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Half- and quarter-metals in rhombohedral 
trilayer graphene

Haoxin Zhou1,6, Tian Xie1,6, Areg Ghazaryan2, Tobias Holder3, James R. Ehrets1, 
Eric M. Spanton1, Takashi Taniguchi4, Kenji Watanabe5, Erez Berg1, Maksym Serbyn1 & 
Andrea F. Young1 ✉

Ferromagnetism is most common in transition metal compounds where electrons 
occupy highly localized d orbitals. However, ferromagnetic order may also arise in 
low-density two-dimensional electron systems1–5. Here we show that gate-tuned  
van Hove singularities in rhombohedral trilayer graphene6 drive spontaneous 
ferromagnetic polarization of the electron system into one or more spin and valley 
flavours. Using capacitance and transport measurements, we observe a cascade of 
transitions tuned to the density and electronic displacement field between phases in 
which quantum oscillations have fourfold, twofold or onefold degeneracy, associated 
with a spin- and valley-degenerate normal metal, spin-polarized ‘half-metal’, and  
spin- and valley-polarized ‘quarter-metal’, respectively. For electron doping, the salient 
features of the data are well captured by a phenomenological Stoner model7 that 
includes valley-anisotropic interactions. For hole filling, we observe a richer phase 
diagram featuring a delicate interplay of broken symmetries and transitions in the 
Fermi surface topology. Finally, we introduce a moiré superlattice using a rotationally 
aligned hexagonal boron nitride substrate5,8. Remarkably, we find that the isospin 
order is only weakly perturbed, with the moiré potential catalysing the formation of 
topologically nontrivial gapped states whenever itinerant half- or quarter-metal states 
occur at half- or quarter-superlattice band filling. Our results show that rhombohedral 
graphene is an ideal platform for well-controlled tests of many-body theory, and reveal 
magnetism in moiré materials4,5,9,10 to be fundamentally itinerant in nature.

In metals, electronic interaction effects become dominant when the 
potential energy arising from the Coulomb repulsion becomes larger 
than the kinetic energy the electrons inherit from the band dispersion. 
This condition is captured by the Stoner criterion7, UD > 1F , which links 
the strength of the Coulomb repulsion, U, and the single-particle den-
sity of electronic states at the Fermi energy, DF. The Stoner criterion 
provides the qualitative basis for ferromagnetism in transition metals, 
where a partially filled narrow band arising from the highly localized 
d orbitals contributes a large density of states at the Fermi level. How-
ever, quantitative modelling of ferromagnetism in metals relies heav-
ily on approximate treatments of exchange and correlation effects, 
which are typically difficult to directly benchmark to experiment. 
Model systems such as the two-dimensional electron gas offer a path 
forward, providing a well-controlled venue to benchmark many-body 
theory using both more elaborate numerical methods1 and, ideally, 
precision experiments. In this regard, graphene-based van der Waals 
heterostructures present a new opportunity due to their exceptionally 
low disorder and well-known single-particle band structures, and a 
high degree of in situ control using electric and magnetic fields.

In this Article, we focus on rhombohedrally stacked graphene  
trilayers, characterized by ‘ABC’ stacking order where A, B and C refer to 

inequivalent relative placements of individual graphene layers within the 
multilayer crystal (Fig. 1a). All rhombohedral graphite multilayers feature 
van Hove singularities at or near the band edge6 where the density of states 
diverges, which are enhanced by a perpendicular electric displacement 
field (Fig. 1b, c). Low-density ferromagnetism was predicted theoretically 
for bilayers shortly after the experimental isolation of graphene11, but 
signatures of correlation physics at finite density have been observed 
only recently in rhombohedral trilayers12, tetralayers13 and multilayers14. 
Moreover, experiments on rhombohedral trilayer graphene aligned 
to hexagonal boron nitride (hBN)5,8,15 have shown the emergence of a 
flat electronic band hosting correlation-driven insulators appearing at 
integer filling of the moiré superlattice unit cell. However, a microscopic, 
unified picture of these disparate effects has remained elusive.

