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1 INTRODUCTION

In an instance of the minimum k-edge connected spanning sub-
graph problem, or k-ECSS, we are given an (undirected) graph
G = (V,E) with n := |V| vertices and a cost function ¢ : E — R,
and we want to choose a minimum cost set of edges F C E such
that the subgraph (V, F) is k-edge connected. In its most general
form, k-ECSS generalizes several extensively-studied problems in
network design such as tree augmentation or cactus augmentation,
for which there has been recent exciting progress (e.g. [5, 7, 11, 28]).
The k-edge-connected multi-subgraph problem, k-ECSM, is a close
variant of k-ECSS in which we want to choose a k-edge-connected
multi-subgraph of G of minimum cost, i.e., we can choose an edge
e € E multiple times. Note that without loss of generality we can
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assume the cost function ¢ in k-ECSM is a metric, i.e., for any three
vertices x,y,z € V, we have c¢(x, z) < c(x,y) +c(y, 2).

Around four decades ago, Fredrickson and Jaja [12, 13] designed
a 2-approximation algorithm for k-ECSS and a 3/2-approximation
algorithm for k-ECSM. The latter essentially follows by a reduction
to the well-known Christofides-Serdyukov approximation algo-
rithm for the traveling salesperson problem (TSP). Over the last
four decades, despite a number of papers on the problem [9, 14—
16, 19, 22, 23, 26], the aforementioned approximation factors were
only improved in the cases where the underlying graph is un-
weighted or k > log n. Most notably, Gabow, Goemans, Tardos
and Williamson [16] showed that if the graph G is unweighted
then k-ECSS and k-ECSM admit 1 + 2/k approximation algorithms,
i.e., as k — oo the approximation factor approaches 1. The case of
k-ECSM where k = 2 has received significant attention and (signifi-
cantly) better than 3/2-approximation algorithms were designed
for special cases [3, 4, 6, 27]. In the general k = 2 case, only a3/2—¢
approximation is known where € = 1073 [20]; we remark this also
extends to all even k.

Motivated by [16], Pritchard posed the following conjecture:

Conjecture 1.1 ([26]). The k-ECSM problem admits a1+ O(1)/k
approximation algorithm.

In other words, if true, the above conjecture implies that the
3/2-classical factor can be substantially improved for large k, and
moreover that it is possible to design an approximation algorithm
whose factor gets arbitrarily close to 1 as k — co. In this paper, we
prove a weaker version of the above conjecture.

Theorem 1.2 (Main). There is a polynomial time randomized al-
gorithm for (weighted) k-ECSM with approximation factor (at most)
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We remark that our main theorem only improves the classical
3/2-approximation algorithm for k-ECSM when k > 103. However,
the constants are not optimized and we expect our algorithm to
beat 3/2 for much smaller values of k.

ForasetS C V,let 6(S) = {{u,v} : [{w,0} N S| = 1} denote the
set of edges with one endpoint in S. The following is the natural
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linear programming relaxation for k-ECSM.

min Z xec(e)

ecE

st. x(6(v) =k YoeV (1)
x(5(8) =k VYSCV,S#0
Xe >0 Ve € E.

Note that while in an optimum solution of k-ECSM the degree of
each vertex is not necessarily equal to k, since the cost function
satisfies the triangle inequality we may assume that in any opti-
mum fractional solution each vertex has (fractional) degree k. This
follows from the parsimonious property [17].

We prove Theorem 1.2 by rounding an optimum solution to the
above linear program. So, as a corollary we also upper-bound the
integrality gap of the above linear program.

5.06

Corollary 1.3. The integrality gap of LP (1) is at most 1 + o

2 PROOF OVERVIEW

Before explaining our algorithm, we recall a randomized rounding
approach of Karger [19]. Karger showed that if given a solution x
to (1) we choose every edge e independently with probability x.,
then the sample is k — O(+/k log n)-edge connected with probability
close to 1. He then fixes the connectivity of the sample by adding
O(+/klogn) copies of the minimum spanning tree of G. This gives
a randomized 1 + O(+/logn/k) approximation algorithm for the
problem. While this is a very effective procedure for large k, it is
not useful when k is a constant or grows slower than log n. We view
our result as a refinement of this method using random spanning
trees which allows k to be independent of n.

First, we observe that when x is a solution to (1), the vector 2x/k
is in the spanning tree polytope (after modifying x slightly, see
Fact 3.3 for more details). Following a recent line of works on the
traveling salesperson problem [21, 24] we write 2x/k as a so-called
max-entropy distribution yi over spanning trees.

Warm-up algorithm and key idea. Our first algorithm, explained
in Section 4, independently samples k/2 spanning trees Ty, . . ., Tg /2
from p. Call the (multi-set) union of these trees T*. Since max en-
tropy distributions are negatively correlated, it is easy to show using
Chernoff bounds that any particular cut S has at least k—O(Vk In k)
edges with probability at least 1 — O(1/Vk)". So, in the second step
of the algorithm, we add O(Vk In k) additional spanning trees to
fix the connectivity of every cut “with high probability" In other
words, after this procedure (which has expected cost 1+O0(4/Ink/k)
times the cost of the LP), every cut S has at least k edges with proba-
bility 1 — O(1/ vk). One can think of this as a version of Karger’s
algorithm which does not fix every cut with high probability but
instead fixes each individual cut with high probability.

