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Abstract—This article presents a new command-filtered com-
posite adaptive neural control scheme for uncertain nonlinear
systems. Compared with existing works, this approach focuses on
achieving finite-time convergent composite adaptive control for
the higher-order nonlinear system with unknown nonlinearities,
parameter uncertainties, and external disturbances. First, radial
basis function neural networks (NNs) are utilized to approximate
the unknown functions of the considered uncertain nonlinear
system. By constructing the prediction errors from the serial–
parallel nonsmooth estimation models, the prediction errors and
the tracking errors are fused to update the weights of the NNs.
Afterward, the composite adaptive neural backstepping control
scheme is proposed via nonsmooth command filter and adap-
tive disturbance estimation techniques. The proposed control
scheme ensures that high-precision tracking performances and
NN approximation performances can be achieved simultaneously.
Meanwhile, it can avoid the singularity problem in the finite-time
backstepping framework. Moreover, it is proved that all signals
in the closed-loop control system can be convergent in finite time.
Finally, simulation results are given to illustrate the effectiveness
of the proposed control scheme.

Index Terms—Adaptive control, backstepping, command filter,
finite-time control, neural networks (NNs).

I. INTRODUCTION

BACKSTEPPING technique is a typical control tool for
higher-order nonlinear systems and it has attracted wide

attention as the technique presents a systematic recursive
design framework for tracking and regulation control [1]–[6].
Nevertheless, in the traditional backstepping design process,
the repeated analytic differentiation of virtual control laws
is needed, which results in the problem of “explosion of
complexity.” To eliminate this problem, dynamic surface con-
trol (DSC) [7] was proposed by letting virtual control laws
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pass through linear filters. Furthermore, a command-filtered
backstepping control [8], [9] was presented to avoid analytic
differentiation and remove the filtering errors caused by filters
simultaneously.

Although these modified backstepping control methods are
applicable for uncertain nonlinear systems theoretically, they
need large enough gains to suppress uncertainties, which may
lead to saturation problems and degrade closed-loop perfor-
mances [10]–[12]. For the nonlinear systems with high uncer-
tainties, fuzzy-logic systems [13]–[15] and neural networks
(NNs) [16]–[22] can be employed to approximate the unknown
nonlinear functions in system dynamics due to their univer-
sal approximation capabilities. Particularly, NNs have been
widely applied in various adaptive backstepping control meth-
ods [23]–[28]. As a matter of fact, the adaptation laws of
these aforementioned methods were designed according to the
stability of closed-loop systems alone. However, the origi-
nal intent of using NNs for approximation was ignored [29].
And the performances of NNs for identifying unknown model
dynamics were not seriously considered in most of the exist-
ing adaptive neural backstepping control methods [30]–[32].
In practice, the approximation precision of NNs has a major
impact on the closed-loop control systems, which motivates
us to improve the accuracy of the NN-based identified model.
Fortunately, the approximation performances of NNs can be
evaluated by constructing prediction errors obtained from
serial–parallel estimation models. Hence, the prediction errors
can be used to enhance the approximation precision of NNs.
Inspired by the idea, some interesting works concerning com-
posite adaptive neural control were presented by using the
combination of tracking errors and prediction errors for weight
adaptation [3], [29], [33], [34]. Similarly, composite adaptive
fuzzy backstepping control was also reported in [35] and [36]
by utilizing the information of prediction errors. Although
many contributions have been made in the aforesaid excellent
works, these methods can only guarantee infinite-time stabil-
ity, which implies that the errors in their closed-loop systems
can be convergent only when the time approaches infinity.

Different from asymptotic control methods, the finite-time
control technique ensures that the desired system performance
can be realized in finite time. Besides, the finite-time con-
trol technique brings the closed-loop system better robust-
ness [37]–[39]. Because of the above advantages, the finite-
time control technique has become more desirable and
attracted considerable interest in recent years [40]. Hence, the
exploration of finite-time command-filtered composite adap-
tive control is of great significance. Many finite-time control
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methods were presented for various nonlinear systems, includ-
ing constrained systems [41]; multiagent systems [42], [43];
and switching systems [44]. Yu et al. [45] designed a pioneer-
ing finite-time command-filtered backstepping control scheme
for nonlinear systems with strong robustness. However, the
concerned system model was assumed to be known and no
uncertainties were considered in this article. To deal with
unknown nonlinearities, some finite-time convergent adaptive
control methods were developed, including finite-time adap-
tive neural control [46]–[48] and finite-time adaptive fuzzy
control [49], [50]. Sun et al. [47] designed a finite-time adap-
tive neural tracking control scheme for nonlinear systems in
nonstrict feedback form. Lately, Li [51] developed a finite-time
adaptive command-filtered backstepping control scheme with
fault tolerance for strict-feedback uncertain nonlinear systems.
Despite many superiorities, there still exist two issues to be
further addressed. First, the designed parameter adaptation
laws were driven by only tracking errors, which were not able
to guarantee precise approximations. Second, the proposed
control scheme was not able to deal with time-varying exter-
nal disturbances that are commonly seen in engineering
practice.

To the best of our knowledge, the problem of finite-
time command-filtered composite adaptive control design for
higher-order nonlinear systems in the presence of unknown
nonlinearities, parameter uncertainties, and external distur-
bances is still open and remains unsolved. Motivated by
the above observations, we propose a finite-time convergent
command-filtered composite adaptive neural control scheme
for the first time, featuring rapid response, strong robustness,
and high-tracking accuracy. First, radial basis function NNs
(RBFNNs) are utilized to approximate the unknown nonlin-
ear functions of the considered system. Then, to improve the
approximation precision of the RBFNNs, some novel compos-
ite adaptation laws driven by tracking errors and prediction
errors are designed for updating weights. In addition, some
new adaptive neural disturbance observers (ANDOs) are
designed to estimate and compensate disturbances. Finally,
based on the composite adaptive RBFNNs and the ANDOs, the
nonsmooth command-filtered composite adaptive neural con-
trol scheme is developed to achieve finite-time convergence of
all signals in the closed-loop control system.

Compared with the existing results, the main contributions
of this article are summarized as follows.

1) A finite-time convergent command-filtered composite
adaptive neural control scheme is proposed for higher-
order uncertain nonlinear systems for the first time in
this article. Different from the virtual control laws design
in existing backstepping approaches, a novel control law
without singularity problem is designed at each step.

2) Unlike existing works for constructing prediction errors
in composite adaptive control schemes, such as [3], [29],
and [33]–[36], a new serial–parallel nonsmooth estima-
tion model (SPNEM) is designed in this article, which
further enhances the NN approximation precision.