Phase diagram of rhombohedral trilayer graphene
We measure the inverse electronic compressibility κ µ n= ∂ /∂ e (here µ 
is the chemical potential and ne is the charge carrier density) as a func-
tion of ne and the applied electric displacement field, D. Figure 1d, e 
shows κ for B = 0 and the base temperature of our dilution refrigerator. 
At all values of D, κ has a maximum at charge neutrality, consistent with 
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the Dirac nodes (for D = 0) or displacement-field-induced bandgap 
(for |D| > 0) expected from the single-particle band structure. At D = 0, 
κ is marked by only two significant features at finite density in the form 
of a sharp step at n ≈ − 1.2 × 10 cme

12 −2   and a kink at n ≈ − 1.2 × 10 cme
12 −2. 

These features are qualitatively captured by the tight-binding band 
structure of Fig. 1b, c, and correspond to van Hove singularities arising 
from Lifshitz transitions in the Fermi sea topology, which is simply 
connected at high densities but is described by an annulus or multiple 
pockets at lower densities.

While some evidence of correlation-driven physics is evident for 
D = 0 at ne (Extended Data Fig. 2) and near n ≈ 0.4 × 10 cme

12 −2   (Extended 
Data Fig. 3), deviations from the single-particle picture are most evident 
at high |D|. The experimental κ features multiple regions of 

near-constant compressibility separated by boundaries where κ is 
strongly negative—in contrast to the tight-binding model where large 
|D| simplifies the electronic structure (see Supplementary Information). 
Negative compressibility is generally associated with electronic cor-
relations16, and may arise at first-order phase transitions characterized 
by phase separation. For electron doping, the high-|D| phase diagram 
appears to consist of three distinct phases at low, intermediate and 
high density separated by first-order phase transitions, while for hole 
doping n( < 0)e  the phase diagram is more complex. In both cases, how-
ever, negative compressibility features develop at finite |D| and evolve 
towards higher |ne| with increasing |D|. These features rapidly wash out 
as the temperature is raised, although associated features remain vis-
ible at 5 K (Extended Data Fig. 4).

The nature of competing phases is revealed by finite magnetic field 
measurements, shown for electron doping in Fig. 2a for a magnetic 
field B⊥ = 1 T perpendicular to the sample plane. At this field, energy 
gaps between Landau levels are easily visible as peaks in the inverse 
compressibility, while the phase boundaries are only slightly altered 
relative to the B = 0 case. As is evident in Fig. 2a, the phase transitions 
observed at B = 0 separate regions of contrasting Landau level degen-
eracy. In the high-density phase, the Landau levels have the combined 
fourfold degeneracy of the spin and valley flavours native to graphene 
systems; similarly, at low ne and low D, a 12-fold symmetry emerges due 
to additional degeneracy of local minima in the strongly trigonally 
warped Fermi surface17,18. However, in the intermediate- and low-density 
phases, respectively, the degeneracy is reduced to twofold and onefold. 
This trend is evident in low-magnetic-field magnetoresistance  
oscillations in the three regimes, Fourier transforms of which are shown 
in Fig. 2b (see also Extended Data Fig. 5a–c and Extended Data Fig. 6). 
The loss of degeneracy is consistent with a zero-magnetic-field phase 
diagram that contains two distinct phases that spontaneously break 
the combined spin and valley isospin symmetry. In this picture, the 
intermediate-density phase consists of two degenerate Fermi surfaces 
at B = 0⊥ , constituting a ‘half-metal’, compared to the normally fourfold 
degenerate graphene, while the low-density phase has a single Fermi 
surface and is thus a ‘quarter-metal’.

Stoner ferromagnetism
To better understand the mechanisms leading to the rich mag-
netic phase diagram observed, we study a four-component Stoner 
model19 that includes both SU(4) symmetric interactions as well as a 
flavour-anisotropic Hund’s coupling that favours the half-metal at the 
expense of the quarter-metal and an unphysical ‘three-quarter-metal’ 
state that otherwise arises in this model (see Methods and Supple-
mentary Information). Calculated κ (Fig. 2c) shows a cascade of 
symmetry-broken phases with reduced Fermi surface degeneracy 
(Fig. 2d (inset) and Supplementary Information) following trajectories 
in the ne–D plane very similar to those observed experimentally. This 
dependence can be directly related to the evolution of the band-edge 
van Hove singularities, which cause the Stoner criterion for ferromag-
netism to be satisfied at ever higher |ne| with increasing |D| as more 
states accumulate near the band edge.

