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We prove the continuity of logarithmic capacity under Hausdorff convergence of 
uniformly perfect planar sets. The continuity holds when the Hausdorff distance 
to the limit set tends to zero at sufficiently rapid rate, compared to the decay of 
the parameters involved in the uniformly perfect condition. The continuity may fail 
otherwise.
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1. Introduction

The studies of the continuity of set capacity and related quantities have a long history in potential 
theory. In 1961, Gehring proved that the conformal modulus of planar annuli is continuous under Hausdorff 
convergence of the boundary components [6]. He then extended this results to the modulus of rings in 
space [7]. Aseev [2, Theorem 7] proved the continuity of condenser capacity under the Hausdorff convergence 
of its plates, under the assumption that the plates are uniformly perfect with the same constant α. Aseev and 
Lazareva [3] proved the analogous continuity result for logarithmic capacity of sets. Ransford, Younsi and 
Ai [13] recently proved that logarithmic capacity of a set varies continuously under holomorphic motions.

A more general theorem of Aseev [2, Theorem 6] involves the concept of strong convergence. According 
to [2], a sequence of sets En strongly converges to a set E if there exists α > 0 such that En can be 
expressed as the union of α-uniformly perfect sets with diameters bounded below by some constant δα(En), 
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and d(En, E)/δα(En) → 0. By [2, Theorem 6] the conformal capacities cap(E0
n, E1

n) converge to cap(E0, E1)
if Ej

n → Ej strongly for j = 0, 1.
Although Aseev’s theorem weakens the assumption of the sets being uniformly perfect, it does not cover 

the naturally occurring case of uniformly perfect sets with parameters that are not bounded away from 
0. This is the setting of the present article. Our main result is Theorem 3.4, which asserts in part that 
cap(En) → cap(E) whenever En is αn-uniformly perfect and the Hausdorff distance dn := dH(En, E) tends 
to 0 sufficiently quickly, compared to αn (these quantities are introduced in Definition 2.2, (2.4), and (2.1)). 
Specifically, having

log 1
αn

≤ 1
24

log(1/dn)
log log(1/dn)

is sufficient for continuity, by Remark 3.6.
On the other hand, Proposition 4.1 shows that an inequality of the form

log 1
αn

≤ C

dn

does not ensure that cap En converges to cap E. In the final section we consider an application of our main 
result to the NED property [1] of Cantor-type sets.

2. Definitions and preliminary results

Definition 2.1. The Hausdorff distance between two nonempty bounded closed sets A and B is defined as

dH(A, B) := max
(

sup
z∈A

inf
t∈B

|z − t|, sup
z∈B

inf
t∈A

|z − t|
)

. (2.1)

Below we briefly describe some of the key concepts of the potential theory in the complex plane; see [12,
14,17] for more.

Let E ⊂ C be a compact set in the complex plane. The collection of all positive unit Borel measures 
with support in E is denoted M(E). The logarithmic energy of a measure ν ∈ M(E) is defined as

I(ν) :=
∫∫

log 1
|z − t|dν(z)dν(t), (2.2)

and the energy V of E by

V := inf{I(ν) : ν ∈ M(E)}. (2.3)

The energy V takes values in (−∞, ∞]. When it is finite, there is a unique equilibrium measure νE ∈ M(E)
for which the infimum defining V in (2.3) is attained. The quantity

cap(E) := e−V (2.4)

is called the logarithmic capacity of compact set E. For a general set E ⊂ C,

cap(E) := sup{cap(K) : K ⊂ E, K is compact} (2.5)

which is also known as the inner capacity of E.
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The logarithmic capacity of a compact set E ⊂ C is equal to its transfinite diameter [17, Theorem III.26], 
which is defined as d(E) = limn→∞ dn(E) where

dn(E)n(n−1)/2 = sup

⎧⎨
⎩

∏
1≤k<�≤n

|zk − z�| : z1, . . . , zn ∈ E

⎫⎬
⎭

The quantity dn(E), n = 2, 3, . . . , is called the n-diameter of E. It is clearly continuous with respect to 
Hausdorff metric. Since dn+1(E) ≤ dn(E) by [17, Theorem III.21], it follows that transfinite diameter is 
upper semicontinuous in the Hausdorff metric dH . For future reference, we state this in terms of capacity:

cap(E) ≥ lim sup
n→∞

cap(En) if dH(En, E) → 0. (2.6)

Strict inequality may hold in (2.6), for example if {En} is a sequence of finite sets converging to the closed 
unit disk.

