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Abstract—We show that the natural Glauber dynamics mixes
rapidly and generates a random proper edge-coloring of a
graph with maximum degree A whenever the number of colors
is at least ¢ > (% + e) A, where ¢ > 0 is arbitrary and the
maximum degree satisfies A > C for a constant C = C(¢)
depending only on e. For edge-colorings, this improves upon
prior work [Vig99; Che+19] which show rapid mixing when
q > (& — o) A, where ¢p ~ 107" is a small fixed constant.
At the heart of our proof, we establish a matrix trickle-down
theorem, generalizing Oppenheim’s influential result, as a new
technique to prove that a high dimensional simplicial complex
is a local spectral expander.

I. INTRODUCTION

Given an (undirected) graph G = (V, E) with n = |V]|
vertices and with maximum degree A > 1 can we generate
a uniformly random proper coloring of vertices of G using
q colors? For ¢ < A, there is no efficient algorithm (in
the sense of an FPRAS) to approximately count proper g-
colorings (at least when ¢ is even) unless NP = RP, even
for A-regular graphs which are triangle-free [GSV15]. This
fundamental question in the field of counting and sampling
has puzzled researchers for decades. One can study a natural
Markov Chain (MC), known as the Glauber dynamics, to
generate a random proper coloring: Given a proper vertex
coloring of G, choose a uniformly random vertex v € G and
re-color v, namely choose a uniformly random color which
is not present in any of the neighbors of v.

It is not hard to see that for ¢ > A + 2 this chain is
irreducible and has unique stationary distribution which is
uniform over all proper colorings of G. It is conjectured that
the Glauber dynamics mixes in time O(n logn) for ¢ as low
as A + 2 but despite significant attempts we are still very
far from proving this conjecture.

To this date, the best known result for general graphs is
due Chen, Delcourt, Moitra, Perarnau and Postle [Che+19]
who show that the Glauber dynamics mixes in polynomial
time for ¢ > (11/6—¢)A for some universal constant € > 0;
this slightly improves on the classical works of Jerrum and
Vigoda [Jer95; Vig99] which bounds the mixing time by a
polynomial in n for ¢ > (11/6)A.
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Most of the recent analyses of the Glauber dynamics are
focused on “locally sparse” graphs [HV03; Mol04; HVOS;
FV06; FV07; HVV07; Dye+13; Che+21; Fen+21] where it
was typically shown how to break the 11/6 barrier bound
when the underlying graph has a large girth. We note that
these assumptions are typically very strong as it can be seen
that triangle graph free graphs can be colored with as little
as O(A/log A) many colors [Joh96].

The results on locally sparse graphs typically exploit
(strong) correlation decay properties: Roughly speaking,
they imply that if we color a vertex v with a color c, then the
marginal probability of coloring a “far away” vertex u with a
color ¢’ does not change, or changes very mildly. Although it
is conjectured that vertex coloring exhibits correlation decay,
more formally known as “strong spatial mixing” property,
for ¢ > A4 O(1), to this date, we are lacking techniques
to establish such a statement (see e.g., [GMPOS; Yinl4;
GKM15; Eft+19]).

In this paper, we study random proper edge coloring of
graphs, which equivalently can be seen as a random proper
vertex coloring of line graphs. Unlike most recent trends
which focus on sparse graphs with large girths, line graphs
are very dense locally as they contain induced cliques of
size 2(A). To the best of our knowledge, the only previous
result on edge coloring which goes significantly beyond
the 11/6 barrier is recent work of Delcourt, Heinrich and
Perarnau [DHP20] which shows that the Glauber dynamics
mixes rapidly when the underlying graph is a tree and
q > A+ 1. Note that for a graph with maximum degree
A, the maximum degree of the line graph could be as large
as 2A. Therefore, with the 11/6 barrier, one would need
q > 11/3A to guarantee polynomial mixing for all edge
coloring instances. In our main theorem we prove that this
barrier can be broken for edge coloring of any graph with
maximum degree A.

Theorem L1. Let G = (V,E) be a graph of maximum

2 3
degree A. For any 0 < ¢ < % such that % < %,
and any collection of color lists L = {L(e)}cecp satisfying

|L(e)] > A(e) + (4/3 + 4€) A where A(e) is the number of
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neighbors of e in the line graph of G, the spectral gap of the
Glauber dyanmics for sampling proper L-edge-list-colorings
on G is Qn=C0/9)), so the mixing time is O(n°1/9),
Furthermore, if A < O(1), the modified and standard log-
Sobolev constants are Qe aA(1/n).

We remark that our general mixing time bound has no
dependence on A or q. So, the algorithm runs in polynomial
time even for graphs of unbounded degree. In a second con-
tribution we show that for any list vertex coloring instance
where G is a tree with max degree A, and the size of the list
of every vertex v is at least A(v) + €A for e = Q(%) the
Glauber dynamics mixes rapidly and generates a uniformly
random vertex coloring of GG. The precise statement of this
result is included in the extended version. Although our
theorem is not as strong as [MSWO04], it shows that Glauber
dynamics mixes rapidly even when we have a list coloring
problem on a tree and furthermore it gives a possible avenue
to exploit our techniques to prove that Glauber dynamics
mixes rapidly on any graph when g > (1 4 €)A. We expect
that upon further investigation our techniques can be coupled
with the extensive literature on random proper colorings of
graphs with large girth to break the 11/6 — ¢ barrier.

To establish the above results, we view the Glauber dy-
namics as a high dimensional walk on a simplicial complex
and we prove that this complex is a “local spectral expander”
(see Definition 1.2 below). By local-to-global theorems, local
spectral expansion immediately implies a bound on the
spectral gap of the Glauber dynamics and therefore on its
mixing time (see Section II-E and Section II-B below). A
simplicial complex X is a downward closed collection of
sets. Given a graph G and a set of ¢ colors, we build a
simplicial complex as follows: We let each maximal set in
X be a set of vertex color pairs that denote a proper coloring
of vertices of (G, then we add all subsets of the maximal sets
to X to make it downward closed. By viewing the Glauber
dynamics can be viewed as a walk on the maximal sets in the
coloring complex X. Unlike recent developments [ALO20;
Che+21; Fen+21; CLV20; CLV21; Fri+21] which exploit the
correlation decay property to prove local spectral expansion,
our proof is a direct method: We use an inductive argument
inspired by the Oppehheim’s trickle-down theorem to bound
local eigenvalues. We expect our technique to find more
applications in analysis of Markov chains as well as in other
applications of simplicial complexes.