A priori, this does not seem like a useful property, because there
are exponentially many cuts to bound over. However, we show that

1Of course, one can make this probability much closer to 1 (say 1 — O(1/k?)) by
only paying a constant factor in the O(Vk Ink) term, but it is sufficient to make it

1-0(1/Vk).
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(perhaps somewhat surprisingly) there is a way to fix the connectiv-
ity of every cut simultaneously by only paying an additional factor
of O(1/k) times the cost of the LP in expectation.

To do so, we begin with the following simple observation: Fix
a cut S. Then, if we ensure that every tree T; has at least 2 edges
in §(S), the union of the trees T; will have at least k edges across
the cut and we are done. So, if a cut S turns out to have fewer
than k — O(Vk1Ink) edges in T*, one can think of “blaming" the
trees which had only one edge in §(S); in particular, we will fix the
cut by doubling the sole edge in §(S) for each of those trees. This
guarantees that every tree has at least two edges across the cut and
therefore it has at least k edges total as desired. This is essentially
the key idea of this paper.

Formally, after sampling Ty, .. ., T, iterate over every edge e of
every tree T; and consider the unique cut S in which e appears as the
only edge of T;. This is the only cut for which e may be “blamed" and
hence doubled. Now, we check if T* has fewer than k — O(Vk In k)
edges across §(S). Over the randomness of the remaining trees, this
occurs with probability O(1/ Vk) (by Chernoff bounds, as argued
above). This shows that every edge of T* is doubled with probability
0(1/Vk), and therefore since T* has expected cost at most ¢(x) <
OPT, the approximation ratio of the algorithm is 1 + O(+/Ink/k) +

0(1/Vk), ie. 1+ O(yInk/k), as desired.

Main algorithm. The above algorithm is suboptimal in a fairly

obvious way. Suppose that a cut S is missing (for example) Vk In? k
edges. Then, its connectivity is not fixed by the additional O(Vk In k)
spanning trees added by the algorithm. So, the warm-up algorithm
simply adds an additional copy of every edge which appeared alone
in this cut in its tree. However, it may be that the cut §(S) has only
one edge in as many as Q(k) trees! Therefore, we will add Q(k)

extra edges to fix the cut instead of just the required Vk In® k edges:
a huge overcorrection. Algorithm 2 simply avoids this overcorrec-
tion by only adding the number of edges actually missing from
the cut, sampling them independently from the set of edges which
appeared alone on this cut. It turns out this will let us add only
O(Vk) additional trees instead of O(VkInk), avoiding the extra
VIn k factor?.

However, this adds some difficulty to the analysis. For example,
now that we only add O( \/E) extra trees, it is not true that a cut
only has to be fixed with probability O(1/ Vk). In fact, this prob-
ability may even be O(1). To sharpen the analysis, for any fixed
set S we study pg, the probability that a random (max entropy)
tree has exactly one edge in §(S). In particular, we show that the
expected number of edges that §(S) is missing (below k) is at most
O(Vke 1/ps).

This bound on the expectation is then enough to complete the
argument as follows. Let n(S) be the number of trees T; for which
|T; N 5(S)| = 1. Let e be the unique edge in 5(S) for some T;. Then,
the probability e needs to double is the expected number of edges
missing from §(S) divided by n(S). Using the analysis above and

2For a slightly tighter analysis we also include these additional trees in T*, but this is
mostly a superficial difference.
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that E [n(S)] = Q(kps), this can be shown to be O( s

0(1/Vk) in expectation®.

):

Remark 2.1. We note that we expect this algorithm to work for any
distribution of spanning trees which is negatively correlated. So,
one could for example apply swap rounding [8] to generate random
spanning trees (instead of using the max entropy distribution).

However, while the analysis giving 1 + O(\/% ) approximation
in Section 4 can easily be modified to give similar bounds for any
negatively correlated distribution (since Chernoff bounds can be
applied), the proof of Theorem 1.2 in Section 5 currently relies on
the fact that the distribution of the number of edges in any cut can
be written as a sum of independent Bernoullis. So, an extension
of Theorem 1.2 to an arbitrary negatively correlated distribution
would require a different analysis technique or a generalization of
Lemma 5.2.

We also briefly remark that some form of concentration is nec-
essary. In particular, consider a distribution over spanning trees in
which a vertex v has degree 1 with probability 1 — 1/(n — 2) and
degree n — 1 with probability 1/(n — 2). In such a case, we expect to
need to add k/2 edges from §(v) to ensure v has degree at least k. If
these edges have all the cost of the LP (or there are many vertices
with this property), we can get an approximation ratio as bad as
3/2 even for large k.