3) Apart from external disturbances, the minimum approx-
imation errors of NNs are estimated by design-
ing ANDOs, which are different from conventional

disturbance observers [52]. The performance and robust-
ness of the control system can be greatly improved by
utilizing the ANDOs for disturbance compensation.

4) The nonsmooth command filters introduced in this arti-
cle can converge faster than the existing linear filters
in [11] and [51]. In addition, the parameters of the non-
smooth command filters are easier to tune, as compared
to those of the differentiators in [45].

The remainder of this article is organized as follows.
Section II addresses the problem formulation. Section III gives
the control scheme design procedure and the closed-loop sta-
bility analysis. Simulations of two representative examples are
conducted in Section IV to verify the effectiveness of the
proposed control scheme. Finally, Section V concludes this
article.

II. PROBLEM FORMULATION

Consider the tracking control problem of the following class
of the nth-order uncertain nonlinear system:

⎧
⎨

⎩

ẋi = fi(x̄i) + gi(x̄i)xi+1 + di, i = 1, 2, . . . , n − 1
ẋn = fn(x̄n) + gn(x̄n)u + dn
y = x1

(1)

where x̄i = [x1, x2, . . . , xi]T ∈ R
i, x̄n = [x1, x2, . . . , xn]T ∈ R

n

is the system state vector, u ∈ R is the control input, and
y ∈ R is the output variable. Besides, fi(x̄i) ∈ R, gi(x̄i) ∈ R,
and di ∈ R denote the unknown nonlinearities, the nominal
control-gain functions, and the time-varying external distur-
bances, respectively. The control objective is to design a
composite adaptive neural control scheme such that the output
y tracks the reference signal yd in finite time, where yd and its
time derivative up to second order are known and bounded.
Assumption 1 [1] and [11]: There exist positive constants

ϑ0i, ϑ1i (i = 1, 2, . . . , n) such that the external disturbances
di satisfy |di| ≤ ϑ0i and |ḋi| ≤ ϑ1i.
Assumption 2 [45]: There exist positive constants ηi such

that |gi(x̄i)| ≤ ηi, i = 1, 2, . . . , n.
Taking the parameter uncertainties in the system dynamics

into account, the uncertain nonlinear system (1) is derived as
⎧
⎨

⎩

ẋi = Fi(x̄i) + gi(x̄i)xi+1 + di, i = 1, 2, . . . , n − 1
ẋn = Fn(x̄n) + gn(x̄n)u + dn
y = x1

(2)

where Fi(x̄i) = fi(x̄i)+�i, Fn(x̄n) = fn(x̄n)+�n are unknown
functions. Besides, �j, j = 1, 2, . . . , n, denote the lumped
parameter uncertainties.
Remark 1: The nonlinear dynamics (2) considers unknown

nonlinearities, parameter uncertainties, and time-varying exter-
nal disturbances simultaneously. Hence, model (2) is more
general than the models considered in [45] and [51].
Remark 2: The finite-time control in this article indicates

that the desired system performance can be realized in finite
time, which focuses on the convergence rate. Another concept
of finite-time control in [53] means that the system state is no
larger than a certain bound in the predefined finite-time span,
which focuses on achieving superior transient performance.
Note that the two concepts are different.
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At the end of this section, some useful lemmas are listed
below for the subsequent analyses.
Lemma 1 [54]: Consider the system ẋ = f (x). Suppose

there exist a continuous positive-definite Lyapunov function
V(x) and some real numbers p1 > 0, p2 > 0, and 0 < α < 1
such that V̇(x) ≤ −p1V(x) − p2Vα(x) holds, then the system
ẋ = f (x) is finite-time stable and the settling time can be
given by

T ≤ Tr := 1

p1(1 − α)
ln

p1V1−α(x0) + p2

p2
. (3)

Remark 3: The finite-time Lyapunov theorem in Lemma 1
was proposed by Yu et al. [54] with the form of the fast
terminal sliding mode and has been widely used to prove the
finite-time stability, such as [45] and [51]. Note that in some
articles concerning finite-time control, the Lyapunov function
condition V̇(x) ≤ −p2Vα(x) can also ensure finite-time sta-
bility. However, the proposed control scheme satisfying the
Lyapunov function condition in Lemma 1 can ensure faster
convergence [55].
Lemma 2 [56] and [57]: For any constant 0 < l < 1, the

following inequality holds for ∀xi ∈ R, i = 1, . . . , n:

(|x1| + |x2| + · · · + |xn|)l ≤ |x1|l + |x2|l + · · · + |xn|l. (4)

Lemma 3 [57]: For any given positive constants p, q, and γ ,
the following inequality holds for ∀x, y ∈ R:

|x|p|y|q ≤ p

p + q
γ |x|p+q + q

p + q
γ

− p
q |y|p+q. (5)

III. CONTROL SCHEME DESIGN AND

STABILITY ANALYSIS

In this section, we will propose a command-filtered com-
posite adaptive neural control scheme with finite-time con-
vergence for the uncertain nonlinear system (2). The detailed
design procedure and stability analysis will be presented.

A. Brief Introduction of Neural Network

Given that the values of Fi(x̄i), i = 1, 2, . . . , n, in (2) are
not available in practice, we use RBFNNs to identify these
unknown nonlinear functions due to the universal approxima-
tion properties. The continuous function Fi(x̄i):�x̄i → R over
a compact set �x̄i ⊂ R

i can be approximated to arbitrary
accuracy by an RBFNN as follows [26]:

Fi(x̄i) = W∗
i
TSi(x̄i) + εi (6)

where i = 1, 2, . . . , n, W∗
i ∈ R

mi is the ideal constant weight
vector, which is expressed as

W∗
i = arg min

Wi∈Rmi

[

sup
x̄i∈�x̄i

∣
∣Fi(x̄i) − Wi

TSi(x̄i)
∣
∣

]

(7)

where Wi is the estimate of W∗
i and mi denotes the number

of hidden layer nodes of the RBFNN. The basic function vec-
tor Si(x̄i) = [si1(x̄i), . . . , simi(x̄i)]

T ∈ R
mi with sij(x̄i) being

selected as

sij(x̄i) = exp

[

− (x̄i − μij)
T(x̄i − μij)

δ2
i

]

(8)

Fig. 1. Block diagram of the proposed control scheme (step i).

where μij ∈ R
i is the center of the receptive field and

δi ∈ R
+ is the width of the Gaussian function. Besides, εi

is the minimum function approximation error of the RBFNN
satisfying |εi| ≤ ε∗

i with positive bounded constant ε∗
i . In

the following, the function Si(x̄i) will be simplified as Si
for brevity. According to the definition of the basic function
vector, |Si(x̄i)| ≤ √

mi holds.