A. Main Technical Contributions

A simplicial complex X on a finite ground set U is a
downwards closed collection of subsets of U, i.e. if 7 € X
and 0 C 7 C U, then 0 € X. The elements of X are
called faces, and then maximal faces are called facets. We
say a face 7 is of dimension k if |7| = k4 1 and write
dim(7) = k. We write X (k) = {r € X : dim(7) = k}. We
say X is a pure d-dimensional complex if every facet has
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dimension d. In this paper we only work with pure simplicial
complexes. To keep the notation concise, let X (< i) :=
X(—1)U---UX(i). The co-dimension of a face 7 is defined
as codim(7) := d — dim(7). For a face 7, define the link of
7 as the simplicial complex X, ={c\7:0€ X,0 D 7}.
Note that X is a (codim(7) — 1)- dimensional complex.
Let mx 4 be a distribution on the maximal faces of a pure
d-dimensional simplicial complex X; we may drop X from
the subscript if it is clear in the context. We will refer to
the pair (X, my) as a weighted simplicial complex. For each
face 7 and each integer —1 < ¢ < codim(7) — 1, we write
mr; for the induced distribution on X, (i) given by

1
71'7,1(77):#1](7)‘wa’lrr [cD>n|oDT]. (1)
(e ) ¢
One should view this as a marginal distribution conditioned
on 7. We will often view 7, ; as a vector in ng(z). We

remove the subscript 7 when 7 = (). We also omit 7 from
the subscript when ¢ = 0, i.e 7, = 7, .
Given a weighted simplicial complex (X,7,), there is
a natural Markov chain known as the down-up walk (or
high-order walk) [KM17; DK17; KO18b] whose stationary
distribution is 74. Starting at a facet o € X (d), we transition
to the next facet o/ € X(d) via the following two-step
process:
1) Select a uniformly random element x € ¢ and remove
z from o.
2) Select a random ¢’ € X (d) containing o \ {z} with
probability proportional to mg(c”).
If P/ denotes the transition probability matrix of this
Markov chain, then we may write down its entries as follows.

ﬁwam”o(a’ \o) iflend|=d,

R}/(Ua OJ) = {0

One of the beautiful insights of [KM17; DK17; KO18b]
is that spectral properties of P) may be studied through
spectral properties of “local walks”, which are defined using
only pairwise conditional marginals and are more tractable to
analyze. Fix a face 7 of co-dimension &£ > 2; the local walk
for 7 is a Markov chain on X -(0) with transition probability

otherwise.

matrix Px ; € R)Z({)(O)XXT(O) described by
Tr1 (l‘, y)
Px - (x, = ; = Tru{=z
x,7 (2, y) @) o 1 ()
1
=—— Prlyco|loDdrU{z}]. (2
k—1o~maq

for distinct z,y € X,(0); we note that Px r has zero
diagonal. We drop X in the subscript when it is clear in the
context. Note that, by definition, the walk is reversible with
stationary distribution 7. Furthermore, the row correspond-
ing to element x € supp, is precisely 7 y;). For our
calculations, it is easier to work with matrices {P; } x(<q—2)
if they all live in RX(0)xX(0)  Therefore, we modify the
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definition of P, as follows: for any 7 € X (< d — 2), let
P, € RX(0)xX(0) be supported on X, (0) x X, (0) block
and equal to the transition probability matrix of the local
walk for 7 on this block. Similarly, we often need to see 7
as a probability distribution over X (0) supported on X (0)
entries. Therefore, 7, can be seen as a vector in R¥X (0),
Furthermore, define TT, € RX(OXX(0) a5 1 := diag(n,).
We proceed by introducing some terminology related to the
local walks. We say X is totally connected if Ao(P;) < 1
for any 7 € X(< d — 2), i.e. the local walk for 7 is
irreducible/connected for any face 7 of co-dimension at
least 2. Furthermore, we define local spectral expansion as
follows.

Definition 1.2 (Local Spectral Expansion [DK17; KO18b;
Dik+18] ). We say a weighted simplicial complex (X, 7,)
of dimension-d is a (y—1, . .. ,Yi—2)-local spectral expander
if for every k and every 7 € X (k), Xo(P;) < Y.

Remark 1.3. We only work with this “one-sided” version of
local spectral expansion. Many other works [KO18b; Opp18;
KO18a] consider the stronger two-sided local spectral expan-
sion, which further imposes a lower bound on the smallest
eigenvalue of the local walks P;.

In almost all applications of high dimensional simplicial
complexes, one first needs to to prove that the underlying
complex is a local spectral expander and then exploit “local-
to-global” theorems to prove global properties of the under-
lying complex X. Perhaps, the main generic technique to
prove that a given complex X is a local spectral expander is
the Oppenheim “trickle-down method” [Opp18], where one
can show that if v4_o < é and X is “well connected” then
all v;’s are at most 2v4_s.

In our main technical contribution, we give recursive
framework for bounding the local spectral expansion of a
weighted simplicial complex X which significantly general-
izes Oppenheim’s result.

Theorem 1.4 (Inductive Matrix Trickle-Down Method). Let
(X, mq) be a totally connected weighted simplicial complex.
Suppose {M, € Rx(o)xx(o)}TGX(de) is a family of
symmetric matrices satisfying the following:

1) Base Case: For every T of co-dimension 2, we have

the spectral inequality
I, P, — 21w < M, < %HT.

2) Recursive Condition: For every T of co-dimension at
least k > 3, M., satisfies
k—1

<1,

~2k—-1
k—1 -1
EINﬂTMTU{:E} j Mq- - TMTHT MT.

M, and

Then \o(P;) < p(IZ1M,) for all 7 € X(< d — 2),
where p represents the spectral radius. In particular, (X, 7q)
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is a (u—1,...,1q—2)-local spectral expander with py
max, e x (k) (I My).

Remark 1.5. The original “trickle-down method” is a special
case of our result by taking the matrix M, to be a multiple
of IL.. We justify this formally through a quick calculation
in the extended version of the paper.

Remark 1.6. It also turns out for our applications to proper
colorings we will need a slight extension of the above
theorem. However, one should take the above theorem as
the heart of our technical contributions. See Theorem IIL.5
below and the surrounding discussion for more details on
the slight extension.

Typically, it is not difficult to construct some family of
matrices {M,} satisfying the assumptions of Theorem 1.4.
The key challenge is choose M. ’s such that one can bound
p(IL-1M,) < O(1/codim(7)). One of our second key
insights is that the matrices M, can be designed to have
convenient sparsity patterns depending on (X, 74) which al-
low for straightforward bounds on p(IL-! M, ). For instance,
in our application to proper colorings, our matrices M,
will have rows and columns corresponding to vertex-color
pairs ve, and they will be supported on the “proper coloring
constraints”, namely pairs uc, v’ of vertex-color pairs where
the vertices u, v are neighbors and the two colors ¢, ¢’ are
identical. We demonstrate the usefulness of this approach on
sampling proper colorings in graphs below.

The rest of the paper is organized as follows. In Sec-
tion III, we prove Theorem [.4 and its extension. Then
we apply these theorems to analyze the Glauber dynam-
ics for sampling a graph coloring. First, to demonstrate
our approach better, we focus on vertex-coloring in in
Section IV. We start by restricting our attention to when
the matrix bounds {M;} cx.codim(r)>2 in Theorem 1.4
are diagonal matrices. Using diagonal matrix bounds, we
show the essence of our technique while retrieving a known
result for vertex-coloring. Finally, in Section V, we prove
Theorem 1.1, our main result for edge-coloring.