Let Ω be a domain in the extended complex plane C. If the complement of Ω has positive capacity, then 
for every w ∈ Ω there exists Green’s function g(·, w, Ω) with a pole w ∈ Ω. It is the unique function such 
that

• g(·, w, Ω) is harmonic in Ω \ {w};
• g(z, w, Ω) = − log |z − w| + O(1) as z → w if w is finite;
• g(z, w, Ω) = log |z| + O(1), as z → w if w = ∞;
• g(z, w, Ω) → 0 as z → ζ, for all points ζ ∈ ∂Ω except for a set of capacity zero.

The domain Ω is regular if g(z, w, Ω) → 0 holds for all boundary points ζ ∈ ∂Ω. It suffices to check this 
property for one value of w, by [12, Theorem 4.4.9]. When Ω is regular, we let g(z, w, Ω) = 0 for z /∈ Ω, to 
make Green’s function continuous on C \ {w}.

Let ν be a finite positive Borel measure of compact support. Its logarithmic potential is defined by

Uν(z) :=
∫

log 1
|z − t|dν(t). (2.7)

Let Ω be the outer domain relative to E, that is the unbounded component of the complement C \ E. 
Then we have an identity (e.g., [14, p. 53])

g(z, ∞, Ω) = −UνE (z) + log 1
cap(E) (2.8)

The right hand side of (2.8) has asymptotic behavior log |z| + log 1
cap(E) + o(1) as z → ∞. We also use 

notation

gE(z) = g(z, ∞, Ω).

Our approach requires an explicit Hölder estimate for Green’s function of a uniformly perfect set.

Definition 2.2. A closed set E ⊂ C is uniformly perfect if there exists a constant α ∈ (0, 1) such that the set 
E ∩ {z : αr ≤ |z − a| ≤ r} is nonempty for every a ∈ E and every r such that 0 < r ≤ diam E.

To emphasize the value of α, we sometimes call E an α-uniformly perfect set.
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By [10, Theorem 1],

cap(E ∩ B(a, r)) ≥ α2

32 r (2.9)

for all 0 < r ≤ diam E. Note that the definition of a uniformly perfect set in [10] requires the set to be 
unbounded. However, the proof of [10, Theorem 1] applies verbatim to our situation.

The following theorem of Siciak [15, Theorem 4.1] provides a Hölder estimate for Green’s function of 
a uniformly perfect set. It requires additional notation. Given a compact subset E of a disk B(a, R), let 
h(·, E, B(a, R)) be the Perron solution [12, Def. 4.1.1] of the Dirichlet problem Δu = 0 in B(a, R) \E, u = 0
on E, and u = 1 on ∂B(a, R). For 1 ≤ r < R let

c(E; B(a, R), B(a, r)) = 1 − sup
|z−a|=r

h(z, E, B(a, R)).

This capacity-like quantity takes values between 0 and 1 and is monotone with respect to E. Finally, let

cE(a, t, r, R) = c(E ∩ B(a, t); B(a, tR), B(a, tr)), 0 ≤ t ≤ 1

which represents the c-capacity of the t-neighborhood of a in E, scaled according to its size.

Theorem 2.3. [15, Theorem 4.1] Let 1 ≤ r < R < ∞ and let {ρn} be a sequence of real numbers such that 
0 < ρn < 1 and

R

r
≤ ρn

ρn+1
≤ B < ∞, n ≥ 1. (2.10)

If a is a point of a compact set E of C such that cE(a, ρn, r, R) ≥ m > 0 (n ≥ 1), then for every ρ > 0 the 
function gE∩B(a,ρ) is Hölder continuous at a with exponent μ = m/ log B:

gE∩B(a,ρ)(z) ≤ Mδm/ log B , |z − a| ≤ δ ≤ 1, (2.11)

where M depends only on ρ, r, R, m, and B.

Definition 2.4. Let w ∈ C be given and let Ωn ⊂ C be domains such that w is an interior point of 
⋂∞

n=1 Ωn. 
Following [11, p. 13], we say that

Ωn → Ω as n → ∞ with respect to w

in the sense of kernel convergence if

• Ω is a domain such that w ∈ Ω and some neighborhood of every z ∈ Ω lies in Ωn for large n;
• for z ∈ ∂Ω there exist zn ∈ ∂Ωn such that zn → z as n → ∞.