3 PRELIMINARIES

Definition 3.1 (G°, up, v9). We expand the graph G = (V,E) to a
graph G° by picking an arbitrary vertexu € V, splitting it into two
nodes ug and vy, and then, for every edge e = (u, w) incident to u,

x(e)

assigning fraction == to each of the two edges (uo, w) and (vo, w)
in GO We set x((u®,0°)) = 0. Call this expanded graph G, its edge
set E°, and the resulting fractional solution x°, where x°(e) and x(e)
are identical on all other edges. (Note that each of ug and vy now have
fractional degree k/2 in x°.) In Fact 3.3 below, we show that % -x0 s
in the spanning tree polytope for the graph G°. For ease of exposition,
the algorithm is described as running on G° (and spanning trees* of
GP), which has the same edge set as G (when uy and vy are identified).

3.1 Basic Notation

For a subset of vertices S C V, we write E(S) C E to denote the set
of edges in the induced graph of G whose vertex set is S.

For two sets of edges F, F/ C E, we write F & F’ to denote the
multi-set union of F and F’ allowing multiple edges. Note that we
always have |[F & F’| = |F| + |F’|.

For set of vertices S C V, let §(S) = {{w,v} : {u,0} N S| = 1}
denote the set of edges with one endpoint in S and one endpoint in
S.

For any two sets of edges F, T C E, we write

Fr:=|FnNT|.
We will primarily use this notation to denote the number of edges

F has in a spanning tree (or union of spanning trees) T.

3This is not immediate since this is the ratio of the expectations, but we actually need
to analyze the expectation of the ratio.
4 A spanning tree in G is a 1-tree in G, that is, a tree plus an edge.
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Also, for any edge weight function x : E — R, we write x(F) :=

ZeEF x(e)~

Definition 3.2 (St (e), the “One-Cut" of e in T). For any spanning
tree T on the vertex set Vo, and any edgee € T, let ST(e) € Vo \{uo}
be the unique connected component of T \ {e} which does not contain
ug. We will call this the one-cut of e in T.

Particular edges e € T of interest are those where both ug, vy ¢
Sr(e).

Recall that the natural linear programming relaxation for k-
ECSM is (1). The solution to this LP can be computed in polynomial
time using the ellipsoid method.

For a real-valued random variable X, we write X* = max(0, X)
to denote the positive part of X.

3.2 Random Spanning Trees

Edmonds [10] gave the following description for the convex hull of
the spanning trees of any graph G = (V, E), known as the spanning
tree polytope.

zZ(E)=|V|-1
zZ(E(S)) <|S| -1 VScV (2)
Ze 20 Ve € E.

Edmonds also [10] proved that the extreme point solutions of this
polytope are the characteristic vectors of the spanning trees of G.

Fact 3.3 ([21]). Let x be the optimal solution of LP (1) and x° its
extension to G° as described in Definition 3.1. Then % - %% is in the

spanning tree polytope (2) of G°.
Proor. For any set S € V(G?), we have

K(E(S) = D x(5(0)) - x°(E(S))
vES
If ug,v9 € S, then x°(8(v)) = kVo € S, and x°(8(S)) = x(5(S)). So
x0(E(S)) = FEZEEN < £(js] - 1).
Ifuy € S,up ¢ S, then Y, ey x°(5(0))
k|S| - k/2 and x°(8(S)) = k/2, so x°(E(S))
§(|S| —1). Similar analysis also holds for the case where uy ¢ S, v; €
S.
Finally, if ug, v € S, then ¥,y x°(8(0)) = k(|S| —2) +2-k/2 =
0 0 _ kISI=k=x"(5(5))
k|S| - k and x°(5(S)) = k. Thus, x°(E(S)) = ~————— <
g)(|5| — 2). The claim follows as x°(E) = XY@ — X (jy(g)| -
1). O

k(S| = 1) + k/2 =
kIS|-k/2-x"(5(5)) _
- <

IA

Given nonnegative edge weights A : E — R, we say a distribu-
tion p) over spanning trees of G is A-uniform, if for any spanning
tree T,

Py, [T] o ﬂ Ae).
ecT

It has been shown that the maximum entropy distribution over
spanning trees is a A-uniform distribution.

Theorem 3.4 ([1]). There is a polynomial-time algorithm that, given
a connected graph G = (V,E), and a point z € RIE in the spanning
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tree polytope (2) of G = (V,E), returns A : E — Rx¢ such that the
corresponding A-uniform spanning tree distribution pi) satisfies

Z i (T) < (1427 M)z, Ve € E,
TeT:eeT
i.e., the marginals are approximately preserved. In the above T~ is the
set of all spanning trees of G.

3.3 Bernoulli-Sum Random Variables

In this section, we introduce several properties of the Bernoulli-sum
random variable.

Definition 3.5 (Bernoulli-Sum Random Variable). We say BS(q)
is a Bernoulli-Sum random variable if it has the law of a sum of
independent Bernoullis, say By + By + - - - + B; for somet > 1, with
E[Bi+---+B:] =q.

[2, 25] showed that the size of any set of edges on any A-uniform
random spanning tree, i.e. for a set F C E, Fr is distributed as a
Bernoulli-sum random variable.