II. PRELIMINARIES

First, we fix some notational conventions. When it is clear
from context, we write a to denote a singleton {a}. When
we want to add a subscript b to an object denoted by z,, we
write Zqp, 1.6. Tqp = (q)p. We use the same convention
for superscripts. Throughout the paper, adding or removing
() as a subscript does not change the object. For an integer
g, we denote {1,...,q} by [g]. For a function f : D — R
and a D' C D, we write f|ps to denote the restriction of f
to domain D’.

Matrices and Vectors: Given a set S, we write v € R®
and A € RS> to respectively denote a vector and a matrix
indexed by S. We see a probability distribution p over a set .S
as a vector p € Rio. For a n x n matrix A, with eigenvalues
A, ..y An, we write p(A) = maxi<i<y |Ai| to denote the
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spectral radius of A and [|A|_ = maxlgign{zg;l |41}
We write < to denote the Loewner order, i.e. for any
symmetric matrices A, B € RS> we write A < Bif B—A
is positive semidefinite. For any matrix A € R®*“ and any
5/ C S, AS" € RS%S is defined to be A5 (x,y) = A(z,y)
for z,y € S’, and 0 on all other entries. We say a matrix A
is diagonal if A(z,y) = 0 whenever = # y. We say matrix
A € RS*S is hollow if A(z,z) = 0 for all z € S. For any
matrix A define AT as A" (z,y) = max{0, A(z,y)} and
A~ = A — AT. Furthermore, diag(A) is a diagonal matrix
whose diagonal elements match those of A, i.e. A(z,z) =
diag(A)(x,x). We define off-diag(A) := A — diag(A).
Graphs: Fix a graph G = (V, E)). We denote the degree
of each vertex v by Ag(v) and the maximum degree of the
graph by Ag. Let ng == |V| and mq = |E|. Furthermore,
let G[U] be the induced subgraph of G on U C V. We may
drop the subscripts when it is clear from context. For any
u,v € V, we write u ~ v if {u,v} € E. Furthermore, for
any e € F, we write e ~ v whenever vertex v is an endpoint
of e, and for an edge f # e we write e ~ f when e and
f share an endpoint. For an edge e = {u, v}, define A(e)
as the number of edges that share an endpoint with e, i.e.
Ale) = A(u) + A(v) — 2. The line graph L(G) of a graph
G is defined as follows: every vertex in L(G) corresponds
to an edge in G and there is an edge between two vertices in
L(G) if their corresponding edges in G share an endpoint.

A. Linear Algebra

Fact IL1. For any symmetric matrix A € RS*S where

A #0 only fori,je S C S, we have A=< || Aol .

Fact I1.2. For matrices A, B € R"*"™ and positive ¢ >
0, we have the inequalities AB + BA =< €A% + %BQ and
(A+B)? < (1+€)A%+(1+1/e)B%

Lemma IL.3. Let A, B € R™"*"™ be symmetric matrices such
that A-(I —aA) < B- (I —aB) for a positive real number
a>0.IfA,B = i -1, then A < B. Note that we crucially
do not require A, B = 0.

The above facts and Lemma II.3 are proved in the
extended version of the paper.

B. Markov Chains

Let P be the transition probability matrix of a Markov
chain on a finite state space {2 with stationary distribution
. We say P is irreducible if P is connected. We say P is
reversible w.r.t. 7 if for all z, y € Q, we have 7(z)P(x,y) =
m(y)P(y,x). In this case, the matrix P becomes self-adjoint
w.r.t. the natural inner product (-,-), induced by 7 on R%
given by (¢,1)r = Ex[o¢)].

Throughout, we only work with irreducible reversible
Markov chains. We will be interested in the mixing of our
Markov chains, which quantifies the rate of convergence to
stationarity. Specifically, for an initial starting distribution p
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on {2 and error parameter € > 0, define
tmix (P, €, 1) def min{t > 0: HuPt — 71'HTV < e},

where || — vy = 52, cq (@) — v(z)| gives the total
variation distance between two distributions p, v on 2. We

write tmix(P,€) = sup,, tmix (P, €, 1), where the supremum
is over all possible starting distributions p. The mixing time
of P is defined as tyix(P) = tmix (P, 1/4). It is well-known
that the mixing time is controlled by various constants aris-
ing from classical functional inequalities. To introduce one
of these bounds, we first define Ep (¢, ) = (¢, (I — P)¢),
for the Dirichlet form of P, and Var,(¢) = E,[¢?] —E,[¢]?
for the variance of ¢ w.r.t. 7. With these in hand, we define

the spectral gap of P as \(P) def Vga(rf’(ff)).

Proposition I1.4. For an irreducible reversible Markov
chain P on a finite state space §) with stationary distribution
m, we have the following inequality:

tmix(P) < O <)\(1p) 7Tr111in>

C. Products of Weighted Simplicial Complexes

inff¢0

log ([LPW17])

Given two pure simplicial complexes X, Y of dimensions
dx,dy respectively with disjoint ground sets, we may form
another pure simplicial complex Z of dimension-dz for
dz = dx + dy + 1 called the product X x Y of X,V
by taking the ground set of X X Y to be the disjoint union
of the ground sets of X, Y, taking the facets of X XY to be
of the form 7Uao, where T, o are facets of X, Y respectively,
and then taking downwards closure. If 7x 4,,7y,q, are
distributions on the facets of X, Y respectively, we then form
corresponding product distribution 7z 4, = Tx dx X Ty,dy
on the facets of X xY by taking 7z 4, (TU0) = mx ax (T)-
Ty,dy (0) for facets 7,0 of X,Y respectively. A natural
example of product of simplicial complexes is the vertex-
coloring complex of a disconnected graph. Say G = (V, E)
is a graph with n vertex and ¢ connected components
G[Ui],...,G|U;] and associated complexes X7,...X,. If
(X,mp—1) is the complex associated with G and m,_1 is
the uniform distribution over its facets, then we can write
(X, mp-1) = (X1,11) X -+ x (X, pe), where p; is the
uniform distribution over facets of X;. Suppose we have
associated a matrix A, € R¥X()xX() to any non-empty
face 7 of co-dimension at least 2 and assume that for any
1 <4< /¢, when 7_; and o_; are two arbitrary colorings of
all connected components except i, then A, , = A,_,. We
associate a block-diagonal matrix

>

(X AArYocrex(<n—3)) == A
1<i< LU | £1

—i*

When X is the edge-coloring complex of a graph G, it is
the vertex-coloring complex of the line graph of G, therefore
fx (X, {Ar}ocrex(<n—3)) is given by the above definition.
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D. Garland’s Method

We will need the following simple facts, which follow
simply by applying the Law of Total Probability appro-
priately and using the definition of the local walks P
and local distributions 7. Nearly identical equations were
first observed and found to be useful by Garland [Gar73]
in the context of understanding cohomology of simplicial
complexes. They also lie at the heart of understanding
expansion phenomena, in particular local spectral expansion,
in simplicial complexes [Opp18; KO18b].