B. Finite-Time Command-Filtered Composite Adaptive
Neural Controllers Design

In the following, the finite-time command-filtered composite
adaptive control scheme design will be given step by step via
a recursive approach. The virtual control laws will be designed
in step i (i = 1, 2, . . . , n − 1) and the actual control law will
be designed in step n.
Step i (i = 1, 2, . . . , n − 1): For clarity, the block diagram

of the ith step of the proposed control scheme is presented in
Fig. 1, which shows the design procedure. Defining ei = xi−αi

with α1 = yd, W̃i = W∗
i − Wi, and εi = εi + di, we have

ėi = WT
i Si + gi(x̄i)xi+1 + W̃T

i Si + εi − α̇i. (9)

Taking xi+1 as a virtual control input and following the idea
in [45], the finite-time virtual control law x̌i+1 is designed as

x̌i+1 = 1

gi(x̄i)

[−ki1ei − ki2ν
γi
i − WT

i Si + α̇i

−gi−1(x̄i−1)ei−1
]

(10)

with the constants ki1, ki2 > 0, 0 < γi < 1, where γi = (pi/qi),
pi and qi are positive odd integers satisfying pi < qi, and the
variable νi denotes the compensated tracking error, which will
be defined later. Besides, g0(x̄0)e0 = 0.

Actually, the nonlinear term ki2ν
γi
i in (10) can accelerate the

convergence rate of the compensated tracking error νi when
|νi| ∈ (0, 1). However, its time derivative ki2γiν

γi−1
i ν̇i will

lead to the singularity problem when νi = 0 and ν̇i 
= 0 due to
γi − 1 < 0, which makes the command-filtered backstepping
design lacks rigor.

To avoid this problem, we modify (10) and design a novel
singularity-free virtual control law ◦xi+1 as

◦xi+1 = 1

gi(x̄i)

[−ki1ei − ki2ϕi(νi) − WT
i Si + α̇i

−gi−1(x̄i−1)ei−1 − ε̂i
]

(11)

with the nonlinear function ϕi(νi) designed as

ϕi(νi) =
{ �νi

, if |νi| ≥ ξi

ci1νi + ci2ν3
i , if |νi| < ξi

(12)
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where the constants 0 < 
 < 1 and 0 < ξi ≤ 1. The notation
�x

 = |x|
sign(x) is introduced in this article to simplify
expression. Besides, ci1 = ((3 − 
)/2)ξ


−1
i and ci2 = ((
 −

1)/2)ξ

−3
i . These parameters are chosen to satisfy ci1 + ci2 ≥

0. In addition, ε̂i is the estimation of εi by using an ANDO,
which will be designed in (20).
Remark 4: Note that the singularity problem will not

occur through using the virtual control law (11) in the
command-filtered backstepping design procedure. Specifying
the coefficients ci1 and ci2, we can ensure that the nonlin-
ear function ϕi(νi) and its time derivative are both continuous.
Besides, in (10), the term ν

γi
i /∈ R when x < 0. In contrast, the

control law (11) circumvents this problem by designing ϕi(νi).
Note that the function ϕi(νi) can be divided into a nons-

mooth term and a smooth term. In fact, similar to ν
γi
i in (10),

the nonsmooth term �νi

 in ϕi(νi) can also accelerate the
convergence rate of νi when |νi| ∈ (0, 1). Generally, one can
select a small enough ξi to guarantee that the nonsmooth term
�νi

 dominates ϕi(νi) during the entire control process.

To avoid repeated analytic differentiation of virtual control
laws, we introduce a new nonsmooth command filter as

τi+1α̇i+1 = �◦xi+1 − αi+1

 + (
◦xi+1 − αi+1)

αi+1(0) = ◦xi+1(0) (13)

where the filter parameter τi+1 is a positive constant.
Remark 5: The command filter is a prefilter by treating vir-

tual control law as the input and it generates the filtered virtual
control law and the derivative of the virtual control law. In
practice, command filters are introduced to avoid computing
analytic derivatives and eliminate the problem of the explosion
of complexity in traditional backstepping approaches [8].
Remark 6: Compared with existing methods, the command

filter (13) has some advantages. First, the nonsmooth com-
mand filter is finite-time convergent, which can converge faster
than the linear filter used in [11] and [51]. Second, the param-
eters of the nonsmooth command filter are easier to tune than
those of the widely used Levant differentiator in [45].

Define ei+1 = xi+1 − αi+1 and ςi+1 = αi+1 − ◦xi+1. Then,
the derivative of ei is given as

ėi = −ki1ei − ki2ϕi(νi) + W̃T
i Si + ε̃i + gi(x̄i)ei+1

+gi(x̄i)ςi+1 − gi−1(x̄i−1)ei−1. (14)

In order to remove the effect of the filtering error ςi+1, the
compensating signal zi is designed as

żi = −ki1zi + gi(x̄i)(zi+1 + ςi+1)

−gi−1(x̄i−1)zi−1 − lisign(zi), zi(0) = 0 (15)

where the constant li > 0 and g0(x̄0)z0 = 0. zi+1 will be
defined in the next step. Defining the compensated tracking
error νi = ei − zi yields

ν̇i = −ki1νi − ki2ϕi(νi) + W̃T
i Si + gi(x̄i)νi+1

−gi−1(x̄i−1)νi−1 + lisign(zi) + ε̃i. (16)

To enhance the approximation performance of the RBFNN
WT

i Si, a composite adaptation law will be designed for weights

updating. Defining the prediction error as χi = xi − x̂i, where
x̂i is obtained from the following SPNEM:

˙̂xi = WT
i Si + gi(x̄i)xi+1 + κi1χi + κi2�χi

 (17)

we obtain

χ̇i = W̃T
i Si − κi1χi − κi2�χi

 + εi. (18)

Remark 7: As a matter of fact, the actual approximation
error of WT

i Si cannot be obtained directly because Fi(x̄i) is
unknown. Fortunately, the approximation error of WT

i Si can
be reflected by constructing the SPNEM (17) to generate
the prediction error χi. In addition, different from the linear-
feedback methods for constructing prediction errors in the
existing composite adaptive control [3], [29], [33]–[36], the
designed SPNEM contains the fractional power term �χi

 =
|χi|
sign(χi). On the one hand, this term contributes to the
finite-time convergence of the closed-loop control system. By
designing the SPNEM, we can obtain the dynamics of the
prediction error as (18), which lays a foundation for the finite-
time convergence analysis of the closed-loop system. On the
other hand, the fractional power term is conductive to achiev-
ing better approximation precision of the ith RBFNN and
overall tracking performances.