Lemma 3.6 (Random variables Fr are Bernoulli Sums [2, 25]).
GivenG = (V,E) and A : E — R, let p) be the A-uniform spanning
tree distribution of G. Let T be a sample from 1. Then for any fixed
F C E, the random variable Fr is distributed as BS(E [Fr]).

We start with a fact that comes directly from linearity of expec-
tation and the definition of variance:

Fact 3.7. If X = BS(q1) and Y = BS(q2) are two independent
Bernoulli-sum random variables, then E[X +Y] = g1 + q2 and
Var [X + Y] = Var [X] + Var [Y].

Theorem 3.8 (Optimize Expected Value of BS Random Variable,
[18] Corollary 2.1). Letg:{0,1,---,m} —» Rand0 < p < m for
some integerm > 0. Let X1, - - - , X be m independent Bernoulli ran-
dom variables with success probabilities p1,- - - , pm that minimizes
(or maximizes)

Elg(X1+--+Xm)]

such that Xi + - -+ + Xon = BS(p). Then p1,--- ,pm € {0,x,1} for
some0 < x < 1.

Corollary 3.9. For any BS(q) withq > 1,P[BS(q) =0] < 1/e.

Proor. Suppose BS(q) = X1 + -+ + X, for some m € Z;
where Xj, - - -, Xj, are independent Bernoullis with success proba-
bility p1,- -+, pm. Let g(x) = I[x = 0]. Then from Theorem 3.8, if
we want to maximize P [BS(q) = 0] = E [g(Xj + - - - + X;)], then
Pp1,- - s pm € {0,x, 1} for some 0 < x < 1. Suppose mj of p;’s are 1,

mgy of p;’s are 0, and the rest of the (m—my —my) p;’s are #:"jmz
Then we have
m
Pr[BS(q) =0l = [ |(1-pp)
i=1
<™ .M. (1 g-m m—my—my

m-—mp —my
< (l—i)m <e™9.
m

where maximization is reached when my = my = 0 and m — +co.
Notice that ¢ > 1, we have Pr[BS(q) = 0] < 1/e as desired. O
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Fact 3.10. Givenany0 < e < 1,letp; = pa2 = ... pm be the success
probabilities of m > 2 independent Bernoullis such that 312, p;

1+ €. Suppose p1 < %(1 +¢€). Then [, (1-pi) 2 %(1 —e)2.

ProoF. The first step is to see that [12, (1 — p;) is minimized
when p; is as large as possible, i.e., p1 = %(l + €). To see that, say
Ppm > 0 (for some m > 1) and observe that for any 0 < § < py,

(1= (141 =p2) ... (1= (pm =) < [ [(1=p0).
i=1

Note that this operation does not change the order of p;’s. So, with-
out loss of generality, assume p; = %(1 + €). Now, by Weierstrass
inequality we have

ﬁ(l —-pi) 2 (1-p1) (1 —ipi)
i=1 f=)

=(1- %(1 +e))(1- %(1 —e) > %(1 —¢)?

where the second to last identity uses that }}; p; = 1+ €. O

Theorem 3.11 (Bernstein Inequality for BS Random Variables). Let
X = BS(q) be a BS random variable with E [X] = q and Var [X]
o2. Then VA > 0 we have

AZ
2(c2 +1/3) ) '

Theorem 3.12 (Multiplicative Chernoff-Hoeffding Bound for BS
Random Variables). Let X = BS(q) be a Bernoulli-Sum random
variable. Then, for any0 < e < 1andq’ < q,

P[X <q-1] Sexp(—

€2 q
2

PIX<(1-eq'|<e 2,

and for anye > 0,q" > g,
e2q

IP[X > (1+e)q/] <e e,

’

4 WARM-UP: A SIMPLE ALGORITHM WITH A
1+ 0(4/!2) . APPROXIMATION RATIO

We first explain a simple algorithm (Algorithm 1) that has a slightly
Ink

weaker 1+ O T
rithm (Algorithm 2) and the proof of our main result (Theorem 1.2)
to Section 5.

In the first step of Algorithm 1, we solve (1) on the (slightly)
extended graph G°. Let x° to be the optimal solution. By Fact 3.3,
(2/k)x? is in the spanning tree polytope. Then in line 2, we find
the A-uniform spanning tree distribution yj where each edge has
marginal probability (2/k)x? (ignoring the 27" relative errors). This
step is guaranteed to be done in polynomial time by Theorem 3.4.

In line 3, we independently sample k/2 spanning trees® T; up
to Ty/z from py, and let T* = Ty W - - - W Ty to be the (multi-set)
union of the samples. It follows that T* satisfies many desirable
properties of the A-uniform spanning tree distribution:

)-approximation ratio. We defer our main algo-

i) T* has the same expectation as the LP solution x°, since the

marginal probability of each edge is exactly x°(e);

®If k is odd, we sample [k/2] trees. The bound remains unchanged relative to the
analysis we give below as the potential cost of one extra tree is O(OPT /k).
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Algorithm 1 An Approximation Algorithm for k-ECSM

Let x° be an optimum solution of (1) extended to the graph G°

as described above.