Lemma ILS ([Oppl8]). Given a weighted simplicial com-
plex (X, mq), we may decompose IIP as

[P = B, 11, P,

The proof of the above lemma is straightforward and can
be found in the extended version of the paper.

Lemma I1.6 ([Oppl8]). Given a weighted simplicial com-
plex (X, 74), we may decompose 11P? as

2 T
[P =K nmym,

Proof: The main observation is that the rows of P
are precisely the vectors ., and that the rows of 11P are
precisely the vectors w(x)w,. The claim immediately follows.

|

E. Local-to-Global Theorems

As alluded to earlier, one of the beautiful insights of
[DK17; KO18b] is that local spectral expansion implies
quantitative bounds on the spectral gap of the down-up walk.

Theorem IL.7 ([AL20]). Let (X, 7q) be a (y-1,--.,Vd—2)-
local spectral expander. Then the down-up walk which
samples from 74 has spectral gap lower bounded by

=
AP[) = P H (=)
j=—1

Analogous results have also been proved for the decay of
entropy [CLV21; GM20; Ali+21]. We state this result here
since our main technical result Theorem 1.4 is a general
method to obtain local spectral expansion for any weighted
simplicial complex.

Theorem II.7 has been used successfully in several
prior works [Ana+19; ALO20; CLV20; Che+21; Fen+21;
Ana+21] to establish polynomial time mixing for various
dynamics. However, the exponent of these running times are
typically large, depending sensitively on the constants in the
~v;- Recently, it was shown that for weighted simplicial com-
plexes arising from spin systems on bounded-degree graphs,
we can do significantly better. We will need the following to
establish optimal mixing times in our applications. We state
it specifically for colorings, as we do not analyze any other
spin systems in this paper.
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Theorem IL8 ([CLV21; Bla+21]). Let (X,7m,—1) be a
weighted simplicial complex arising from the uniform dis-
tribution over proper list-colorings of a graph G = (V, E)
with |V| = n and maximum degree A. If for some constant
C independent of n, (X, mp—1) is a (y—1,...,Yn—3)-local
spectral expander with v, < nf,“;il for all k, then the
spectral gap, standard and modified log-Sobolev constants
are all Qo a(1/n). In particular, the Glauber dynamics
mixes in Oc a(nlogn) steps.

III. A GENERAL MATRIX TRICKLE-DOWN METHOD

Our goal in this section is to prove Theorem 1.4. Towards
this, we first elucidate the original “trickle-down method”
of Oppenheim [Opp18], which was the beautiful realization
that one can bound the second eigenvalue of the local
walk P in terms of the second eigenvalues of the local
walks {P,}ycx(0). This “trickle-down” phenomenon nat-
urally yields an inductive method of bounding the second
eigenvalues of all local walks. We formalize this as follows.

Theorem IIL.1 (Trickle Down Theorem [Oppl8]). Given a
weighted simplicial complex (X, q), suppose the following
holds:
1) Connectivity: \y(P) < 1, ie. the local walk P is
connected/irreducible.
2) Spectral Bound for Links Above: For some 0 < \ <
1/2, we have the bound \2(Py) < X for all i € X(0).
Then the local walk P actually satisfies the spectral bound
X (P) < 25

Remark T1.2. The original statement in [Oppl18] does not
have the assumption A < 1/2, but the two are completely
equivalent, since if A > 1/2, then A 1, making the

T—x
statement vacuously true.

In particular, suppose we know that the top-dimensional
links have local walks with second eigenvalue upper
bounded by 1/(d + 1). Then by applying Theorem III.1
in a totally blackbox fashion, it immediately follows that

(X,mg) is a (%,...,ﬁ
high-order walk has spectral gap at least £2(1/d?). This result
has already had many applications, such as the construction
of bounded-degree high-dimensional expanders [KO18a]
and sampling algorithms for matroids [Ana+19; CGM19;
Ana+21] and other combinatorial structures [AL20].
Unfortunately, when X is the simplicial complex of
proper (partial) colorings, and 7,_; is the uniform dis-
tribution over proper colorings, this standard trickle-down
method is not enough. It turns out that in the worst case,
the second largest eigenvalue of the local walk of a top-
dimensional link is © ﬁ) = O(1), which is much too
large since Theorem III.1 needs to be applied n — 2 times.
Our main technical contribution is to provide a framework
which significantly generalizes Theorem III.1, and makes
the trickle-down theorem applicable to wider classes of

)-local spectral expander and its
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weighted simplicial complexes, including those arising from
proper colorings. One of our main insights is to replace
the hypothesis that Ao(P,) < A, which merely provides
a uniform bound on all nontrivial eigenvalues of P,, by
a matrix bound “P, < M,”. The hope is that the matrix
M, itself can simultaneously be easily bounded, as well
as provide information on where the “bad” eigen-spaces
of P, are. So, roughly speaking, although many of the
top dimensional links P,’s may have a constant second
eigenvalue, by carefully choosing M,’s one can “average
out” these bad eigen-spaces to show that the link of a lower
dimensional face has small eigenvalues. We formalize this
as follows.

Theorem IIL.3 (Matrix Trickle-Down Theorem). Given a
weighted simplicial complex (X, mq), suppose the following
holds:

1) Connectivity: \o(P) < 1, ie. the local walk P is
connected/irreducible.

2) Generalized Spectral Bound for Links Above: There
is a family of symmetric matrices {My},cx () such
that

1

11, P, — omxﬂ;r <M, < a1

x

Sor all i € X(0).
Then the local walk P actually satisfies the spectral bound
IIP — (2— é) arl =< M, and in particular \o(P) <
p(II=1M), where M is any symmetric matrix satisfying
M = A1 and By My = M — aMIT™' M.

Note that by induction, Theorem .4 follows as an imme-
diate consequence of this generalized trickle-down result.
Let us now prove Theorem III.3. To do this, we first need
the following lemma.

Lemma III4. Let (X, 7y) be a weighted simplicial com-
plex. Suppose for a symmetric matrix M and an o > 1/2,
the matrix inequalities M,I1P — (2 — é) ! < il’[ hold
and

P — ollP? < M — aMII ‘M 3)

1

Then we have the bound 11P — (2 — E) ! < M.