Then, the predictor error χi and the compensated tracking
error νi are employed to construct the composite adaptation
law of Wi with σ -modification, which is given as

Ẇi = βi(νi + βi1χi)Si − σiWi (19)

where βi, βi1, and σi are positive constants.
Remark 8: The prediction error χi reflects the approxima-

tion error of the RBFNN WT
i Si. Hence, the approximation

precision of WT
i Si is improved by using the feedback of the

prediction error and the tracking error simultaneously to design
the composite adaptation law (19), which is different from the
existing adaptation laws [30]–[32], [46], [49]–[51]. In contrast,
the conventional adaptation laws are designed according to the
stability of closed-loop systems alone and the performance of
NNs for identifying unknown models is not seriously consid-
ered. Hence, the composite adaptation law (19) is superior
to the conventional adaptation laws in that the compos-
ite adaptation law can enhance the approximation precision
of NNs and improve the closed-loop tracking performance
consequently.

Usually, external disturbances can be estimated by using
model-based disturbance observers [52]. Here, the external
disturbance and the minimum approximation error of the ith
RBFNN are integrated as εi. The ith ANDO for estimating the
lumped disturbance εi is designed by using NN approximation

{
ḣi = −λi(hi + λixi) − λi(WT

i Si + gi(x̄i)xi+1) + νi
ε̂i = hi + λixi

(20)

where hi is an internal state and λi is a positive constant.
Remark 9: In this article, the ANDO is designed to estimate

and compensate for the lumped disturbance. Alternatively,
if the considered system suffers from multiple disturbances,
and the disturbances can be divided into different parts, the
composite anti-disturbance control [58] can be used.
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Defining ε̃i = εi − ε̂i, we obtain

˙̃εi = −λiε̃i − λiW̃
T
i Si + ε̇i − νi. (21)

Step n: Defining en = xn − αn, W̃n = W∗
n − Wn, and εn =

εn + dn, we can write the dynamics of en as

ėn = WT
n Sn + gn(x̄n)u + W̃T

n Sn + εn − α̇n. (22)

The finite-time actual control law u is designed as

u = 1

gn(x̄n)
[ − kn1en − kn2ϕn(νn) − WT

n Sn + α̇n

−gn−1(x̄n−1)en−1 − ε̂n] (23)

with the constants kn1, kn2 > 0, and the variable νn denotes
the compensated tracking error, which will be defined later.
Besides, ε̂n is the estimation of εn by using an ANDO, which
will be designed in (31). The function ϕn(νn) is designed as

ϕn(νn) =
{ �νn

, if |νn| ≥ ξn

cn1νn + cn2ν
3
n , if |νn| < ξn

(24)

where the constants 0 < ξn ≤ 1, cn1 = ((3 − 
)/2)ξ

−1
n ,

and cn2 = ((
 − 1)/2)ξ

−3
n . The parameters are chosen to

satisfy cn1 + cn2 ≥ 0.
Then, the derivative of en is given as

ėn = −kn1en − kn2ϕn(νn) + W̃T
n Sn

−gn−1(x̄n−1)en−1 + ε̃n. (25)

The compensating signal zn is designed as

żn = − kn1zn − gn− 1(x̄n−1)zn− 1 − lnsign(zn), zn(0)= 0 (26)

where the constant ln > 0. Then, defining the compensated
tracking error as νn = en − zn, we have

ν̇n = −kn1νn − kn2ϕn(νn) + W̃T
n Sn

−gn−1(x̄n−1)νn−1 + lnsign(zn) + ε̃n. (27)

To enhance the approximation performance of the RBFNN
WT

n Sn, a composite adaptation law will be designed for weights
updating. Defining the prediction error as χn = xn− x̂n, where
x̂n is obtained from the SPNEM

˙̂xn = WT
n Sn + gn(x̄n)u + κn1χn + κn2�χn

 (28)

we can obtain

χ̇n = W̃T
n Sn − κn1χn − κn2�χn

 + εn. (29)

Then, the predictor error χn and the compensated tracking
error νn are employed to construct the composite adaptation
law of Wn with σ -modification, which is given as

Ẇn = βn(νn + βn1χn)Sn − σnWn (30)

where βn, βn1, and σn are positive constants.
The nth ANDO for estimating the lumped disturbance εn is

designed by using RBFNN approximation, shown as
⎧
⎨

⎩

ḣn = −λn(hn + λnxn) − λn(WT
n Sn

+gn(x̄n)u) + νn
ε̂n = hn + λnxn

(31)

where hn is an internal state and λn is a positive constant.

Defining ε̃n = εn − ε̂n, we have

˙̃εn = −λnε̃n − λnW̃
T
n Sn + ε̇n − νn. (32)

Remark 10: Compared to previous works, some new dif-
ficulties appear in our control scheme design process. First,
to obtain the finite-time virtual control laws in the command-
filtered backstepping framework, one may come across the
singularity problem, as shown in (10), by following the
previous works. And it is challenging to design finite-time
virtual control laws to circumvent the singularity problem.
Second, most of the existing results concerning composite
adaptive backstepping control can only achieve infinite-time
convergence. In fact, it is challenging to realize the finite-time
convergence of all signals in the closed-loop control system,
including the tracking errors, prediction errors, parameter esti-
mation errors of RBFNNs, and lumped disturbance estimation
errors. Third, it is difficult to design a finite-time command
filter which can converge faster than the previous filters and
is featured with less parameters.