. Find weights A : E° — Ry such that for any e € E°, Py, [e] <
%xg(l +27M). > By Theorem 3.4

: Sample k/2 spanning trees Ty, -+ , Tg /2 ~ piy (in G%) indepen-
dently and let T* « T3 & - - - & Ty /3.

. Let B be the disjoint union of an additional a+/k/2 — 1° span-
ning trees sampled from 1. > & = ©(VInk) is a parameter we
choose later.

: forie [%] and e € T; do

if 5(St,(e))1+ < k — ayk/2 -1 and (ug,v0) ¢ 5(St;(e))
then
F «— Fw{e}.
end if
: end for
10: Return T* W BW F.

1:

ii) For any cut §(S) in G, since §(S) 7+ is distributed as a Bernoulli-

sum random variable, Chernoff-type inequalities apply and
d(S)7+ is highly concentrated around its mean;

iii) Since T* is the union of k/2 trees, for all cuts we have
8(S)T» = k/2. Moreover, if a cut §(S) is not a tree cut of
any of the k/2 trees, then each of the k/2 trees must have
at least 2 edges crossing it. Therefore, the number of “bad”
cuts of T*, i.e. those with §(S)7+« < k, is at most (n — 1)k/2
(with probability 1).

To fix the potentially O(nk) bad cuts, we divide them into two
types: (i) Cuts S such that §(S)r= > k — a+/k/2 — 1 and (ii) Cuts
S where 8(S)+ < k — a~fk/2 — 1, for some « = ©(VInk). We fix
all cuts of type (i) by adding B = a+/k/2 — 1 additional spanning
trees as in line 4 of the algorithm (note one could alternatively
add a+/k/2 — 1 copies of the minimum spanning tree as in Karger’s
algorithm). To fix cuts S of type (ii), we employ the following pro-
cedure: for any tree T; where §(S)7; = 1 and S is of type (ii), we add
one extra copy of the unique edge of T; in 6(S). This procedure is
in line 5 to line 9 of the algorithm. Let F be the set of edges added
in this step; then the output of our algorithm is T* W BW F as in
line 10.

Now we analyze Algorithm 1.

Theorem 4.1 (Approximation Ratio for Algorithm 1). Algorithm 1
outputs a (weighted) k-ECSM with approximation factor (at most)
8Ilnk
1+ /5
We begin by showing that the output of Algorithm 1 is k-edge
connected (in G) with probability 1.

Lemma 4.2 (k-Connectivity of the Output). For any a > 0, the
output of Algorithm 1, F& B\W T* is a k-edge connected subgraph of
G.

Proor. Fix spanning trees Ty, - -+, Tg /7 in GY and a cut S where
(ug,v9) ¢ 8(S). We show that §(S)p+wrwp = k. If 6(S)1+ > k —
avk/2 — 1, then since B has ay/k/2 — 1 copies of the minimum

spanning tree, 6(S)T+wp > k and we are done. Otherwise §(S)+ <
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k — a+/k/2 — 1. Then, we know that for any tree T;, if 5(S)t, = 1,
since (uo,v0) ¢ 6(S)T;, F has one extra copy of the unique edge of
T; in 8(S). Therefore, including those cases where an extra copy

of the edge e is added, each T; has at least two edges in §(S), so

k

6(S)T+wF = 2 % > k as desired since there are 7 spanning trees

i m]

To bound the expected cost of our rounded solution, we use the
concentration property of A-uniform trees on edges of T* to show
the probability that any fixed cut d(s) is in type (ii), i.e. 6(S) <
k —av/k/2 — 1, is exponentially small in , i.e. < e""z/z, even if we
condition on §(S)7; = 1 for a single tree T;.

In our algorithm we sample k/2 trees Ty, . . ., Ty /5. The following
definition will be useful in this section as well as in Section 5. Note
it is important to separate the case in which (ug, v9) € 5(S) for a
cut S because in this event, x°(5(S)) may be as small as k/2, in
which case our analysis is not valid. However, since the (ug, v9)
edge has cost 0, we need not worry about such cuts since they can
be trivially satisfied by adding many copies of this edge.

Definition 4.3 (8};). For a tree T; sampled in Algorithm 1 and an
edge e, we define & to be the event thate € T; A (ug,v9) ¢ 6(ST; (e)).

Lemma 4.4. Forany0 < a < vk 1<i< k/2, and anye € E,

P|8(St(e)r- <k —avk/2—-1]| aé] < @2,

where the randomness is over the spanning trees T1, - - - , Ti—1, Ti+1,
-+, Tg /o independently sampled from p,.