To constrain the precise broken symmetries in the half- and 
quarter-metal phases, we study the evolution of the phase transitions 
in an in-plane magnetic field, which couples primarily to the electron 
spin through the Zeeman effect. The resulting change in density at 
which a given transition occurs is directly proportional to the differ-
ence in Zeeman energy between the two competing phases, providing 
a sensitive probe of relative spin polarization. As shown in Fig. 2e, Zee-
man energy favours the half-metal over the fully symmetric—and nec-
essarily spin-unpolarized—state. Moreover, the phase transition 
density shows a cusp at B , implying an energy difference that is linear 
in B  as expected for a ferromagnetic half-metal with a divergent spin 
susceptibility at B = 0. In contrast, the transition between half- and 
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Fig. 1 | Spontaneous symmetry breaking in rhombohedral trilayer 
graphene. a, Crystal structure of rhombohedral trilayer graphene. b, Band 
structure of rhombohedral trilayer graphene with an interlayer potential  
Δ1 = 0 meV (black) and 30 meV (blue) calculated from the six-band continuum 
model (see Supplementary Information). Here a0 = 0.246 nm is the graphene 
lattice constant. c, Corresponding single-particle density of states, ρ,  
versus energy at zero temperature. d, e, False-colour plot of the inverse 
compressibility as a function of displacement field and carrier density for hole 
doping (d) and electron doping (e). f, Inverse compressibility measured at D = 0 
(black) and inverse compressibility calculated from the single particle, six-band 
continuum model (blue). Insets: Fermi contours calculated from the continuum 
model (see also Supplementary Fig. 3). Contours are plotted as a function  
of wavevector near one of the corners of the Brillouin zone. The wavevector 
components k x and ky range between a−0.05 0 and +0.05a0 in all plots.  
g, h, Inverse compressibility as a function of carrier density measured at 
D = 0.46 V nm−1 (g) and D = −0.46 V nm−1 (h).
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quarter-metal is unaffected by B , consistent with identical, and pre-
sumably complete, spin polarization in both phases. Measurements 
of the Hall effect (Fig. 2f and Extended Data Fig. 8) show an anomalous 
Hall effect in the quarter-metal phase but no corresponding effect in 
the half-metal. This is expected due to the contrasting Berry curvatures 
in the two valleys, which cancel for valley-unpolarized states but may 
give rise to an intrinsic anomalous Hall effect for valley-polarized 
states20. Taking these findings together, we conclude that the 
quarter-metal is spin and valley polarized while the half-metal is  
spin polarized but valley unpolarized (Fig. 2g). Interestingly, our results 
imply a ferromagnetic Hund’s coupling J( < 0), in contrast to the  
quantum Hall ferromagnet in monolayer and bilayer graphene21.

Ferromagnetism in the valence band
Compared with the electron-doped case, hole-doped rhombohedral 
trilayer graphene shows a considerably more complex phase diagram, 
as seen in the B⊥ = 1 T magnetocapacitance data shown in Fig. 3a. The 
contrast between the phase diagrams of the valence and conduction 
bands can be related to the single-particle band structure, which differs 
markedly between the two. Most importantly, in the valence band, the 
density of states diverges at a finite density n ≈ − 0.5 × 10 cme