C. Stability Analysis

Now, we are ready to give the closed-loop stability analysis
of the proposed control system.
Theorem 1: Consider the closed-loop system consisting

of the uncertain nonlinear plant (2), the virtual control
laws (11), the actual control law (23), the composite adapta-
tion laws (19), (30), the ANDOs (20), (31), and the command
filters (13) under Assumptions 1 and 2. Then, the tracking
error e1 = y−yd converges to an arbitrary small neighborhood
around zero in finite time by choosing suitable parameters and
all signals in the closed-loop system are bounded in finite time.
Proof: Consider the Lyapunov function candidate as

V = 1

2

(
n∑

i=1

ν2
i +

n∑

i=1

βi1χ
2
i +

n∑

i=1

1

βi
W̃T

i W̃i +
n∑

i=1

ε̃2
i

)

. (33)

Differentiating (33) with respect to time obtains

V̇ =
n∑

i=1

νiν̇i +
n∑

i=1

βi1χiχ̇i −
n∑

i=1

1

βi
W̃T

i Ẇi +
n∑

i=1

ε̃i ˙̃εi

≤
n∑

i=1

(
−ki1ν

2
i − ki2νiϕi(νi)− κi1βi1χ

2
i

− κi2βi1|χi|
+1 − λiε̃
2
i

)
+

n∑

i=1

(βi1|χi||εi|

+ σi

βi
W̃T

i Wi + λi|ε̃i||W̃T
i Si| + |ε̃i||ε̇i| + li|νisign(zi)|

)

. (34)

The next part is divided into three cases.
Case 1: When all νi satisfy |νi| ≥ ξi, i = 1, . . . , n, using

Lemma 2, we obtain that
n∑

i=1

−ki2νiϕi(νi) =
n∑

i=1

−2αki2

(
1

2
ν2
i

)α

≤ −r1

(
n∑

i=1

1

2
ν2
i

)α

(35)

where r1 = min{2((
+1)/2)k12, . . . , 2((
+1)/2)kn2} and α =
((
 + 1)/2).
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Case 2: When there are only m (1 ≤ m < n) compensated
tracking errors satisfying |νi| ≥ ξi, we have

n∑

i=1

−ki2νiϕi(νi) =
m∑

j=1

−kj2|νj|
+1

+
n−m∑

j=1

−kj2(cj1ν
2
j + cj2ν

4
j ). (36)

In (36), when |νi| ≥ ξi (1 ≤ i ≤ n), we rewrite νi as νj
(1 ≤ j ≤ m) and rewrite ki2 as kj2. When |νi| < ξi (1 ≤
i ≤ n), we rewrite νi, ki2, ci1, and ci2 as νj, kj2, cj1, and cj2
(1 ≤ j ≤ n − m), respectively. Given that kj2 > 0, cj2 < 0,
|νj| < ξi ≤ 1, it is obtained that −kj2cj2ν

4
j ≤ −kj2cj2ν

2
j . Then,

using Lemma 2, we have

n∑

i=1

−ki2νiϕi(νi) ≤ −r2

⎛

⎝
m∑

j=1

1

2
ν2
j

⎞

⎠

α

−r2

⎛

⎝
n∑

j=m+1

1

2
ν2
j

⎞

⎠

α

+ r2

⎛

⎝
n∑

j=m+1

1

2
ν2
j

⎞

⎠

α

+
n−m∑

j=1

−kj2(cj1 + cj2)ν
2
j (37)

where r2 = min{2αk12, . . . , 2αkm2}, νj (m+1 ≤ j ≤ n) denotes
the compensated tracking error that satisfies |νj| < ξi.

Applying Lemma 2 to (37) and using Lemma 3 with p =
1−α, q = α, γ = α(α/(1−α)), x = 1, and y = ∑n

j=m+1(1/2)ν2
j ,

we obtain

n∑

i=1

− ki2νiϕi(νi) ≤ −r2

⎛

⎝
n∑

j=1

1

2
ν2
j

⎞

⎠

α

+ r2(1 − α)α
α

1−α

+r2

n∑

j=m+1

1

2
ν2
j +

n−m∑

j=1

−kj2(cj1 + cj2)ν
2
j . (38)

Case 3: When all νi satisfy |νi| < ξi, i = 1, . . . , n, following
the similar steps in case 2, we have

n∑

i=1

− ki2νiϕi(νi) ≤ −r2

(
n∑

i=1

1

2
ν2
i

)α

+ r2(1 − α)α
α

1−α

+r2

n∑

i=1

1

2
ν2
i +

n∑

i=1

−ki2(ci1 + ci2)ν
2
i . (39)

Following the three cases, given that r1 ≤ r2, ci1 + ci2 ≥
0, i = 1, . . . , n, we can conclude that ∀νi ∈ R, the following
inequality holds:

n∑

i=1

−ki2νiϕi(νi) ≤− r1

(
n∑

i=1

1

2
ν2
i

)α

+r2(1 − α)α
α

1−α + r2

n∑

i=1

1

2
ν2
i . (40)

According to Young’s inequality [2] and recalling the fact
that |Si(x̄i)| ≤ √

mi, the following inequalities are obtained:

σi

βi
W̃T

i Wi ≤ −σi(2 − �i)

2βi
W̃T

i W̃i + σi

2βi�i
‖W∗

i ‖2 (41)

|ε̃i||W̃T
i Si| ≤ 1

2
ε̃2
i + mi

2
‖W̃i‖2 (42)

|χi||εi| ≤ 1

2
χ2
i + 1

2
(ε∗

i + ϑ0i)
2 (43)

|ε̃i||ε̇i| ≤ 1

2
ε̃2
i + 1

2
B2
i (44)

li|νisign(zi)| ≤ 1

2
ν2
i + 1

2
l2i (45)

where |ε̇i| ≤ Bi, and Bi is a positive constant. �i ∈ (0, 1] is a
positive constant to be determined.

Using the inequalities (40)–(45), one obtains

V̇ ≤
n∑

i=1

[

−ki1ν
2
i + r2

2
ν2
i + 1

2
ν2
i −

(

κi1βi1 − βi1

2

)

χ2
i

−
(

σi(2 − �i)

2βi
− λimi

2

)

W̃T
i W̃i −

(
λi

2
− 1

2

)

ε̃2
i

]

−r1

(
n∑

i=1

1

2
ν2
i

)α

−
n∑

i=1

2ακi2β
1−α
i1

(
βi1

2
χ2
i

)α

+ ι1

≤ −r3V − r4

n∑

i=1

[(
1

2
ν2
i

)α

+
(

βi1

2
χ2
i

)α]

+ ι1 (46)

where r3 = min{(2ki1 − r2 − 1), (2κi1 − 1), (σi(2 −
�i) − λiβimi), (λi − 1)}, r4 = min{r1, 2ακi2β

1−α
i1 } (i =

1, 2, . . . , n) are positive by choosing parameters and ι1 =∑n
i=1 [(σi/2βi�i)‖W∗

i ‖2+(βi1/2)(ε∗
i +ϑ0i)

2+(1/2)B2
i +r2(1−

α)α(α/(1−α)) + (1/2)l2i ] is positive and bounded.
Following Lemma 2, we can obtain