An equivalent definition is found in [5, p. 77] and [8, p. 54]. According to it, Ω is the kernel of {Ωn} if it 
is the maximal domain containing w such that every compact subset of Ω belongs to all but finitely many 
of the domains Ωn. The convergence to Ω in the sense of kernel requires that every subsequence of {Ωn}
also has the same kernel Ω.
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3. Main results

Our first step is to prove a version of the estimate (2.11) for Green’s function in which the modulus of 
continuity has an explicit value of the multiplicative constant M . Such an estimate will be obtained from 
the formula (2a) in the proof of [15, Theorem 4.1], which states that under the assumptions of Theorem 2.3,

h(z, E ∩ B(a, ρn), B(a, Rρn)) ≤
(

1
rρn

)m/ log B

δm/ log B (3.1)

for all z with |z − a| ≤ δ ≤ min(1, rρn+1).
In order to use (3.1), we need to relate the function h to Green’s function gE .

Lemma 3.1. Suppose that E ⊂ C is a compact set of positive logarithmic capacity. Then for a ∈ E and for 
R > diam E we have

gE(z) ≤
(

log R + diam E

cap E

)
h(z, E, B(a, R)) (3.2)

for all z with |z − a| ≤ R.

Proof. Both sides of (3.2) are harmonic in the set Ω = B(a, R) \ E and vanish on E up to a polar set. 
By definition, h = 1 on ∂B(a, R). Writing gE in terms of the potential of the equilibrium measure νE, we 
obtain from (2.8) that for all z ∈ ∂B(a, R),

gE(z) = log 1
cap E

+
∫

log |z − ζ| dνE(ζ) ≤ log 1
cap E

+ log(R + diam E)

because |z−ζ| ≤ R+diam E and νE is a probability measure. Hence (3.2) holds on ∂B(a, R). The maximum 
principle completes the proof. �

We also need to translate the geometric property of being α-uniformly perfect into a lower bound on the 
capacity cE(a, ρ) required by Theorem 2.3. Lemma 1.7 of [15] states that for 0 < t ≤ 1,

cE(a, t, r, R) ≥
(

log R − 1
r + 1

) (
log t(R − 1)

cap(E ∩ B(a, t))

)−1

(3.3)

provided that r < R − 2. Combining (2.9) and (3.3) we obtain the following: if E ⊂ C is an α-uniformly 
perfect set of diameter 1, then for every a ∈ E and 0 < t ≤ 1,

cE(a, t, r, R) ≥
(

log R − 1
r + 1

) (
log 32(R − 1)

α2

)−1

(3.4)

provided that r < R − 2.

Theorem 3.2. Let E be an α-uniformly perfect bounded set. Let

M = M(α) = log 384
α2 ,

β = β(α) = log(9/8)
(

log 288
2

)−1

.

(3.5)
2 log 2 α
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Then for all points z with dist(z, E) ≤ diam E we have

gE(z) ≤ M

(
dist(z, E)
diam E

)β

. (3.6)

Proof. The problem reduces to the case diam E = 1, 0 ∈ E, and |z| = dist(z, E) by rescaling and translation.
Let a = 0, R = 10, and r = 7 in (3.4):

cE(a, t, 7, 10) ≥ m :=
(

log 9
8

) (
log 288

α2

)−1

, 0 < t ≤ 1. (3.7)

In Theorem 2.3 choose B = 2 and ρn = 2−n. Then the potential function h associated with the set 
En = E ∩ B(0, 2−n) can be estimated by (3.1) as follows.

h(z, En, B(0, 10 · 2−n)) ≤
(

2n

7

)m/ log 2

δm/ log 2 (3.8)

for all z with |z| ≤ δ ≤ min(1, 7 · 2−n−1). Note that diam En ≤ 21−n and cap En ≥ α2

32 2−n by (2.9). Apply 
Lemma 3.1 to En with a = 0 and R = 10 · 2−n, and then invoke (3.8) to obtain

gEn
(z) ≤

(
log 384

α2

)
h(z, En, B(0, 10 · 2−n))