12 −2, which 
corresponds to the merger of three disjoint Fermi pockets at low hole 
density into a single annular Fermi surface. At still higher |ne|, the small 
electron pocket centred at each corner of the Brillouin zone disappears, 
leading to a step discontinuity (Fig. 3b). As a result, density-driven phase 
transitions in the valence band may be of several general types. First, as 
in the conduction band, isospin symmetries may break, reducing the 
degeneracy of the Fermi surface. In addition, Lifshitz transitions in  
the topology of the Fermi surface, which are already evident in the 
single-particle band structure, may occur. Finally, the nonmonotonic 

dependence of density of states on ne may favour states with partial 
isospin polarization, analogous to conventional ferromagnets, and allow-
ing for Lifshitz transitions of a second type in which new Fermi surfaces 
are nucleated in previously unoccupied spin/valley flavours. Empirically, 
we find that, compared to electron doping, some hole-doping transitions 
are more strongly first order, showing hysteresis as a function of both 
magnetic field (Fig. 3c) and gate voltage (Fig. 3d, e).

To disentangle these phases experimentally, we measure the resistiv-
ity as a function of perpendicular magnetic field and ne and plot the 
Fourier transform of R B(1/ )xx ⊥  (Fig. 3f, g and Extended Data Fig. 5d, e) 
with frequencies normalized to that corresponding to the total carrier 
density. Peak position thus indicates the fractional share of the total 
electrons enclosed by a given Fermi contour. At the highest values of 
|ne|, a single peak (and its harmonics) is visible at f = 0.25ν , consistent 
with four Fermi surfaces each enclosing an equal share of the total 
density. As ne crosses the threshold of n ≈ − 1.7 × 10 cme

12 −2  in Fig. 3f 
(corresponding to the step in compressibility highlighted in Fig. 1d, e), 
the frequency of the quarter-density peak begins to grow, and a second 
peak emerges at low frequency. We interpret this as indicating a Lifshitz 
transition where a small electron Fermi surface is nucleated in the mid-
dle of the (now annular) Fermi sea, precisely as predicted by the 
single-particle band structure.

On further lowering of |ne| towards zero, a sudden transition in the 
quantum oscillations is observed near n ≈ − 1.15 × 10 cme

12 −2 in Fig. 3f. 
This threshold corresponds to a subtle but visible low-κ feature in 
Fig. 1g. On the low-ne side of the transition, the oscillation frequencies 
are less well defined, but show spectral weight concentrated most 
prominently at fν slightly less than 0.5 and at very low frequencies. 
These features are consistent with a Stoner-type transition to a partially 
isospin polarized (PIP) phase, with majority and minority charge car-
riers in two distinct pairs of isospin flavours. These contours 
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continuously evolve until the fν of the high-frequency peak converges 
to 0.5, whereupon the low-frequency peak disappears, consistent with 
a Lifshitz transition from the PIP phase into a half-metal. Remarkably, 
this pattern repeats itself as the density is lowered further, as shown 
in Fig. 3d: the simple half-metal transitions into a half-metal with an 
annular Fermi sea, then to a PIP phase with one majority and one minor-
ity flavour, then into a simple quarter-metal and then into an annular 
quarter-metal before isospin symmetry is restored at the lowest den-
sities. At these very low densities, each isospin flavour hosts three 
Fermi pockets, leading to observed oscillation frequencies near 
f = 1/12ν .

As for the electron side, many of these transitions show a charac-
teristic B dependence (Extended Data Fig. 7) and an anomalous Hall 
effect (Extended Data Fig. 8) that allow us to confirm the spin and 
valley polarizations of the half- and quarter-metal states, which we 
find to be similar to those on the electron side. We note, however, that 
transitions do not generally show simple linear-in-B  behaviour. 
In addition, the complexity of the finite B⊥ magnetoresistance suggests 
that these domains may harbour multiple PIP phases.

Effect of a moiré potential
Experimental indications of strong interactions in intrinsic rhombo-
hedral graphene have previously been restricted to the very low-den-
sity ( n| | < 10 cme

11 −2) regime12,14. Recently, however, manifestations of 
strong interaction have emerged in rhombohedral trilayers aligned to 
hBN at densities comparable to the phase transitions reported here5,8,15. 
In these devices, insulating states have been observed at filling ν = − 1 
and −2 of the superlattice unit cell, including an incipient Chern insula-
tor at ν = − 1. These experimental findings were interpreted in terms of 

a moiré-induced flat band. It is interesting to reexamine this picture in 
light of our finding that rhombohedral trilayers spontaneously break 
symmetries.