Proof: Our goal is to apply Lemma II.3 to suitably
chosen A,B. Define @ = P — (2—21)1x7. A quick
calculation shows that Q — aQ? = P — aP?, and so by
multiplying both sides of Eq. (3) by II"/2, we see that
Eq. (3) is equivalent to

Hl/QQH71/2 _ aH1/2Q2H71/2
j H—I/QMH—I/Q _ aH—l/QMH—lMH—l/Q
Taking A = II'/2QII~/2 and B = II-'/2MII~'/2, we see

by assumption that A, B are symmetric matrices satisfying
A/ B = i[ and A(I — aA) =X B(I — aB). It follows
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by Lemma II.3 that A < B, which is equivalent to IIP —
(2 — é) ! =IIQ < M as desired. [ |
With this lemma in hand, let us now prove Theorem IIL.3.
Proof of Theorem II1.3: The conclusion follows im-
mediately from Lemma II1.4, and so it suffices to verify the
conditions of the lemma. By assumption, we already have
M < iﬂ. Furthermore, 11, P, fommw; <M, < ﬁﬂm
implies that Ao(P,) < ﬁ Since A2(P) < 1, by The-
orem III.1 (the original Trickle-Down Theorem), Ao(P) <
5. Combined with the inequality 2 — 1 > 1 — %i which
holds since o > 1/2, it follows that IIP — (2 - Ej ! <
11
2aAll that remains is to verify Eq. (3). Observe that

IIP=E, I, P, (Lemma IL.5)

< Epmr [owrzwa + Mx] (Assumption)
= allP? + E, . M, (Lemma I1.6)
<allP? 4+ M — aMII ‘M (Assumption)

Rearranging, we obtain that IIP —allP? < M —aMII~'M
as desired. [ |

A. A Slight Extension of Theorem 1.4

Here, we prove an extension of the matrix trickle-down
method to take into account when simplicial complexes
factor as products of smaller complexes. This will be useful
in the context of proper colorings when the input graph is
broken into several connect components by coloring some
of the vertices.

Theorem IILS5. Let (X, 74) be a totally connected weighted
complex. Suppose {M, € RX(O)XX(O)}TGX(Sdfa is a
family of symmetric matrices satisfying the following:
1) Base Case: For every T of co-dimension 2, we have
the spectral inequality

1
I, P, — 2m.m] < M, < 5HT.

2) Recursive Condition: For every T of co-dimension at
least k > 3, at least one of the following holds: M.,
satisfies

k—1
<o,
= 3k-1

Exwﬂ'.,. MTU{I} = M'r -

M. and

k—1
k—2
Or, (X;,7mrk—1) is a product of weighted simplicial
complexes (Y1,p1),...,(Ye,e) and for every n €
X, (k-1),

MM, (4)

dy1 (dyi + 1)
k(e — 1)

M, =

D

1<i<t:dy, >1

where n_; =1\ Y;(0).
Then for every 7 € X(< d — 2), we have the bound
)\Q(HTPT) < p(H;er)

MTUnfi )
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A proof of this theorem can be found in the extended
version of the paper.

IV. VERTEX COLORING

Fix an integer ¢ and graph G = (V, E) and a function
L that maps each v € V to a subset of [g]. We call (G, L)
a vertex-list-coloring instance. For any u,v € V, we write
u ~. v when u ~ v and ¢ € L(u) N L(v). Furthermore,
we define a [-extra color vertex-list-coloring instance as
follows.

Definition IV.1. We say a vertex-list-coloring instance
(G,L) is a B-extra-color instance if for each v € V,
|L(v)| > B+ Ag(v).

We call an assignment o : V — [gq] a L-vertex-list-
coloring of G if o(v) € L(v) for all v € V; we say o
is proper if o(u) # o(v) whenever u ~ v. When it is clear
from context we say o is a proper coloring to mean it is
a proper L-vertex-list-coloring. We say 7 is proper partial
coloring on U C V when it is a proper L|y-vertex-list-
coloring for G[U]. We may view list-colorings o as sets
of vertex-color pairs (v,c), which we denote by wc for
convenience. When the graph G and color lists L are clear
from context, we write m,_1 for the uniform distribution
over proper L-vertex-list-coloring of G = (V,FE). For a
proper partial coloringon U C V, v € V\U and ¢ € L(v),
define

p(ve|T) == Poror,_,(0(v) = c|Vu € U : o(u) = 7(u)).

In order to analyze the Glauber dynamics for an vertex-
list-coloring instance (G, L), we can build an (n — 1)-
dimensional simplicial complex such that the down-up walk
on its facets is the same as the Glauber dynamics on (G, L).
Our aim is to apply Theorem II.5 to bound the second
eigenvalue of the transition probability matrix of the local
walks and then use Theorem IL.7 to bound the second
eigenvalue of the transition probability matrix of the global
down-up walk on the facets.

Definition IV.2 (Simplicial Complex of a Vertex-List-Color-
ing Instance). Given a vertex-list-coloring instance (G, L),
let X(G, L) be a pure (n — 1)-dimensional simplicial com-
plex specified by the following facets: {(v,c(v))}pev is a
facet if and only if o is a proper L-vertex-list-coloring for

G.

When it is clear from context, we abbreviate X (G, L) to
X. Note that for all 0 < k < n, any face 7 of co-dimension
k is a proper partial coloring on a subset of vertices U of size
n—k, i.e., k vertices remain uncolored. Furthermore, X, (0)
can be seen as the set of all vc such that ¢ € L(v), v ¢ U
and for any u ~ v, uc ¢ 7. We define V; := {v : 3e,vc €
X,(0)}. Let G, := G[V;] and A.(.) be the degree function
of G, and A, be its maximum degree. We define L, (v) =
{c € L(v) : vec € X,(0)} to be the list of remaining colors
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available to v after coloring vertex u with ¢ for each uc € 7.
Let I, (v) = |L;(v)| and I, (u,v) := |L;(u) N L. (v)]. We
write v ~ . u for vertices v, u when v ~ v and ¢ € L,(v)N
L, (u). Furthermore, for U C V \ V., let 7|y = {vc € 7:
veU}.

Theorem IV.3. Suppose (G,L) is a (1 + €)A-extra-color
vertex-list-coloring instance for an 0 < € < 1 such that
W < %, and let (X, m,_1) be its associated weighted
simplicial complex. For any 2 < ksg nand T € X of
2e

co-dimension k we have \z(P;) < 72.

Combined with local-to-global theorems (Theorems I1.7
and I1.8), this yields a mixing time of O(nlogn) for
bounded-degree graphs, and n?(/¢) in general, in this
setting where we have at least (1 + ¢)A additional colors
available to each vertex. Again, we emphasize that this
mixing result in itself is not new; a simple coupling argument
can already recover O(nlogn) mixing for (A + 1)-extra-
color vertex-list-coloring instances. However, we will see
later on how our proof technique can be used to obtain new
mixing results for sampling edge colorings which, to the best
of our knowledge, cannot be recovered via simple coupling
arguments.

To prove the above statement, first for any 7 of co-
dimension 2, we find a diagonal matrix F; such that
I, P, =< 2m,7] + 1L, F,. Then, for all 7 of co-dimension
at least 3, we apply Theorem IIL5 to M, = % to find
a sufficient condition on the diagonal matrix F’- based on
matrices F, for faces 7 C 7/, to get Ao(Pr) < %. To
find F, for faces 7 of co-dimension 2, we state a more
general proposition that is also useful for approaches that
use non-diagonal matrix bounds.

