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1. Introduction

The studies of the continuity of set capacity and related quantities have a long history in potential
theory. In 1961, Gehring proved that the conformal modulus of planar annuli is continuous under Hausdorff
convergence of the boundary components [6]. He then extended this results to the modulus of rings in
space [7]. Aseev [2, Theorem 7] proved the continuity of condenser capacity under the Hausdorff convergence
of its plates, under the assumption that the plates are uniformly perfect with the same constant «.. Aseev and
Lazareva [3] proved the analogous continuity result for logarithmic capacity of sets. Ransford, Younsi and
Ai [13] recently proved that logarithmic capacity of a set varies continuously under holomorphic motions.

A more general theorem of Aseev [2, Theorem 6] involves the concept of strong convergence. According
to [2], a sequence of sets E, strongly converges to a set E if there exists @ > 0 such that E, can be
expressed as the union of a-uniformly perfect sets with diameters bounded below by some constant §,(E,,),
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and d(E,, E)/64(E,) — 0. By [2, Theorem 6] the conformal capacities cap(E?, E}) converge to cap(EY, E*)
if BJ — EJ strongly for j =0, 1.

Although Aseev’s theorem weakens the assumption of the sets being uniformly perfect, it does not cover
the naturally occurring case of uniformly perfect sets with parameters that are not bounded away from
0. This is the setting of the present article. Our main result is Theorem 3.4, which asserts in part that
cap(E,) — cap(F) whenever E,, is a,-uniformly perfect and the Hausdorff distance d,, := dgy(E,, E) tends
to 0 sufficiently quickly, compared to a, (these quantities are introduced in Definition 2.2, (2.4), and (2.1)).
Specifically, having

1 1 log(1l/d,)
log — < —
%8y 24 loglog(1/d,,)

is sufficient for continuity, by Remark 3.6.
On the other hand, Proposition 4.1 shows that an inequality of the form

1 1<O
Ogan_d

does not ensure that cap E,, converges to cap E. In the final section we consider an application of our main
result to the NED property [1] of Cantor-type sets.

2. Definitions and preliminary results

Definition 2.1. The Hausdorff distance between two nonempty bounded closed sets A and B is defined as

dp (A, B) := max (bup 1é1f |z — 1, 5up mf |z — t|> (2.1)
z€At

Below we briefly describe some of the key concepts of the potential theory in the complex plane; see [12,
14,17] for more.

Let E C C be a compact set in the complex plane. The collection of all positive unit Borel measures
with support in E' is denoted M(E). The logarithmic energy of a measure v € M(FE) is defined as

/ / log ——duv(2)dv(t), (2.2)

and the energy V of E by
Vi=inf{I(v): v e M(E)}. (2.3)

The energy V takes values in (—oo, oo]. When it is finite, there is a unique equilibrium measure vy € M(E)
for which the infimum defining V' in (2.3) is attained. The quantity

cap(E) :=e Y (2.4)
is called the logarithmic capacity of compact set E. For a general set £ C C,
cap(E) := sup{cap(K): K C FE, K is compact} (2.5)

which is also known as the inner capacity of E.
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The logarithmic capacity of a compact set E C C is equal to its transfinite diameter [17, Theorem I11.26],
which is defined as d(E) = lim,,_, oo d,, (F) where

aln(E)"(”_l)/2 = sup H |2k — 2z¢|: 21,...,2n €E
1<k<t<n

The quantity d,(F), n = 2,3,..., is called the n-diameter of E. It is clearly continuous with respect to
Hausdorff metric. Since dp,41(F) < d,(E) by [17, Theorem IIL.21], it follows that transfinite diameter is
upper semicontinuous in the Hausdorff metric dy. For future reference, we state this in terms of capacity:

cap(E) > limsup cap(E,,) if dy(E,, E) — 0. (2.6)
n—oo
Strict inequality may hold in (2.6), for example if {E,} is a sequence of finite sets converging to the closed
unit disk.
Let © be a domain in the extended complex plane C. If the complement of Q has positive capacity, then

for every w € 2 there exists Green’s function g(-,w, Q) with a pole w € Q. It is the unique function such
that

) =log|z| + O(1), as z — w if w = o0;

(-
e g(z,w ) —log|z —w| +O(1 )asz—>wifwisﬁnite;
(
( ) — 0 as z — ¢, for all points ¢ € 9 except for a set of capacity zero.

sz
z,w, Q)

The domain Q is regular if g(z,w, ) — 0 holds for all boundary points ¢ € 99Q. It suffices to check this
property for one value of w, by [12, Theorem 4.4.9]. When € is regular, we let g(z,w, ) =0 for z ¢ Q, to
make Green’s function continuous on C \ {w}.

Let v be a finite positive Borel measure of compact support. Its logarithmic potential is defined by

v e 1
U (z) := /log mdu(t). (2.7)

Let Q be the outer domain relative to E, that is the unbounded component of the complement C \ E.
Then we have an identity (e.g., [14, p. 53])

9(z,00,Q) = =U"?(z) + log (2.8)

b
cap(E)

The right hand side of (2.8) has asymptotic behavior log |z| + log caplﬁ + o(1) as z — oo. We also use
notation

gE’(Z) = g(z, 00, Q)
Our approach requires an explicit Holder estimate for Green’s function of a uniformly perfect set.

Definition 2.2. A closed set E C C is uniformly perfect if there exists a constant « € (0, 1) such that the set
En{z: ar <|z—a| <r} is nonempty for every a € FE and every r such that 0 < r < diam FE.