Comparing κ for a moiré device (Fig. 4a) with that for a non-moiré 
device in Figs. 1–3, we find that κ features associated with Stoner tran-
sitions are only weakly affected by the superlattice potential.  
The primary difference is the appearance of incompressible states 
at commensurate fillings ν = ± 1, ± 2 of the moiré unit cell. The rela-
tionship between these insulators and the underlying symmetry 
breaking in non-moiré devices is depicted schematically in Fig. 4b, 
where we overlay the phase boundaries measured in intrinsic trilay-
ers with the domain of stability of the commensurate, incompressible 
states in moiré-patterned trilayers. Evidently, incompressible states 
emerge whenever the superlattice filling is divisible by the degen-
eracy of the Fermi surface in the non-moiré system at the same ne and 
D. The effect of the moiré can thus be understood as a perturbation 
that does not qualitatively alter the correlated electron physics 
already present in the parent trilayer.

We observe several classes of commensurate gapped states driven 
by electron interaction in the moiré sample. Consistent with prior 
work, we find that commensurate insulators at ν = − 1 and ν = − 2 are 
topologically trivial for D > 0 while the ν = − 1 insulator is nontrivial 
for D < 0 (Fig. 4c), hosting a competition between Chern insulators 
with Chern number C = −2 and C = −3 (see Methods). We also observe 
a number of features at fractional filling of the moiré superlattice 
bands (Fig. 4d). These states are all found to have zero Chern num-
ber in the low-B⊥ limit and occur at ν = 1/3, 1/2, 2/3...  The regime 
where these states are observed corresponds within single-particle 
band structure models to a regime where an unusually flat topo-
logically trivial flat band is partially filled22. We interpret them as 
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generalized Wigner crystals, in which electron repulsion leads to 
commensurate filling of the moiré potential, breaking the superla-
ttice symmetry23,24.

Discussion
It is interesting to compare the itinerant ferromagnetism revealed in 
rhombohedral trilayer graphene with other physical realizations of fer-
romagnetism. Unlike in transition metals, ferromagnetism in trilayer 
graphene does not originate from tightly localized atomic orbitals, but 
rather is intrinsic to the itinerant electrons themselves. Rhombohedral 
trilayer graphene may also be contrasted with low-density semicon-
ductors2,3. While superficially similar, signatures of ferromagnetism 
in these systems are observed in an insulating regime, where electron 
wavefunctions are localized either by disorder or Wigner crystallization.

Despite the lack of an applied magnetic field, the underlying physics 
of rhombohedral trilayer graphene closely resembles that of a quan-
tum Hall ferromagnet. Indeed, the sharp peak in the density of states 
associated with the van Hove singularity plays a similar role to that of 
a Landau level: high density of states allows a large gain of exchange 
energy by isospin polarization, at a small cost in kinetic energy. As in 
a Landau level, the electronic wavefunctions corresponding to the 
region where the density of states is high are strongly overlapping, 
enhancing the exchange coupling.

These considerations apply equally well to isospin magnetism in 
moiré heterostructures, which is thought to underpin the correlated 
physics observed in these systems25. From this point of view, it is the 
high density of states of the flat bands, and not their isolation from 
high-energy dispersive bands, that plays the central role in the ferro-
magnetic order. As demonstrated here, the primary role of the moiré 
potential is to enable gapped states at finite density. In this light, our 
results suggest a new design space for van der Waals heterostructures, 
based on gate-tunable isospin magnetism as a building block that is 
both strongly correlated but also well understood.
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Methods

The trilayer graphene and hBN flakes were prepared by mechanical 
exfoliation of bulk crystals. The rhombohedral domains of trilayer 
graphene flakes were detected by a Horiba T64000 Raman spectrom-
eter with a 488-nm mixed-gas Ar/Kr ion laser beam. The rhombohe-
dral domains were subsequently isolated using a Dimension Icon 
3100 atomic force microscope26,27. The Van der Waals heterostruc-
tures were fabricated following a dry transfer procedure28. A special 
stacking order was followed to minimize the mechanical stretching 
of rhombohedral trilayer graphene. The details are described in 
Extended Data Fig. 1. We use dual-graphite-gated devices29, which 
minimize the charge disorder, enabling us to probe the intrinsic 
properties of these structures as a function of both carrier density, 
ne, and the applied perpendicular electric displacement field, D 
(see Supplementary Fig. 1).