V̇ ≤ −r3V − r4

[
n∑

i=1

(
1

2
ν2
i + 1

2
βi1χ

2
i

)]α

−r4

[
n∑

i=1

(
1

2βi
W̃T

i W̃i + 1

2
ε̃2
i

)]α

+r4

[
n∑

i=1

(
1

2βi
W̃T

i W̃i + 1

2
ε̃2
i

)]α

+ ι1. (47)

Applying Lemma 2 and using Lemma 3 with p = 1 − α,
q = α, γ = α(α/(1−α)), x = 1, and y = ∑n

i=1((1/2βi)W̃T
i W̃i +

(1/2)ε̃2
i ), we have

V̇ ≤ −r3V − r4V
α

+r4

[
n∑

i=1

(
1

2βi
W̃T

i W̃i + 1

2
ε̃2
i

)]α

+ ι1

≤ −r3V − r4V
α + r4

[
(1 − α)α

α
1−α

+
n∑

i=1

(
1

2βi
W̃T

i W̃i + 1

2
ε̃2
i

)]

+ ι1

≤ −r5V − r4V
α + ι2 (48)

where r5 = r3 − r4 is chosen to be positive. ι2 = ι1 + r4(1 −
α)α(α/(1−α)) is positive and bounded.

According to (48), we obtain V̇ ≤ −r5V+ ι2. Solving it, we
can obtain the following inequality: V(t) ≤ (ι2/r5) + (V(0) −
(ι2/r5))e−r5t. Consequently, all signals of the closed-loop
control system are uniformly ultimately bounded.
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Next, in order to relax the conservatism, the subsequent
proof procedure will be divided into two cases. First, define
the error vector of the closed-loop control system as � =
[νi, χi, W̃i, ε̃i]T (i = 1, 2, . . . , n) and define �1 = {�|V ≤
(ι2/ζ r5)} for any 0 < ζ < 1. Besides, �2 is defined as the
complement set of �1. When � is outside of �1, that is, � ∈
�2 and V > (ι2/ζ r5), the inequality (48) can be rewritten as

V̇≤ −ζ r5V − (1 − ζ )r5V − r4V
α + ι2

≤ −(1 − ζ )r5V − r4V
α (49)

where (1 − ζ )r5 > 0, r4 > 0, and 0 < α < 1. According
to Lemma 1, the error vector � will converge to �1 in finite
time and the settling time is estimated by

Tr1 ≤ 1

r5(1 − ζ )(1 − α)
ln

(1 − ζ )r5V1−α(0) + r4

r4
. (50)

Second, define �3 = {�|V ≤ (ι2/ζ r4)
(1/α)}. Besides, �4 is

defined as the complement set of �3. When � is outside of
�3, that is, � ∈ �4 and V > (ι2/ζ r4)

(1/α), we have

V̇≤ −r5V − ζ r4V
α − (1 − ζ )r4V

α + ι2

≤ −r5V − (1 − ζ )r4V
α (51)

where r5 > 0, (1−ζ )r4 > 0. According to Lemma 1, the error
vector � will converge to �3 in finite time and the settling
time is estimated by

Tr2 ≤ 1

r5(1 − α)
ln

r5V1−α(0) + (1 − ζ )r4

(1 − ζ )r4
. (52)

To summarize, the error vector � will converge to
a small region around the origin, that is, {�|V ≤
min{(ι2/ζ r5), (ι2/ζ r4)

(1/α)}}, in finite timeT1 = max{Tr1,Tr2}.
Then, we obtain (1/2)ν2

i ≤ V ≤ min{(ι2/ζ r5), (ι2/ζ r4)
(1/α)}

when t ≥ T1. Furthermore, νi will converge to the region |νi| ≤
min{√(2ι2/ζ r5),

√
2(ι2/ζ r4)(1/α)} when t ≥ T1. Namely, the

compensated tracking error ν1 = e1 − z1 will converge to an
arbitrary small neighborhood around zero in finite time T1 by
adjusting the design parameters.

In the following, it will be shown that the compensating
signals z1, z2, . . . , zn converge to zero in finite time. Generally,
the process is divided into two steps. The first step is to analyze
the boundedness of the filtering errors ςi and the second step
is to prove the convergence of the compensating signals zi.
First, construct a Lyapunov function candidate as

V1 =
n∑

i=2

1

2
ς2
i . (53)

Then, the time derivative of V1 is shown as

V̇1 =
(

n∑

i=2

− 1

τi
ς2
i − 1

τi
|ςi|
+1 − ςi

d

dt
◦xi

)

(54)

where (1/τi) > 0. Given that all signals in the closed-loop
control system are bounded, the derivative of ◦xi is bounded.
Namely, |(d/dt)◦xi| ≤ L holds, where L is a positive constant.
Then

V̇1 ≤ −r6V1 − r7V
α
1 + 1

2
L2 (55)

where r6 = min{(2/τ2) − 1, (2/τ3) − 1, . . . , (2/τn) − 1} > 0,
r7 = min{(2α/τ2), (2α/τ3), . . . , (2α/τn)} > 0, and (1/2)L2

is a positive constant. Similar to the previous analyses, we
obtain that |ςi| ≤ ρi−1 can be achieved in finite time, where
ρi−1 = √

(L2/ζ r6) is positive and bounded. In addition, the
settling time can be estimated by

T0 ≤ 1

r6(1 − ζ )(1 − α)
ln

(1 − ζ )r6V
1−α
1 (0) + r7

r7
. (56)

Second, choose a Lyapunov function candidate as

V2 =
n∑

i=1

1

2
z2
i . (57)

Differentiating V2 with respect to time obtains

V̇2 =
n∑

i=1

(
−ki1z

2
i

)
+

n∑

i=1

(−li|zi|) +
n−1∑

i=1

giziςi+1. (58)

For t ≥ T0 and from Assumption 2, we have

V̇2 =−
n∑

i=1

ki1z
2
i −

n∑

i=1

li|zi| +
n−1∑

i=1

ηiρi|zi| + ηnρn|zn|

≤ −r8V2 − r9V
1
2

2 (59)

where r8 = min{2ki1}, r9 = min{√2(li − ηiρi)} (i =
1, 2, . . . , n), and ρn is a positive constant. According to
Lemma 1, by choosing suitable parameters such that li > ηiρi
holds, the compensating signals z1, z2, . . . , zn will converge to
zero in finite time and the settling time is estimated by

T2 ≤ T0 + 2

r8
ln

r8V
1
2

2 (0) + r9

r9
. (60)