Proposition IV4. Given a vertex-list-coloring instance
(G, L), consider the weighted complex (X, m,_1). For any
face T of co-dimension 2 such that G; = ({u,v},{uv}) is
connected we have,

HTP‘F - 27TT7T: j V HTM;\/ﬁ7—7 (5)

where MT is a block diagonal matrix with a block MTC for
every color c such that

1 —1

- (w)-1) (- (v)-1) V(U (w)=1) (1 (0) —1)
—1 1
V() =1) (1 (v)-1) (I (u)=1) (I (v)—1)

MC

T

and all other entries are (.

Proof: F% clarintx, we A(lrop T frorpv all notatiorl/in the
proof. Write M = Mg + M,, where My = diag(M) and
M, = off-diag(M). First observe that for ¢ € L(u),

m(uc) = {

I(v)—1
2(l(u)l(lv) —l(u,v))

2(1(uw)l(v)—1(u,v))

if ¢ € L(u) N L(v)

otherwise
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and a similar identity holds for any ¢ € L(v). Also, observe
that

J=Jv=J" —~
P= 1M, VII,
i)~y VMV
where J, J%, JV are the all-ones matrix, all-ones matrix on
uc rows/columns and all-ones | matrix on ve rows/columns,
respectively. So, subtracting M, from both sides of (5) and
multiplying by 2(I(u)l(v) — l(u,v)) it is enough to show

J—J% = J% —4(l(w)l(v) = l(u,v))mm " (6)
< 2(1(w)l(v) — 1(u,v))VIIMgVIL =: Ny 7)
Write £ = (v)1% + I(u)1". Also, let s € R{®W*Y) where

s(zc) =1if ¢ € L(u) N L(v) and s(zc) = 0 otherwise for
x € {u,v}. Then, by Fact I1.2 we can write,

—l(u,v))rr " = (=s)t—5"
4(1(uw)l(v) = l(u,v)) “(w)l(v) = l(u,v)
GRSy
Fu('f_II 2 Z(U)l(’u) - l(u7v)
] ZET ssT

— _
T 2l(w)l(v)  U(uw)l(v) = Uu,v)
Plugging this into (6) it is enough to show that

SST

H{w)l(v) = l(u,v)

ssT
()l (v) — (u,v)
+ Ny (3)

J=J"=J"+

:1u1vT+1v1uT+

DR

— 2l(u)l(v)
First, observe that by another application of Fact II.2,
P)1 1" + P(w)1*1* " = l(w)l(v)(1*10 T 4+ 1v1e 7).
So,

0T B (Z(v)l“—i—l(u)l”)(l(v)l“—|—l(u)1”)—r
20(u)l(v) 2l(uw)l(v)
t 1’U.1UT + 11)1uT

Let 1N e RUH@)x(Uw)+(v)) pe the identity matrix
only on entries z¢, xc where € {u,v} and ¢ € L(u)NL(v).
Finally, (8) simply follows from the fact that

ssT U(u,v)

H(w)l(v) = I(u,v)

where the first inequality uses that the only non-zero rows
of ss' correspond to a common color and the sum of
the entries of any such row is exactly [(u,v) and the
last inequality uses that l(u)léggi)l)(u,v) < max{l(u;,l(v)}fl
and that Ng(uc,uc) W,Nd(vc,vc) = W if
¢ € L(u) N L(v) and it is zero otherwise. [ |

~ (u)l(v) — l(u,v)Iﬁ = Na
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Note that in the above proposition, M, =< (% + %)[XT(O),
which gives us the diagonal matrix £ for any 7 of co-
dimension 2 such that G, is connected. Now, using The-
orem III.5, we derive a set of sufficient conditions on the
family {F;}cx.codim(r)>2 to get Ao(Pr) < % for all 7
of co-dimension 2 < k < n.

Proposition IV.5. Given a [(-extra-color vertex-
list-coloring  instance  (G,L), with  corresponding
weighted  simplicial ~— complex (X, mn_1), suppose
{FT € RX(O)XX(O)}TEX:codim(T)22 is a famlly Of

diagonal matrices supported on X,(0) x X,(0) such

that F, = f>< (X‘m{FTUO'}QQUEXT(Scodim(T)f?))) if G, is
disconnected and otherwise,

1) For all T of co-dimension 2: F,(vc,vc) = %—f— % for
all ve € X, (0).

2) For all T of co-dimension k > 3: F, < %IXT(O)
and for all ve € X, (0)

>

uc' €Xrve(0)
< (k — 2)F,(ve,ve) — F2(ve,ve).

Then, for all k > 2 and T of co-dimension k, Ao(P;) <

p(Fr)
E—1 -

p(uc |T Uve)Fruue (ve, ve)

Proof: We prove that the conditions of Theorem IIL.5
hold for M, := DzEx for any face T of co-dimension
at least 2. The desired condition holds for any 7 of co-
dimension 2 by Proposition IV.4. Now, let £ > 3. First
assume that G, is disconnected with connected components
G,|U1),...,G.[U¢] and associated complexes Y7, ... Yy. We
can write (X, 7, ,—1) = (Ya,p1) x -+ x (Yy, pe), where
W; is the uniform distribution over facets of Y;. For an
a€ X, (k—1)let a_; == a\ a|y,. Therefore,

Z dyi (dyi + 1)
1<i<tidy,>1 (k—1)k

>

i 1<i<tdy, >1

MTUa,i,

dy, (dy; + 1) ru._,
(k—Dk  dy, 7%

def of Mo,

- ¥

1<i<t:dy, >1

F. ; I F.
]._.[7- XTUQ,i(O) TUx_; _ TOT
(L) k—1 defofFr k—1

M,

as desired.
Now, assume that G, is corzmected. Note that since each
entry of F, is at most (];k:li , we have M, < %HT.
Therefore, it only remains to show that E,cr Mryye =X
M, — =2 M, II-' M. This is equivalent to showing that
F; 2

EF oy
1 ) , TUuc ~< _ T .
I e, [HTU“C k—Z} Tk-1 (k-2)(k-1)

One can check that

FT ve
Euemor, [HTll'[Tch,kUQ] (ve, ve)
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Zuc’EXTUUC(O) p(ud |7 Uve) Fryye (ve, ve)
(k—1)(k—2) ‘

Therefore, it is enough that

D uer e X oo (0) PLuC' [T U vE) Fruyer (ve, ve)

(k—1)(k—-2)
- Fr(ve,ve) 2 (ve,ve)
S Tho1 - Dk-2)

which holds by assumption. ]