≤
(

log 384
α2

) (
2n

7

)m/ log 2

δm/ log 2

(3.9)

for all z with |z| ≤ δ ≤ min(1, 7 · 2−n−1).
Given a complex number z with |z| ≤ 1, let n be the smallest integer such that |z| ≤ 41−n. Since 

41−n < 7 · 2−n−1, we can choose δ = 41−n in (3.9), thus obtaining

gEn
(z) ≤

(
log 384

α2

) (
4
72−n

)m/ log 2

≤
(

log 384
α2

)
|z|m/(2 log 2)

(3.10)

where the last inequality holds because 4−n < |z| by the choice of n. This proves (3.6). �
Remark 3.3. The Hölder exponent in Theorem 3.2 is not optimal. In general it is difficult to determine 
the precise degree of Hölder regularity of Green’s function, but see [4,16] for such results in the context of 
Cantor-type sets.

We are ready to state and prove our main result.

Theorem 3.4. Suppose that for each n ∈ N, En is a compact αn-uniformly perfect subset of C. Furthermore, 
suppose En → E ⊂ C in the Hausdorff metric dH , where E is a compact set. If the sequence

dH(En, E) exp
(

24 log 1
αn

log log 1
αn

)
(3.11)

is bounded, then cap(En) → cap(E). In addition, if cap(E) > 0, then Green’s functions gEn
(z) converge to 

gE(z) uniformly with respect to z ∈ C and the unbounded component Ω of C \ E is a regular domain for the 
Dirichlet problem.
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The proof requires a lemma from [9].

Lemma 3.5. [9, Lemma 2.1] If Ωn → Ω in the sense of kernel with respect to w ∈ Ω, and each domain Ωn

is regular, then

sup
z∈C\{w}

(g(z, w, Ω) − g(z, w, Ωn)) → 0.

Although in [9] we assumed all domains to be regular, only the regularity of Ωn was used in the proof 
of Lemma 3.5. We also note that when the complements Ωc

n converge in the sense of Hausdorff metric, the 
domains Ω converge in the sense of kernel (see e.g. [8, p. 54]) and therefore Lemma 3.5 applies.

Proof of Theorem 3.4. If cap(E) = 0, then the upper semicontinuity of capacity (2.6) implies cap(En) → 0. 
For the rest of the proof we assume cap(E) > 0. This ensures the existence of Green’s function gE. We write 
g = gE and gn = gEn

. Since En is a uniformly perfect set, each component of its complement is regular [10, 
Remark 1], and therefore gn extends continuously to C.

Since diam E > 0, we may rescale the sets so that diam E = 1. The assumption dH(En, E) → 0 implies 
diam En → 1. By discarding finitely many terms of the sequence {En} we can ensure that dH(En, E) ≤ 1/3
and diam En ≥ 2/3 for all n.

Let Mn = M(αn) and βn = β(αn) be as in (3.5). Theorem 3.2 yields

gn(z) ≤ Mn

(
dist(z, En)
diam En

)βn

, if dist(z, En) ≤ 2/3. (3.12)

Our next step is to show that

MndH(En, E)βn → 0. (3.13)

Indeed, if αn is bounded from below by a positive constant α, then Mn ≤ M(α) and βn ≥ M(α), hence (3.13)
holds by virtue of dH(En, E) → 0. Consider the case αn → 0. The logarithm of the left-hand side of (3.13)
does not exceed

A + log log 384
α2

n

− C log 1
αn

log log 1
αn

(
log 288

α2
n

)−1

(3.14)

where A is some constant and

C = 24log(9/8)
2 log 2 > 2.

Up to a bounded additive term, the expression (3.14) simplifies to

(1 − C/2) log log 1
αn

→ −∞

which proves (3.13) in this case as well. The case when lim sup αn > lim inf αn = 0 follows by considering 
subsequences.

