges in Gτ that share an
endpoint with e, i.e. ∆τ (e) = ∆τ (u)+∆τ (v)−2. We define
Lτ (e) := {c ∈ L(e) : ec ∈ Xτ (0)}. Let lτ (e) := |Lτ (e)|
and lτ (e, f) := |Lτ (e) ∩ Lτ (f)|. Furthermore, we write
e ∼τ,c v when e ∼ v and c ∈ Lτ (e). Similarly, define
e ∼τ,c f for edges e and f . Finally, for any matrix
B ∈ RX(0)×X(0), define the restriction of B to v ∈ V
as Bv(ec, fc) := B(ec, fc) for any e, f ∼ v, and 0 on
all other entries. Let Bc ∈ RX(0)×X(0) be defined as
Bc(ec, fc) := B(ec, fc) for all e ∼c f , and 0 on all other
entries.

To be able to improve upon Theorem IV.3 and prove The-
orem V.3, we allow the matrix bounds {Mτ}τ∈X:codim(τ)≥2

in Theorem III.5 to be non-diagonal matrices. For any k ≥ 2
and face τ of co-dimension k, we assume that Mτ is of the
form

Mτ = Πτ
Fτ

k − 1
+

√
Πτ

Aτ

k − 1

√
Πτ , (9)

for a diagonal matrix Fτ and a hollow matrix Aτ . The goal is
again to find Fτ and Aτ such that Mτ satisfies the conditions
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of Theorem III.5. For k = 2, Proposition IV.4 gives us
such matrices. For k ≥ 3, as opposed to what we did for
vertex-coloring of trees, we let

√
Πτ

Aτ
k−1

√
Πτ deviate from

Evc∼πτ

√
Πτ∪vc

Aτ∪vc
k−2

√
Πτ∪vc in order to control the growth

of Fτ .

Definition V.4 (Family of Matrices {Aτ,ε}τ∈X,codim(τ)≥2 ).
Let (G,L) be a β-extra-color edge-list-coloring instance,
and let(X,πm−1) be its associated weighted complex. For
ε > 0, define {Aτ,ε}τ∈X,codim(τ)≥2 as follows: let Aτ,ε :=
f×(X, {Aτ∪σ,ε}∅!σ∈Xτ (codim(τ)−3)) if the line graph of Gτ

is disconnected and otherwise,
1) For any face τ of co-dimension 2, let Aτ,ε ∈

RX(0)×X(0) be a hollow block diagonal matrix with a
block for every color such that

Aτ,ε(ec, fc) = Aτ,ε(fc, ec) :=

− 1√
(lτ (e)− 1)(lτ (f)− 1)

,

for e, f ∈ Eτ and any c ∈ Lτ (e) ∩ Lτ (f), and all
other entries are 0.

2) For any k ≥ 3 and a face τ of co-dimension k, define
Aτ,ε := Āτ,ε +

off-diag(Sτ,ε)
k−2 , where Āτ,ε and Sτ,ε are

defined as follows:

Āτ,ε :=

k − 1

k − 2
Π−1/2

τ

(
Egc∼πτΠ

1/2
τ∪gcAτ∪gc,εΠ

1/2
τ∪gc

)
Π−1/2

τ

(10)

Sv
τ,ε :={
4(1 + ε)

(
(Ā+,v

τ,ε )
2 + (Ā−,v

τ,ε )
2
)

if ∆τ (v) ≤ β
4(1+ε) ,

2(1 + ε)(Āv
τ,ε)

2 otherwise.
(11)

and Sτ,ε =
∑

v S
v
τ,ε.

Observe that all three matrices Āτ,ε, Sτ,ε, Aτ,ε are symmet-
ric and hollow. When it is clear from context, we drop ε
from the subscripts of matrices defined above .

In order to find diagonal matrices {Fτ}τ∈X:codim(τ)≥2

such that {Mτ}τ∈X:codim(τ)≥2 as defined by Eq. (9) sat-
isfies the conditions of Theorem III.5, we would need to
have a bound on the entries of {Aτ,ε}τ∈X,codim(τ)≥2 and
{Sτ,ε}τ∈X,codim(τ)≥2.

Proposition V.5. Given a β-extra-color edge-list-coloring
instance (G,L) where β = ( 43 + 4ε)∆ for an 0 < ε ≤ 1

10
such that 2ε−2 ≤ ∆,

1) For any τ ∈ X with codim(τ) ≥ 2, v ∈ G, and
e, f ∼τ,c v, |Aτ,ε(ec, fc)| ≤ 1

2ε∆ ≤
ε
4 .