All electronic measurements were performed in dilution refrigera-
tors equipped with a superconducting magnet. To probe the ground-
state thermodynamic properties of rhombohedral trilayers,  
we measure the penetration field capacitance16, which is directly  
proportional to the inverse electronic compressibility κ µ n= ∂ /∂ e (where 
µ is the chemical potential and ne is the charge carrier density). Capac-
itance data for the unaligned sample A are largely symmetric under 
D D→ − ; however, for n D× > 0e , a high-resistance single-gated region 
is introduced to the contact area where only one of the gates acts on 
the channel. We thus focus on the n D× < 0e  quadrants in the bulk of 
our analysis, with data over the dull ne, D range shown in Extended Data 
Fig. 10.

Penetration field capacitance was measured using a capacitance 
bridge circuit with an FHX15X high-electron-mobility transistor serv-
ing as an in situ impedance transformer28. An excitation frequency of 
10,245.12 Hz was used to obtain the data in Fig. 4d. The rest of the 
capacitance data were measured at 54,245.12 Hz. The quantity directly 
measured is M =

c c

c

+p parasitic

ref
, where cp is the capacitance between the 

top and bottom gate, cref is the capacitance of the reference capacitor 
and cparasitic is the parasitic capacitance of the instrument. The inverse 

compressibility is related to cp by c κc c= ≈
c c

c c κp + + t b
t b

t b
−1 (ref. 28), where 

ct(b) is the geometric capacitance between the top (bottom) gate and 
the trilayer graphene. To obtain κ, M is measured at two extremes, 
denoted M∞ and M0. M∞ corresponds to when the trilayer graphene is 
a good metal and is achieved by applying a large out-of-plane magnetic 
field and tuning the Fermi level within a partially filled Landau level. 
M0 corresponds to when the trilayer is incompressible, which can be 
achieved by applying a large displacement field, D, while keeping  
the carrier density n = 0e . In the former case c = 0p ; therefore, 
M c c= /∞ parasitic ref. In the latter case, c M M c= ( − ) =

c c
c cp 0 ∞ ref +

t b

t b
. From the 

equations above, κ = c
M M

M M
1

2
−
−

∞

0 ∞
, where the averaged geometric capaci-

tance c =
c c+

2
t b  can be obtained by linear fitting of the carrier density, 

ne, which is known for fixed Landau level filling providing a calibration 
standard.

Transport measurement was performed using a lock-in amplifier. 
The frequency was chosen between 17.777 Hz and 42.5 Hz to mini-
mize the noise. A series of cryogenic high-pass filters were applied 
to reduce the electron temperature.

To analyse the magnetoresistance oscillations, a fifth-order poly-
nomial fit is subtracted from the ( )Rxx B

1

⊥
 data. The data are then inter-

polated to produce an even grid as a function of B1/ ⊥. Fourier transforms 
are computed over a range of B ∈⊥  (0.02 T, 0.33 T) for Fig. 2b, (0.3 T, 1 T) 
for Fig. 3c and (0.02 T, 1 T) for Fig. 3d. The lower bound of B⊥ is chosen 
by the lowest B⊥ where oscillations are visible, and the upper bound is 
chosen to avoid obvious B⊥-induced phase transitions. Raw magne-
toresistance data for the Fourier transforms shown in the main text 
are presented in Extended Data Fig. 5.

The Stoner model used to generate Fig. 2c, d is based on a grand 
potential (per unit area) of the form:

∑ ∑ ∑A
E µ

UA
n n µ n

Φ
= ( ) +

2
+ .

α
0 α

u.c.