Proor. Condition on tree T; and the event EL. By Lemma 3.6, for
any1 < j < k/2suchthat j # i, 6(Sr, (€))7, isa BS(E [5(5T,- (), ])

random variable, with E [5(571. (e))Tj] = 2x(5(S,(¢))) = 2. Also,
by definition, §(St; (e))7; = 1 (with probability 1). Since Ty, - - -, Ty 2
are independently chosen, by Fact 3.7 the random variable

6(St, (€))7~ is distributed as BS(q) for ¢ > k — 1. Since each T has
at least one edge in 5(S; (e)), 8(St; (e))T+ = k/2 with probability 1.
So, by Theorem 3.12, with ¢’ = k—1—k/2, when 0 < & < yk/2 -1,

P [5(Sn () <k—avk/2—1] 8;]
=P [5(5Ti(e))p —kj2<kj2—avk/2—1| 8;]

(/)2 (k/2-1)
<e” S = @/2,

Averaging over all realizations of T; satisfying the required condi-
tions proves the lemma. O

ProoF oF THEOREM 4.1. Let x be an optimum solution of LP (1).
Since the output of the algorithm is always k-edge connected we just

need to show E [¢(FUT* UB)] < (1 + %) ¢(x). By linearity
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of expectation,
E[e(T)] = > Ele(T)]
ie[£]
k
=3 ;Ec(e)Pm [e]
= géc(e) 2 xe=e,

where for simplicity we ignored the 1 + 27" loss in the marginals.
On the other hand, since by Fact 3.3, 2X s in the spanning tree

k
0 2c(x) | — ac(x) .
polytope of G%, ¢(B) < == -avk/2-1 < Vi It remains to
bound the expected cost of F. By Lemma 4.4, E [¢(F)] is:
k/2 )
=Y c(e) Y B [EL] P [5(sn(e))p <k-avk/2=1] sg]
e€E i=1
< Z c(e)xee_o‘z/2 < e_az/zc(x).
e€E

Putting these together we get,
E[e(T* UBUPF)] < (1+a/Vk/2+e % ?)e(x).

Setting & = 4 [In (%) finishes the proof.

5 IMPROVED ALGORITHM AND PROOF OF
MAIN THEOREM

We now introduce our main algorithm that has an approximation
ratio of 1+O( \/LE)) Let x° be an optimal solution of LP (1) extended

to G° as above. Our algorithm is given in Algorithm 2. Note for

convenience we drop the ceiling in the expression % + aVk in all

that follows.

Theorem 1.2 (Main). There is a polynomial time randomized al-
gorithm for (weighted) k-ECSM with approximation factor (at most)
1+ 206
vk
We remark that we may assume k > 100 without loss of gener-
ality because for smaller values of k our guarantee is worse than

Christofides’ algorithm.

Lemma 5.1 (k-Edge Connectivity of the Output). The output of
Algorithm 2, F & T* is a k-edge connected subgraph of G.

Proor. First, note that for every set S € V in G, the correspond-
ing cut in Gy has ug, v on the same side. Therefore, we may restrict
our attention to sets S C V such that ug, vy ¢ S. However for such
an S, line 9 of the above algorithm ensures §(S)r+wr = k, which
completes the claim. O

Lemma 5.2 (Variance Upper Bound of Cuts in a Random Spanning
Tree). Let jiy be the max-entropy distribution in Algorithm 2. For any
0<p<1lanye>0andanyS CV suchthatPr.,, [6(S)r =1] =
p andBry, [6(S)T] = 2+ €, we have Varr-y, [6(S)T] < 4p + 3e.

ProoF. By Theorem 3.4, 5(S)t is distributed as a BS random
variable with Er,,, [6(S)7] = 2+ € and Pr.y, [6(S)r 2 1] = 1.
Hence we can write §(S)t = 1+ X1 + - - - + X, for some integer
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Algorithm 2 Algorithm for k-ECSM with Approximation Ratio
1+0())

Let x° be an optimum solution of (1) extended to the graph G°

as described above.

. Find weights A : E° — Ry such that for any e € E°, Py, [e] <
£.x0- (1427,

: Initialize F « 0.

: Sample k/2 + avk spanning trees Ty, - - -

1:

’Tk/2+a‘/E ~ pz (in
G%) independently and let T* « T} W - - - W Tk/2+zx\/?'

: Let S « {Sp,(e) :i € [E +aVkl, e € Ty, (uo, 00) 2 5(S)}. »S
is the set of one-cuts (see Definition 3.2) of T; € T*.
: for S € S do
p(s) =V e e Ty L 51 (e) = 5)
multi-set of e € T* with one-cut S.
if 6(S)r+ < k then
for j =1tok —5(S)r+ do
10: Sample an edge from P(S) uniformly at random and
add into F.
end for
12: end if
13: end for
: Return T* W F.

> P(S) is the

11:

m > 27, where Xy, , Xy are independent Bernoulli random
variables with success probabilities by > by > - - > by,. Then from
the assumption, Zg’;l bi = 1+ e. By Fact 3.7, we have

m m
Varr-, [8(S)r] = Var in = Z bi(1—-b;).
i=1 i=1

If 4p > 1 — 2¢, then we have
m m
Varry, [8(S)r] = D bi(1=b) < ) bi=1+€ < 4p +3e.
i=1 i=1
Otherwise, 4p < 1 — 2¢. Notice that
m
p=Pr[Vi,X; =0] = (1-by) ]_[(1 —bi)
i=2
m
2 (1=b)(1= Y bi) = (1=b) - (b1 = o).
i=2

where the fourth step comes from Weierstrass Inequality, and the
last step comes from Y17, b; = 1+ €. This gives by < %(1 +e€—

V(1 -€)?—4p)orby > F(1+e++/(1-€)?—4p). Since 4p <

1—2¢ < (1—¢€)?, the solutions for b are well-defined. By Fact 3.10

we have by > %(1+e),so by > %(1+e+\/(1 —-€)?-4p) >1-2p-%§
(using the square root inequality V1 —x > 1 —x for 0 < x < 1).