We are now ready to prove that gn → g uniformly on Ω. Lemma 3.5 shows that lim supn→∞ supΩ(g −
gn) ≤ 0. Thus, uniform convergence on Ω will be established once we show that

lim sup sup(gn − g) ≤ 0 (3.15)

n→∞ Ω



8 S. Kalmykov, L.V. Kovalev / J. Math. Anal. Appl. 505 (2022) 125585
Because of (3.13), there exists a sequence of positive numbers δn ∈ (0, 1/3] such that Mn(dH(En, E) +
δn)βn → 0. Suppose z ∈ C is such that dist(z, E) ≤ δn. Since dist(z, En) ≤ dH(E, En) + δn ≤ 2/3, we can 
apply (3.12) which yields

gn(z) ≤ Mn

(
dist(z, En)
diam En

)βn

≤ Mn

(
dH(E, En) + δn

diam En

)βn

=: εn

(3.16)

where εn → 0.
If z ∈ Ω and dist(z, E) ≤ δn, then gn(z) − g(z) ≤ gn(z) ≤ εn by (3.16). Since the singularity of gn − g at 

∞ is removable, the maximum principle shows that gn − g ≤ εn everywhere in Ω. This concludes the proof 
of (3.15) and of the uniform convergence gn → g on Ω.

Using the asymptotic expansion

gE(z) = log |z| − log cap(E) + o(1), z → ∞,

we conclude that cap(En) → cap(E).
The uniformity of convergence gn → g on Ω allows us to interchange limits with respect to n ∈ N and 

z ∈ Ω below: for every ζ ∈ ∂Ω

lim
z→ζ

g(z) = lim
z→ζ

lim
n→∞

gn(z) = lim
n→∞

lim
z→ζ

gn(z) = lim
n→∞

gn(ζ) = 0 (3.17)

where the last step uses (3.16) and the fact that limn→∞ dist(ζ, En) = 0.
Property (3.17) shows that Ω is a regular domain. Thus, we have gE = 0 on the complement of Ω.
It remains to show that gn → 0 uniformly on C \ Ω. The continuity of gn and the estimate (3.16) imply 

gn ≤ εn on ∂Ω. By the maximum principle, gn ≤ εn on C \ Ω, which completes the proof. �
Remark 3.6. The boundedness assumption in Theorem 3.4 holds if for all sufficiently large n,

log 1
αn

≤ 1
24

log bn

log log bn
(3.18)

where bn = 1/dH(E, En) → ∞ as n → ∞.

Indeed, for large n we have log log bn > 1, hence (3.18) implies

24 log 1
αn

log log 1
αn

≤ log bn

log log bn
(log log bn − log 24) < log bn

Therefore the sequence (3.11) is bounded by 1.

4. Examples and applications

If a sequence of αn-uniformly perfect sets En has αn → 0 much faster than dH(En, E) → 0, the log-
arithmic capacity of En may fail to converge to the logarithmic capacity of E. The following proposition 
presents a concrete form of this observation.

Proposition 4.1. In Theorem 3.4, the sequence (3.11) cannot be replaced by dH(En, E) log αn. More precisely, 
there exists a sequence of compact sets En which are αn-uniformly perfect and converge to T in the uniform 
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metric in such a way that dH(En, E) log αn is bounded, yet the uniform convergence of Green’s functions 
fails.

Proof. The idea of this example goes back to Ahlfors and Beurling [1, Theorem 17]. Given a sequence of 
numbers Ln ∈ (0, π), we construct a sequence of compact subsets of the unit circle T as follows:

En = {z ∈ T : | arg(zn)| ≤ Ln}

where arg is the principal branch of the argument, taking values between −π and π. The set En consists of 
n uniformly distributed arcs of length 2Ln/n. The gaps between these arcs have length 2(π − Ln)/n, which 
implies that

dH(En,T ) = 2 sin π − Ln

2n
(4.1)

Hence En → T in the Hausdorff metric.
The diameter of each connected component of En is 2 sin(Ln/n) and the distance from a component 

to the rest of En is 2 sin((π − Ln)/n). Suppose that an annulus {z : r < |z − a| < R} separates En. 
Since the disk {z : |z − a| ≤ r} contains a connected component of En, we have r ≥ sin(Ln/n). Since also 
R − r ≤ 2 sin((π − Ln)/n), it follows that

R

r
≤ 1 + 2 sin((π − Ln)/n)

sin(Ln/n)

Hence, En is αn-uniformly perfect with

αn ≥
(

1 + 2 sin((π − Ln)/n)
sin(Ln/n)

)−1

If Ln → 0, this bound on αn is asymptotic to Ln/(2π).
The logarithmic capacity of the circular arc Γn = {eit : |t| ≤ Ln} is equal to sin(Ln/2) (see e.g. [12, Ch. 5, 