Recalling that ei = νi+zi, the tracking errors will all converge
to the region |ei| ≤ min{√(2ι2/ζ r5),

√
2(ι2/ζ r4)(1/α)} in finite

time and the settling time is bounded by T ≤ max{T1,T2}.
Hence, e1 will converge to an arbitrary small neighborhood
around zero in finite time by adjusting the design parameters.
This completes the proof.
Remark 11: In comparison with existing works, the nov-

elties of the proposed command-filtered composite adap-
tive backstepping control scheme are three-fold. First, a
new nonsmooth command filter is introduced in the control
scheme, which can converge faster than the linear filter used
in [11] and [51]. Besides, the parameters of the nonsmooth
command filter are easier to tune than those of the widely
used Levant differentiator in [45]. Second, the approximation
precision of RBFNNs is improved by using the feedback of
the prediction error and the tracking error simultaneously to
design the composite adaptation law of the control scheme,
which is different from the existing adaptation laws [30]–[32].
In addition, different from the linear-feedback methods for
constructing prediction errors in the existing composite adap-
tive control [3], [33]–[36], the prediction errors in the control
scheme are obtained by designing a new SPNEM. Third, the
proposed command-filtered composite adaptive backstepping
control scheme can achieve finite-time convergence of higher-
order nonlinear systems. Different from existing control laws
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design in the backstepping procedure, a novel control law
without singularity problem is designed at each step.
Remark 12: The design parameters of the proposed control

scheme are usually selected according to the characteristics of
the considered system and the range where the stability criteria
are satisfied. For easy implementation, the selection principles
of some important design parameters are provided. Note that
all the parameters should be determined to ensure Theorem 1
holds. First, given that the nonsmooth term �νi

 performs like
a bridge between a discontinuous-feedback term (
 = 0) and a
linear-feedback term (
 = 1) [59], one should select suitable 


to keep a balance between the robustness of the control system
and the attenuation of chattering. Second, the control gains ki1
and ki2 should be set as large positive values to improve the
convergence rate. Nevertheless, too large values of ki1 and ki2
will bring the problems of input saturation and energy waste.
Thus, one should carefully make a tradeoff when choosing the
control gains.

IV. SIMULATION RESULTS

In this section, two examples will be given to illustrate the
effectiveness and superiority of the proposed control scheme.
Example 1: To verify the effectiveness of the proposed con-

trol scheme, a second-order inverted pendulum system [60] is
considered, whose dynamics is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = g sin x1−m2lx
2
2 cos x1 sin x1
m1+m2

l( 4
3 −m2 cos2 x1

m1+m2
)

+
cos x1
m1+m2

l( 4
3 −m2 cos2 x1

m1+m2
)
u + d2

y = x1

(61)

where x1 denotes the angular position of the pendulum, x2
denotes the corresponding angular velocity, m1 denotes the
mass of the cart, m2 denotes the mass of the pendulum, l
denotes the half length of the pendulum, d2 denotes the exter-
nal disturbance, and u denotes the applied force (control input).
Besides, g = 9.8 m/s2 is the acceleration of gravity. In this
example, we choose m1 = 1 kg, m2 = 0.1 kg, and l = 0.5 m.
The parameters of the proposed control scheme are chosen
as k11 = 5, k12 = 2, k21 = 5, k22 = 2, 
 = (9/11),
ξ1 = ξ2 = (1/2), τ2 = (1/8), κ21 = 2, κ22 = 1, β2 = 5,
β21 = 10, and λ2 = 4.

Scenario 1: The simulation in this scenario is conducted to
demonstrate the effectiveness of the proposed control scheme.
The reference signal is set as yd = 0.34 cos(0.58t+0.3)−0.26.
The initial values of [x1, x2]T are set as [0.6,−0.2]T . The sim-
ulation results are shown in Figs. 2–4. Fig. 2 gives the tracking
performance of the proposed control scheme. From it, we can
see that the proposed control scheme obtains excellent tracking
accuracy. Besides, the performance of the composite adaptive
RBFNN F̂2(x̄2) = WT

2 S2 is depicted in Fig. 3, which shows
that the composite adaptive RBFNN F̂2(x̄2) can approximate
F2(x̄2) with high precision. In addition, the response curve of
x̂2 is shown in Fig. 4, which verifies the effectiveness of the
SPNEM and the composite adaptive RBFNN.

Fig. 2. Tracking performance of the proposed control scheme.

Fig. 3. Approximation result of F2.

Fig. 4. Estimation result of the SPNEM.

Furthermore, in order to verify the superiority of the
proposed control scheme in tracking precision, a compara-
tive simulation is conducted. This simulation is carried out
by applying the proposed control scheme given in Section III
(denoted as “PCS” hereafter) and two comparative control
schemes. The first comparative control scheme is the exist-
ing finite-time adaptive neural control scheme [45] (denoted
as “EFCS” hereafter), which represents the improved version
of the finite-time command-filtered control scheme in [45] by
using conventional adaptive RBFNNs. Specifically, RBFNNs
in the form of (6) are used to approximate the system unknown
functions Fi(x̄i) in (2). In addition, the adaptation law of EFCS
is constructed as the traditional form: Ẇi = βiνiSi−σiWi. The
second comparative control scheme is the existing composite
adaptive neural control scheme (denoted as “ECCS” here-
after), which is borrowed from [3] by replacing fuzzy systems
with RBFNNs. To make a fair comparison, the three control
schemes all adopt the same parameters. The tracking errors
e1 = y− yd by applying the three control schemes are shown
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Fig. 5. Tracking errors by using the three control schemes.

TABLE I
QUANTITATIVE ASSESSMENT OF THE TRACKING

PERFORMANCES FOR SCENARIO 1

Fig. 6. Performance index comparisons in Scenario 1.

in Fig. 5. From it, we can observe that PCS obtains smaller
tracking error than EFCS and ECCS. In addition, to evalu-
ate the performances of the three control schemes, integral
absolute error (IAE) and integral time absolute error (ITAE)
are adopted as performance indices to quantify the tracking
errors of these control schemes. IAE and ITAE are defined
as

∫ T
0 |e1(t)|dt and

∫ T
0 t|e1(t)|dt, respectively. The quantitative

assessment results of the tracking performances are given in
Table I and the performance index comparisons are illustrated
in Fig. 6. These results clearly reveal that PCS outperforms
EFCS and ECCS.
Scenario 2: In this simulation, the parameter uncertainties

and external disturbances in the inverted pendulum dynam-
ics (61) are both taken into consideration. To be more specific,
all the coefficients of the nonlinear model (61) are chosen as
30% deviated from their nominal values and the external dis-
turbance d2 is set as 2 sin(t)+cos(t) in the simulation model. In
addition, we also apply PCS, EFCS, and ECCS to system (61).
The comparative simulation results are shown in Figs. 7 and 8.
IAE and ITAE are also adopted as performance indices to
quantify the tracking errors of the three control schemes. The
quantitative assessment results of the tracking performances
are given in Table II and the performance index comparisons
are illustrated in Fig. 9. From these results, we can clearly

Fig. 7. Tracking performances of the three control schemes.