7We remark that the case for m = 1 is trivial.



An Improved Approximation Algorithm for the Minimum k-Edge Connected Multi-subgraph Problem

Therefore, Varr.,, [6(S)7] is upper-bounded by:

Zb(l—b)<b1(l—b1)+2b

—bl(l—b1)+(1+e—b1)

Varp.y, [6(S)1] =

€
=1+e—b§31+e—(1—2p—§)254p+3e.
O

As mentioned in Section 2, the following lemma is the key to
analyzing Algorithm 2. Roughly speaking, it says that the prob-
ability a cut is “bad," i.e. has fewer than k — aVk edges in T%, is
exponentially small in the probability that §(S)r = 1for T ~ p;.

Lemma 5.3 (Expected Augmentation of a Cut). For any k > 100
and integer a > 1 let ) be the max-entropy distribution and T* be
the union of% + aVk random spanning trees sampled from y in
Algorithm 2. Then for anyS C V,

—0.6x
max{k~1/2,P[§(S)r = 1]}

Er+ [(k - 5(5)7»«)*’] < 1.8\/Eexp (
Proor. We can write the expectation as

k
Ere [(k=8()r)*] <D Pr [8(S)r < k1]
i=1

VE VE
< Pr [5(S)r < k= (- Vi+))]

Pr [5(5)T* <k-(i- za)\/E] ,
(3

where we reindex for convenience in the following argument. De-
fine § > 0 such that x(5(S)) = k + /3\/% or equivalently that
E[6(S)r] = 2(1 + /Vk). By Lemma 5.2, we have

Varr- [8(S)7] < (4p + 68/ Vi) (k/2 + aVk)
where p =P [5(S)T = 1]. Also, notice,
E[6(S)7-] = (k/2 + aVK)E [8(S)7] = k + (2a + B)Vk + 2ap.
Therefore, by Bernstein’s inequality, for i > 2a, we have that

P+ [5(5)7* < k— (i — 2a)Vk| is equal to
Pre [8(S)r- < BISS)] - i+ f) Vi - 208

Applying Theorem 3.11, this is at most
(i + B)%k + 4ap(i + p)Vk

P (_ 2(2kp + 3Vk + 6 + 4apVk + (i + f)Vk/3 + 2a/3) )

Now, note that using that # > 0 and the mediant inequality (namely,
that for A,B,C,D > 0 we have 48 > min{A/C, B/D}), we can
upper bound the term inside the exp by

C+D
— min {

i2k 2ik + 4aivk
akp + 8apVk + 2iVk/3 40a/3 + 20Vk/3
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l

Therefore, we can upper bound this probability by

—0.3i
< exp| ————
i>2a,a>1,k>100 max{k~1/2,p}

i2 2i + 4ai/Vk

4+8a/Vk +2i/3 20/3 +40a/3Vk

|

Therefore, E7+ [(k — 6(S)r+)*] is at most

—0.6a
Voo |

|

Given the above lemma, the expected cost of F follows from a
relatively straightforward calculation:

! mi
max{k~1/2, p}

—0.3i

y: vk
< Vk _—
Z exp max{k_l/z,p}

i=2a

<
pk12<1/e

< 1.8‘/Eexp (

(o]

) Z o—0-3¢i
i=

—0.6a

max{k~1/2, p}
o

Lemma 5.4 (Expected Payment of an Edge for Augmentation). For
anyk > 100 and integera > 1, let T* be the union of§+a k random
spanning trees Ty, - - - , T, Vi in Algorithm 2. For any solution x

k/2+a
to LP (1),
Er+ [c¢(F)] < (1 + 2—\/%) (%e_o'éae +e_‘/E/2 c(x)

where F is as defined in Algorithm 2.

Proor. Fixanyi € [% +a\/ﬁ], condition on Tj, fix an edge e € T;
such that ug, vo € St;(e). If v € S7;(e), then this is not a cut in the
original graph G, so there is nothing to prove). Let S = St; (e) and let

p=Prp, [8(S)1 = 1]. Recall P($) := /2 Ve £ e 13 57, () =
S} denotes the multi-set of edges f € T; for all1 < j<k/2+aVk,
such that S, (f) = S

Let X7, be the number of times that edge e from tree T; is

sampled in Algorithm 2, line 10. We will prove that, letting &2
denote the event e € Tj, (ug,v9) & 5(S7; (e)),

E [X'Ti,e | 89] < Be_o'ﬁae + e_\@/2 (4)
Then, to prove the lemma,
k/2+avVk ) )
Ele(F)= Y c(e) > P[E] E[Xp.|&L]
ecE i=1
k/2+aVk 7% VE
< c(e) Pl&EL ( e 0-6a¢ 4 o~ k/z)
@ ecE ; [ ] \/E
2 (720 VE2
< c(e)( +a\/_) - (—e 0.6ae 4 o )
2 el
2a