Table 5.1, p. 135]). Since the set En is the preimage of Γn under the polynomial z 	→ zn, it follows that 
([12, Theorem 5.2.5, p. 134])

cap En = (cap Γn)1/n = (sin(Ln/2))1/n

Thus, cap En → capT = 1 if and only if log(1/Ln) = o(n) as n → ∞.
For example, the choice Ln = exp(−n) results in cap En 
→ capT , which also indicates the failure 

of uniform convergence of Green’s functions. With this choice we have log 1/αn asymptotic to n and 
dH(En, T ) ≤ π/n by virtue of (4.1). Thus the product dH(En, T ) log α is bounded. �

There remains a substantial gap between the assumptions of Theorem 3.4 and Proposition 4.1. As an 
application of Theorem 3.4 we consider the NED property of Cantor-type sets. The notion of an NED set
is an important function-theoretic concept of a removability, introduced by Ahlfors and Beurling in [1]. For 
example, NED sets are removable for holomorphic functions f with finite Dirichlet integral 

∫
|f ′|2 and for 

extremal distances. We do not state the general definition of NED sets here, because the following theorem 
of Ahlfors and Beurling [1, Theorem 14] suffices for other purposes: a compact subset K of an interval I is 
NED if and only if

cap(I \ K) = cap(I). (4.2)
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The left hand side of (4.2) is the inner capacity (2.5) of the non-compact set I \ K.
Let I = [0, 1]. Given a sequence of numbers εn ∈ (0, 1), let K0 = I and inductively construct the sets 

K1 ⊃ K2 ⊃ . . . so that Kn is obtained by removing the middle εn-part of each connected component 
of Kn−1. The intersection K =

⋂∞
n=0 Kn is a Cantor-type set which becomes the standard middle-third 

Cantor set if εn = 1/3 for all n. Let En = I \ Kn for n = 1, 2, · · · . It is easy to show that En → [0, 1] in the 
Hausdorff distance; see the proof of Theorem 4.2 below. By the definition of inner capacity, property (4.2)
holds if and only if cap(En) → cap(I) as n → ∞. This leads us to the following result.

Theorem 4.2. Suppose K is a Cantor-type set determined by a sequence of numbers εn ∈ (0, 1) such that

log 1
εn

≤ Cn

log n
, n ≥ 2, (4.3)

for some constant C < 1/(24 log 2). Then (4.2) holds, and consequently K is an NED set.

Proof. Since Kn consists of 2n disjoint segments of equal length, each of them has length at most 2−n. 
Therefore, the 2−n−1 neighborhood of En covers I. It follows that dH(En, I) ≤ 2−n−1.

We claim that the set En is αn-uniformly perfect where αn = 1
2 mink≤n εk. Since E1 is an interval, it 

suffices to consider n ≥ 2. Note that the set Ek is constructed by inserting an interval in the middle of 
each component of [0, 1] \ Ek−1; the length of this interval is εk� where � is the length of the component. 
Therefore, the distance from the inserted interval to Ek−1 is (1 − εk)�/2. It follows that every connected 
component J of the set En satisfies

dist(J, En \ J) ≤ 1 − αn

2αn
diam J. (4.4)

Suppose that a ∈ En, 0 < r ≤ diam E, and the annulus {z : αr ≤ |z−a| ≤ r} is disjoint from E. Let k be the 
smallest index such that Ek ∩ B(a, αr) is nonempty. If k = 1, then B(a, αr) contains [(1 − ε1)/2, (1 + ε1)/2], 
hence αr ≥ ε1/2. And since r ≤ diam En ≤ 1, it follows that α ≥ ε1/2 ≥ αn as claimed.

Suppose k ≥ 2. If B(a, αr) contained more than one component of Ek, then it would also contain a 
component of Ek−1 situated between those, contrary to the choice of k. Thus, the set J = Ek ∩ B(a, αr) is 
connected. Since diam J ≤ 2αnr, the estimate (4.4) implies

(1 − α)r ≤ dist(J, Ek \ B(a, αr)) = dist(J, Ek \ J) ≤ (1 − αn)r,

hence α ≥ αn. This completes the proof that En is αn-perfect.
To justify the application of Theorem 3.4, we use Remark 3.6. Indeed, in the inequality (3.18) we have 

log bn = log(1/dH(En, I)) ≥ (n + 1) log 2, which in view of (4.3) implies that (3.18) holds. Thus, cap(En) →
cap(I). �
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