Fig. 8. Tracking errors by using the three control schemes.

TABLE II
QUANTITATIVE ASSESSMENT OF THE TRACKING

PERFORMANCES FOR SCENARIO 2

Fig. 9. Performance index comparisons in Scenario 2.

observe that PCS is superior to EFCS and ECCS in tracking
precision.
Example 2: Inspired by the example in [45], we further

consider the following third-order uncertain nonlinear system:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = F2(x̄2) + g2(x̄2)x3 + d2
ẋ3 = F3(x̄3) + g3(x̄3)u + d3
y = x1

(62)

where F2(x̄2) = f2(x̄2) + �2, F3(x̄3) = f3(x̄3) + �3, f2(x̄2) =
−32 sin(x1) − 0.48x2, g2(x̄2) = 16, f3(x̄3) = −0.06x2 −

Authorized licensed use limited to: University of Rhode Island. Downloaded on June 14,2021 at 01:42:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 10. Tracking performance of the proposed control scheme.

(a)

(b)

Fig. 11. Performances of the composite adaptive RBFNNs.
(a) Approximation results of F2 and F3. (b) Estimation results of the
SPNEMs.

(1/3)x3, and g3(x̄3) = (1/15). Besides,�2 and �3 denote the
parameter uncertainties. Note that F2(x̄2) and F3(x̄3) are com-
pletely unknown for the control scheme design procedure. d2,
and d3 represent the time-varying external disturbances.

The reference signal is set as yd = 0.8 sin(t)+0.5 sin(0.5t).
And the initial values of [x1, x2, x3]T are set as [0.2,−0.2, 0]T .
The parameters of the proposed command-filtered composite
adaptive neural control scheme are set as k11 = 10, k12 = 2,
k21 = 20, k22 = 2, k31 = 20, k32 = 2, 
 = (9/11), ξ1 = ξ2 =
ξ3 = (1/2), τ2 = τ3 = (1/8), κ21 = κ31 = 2, κ22 = κ32 = 1,
β2 = β3 = 5, β21 = 5, β31 = 30, and λ2 = λ3 = 4. Besides,
there are two RBFNNs to approximate F2 and F3, and all the
weights of the RBFNNs are initialized as zero.

The nominal simulation results are shown in Figs. 10
and 11. Fig. 10 shows the tracking performance of the
proposed finite-time command-filtered composite adaptive
neural control scheme. Clearly, the proposed control scheme
guarantees that y tracks yd in a rapid and precise way. In
addition, the performances of the composite adaptive RBFNNs
are depicted in Fig. 11. From Fig. 11(a), we can see that the

Fig. 12. Tracking errors by using two comparative control schemes.

Fig. 13. Tracking performance of the proposed control scheme.

Fig. 14. Estimation results of the SPNEMs.

composite adaptive RBFNNs F̂2(x̄2) = WT
2 S2, F̂3(x̄3) = WT

3 S3
can approximate F2(x̄2), F3(x̄3) with high accuracy. Besides,
the estimation results of the SPNEMs, that is, the response
curves of x̂2 and x̂3, are shown in Fig. 11(b), which fur-
ther demonstrates the effectiveness of the composite adaptive
RBFNNs.

Similar to Example 1, a comparative simulation between
the proposed control scheme and the existing finite-time adap-
tive neural control scheme [45] is conducted. The simulation
result is shown in Fig. 12. From it, a consistent conclusion
can be obtained that the proposed control scheme can achieve
better performance with smaller tracking error than the exist-
ing finite-time adaptive neural control scheme, which further
verifies the superiority of the designed composite adaptation
laws.

Furthermore, the robustness of the proposed composite
adaptive neural control scheme is examined in the presence of
parameter uncertainties and external disturbances. Specifically,
all the coefficients of the nonlinear dynamic model (62) are
chosen as 40% deviated from their nominal values and the
external disturbances are set as d2 = 4 sin(t) and d3 =
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2 sin(2t) in the simulation model. Besides, the initial values
of [x1, x2, x3]T are set as [1, 1,−1]T , which lead to bigger
initial tracking errors and estimation errors. In this case, the
reference signal is chosen as yd = 0.5 sin(t)+ 0.5 sin(2t). The
simulation results are shown in Figs. 13 and 14. The track-
ing performance of the proposed command-filtered composite
adaptive neural control scheme is shown in Fig. 13. Note
that the precise values of F2 and F3 in (62) are hard to be
depicted when the model is exposed to parameter uncertain-
ties. Thus, the approximation performances of the composite
adaptive RBFNNs are illustrated by observing the estimation
results of the SPNEMs in Fig. 14. From Fig. 14, it is inferred
that the composite adaptive RBFNNs can still approximate
the unknown functions F2 and F3 effectively. From these
results, we can conclude that the proposed control scheme still
achieves satisfactory performance when the nonlinear dynamic
model (62) is exposed to various parameter uncertainties and
external disturbances.

V. CONCLUSION

This article has proposed a novel command-filtered com-
posite adaptive neural control scheme for uncertain nonlinear
systems with finite-time convergence. By constructing the
prediction errors from the SPNEMs, the prediction errors and
tracking errors are utilized together to design the composite
adaptation laws for updating RBFNN weights. The ANDOs
are designed to compensate for the external disturbances
and RBFNN minimum approximation errors. Subsequently,
the overall control scheme design is accomplished by using
the nonsmooth command-filtered backstepping technique. The
proposed control scheme is featured with many advantages.
First, the scheme guarantees that high precision tracking
performances and NN approximation performances can be
achieved simultaneously. Second, the scheme greatly improves
the robustness of the control system by compensating the
lumped disturbances. Third, the scheme ensures finite-time
convergence of all signals in the closed-loop system. The
future works will be focused on reducing the parameters of the
proposed control scheme via minimal-learning-parameter tech-
nique and designing finite-time convergent composite adaptive
control schemes for uncertain nonlinear systems with full-state
constraints.
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