2) For any τ ∈ X with codim(τ) ≥ 3, v ∈ G, and
e, f ∼τ,c v,

Sτ,ε(ec, fc) ≤
(1 + ε)(∆τ (v)− 2)

2ε2∆2

.
3) For any τ ∈ X with codim(τ) ≥ 3, color c, and

(e = {u, v}, c) ∈ Xτ (0),

Sτ,ε(ec, ec) ≤
(1 + ε)(∆τ (v) +∆τ (u)− 2)

2ε2∆2
.

Proposition V.5 is proved in the extended version of the
paper.

The following lemma is a crucial part of our proof as
it will help us bound the term MτΠ−1

τ Mτ in Eq. (4)
effectively.

Lemma V.6. Consider a graph G = (V,E), and some
weight function w : E → R≥0. Let A be the weighted
adjacency matrix of its line graph. Then

A2 - 2
∑

v∈V
(Av)2,

where Av(e, f) = A(e, f) if e, f ∼ v and 0 otherwise.

Proof: It is enough to show that for all x ∈ RE ,
x,A2x ≤ 2

∑
v∈V x,(Av)2x. We have

x,A2x = ‖Ax‖22 =
∑

e∈E
(Ax(e))2 =

∑

e∈E
〈Ae, x〉2

where Ae is the row indexed by e. Now, let e = {u, v} ∈ E.
We can write 〈Ae, x〉 = 〈(Au)e, x〉+ 〈(Av)e, x〉. Therefore,
by an application of Fact II.2

∑

e∈E
〈Ae, x〉2 - 2

∑

e={u,v}∈E

〈(Au)e, x〉2 + 〈(Av)e, x〉2

= 2
∑

v

∑

e∼v

(Avx(e))2 = 2
∑

v∈V
x,(Av)2x.

Now, we apply Theorem III.5 to derive sufficient con-
ditions on the family {Fτ}τ∈X,codim(τ)≥2 to get λ2(Pτ ) ≤
ρ(Fτ+Aτ )

k−1 for all τ of co-dimension 2 ≤ k ≤ m.

Proposition V.7. Let (G,L) be a (43 + 4ε)∆-extra-
color edge-list-coloring instance such that 0 ≤ ε ≤
1
10 and ∆ ≥ 2ε−2, and let (X,πm−1) be its associ-
ated weighted simplicial complex. Suppose that {Fτ ∈
RX(0)×X(0)}τ∈X:codim(X)≥2 is a family of diagonal ma-
trices supported on Xτ (0) × Xτ (0) such that Fτ =
f×(Xτ , {Fτ∪σ}∅!σ∈Xτ (≤codim(τ)−3)) if the line graph of
Gτ is connected and otherwise,

1) For all τ of co-dimension 2: Fτ is defined as
Fτ (ec, ec) = 1

( 4
3+4ε)2∆2 = 1

β2 for ec ∈ Xτ (0) and
0 on all other entries.

2) For all τ of co-dimension k ≥ 3: Fτ - ( (k−1)2

3k−1 −
1

2ε∆ )IXτ (0), and for any ec ∈ Xτ (0)
∑

gc′∈Xτ∪ec(0)

p(gc′|τ ∪ ec)Fτ∪gc′(ec, ec)
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≤ (k − 2)Fτ (ec, ec)−
(
2 + ε

ε

)
F 2
τ (ec, ec)− γτ (ec),

(12)

where γτ (ec) =
(1+ε)∆τ (e)

2ε2∆2 + (1+ε)2(2+3ε+ε2)
ε5∆2 .

Then for all k ≥ 2 and τ of co-dimension k, λ2(Pτ ) ≤
ρ(Fτ+Aτ )

k−1 , where Aτ is defined in Definition V.4.