Now, to complete the proof of Theorem IV.3 it only
remains to find {F,} cx(<n—2) that satisfies the above
conditions. We find this family of diagonal matrices in the
extended version of the paper. Let us remark why we need
the assumption 5 > A in this proof. Consider the worst
case example, where GG is a complete graph with A + 1
vertices. In that case, by symmetry, F,(vc,ve) = % + 5—12
for all faces of co-dimension 2, and every matrix F, is a
multiple of identity on X (0) x X, (0). So, the conditions
on F reduces to the following systems of inequalities:

1 1
f(1)23+§
V3< k<A,
(k=1)f(k—2) < (k=2)f(k—1) - f(k—1)

It is not hard to see that such a system does not have a
solution up to k = A + 1 when 5 < A.

and

V. EDGE COLORING

Consider a graph G = (V, E) and a function L : E —
2l4). The pair (G, L) is called an edge-list-coloring instance.
For a vertex v and an edge e, we write e ~. v when e ~ v
and ¢ € L(e). Furthermore, for any e, f € E, we write
e ~c f when e ~ f and ¢ € L(e) N L(f). Furthermore, we
define a [3-extra-color edge-list-coloring instance as follows.

Definition V.1. We say an edge-list-coloring instance (G, L)
is a B-extra-color instance if for each e € E, |L(e)| >

B+ Ag(e).

An assignment o : E — [q] is a L-edge-list-coloring
of G if o(e) € L(e) for all e € E. We say o is proper if
o(e) # o(f) whenever e ~ f. When it is clear from context
we say o is a proper coloring to mean it is a proper L-edge-
list-coloring. We say 7 is proper partial coloring on H C E
when it is a proper L|g-edge-list-coloring for (V, H). We
may view a proper coloring as a set of edge-color pairs (e, ¢)
which we denote by ec for simplicity of notation. We denote
the uniform distribution over proper L-edge-list-colorings of
G by 7,,—1 when (G, L) are clear from context. For a proper
partial coloring on H C E and e € F'\ H, define

plec|r) = Porr, ,(0(e) = c|Vf € H : o(f) = 7(f))-

To analyze the Glauber dynamics on an edge-list-coloring
instance we associate a simplicial complex to it.
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Definition V.2 (Simplicial Complex of an Edge-List-Color-
ing Instance). Given an edge-list-coloring instance (G, L),
let X(G,L) be a pure (m — 1)-dimensional simplicial
complex specified by the following facets: {(e,o(e))}ecr
is a facet if and only if o is a proper L-edge-list-coloring

for G.

When it is clear from context, we abbreviate X (G, L)
to X. Note that for all 0 < k < m, any face 7 of co-
dimension k is a partial coloring on a subset of edges H
of size m — k (k edges remain uncolored). Furthermore,
X,(0) can be seen as the set of all ec such that ¢ € L(e),
e ¢ H and for any f ~ e, fc ¢ 7. Analogous to vertex-
list-colorings, the Glauber dynamics on (G, L) is the down-
up walk on the facets of (X, m,,,—1). So, as we did before
for vertex-list-colorings, our aim is to apply Theorem IIL.5
to the simplicial complex to bound the second eigenvalue
of the transition probability matrix of the local walks and
then apply Theorem II.7 to get a bound for the transition
probability matrix of the down-up walk on the facets. The
following is the main theorem of this section.

Theorem V.3. Let (G, L) be a (5 + 4€)A-extra-color edge-

list-coloring instance for some 0 < € < - such that

; 10
% < i—;, and let (X, my,—1) be its associated weighted
simplicial complex. For any 2 < k Sl mand T € X of
e+<
F—1°

co-dimension k we have \y(P;) <

We remark that our analysis here is not tight and we
expect that the factor 4/3 can be improved with a more
careful analysis.

We proceed by introducing some notation and definitions.
Given a face 7 € X, let £ be the set of uncolored edges,
ie. B = {e: Jde,ec € X,(0)}. Let G, = (V,E;) and
A, (.) be the degree function of G.. Similarly, if e = {u, v},
define A,(e) to be number of edges in G, that share an
endpoint with e, i.e. A-(e) = A, (u)+ A, (v)—2. We define
L.(e) == {c € L(e) : ec € X;(0)}. Let I.(e) := |L,(e)|
and I (e, f) := |L;(e) N L.(f)|. Furthermore, we write
e ~rc v when e ~ v and ¢ € L,(e). Similarly, define
e ~r. [ for edges e and f. Finally, for any matrix
B € RX0)xX(0) (define the restriction of B to v € V
as BY(ec, fc) = B(ec, fc) for any e, f ~ v, and 0 on
all other entries. Let B¢ € RX(xX(0) be defined as
B¢(ec, fc) == B(ec, fc) for all ¢ ~. f, and 0 on all other
entries.

To be able to improve upon Theorem IV.3 and prove The-
orem V.3, we allow the matrix bounds { M } r¢ x:codim(r)>2
in Theorem IIL.5 to be non-diagonal matrices. For any k > 2
and face 7 of co-dimension k, we assume that M. is of the
form

F, A,

VL VL ©)

for a diagonal matrix F; and a hollow matrix A,. The goal is
again to find F; and A, such that M satisfies the conditions

M, =TI,
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of Theorem IIL.5. For k = 2, Proposition IV.4 gives us
such matrices. For k > 3, as opposed to what we did for
vertex-coloring of trees, we let /11 kA 7 V1L deviate from

Eycrr, VII e s /Iy in order to control the growth
of F.

Definition V.4 (Family of Matrices { A+ c};cx codim(r)>2 )-
Let (G,L) be a B-extra-color edge-list-coloring instance,
and let(X, 1) be its associated weighted complex. For
€ > 0, define { A c}rex codim(r)>2 as follows: let A; . =
f>< (Xv {ATUO,E}QQOEXT (codim(r)—3)) if the line graph OfGT
is disconnected and otherwise,
1) For any face T of co-dimension 2, let A.. €
RX()*xXO) pe g hollow block diagonal matrix with a
block for every color such that

A;(ec, fe) = A (fe,ec) =
1
V(e) =D (f) = 1)
for e, f € E. and any ¢ € L.(e) N L.(f), and all
other entries are 0.

2) For any k > 3 and a face T of co-dimension k, define
A= Ao+ %, where AT e and Sy are

defined as follows:
AT e =
k— 1/2 1/2 _
mn 1/2 (Echﬂ'q—HTL/chATUgC,GHTL/ch) H’T 12
(10)
St =
4L+ ) (AL + (A7) if Ar(v) < 3
2(1+€)(A2 )2 otherwise.
(1)

and S;. =3, SY
Observe that all three matrices /L,e, Sr.e; Arc are symmet-
ric and hollow. When it is clear from context, we drop €
from the subscripts of matrices defined above .