7.2e

vk

)

ﬁ e0-6ae | e—\@/z) ()
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In the rest of the proof we show (4). First, observe that

(k—=3(S)T*)*
E[Xre | e € Tuo (), IPS)] =5
So, it is enough to upper bound the expected value of the RHS
conditioned on Tj,e € T;. Let T*; = T* \ T; and P(S)—; := P(S) \ T;
and note that |P(S)| = |P(S)-;|+ 1 and §(S)1+ = §(S)+ + 1. Define
(k=5(S) 7+ +1)* N
eTi = —ps - Note that E [X7, [Ty, e € T;| = E [Y1,|. We
drop the subscript of Y for readability.
First, assume p > 2/k. Then, we write,

E[Y] =P||P(S)-i| = %k ~E[Y| [P(S)—i| > 1’7"
k f ©)
+P|IP(S)-il < % -E[YllP(S)_i| < PI]

We upper bound each term in the RHS separately.

L
P [|P<s>_l| 25

B [Y 1Pyl = B

4 4 p_k B O\t ) p_k
Sﬂp[w(s)_h 4]E[(k 8y ) 11P(S)-il = &
4 N 2 —0.6a
< e[ oom) < T

Now, if p > k_l/z, the RHS is maximized when p = 1/e since
%e‘c/f’ is an increasing function of p for 0 < p < 1/e;note p < 1/e
(by Corollary 3.9) and a > 1. We obtain a bound of 7‘—\/258_0'6(18.

Otherwise, the maximum is achieved by k12, Using p > 2/k,
the above expression is at most 3.6\/Ee’0'6“k1/2. So, the first term
is at most %6_0'60{‘3 for k > 100.

Next, we bound the second term of (5). First notice Y < 1 with
probability 1; this is because if there are exactly ¢ trees which have
(S,5) as a one-cut then, §(S)7+ > k + 2aVk — £ whereas |P(S)| = ¢.
Furthermore, Y # 0 only when |P(S)_;| > 2a0Vk > 2Vk (for a > 1).
Therefore,

P [|P(s>_,~| < ”7"] E [m IP(S)_i] < Pﬂ

k
<P|IP(S)_i] < ”T

P [|P<s>_,»| > 2Vk | IP(5)4] < B

=P [z\/E < |P(S)-il < %k < e Pk/16 < o=VE/2

To see the last two inequalities notice we must have p > 8k~1/2

or this event cannot occur. Therefore, since E [|P(S)—;|] = p(% +
aVk — 1) the inequality follows by an application of the Chernoff
bound (Theorem 3.12).

Putting these two terms together, if p > 2/k,

2

7.2e _ _
E[Xp.|TheeT] =E[Y] < T 0.6ae , ,~Vk/2
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Otherwise, suppose p < 2/k. Then since E [|P(S)|-i] < 1+
2ak~1/2, by Theorem 3.12 (using « > 1),

_ sa’k(+2ak=1?)
P||P(S)_i| > (1 +2aVk)(1+2ak™?)| < e re2avk

_\@_

<

hS e
k>10,a>1

Since Y < 1 as observed above, we obtain
E[Y] <P [5(S)T5i < k] <P [|P(S)|—i > 2aVk| < e VK

7.2e ,—0.6ae

which gives (4). Therefore we can bound E [Y] by e +

¢~ VE/2 for all values of p. O

ProoF oF THEOREM 1.2. Let x be the optimum solution of (1).
From Lemma 5.1, the output of Algorithm 2 is always k-edge con-

nected. Thus it suffices to show that E [¢(T* W F)] < (1+ %)c(x).

By linearity of expectation,

E [e(T")]

2

ie[E+avk]
= (g +aVk) ) c(e)By, [e]

ecE

E [c(T)]

=(§+a\/lz)2c(e)-%~xe

ecE

= (14 (),
k

‘/_

where for simplicity we ignored the 1+ 27" loss in the marginals.
Therefore, by Lemma 5.4, E [¢(T* @ F)] is at most
+(1+
Wl )
1+ 22

I
)

as desired, where in the last inequality we use k > 100 and set
a=2. m]

2a

vk

<c(x)- (1 L2 7.2 j-06ae | ~VK/2
vk

SC(x).( 5.06

6 CONCLUSION

We remark that the approximation factor 1 + O(1/Vk) is tight
for any algorithm that starts by sampling O(k) spanning trees
independently from the max-entropy distribution and then fixes
the union by adding edges. For a tight example, consider a complete
graph with a unit metric on the edges and let x be uniform across
all edges. In such a case, the max-entropy distribution y1; will be the
uniform distribution over all spanning trees of a complete graph. A
simple analysis shows that every vertex will have degree k — Vk in
T* with constant probability. Therefore, to fix T* we need to add at
least Q(nVk) edges.

It still remains open if the integrality gap of the LP is indeed
1+ O(1/k) or if there is an approximation algorithm with approxi-
mation factor 1 + O(1/k). It would also be interesting to find the
optimal constant for Algorithm 2.
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