Proof: We prove that the conditions of Theorem III.5
hold for {Mτ}τ∈X(≤m−3) defined as follows:

Mτ := Πτ
Fτ

k − 1
+

√
Πτ

Aτ

k − 1

√
Πτ ,

for all τ ∈ X, k = codim(τ) ≥ 2. Note that the condition
of the theorem holds for any τ of co-dimension 2 by
definition. So, we prove the statement for τ of co-dimension
at least 3. Assume the line graph of Gτ is disconnected.
Using the definition of Aτ and our assumption about Fτ ,
the proof of this case is similar to what we argued in
Proposition IV.5. Now, assume that the line graph of Gτ

is connected. Note that by Proposition V.5, the absolute
value of every off-diagonal entry of Aτ is at most 1

2ε∆
and that there are at most (k − 1) non-zero entries per
row. Therefore,

√
Πτ

Aτ
k−1

√
Πτ - 1

2ε∆Πτ . Combined with
the bound on entries of diagonal matrix Fτ , this implies
that Mτ - k−1

3k−1Πτ . Therefore, it only remains to show that
Egc∼πτMτ∪gc - Mτ − k−1

k−2MτΠ−1
τ Mτ . This is equivalent

to showing that

Π−1/2
τ Egc∼πτ

[
Πτ∪gc

Fτ∪gc
k − 2

+Π1/2
τ∪gc

Aτ∪gc
k − 2

Π1/2
τ∪gc

]
Π−1/2

τ

- Fτ

k − 1
+

Aτ

k − 1
− (Fτ +Aτ )2

(k − 2)(k − 1)
. (13)

We proceed by first proving a lowerbound on the RHS. By
two applications of Fact II.2, we can write

(Fτ +Aτ )
2 -

(
1 +

2

ε

)
F 2
τ +

(
1 +

ε

2

)
A2

τ

-
(
1 +

2

ε

)
F 2
τ + (1 + ε)Ā2

τ

+
(3 + ε+ 2/ε) off-diag(Sτ )2

(k − 2)2
. (14)

We proceed by finding a diagonal matrix to upperbound
Ā2

τ . For any c ∈ [q], Āc
τ is the weighted adjacency

matrix of a line graph. Therefore, by Lemma V.6, (Āc
τ )

2 -
2
∑

v∈V (Ā
c,v
τ )2. Since Ā2

τ =
∑

c∈[q](Ā
c
τ )

2, we get that

Ā2
τ - 2

∑

v∈V
(Āv

τ )
2 - 4

∑

v∈V
((Ā+,v

τ )2 + (Ā−,v
τ )2).

where in the second inequality we used Fact II.2. Therefore,
by definition of Sτ (see Eq. (11)),

(1 + ε)Ā2
τ - Sτ = (k − 2)(Aτ − Āτ ) + diag(Sτ ).

So, by (14), we can lowerbound the RHS of (13) as follows

Fτ

k − 1
+

Aτ

k − 1
− (Fτ +Aτ )2

(k − 2)(k − 1)

2 Fτ

k − 1
+

Āτ

k − 1
−

(1 + 2
ε )F

2
τ

(k − 1)(k − 2)

− diag(Sτ )

(k − 1)(k − 2)
−

(3 + ε+ 2
ε ) off-diag(Sτ )2

(k − 1)(k − 2)3
.

On the other hand, by definition of Āτ (see (10)), the LHS
of (13) is equal to

Egc∼πτ

[
Π−1

τ Πτ∪gc
Fτ∪gc
k − 2

]
+

Āτ

k − 1
,

and

Egc∼πτ

[
Π−1

τ Πτ∪gc
Fτ∪gc
k − 2

]
(ec, ec)

=
∑

gc′∈Xτ∪ec(0)

p(gc′|τ ∪ ec)Fτ∪gc′(ec, ec).

Comparing this with the assumption (see Eq. (12)), and
letting γτ (ec) = 0 for all ec /∈ Xτ (0), it is enough to show
that

diag(γτ ) 2 diag(Sτ ) +
(3 + ε+ 2

ε ) off-diag(Sτ )2

(k − 2)2
.

First, notice,

off-diag(Sτ )2

(k − 2)2
-
‖off-diag(Sτ )‖2∞ IXτ (0)

(k − 2)2

- (1 + ε)2(∆− 2)24(∆− 1)2

4ε4∆4(k − 2)2
IXτ (0)

- (1 + ε)2

ε4∆2
IXτ (0),

where the second inequality is by Fact II.1, noting that by
part (ii) of Proposition V.5, every off-diagonal entry of Sτ is
at most (1+ε)(∆−2)

2ε2∆2 and that there are at most 2(∆−1) non-
zero entries per row. Finally, the statement follows from part
(iii) of Proposition V.5 which shows Sτ (ec, ec) ≤ (1+ε)∆τ (e)

2ε2∆2

for any ec ∈ Xτ (0).
With this in hand, to prove Theorem V.3, it is enough to

find a family of matrices {Fτ}τ∈X:codim(X)≥2 that satisfy
Proposition V.7. We leave this to the extended version of the
paper.
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