α≠β
α β

α
α

Here A and Au.c. are the area of the sample and unit cell, respectively, 
α and β index the four spin and valley flavours, and nα and µα are the 
density and chemical potential for a given flavour α. The first term, 
with ∫E µ ϵρ ϵ dϵ( ) = ( )

µ
0 α 0

, where ρ ϵ( ) is a density of states per area, 
accounts for the kinetic energy, and is minimized by occupying all 
flavours equally. The second term accounts for the effect of exchange 
interactions, whose strength is parameterized by a constant energy U  
and which we assume to be symmetric within the spin and valley isospin 
space. The exchange energy is minimized when fewer flavours are 
occupied.

As written, this model deviates significantly from the experimental 
data, predicting a threefold degenerate phase that is not observed. 
The spurious phase is also present in microscopic Hartree–Fock cal-
culations (Supplementary Information), and can be traced to the arti-
ficial SU(4) symmetry of interactions within these models. More 
accurately, the internal symmetry group of rhombohedral trilayer 
graphene consists of SU(2) spin conservation, charge conservation, 
time reversal and the lattice symmetries. Within this lower-symmetry 
group, a variety of interactions that are anisotropic within the spin and 
valley space are allowed, particularly Hund’s-type couplings that favour 
phases with particular broken spin and/or valley symmetries (see Sup-
plementary Information). This problem has been considered in the 
context of spontaneous symmetry breaking in graphene quantum Hall 
ferromagnets30,31, taking the form of an intervalley spin exchange cou-
pling that favours the formation of a canted antiferromagnetic state 
at charge neutrality. Motivated by this observation, we introduce a 
flavour anisotropy of the form JA n n n n= ( − )( − )′ ′A

Φ ′
u.c. K,↑ K,↓ K ,↑ K ,↓ . For 

J > 0, this term favours opposite spin polarizations in the two valleys, 
as is thought to occur in graphene quantum Hall ferromagnets, while 
for J < 0 this term corresponds to a Hund’s coupling and favours 
valley-unpolarized, spin ferromagnetic ground states. The phase dia-
gram including this term—which is independent of the sign of J—is 
shown in Fig. 2c, d for U = 30 eV, with J U/ = 0.3.

To analyse the incompressible states in the moiré sample, we measure 
the slopes of the incompressible states in the ne–B⊥ plane. In crystalline 
systems, incompressible gapped states can occur only at commensurate 
fillings of the lattice, and the moiré superlattice is qualitatively important 
in that it allows for gapped states at carrier densities that can be reached 
by electrostatics gates. Gapped states are classified by two quantum num-
bers, s and t, which respectively encode the number of electrons per lattice 
site and the Chern number, which is linked to the quantized Hall conduc-
tivity. We classify gaps by the resulting trajectories in the n–B⊥ plane, 
ν tn s= +ϕ , where nϕ is the number of magnetic flux quanta per unit cell. 
Consistent with the findings of prior work, our findings show that com-
mensurate insulators at ν = − 1 and ν = − 2 due to the formation of a pn-
junction nea D > 0, with s, t = (−1, 0) and (−2, 0), respectively (Extended 
Data Fig. 9). In contrast, the ν = − 1 insulator is nontrivial for D < 0 (Fig. 4c). 
Our high-resolution data allow us to observe a close competition between 
robust t = −2 and t = −3 Chern insulators for s = −1. At high magnetic field, 
these states occur at different densities, and high inverse compressibility 
peaks are observed corresponding to both trajectories. As B⊥ tends to zero 
and the states converge to the same density, the t = −2 state wins the ener-
getic competition, consistent with transport data5 (Extended Data Fig. 9).
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Extended Data Fig. 1 | Sample fabrication procedure. a, ABC-stacked 
domains in mechanically exfoliated trilayer graphene flakes are identified  
by taking the Raman spectra and extracting the peak maximum corresponding 
to the 2D mode32. b, ABC-stacked domains are isolated using atomic force 
microscope based anodic oxidation lithography27. c, The lower part of the 
heterostructure is assembled on a polypropylene carbonate (PPC) film which is 
then d, flipped as it is deposited onto the target substrate33. e, The sample  
is then vacuum annealed at 375 °C to remove the PPC film under the 
heterostructure. f, The upper part of the heterostructure, which contains  
the top graphite gate, trilayer graphene and hBN, is assembled separately and 
deposited onto the lower part of the heterostructure. g, The top hBN and top 
graphite gate are etched with XeF2 followed by O2 plasma to open windows on 
the heterostructure, allowing the stacking order to be confirmed after the 
manipulations of step f. h, The heterostructure is etched with CHF3 and O2 
plasma and metal is deposited to form electrical contacts. i, Typical Raman 