In order to find diagonal matrices {F:};cx:codim(r)>2

such that { M} ¢ x codim(r)>2 as defined by Eq. (9) sat-
isfies the conditions of Theorem III.5, we would need to
have a bound on the entries of {A; c}rcx codim(r)>2 and
{ST,G}TEX,COdim(T)EQ'
Proposition V.5. Given a (-extra-color edge-list-coloring
instance (G, L) where 8 = (3 + 4€)A for an 0 < € < 15
such that 2¢72 < A,

1) For any 7 € X with codlm( ) >

e, f ~r.c U, Te(ec fC)| < A S i
2) For any T € X with codim(r) >
€, f ~re U

ST’E(GC, fC) <

2, v € G, and

3, v € G, and

(L+e)(Ar(v) —2)
262 A2

3) For any 7 € X with codim(7) > 3, color ¢, and
(e = {u,v},c) € X, (0),
(1+6)(Ar(v) +Ar(u) —2)
2e2 A2 '
Proposition V.5 is proved in the extended version of the
paper.
The following lemma is a crucial part of our proof as
it will help us bound the term M,II-'M, in Eq. (4)
effectively.

Srelec,ec) <

Lemma V.6. Consider a graph G = (V,E), and some
weight function w : E — Rxo. Let A be the weighted
adjacency matrix of its line graph. Then

A2 22 " (AY)?

veV

where A" (e ,f) if e, f ~wv and O otherwise.

) =Ale

Proof: Tt is enough to show that for all z € RF,
wT A%z <23, x (AY)%z. We have

ol A%r = ||Az|5 = (Az(e)* = ) (A, 2)’
eckE ecE

where A, is the row indexed by e. Now, let e = {u,v} € E.
We can write (4., x) = ((A")., z) + ((AY)e, x). Therefore,
by an application of Fact I1.2

D (Ae)® =22 Y (A7) + ((A%)e, 1)
e€EE e={u,w}€EE
=2 "> (A%z(e)* =2 ' (A%
v oe~v veV

|

Now, we apply Theorem IIL.5 to derive sufficient con-

ditions on the family {F}} cx codim(r)>2 to get Aa(Pr) <
% for all 7 of co-dimension 2 < k < m.

Proposition V.7. Let (G,L) be a (3 + 4e)A-extra-
color edge-list-coloring instance such that 0 < e <
15 and A > 2¢72 and let (X,mp_1) be its associ-
ated weighted simplicial complex. Suppose that {F, €
RX(O)XX(O)}TE;(:COdim(X)ZQ is a family of diagonal ma-
trices supported on X, (0) x X (0) such that F. =
f>< (X‘H{FTLJO'}’(DQJEXT(Scodim(‘r)fl%)) lf the line graph Of
G, is connected and otherwise,

1) For all T of co- dimension 2:
F (ec €C) = m
0 on all other entries. )

2) For all T of co-dimension k > 3: F; = ((]g,:)l —
52 ) 15O and for any ec € X (0)

Z plgc|T U ec)Fruge (ec, ec)
g’ €Xruec(0)

F, is defined as
= é for ec € X-(0) and
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24+ €
€

< (k — 2)F, (ec, ec) — < ) F2(ec, ec) — - (ec),

12)

here 7, (ec) — Q4] ¢ Ul aiiesdh)

Then for all k > 2 and T of co-dimension k, Aa(Pr) <
%, where A is defined in Definition V4.

Proof: We prove that the conditions of Theorem III.5
hold for {M;} ¢ x(<m—3) defined as follows:

F. A,
My =1l + Vil Vi,

for all 7 € X,k = codim(7) > 2. Note that the condition
of the theorem holds for any 7 of co-dimension 2 by
definition. So, we prove the statement for 7 of co-dimension
at least 3. Assume the line graph of G, is disconnected.
Using the definition of A, and our assumption about F,
the proof of this case is similar to what we argued in
Proposition 1V.5. Now, assume that the line graph of G,
is connected. Note that by Proposition V.5, the absolute
value of every off-diagonal entry of A, is at most ﬁ
and that there are at most (kK — 1) non-zero entries per
row. Therefore, v/IT; A5 /I, < 52:II,. Combined with
the bound on entries of diagonal matrix F’;, this implies
that M, < %HT. Therefore, it only remains to show that
Egenr, Mruge = My — =L M II-' M. This is equivalent
to showing that

2B gmr, [HTUQC?UW iz, Aroseqy2 ]HW

—9 TUgck_Z TUgc T
(B +A)?
k-1 (k—-2)(k—1)

We proceed by first proving a lowerbound on the RHS. By
two applications of Fact I1.2, we can write

Fr o A
k-1

(13)

2 €
2 4 & 2 €\ 42
(B + A;)° = (1+6>FT+(1+2)AT

2 _
= <1+)F3+(1+6)A3
€

(34 €+ 2/e¢) off-diag(S,)?

(k—2)? '

We proceed by finding a diagonal matrix to upperbound
A% | For any ¢ € [q], A¢ is the weighted adjacency

matrix of a line graph. 'l:herefore, by I:emma V.6, (/_12)2 =<
2> ey (A2Y)?. Since A2 = eeldl (A2)2, we get that

AZ=2) (A7) 24 (A7) + (A7),

veV veV

(14)

where in the second inequality we used Fact II.2. Therefore,
by definition of S (see Eq. (11)),

(1 + G)Az =8 = (k - 2)(A7' - AT) + diag(s‘r)'

So, by (14), we can lowerbound the RHS of (13) as follows

Fr Ar (Fr + Ap)?
k=1 "k—1 (k—=2)(k—1)
. _F A, A+ HF?
k-1 k-1 (*k-1k-2

diag(S;) (34 €+ 2) off-diag(S;)?
S k-D(k-2) (k—1)(k—2)3

On the other hand, by definition of A, (see (10)), the LHS
of (13) is equal to

Frige
EQCNWT |:]._.[7.1]._.[7-Ugc k Ug2:| +

and

F‘r c
IIEgcw‘n'T |:H:1H7'Ugcug:| (667 60)

k—2
- 5

p(gc’|T U ec)Fruge (ec, ec).
9¢'€Xryec(0)

Comparing this with the assumption (see Eq. (12)), and
letting v, (ec) = 0 for all ec ¢ X-(0), it is enough to show
that

(34 €+ 2) off-diag(5-)?

diag(v,) = diag(S,) + k=22

First, notice,
off-diag(S,)? ~ off-diag (S, )%, 1X-(©
(k-2 — (k—2)?
B (1+6)%2(A —2)%4(A - 1)21X7(0)
- et AL (k — 2)?
(1+¢)? X (0
= ape 1Y

where the second inequality is by Fact II.1, noting that by
part (ii) of Proposition V.5, every off-diagonal entry of .S, is

at most % and that there are at most 2(A — 1) non-

zero entries per row. Finally, the statement follows from part

(iii) of Proposition V.5 which shows S (ec, ec) < %

for any ec € X,(0). [ |

With this in hand, to prove Theorem V.3, it is enough to
find a family of matrices {F}}cx.codim(x)>2 that satisfy
Proposition V.7. We leave this to the extended version of the

paper.
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