spectra of ABA- and ABC-stacked trilayer graphene, centered on the 2D mode.  
j, Optical micrograph of the trilayer graphene flake used to fabricate Sample A. 
Scale bar represents 20µm. k, Raman spectrum map of the trilayer graphene 
flake in panel j. The color represents the peak position of the 2D mode. The scan 
range is indicated in black dashed line in panel j. The scale bar represents 10µm. 
l, Optical micrograph of partially processed Sample A. The cyan regions are 
where the top graphite gate and the hBN on top of it has been etched. Since the 
bottom gate does not overlap with the etched window, this allows inspection 
with Raman spectroscopy of the stacking order of the trilayer graphene. The 
sale bar represents 10µm. The rough location of the actual device is indicated 
by black dashed line. m, Raman spectrum map of the partially processed 
Sample A. The region surrounded by a red boundary box remains in 
ABC-stacking order, which later became the active device region for sample A. 
n, Optical micrograph of Sample A after fabrication. Scale bar represents 3µm. 
o, Optical micrograph of Sample B. Scale bar represents 3µm.
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Extended Data Fig. 6 | Quantum capacitance magneto-oscillations.  
a–f, Inverse compressibility as a function of the out-of-plane magnetic field at 
fixed ne and D. g, h, Inverse compressibility versus the out-of-plane magnetic 
field and the carrier density at D= 0.34V/nm. The range of carrier density is 

chosen to lie within the one-fold degenerate phase in panel g and two-fold 
degenerate phase in panel h; in both cases no change in the degeneracy is 
observed in the low-B⊥ limit.
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Extended Data Fig. 7 | In-plane magnetic field dependence of the phase 
boundaries. a, κ vs ne and B  at D= 0.37V/nm, which covers the phase boundary 
between a 4-fold degenerate phase and a 1-fold degenerate phase. b, Same as 
a, measured at D= 0.33V/nm, which covers a phase boundary between a 1-fold 

degenerate phase with a simple Fermi surface and a 1-fold degenerate phase 
with annular Fermi surface. c, Rxx vs ne and B  at D= 0.37V/nm, which covers a 
phase boundary between a 4-fold degenerate phase and a 2-fold degenerate 
phase.
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Extended Data Fig. 8 | Anomalous Hall effect and Magnetic hysteresis. 
a, Hall resistance Rxy as a function of the out-of-plane magnetic field B⊥ 
measured at n = 0.19 × 10 cme

12 −2, D = − 0.4 V/nm. b, Same measurement at 
n = 0.43 × 10 cme

12 −2, D = 0.38 V/nm with a 0.1T in-plane magnetic field applied. 

The curves measured at different temperatures are offset by 200Ω for clarity. 
The Hall resistance was obtained by measuring the four-terminal resistance in 
two configurations and applying the Onsager reciprocal relation9.
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Extended Data Fig. 9 | Magnetic field response of the insulating states in Sample B. a, Inverse compressibility versus carrier density and out-of-plane magnetic 
field at D= 0.52V/nm measured in sample B. b, Same as a, measured at D= -0.57 V/nm. c, Rxy versus B⊥ measured at n = − 0.52 × 10 cme

12 −2, D= −0.47 V/nm.
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Extended Data Fig. 10 | Extended κ vs ne and D data at B = 0. The contact resistance increases at n > 0e , D > 0 and at n < 0e , D < 0 due to the formation of a 
pn-junction near the contact, producing the defect features near the charge neutrality point.
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