To emphasize the value of o, we sometimes call £ an a-uniformly perfect set.
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By [10, Theorem 1],

cap(E N B(a,r)) > a—2r (2.9)

32
for all 0 < r < diam E. Note that the definition of a uniformly perfect set in [10] requires the set to be
unbounded. However, the proof of [10, Theorem 1] applies verbatim to our situation.
The following theorem of Siciak [15, Theorem 4.1] provides a Hoélder estimate for Green’s function of
a uniformly perfect set. It requires additional notation. Given a compact subset E of a disk B(a, R), let
h(-, E, B(a, R)) be the Perron solution [12, Def. 4.1.1] of the Dirichlet problem Au =0 in B(a, R)\ E, u =0
on E,and u=1on dB(a,R). For 1 <r < R let

c(E;B(a, R),B(a,r)) =1— sup h(z, E,B(a, R)).

|z—al=r

This capacity-like quantity takes values between 0 and 1 and is monotone with respect to E. Finally, let
ce(a,t,r, R) = c(E N B(a,t); B(a,tR), B(a,tr)), 0<t<1
which represents the c-capacity of the ¢t-neighborhood of a in F, scaled according to its size.

Theorem 2.3. [15, Theorem 4.1] Let 1 <r < R < oo and let {p,} be a sequence of real numbers such that
0<pn<1and

< Ln
Pn+1

L <B<oo, n>1l (2.10)
r

If a is a point of a compact set E of C such that cg(a, pn,r,R) > m >0 (n > 1), then for every p > 0 the
Sfunction 9EAB(a,p) 1S Hoélder continuous at a with exponent = m/log B:

IpnBlap(2) S M™/ 188 |z —a] <5 <1, (2.11)

where M depends only on p,r, R, m, and B.

Definition 2.4. Let w € C be given and let €,, C C be domains such that w is an interior point of ﬂflozl Q.
Following [11, p. 13], we say that

Q, - Q as n — oo with respect to w
in the sense of kernel convergence if

e ) is a domain such that w € Q and some neighborhood of every z € Q lies in Q,, for large n;
o for z € 0N there exist z, € 9, such that z,, — z as n — oo.

An equivalent definition is found in [5, p. 77] and [8, p. 54]. According to it, € is the kernel of {2, } if it
is the maximal domain containing w such that every compact subset of {2 belongs to all but finitely many
of the domains €2,,. The convergence to ) in the sense of kernel requires that every subsequence of {{,}
also has the same kernel .
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3. Main results

Our first step is to prove a version of the estimate (2.11) for Green’s function in which the modulus of
continuity has an explicit value of the multiplicative constant M. Such an estimate will be obtained from
the formula (2a) in the proof of [15, Theorem 4.1], which states that under the assumptions of Theorem 2.3,

m/ log B
M BN Blap) Bl Rp) < () o/ (3.)
for all z with |z — a| < § < min(1,7pp41)-

In order to use (3.1), we need to relate the function h to Green’s function gg.

Lemma 3.1. Suppose that E C C is a compact set of positive logarithmic capacity. Then for a € E and for
R > diam E we have

R+ diam F

gp(e) < (tog LI Y e . B(a. ) 2)

for all z with |z — a| < R.
Proof. Both sides of (3.2) are harmonic in the set Q@ = B(a,R) \ E and vanish on E up to a polar set.

By definition, h = 1 on 0B(a, R). Writing gg in terms of the potential of the equilibrium measure vg, we
obtain from (2.8) that for all 2 € dB(a, R),

1
i + log(R + diam E)

1
=log —— 1 —(|d <1
ge(z) =log -+ [ log s = [ dvi(Q) < log

because |z—(| < R+diam F and vg is a probability measure. Hence (3.2) holds on dB(a, R). The maximum
principle completes the proof. O

We also need to translate the geometric property of being a-uniformly perfect into a lower bound on the
capacity cg(a, p) required by Theorem 2.3. Lemma 1.7 of [15] states that for 0 <t <1,

cela,t,r,R) > <log th 11) (log Camﬁ%) - (3.3)

provided that » < R — 2. Combining (2.9) and (3.3) we obtain the following: if £ C C is an a-uniformly
perfect set of diameter 1, then for every a € F and 0 <t <1,

-1
ce(a,t,r,R) > <log f;ll) <log %) (3.4)

provided that r < R — 2.

Theorem 3.2. Let E be an a-uniformly perfect bounded set. Let

384
M = M(Oé) :10g?,

1 -1
5= pte) = D (1025
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Then for all points z with dist(z, F) < diam E we have

dist(z,E))ﬁ_ (36)

<M| ——F=
98(2) < ( diam

Proof. The problem reduces to the case diam £ = 1,0 € E, and |z| = dist(z, E) by rescaling and translation.
Let a =0, R =10, and r =7 in (3.4):

9 288
cp(a,t,7,10) > m = (log §> <1og ¥> , 0<t<1. (3.7)

In Theorem 2.3 choose B = 2 and p, = 27". Then the potential function h associated with the set
E, = ENB(0,27") can be estimated by (3.1) as follows.

n\ m/log2
h(z, En, B(0,10-27")) < (7> §m/ log2 (3.8)

for all z with |2| < ¢ < min(1,7-27""1). Note that diam E,, < 2'~" and cap E,, > %;2’” by (2.9). Apply
Lemma 3.1 to E,, with a =0 and R =10-27", and then invoke (3.8) to obtain

384
gr, (2) < <log ?) h(z, En, B(0,10-277))

n\ m/log2
384 2
< (log ?) <7> 5m/10g2

for all 2 with |2| < § < min(1,7-27"71).
Given a complex number z with |2| < 1, let n be the smallest integer such that |z| < 4'~". Since
4t=m < 7.27"71 we can choose § = 417" in (3.9), thus obtaining

384\ (4 \™/loe2
9E,(2) < (log ?) (?2 n)

(3.10)
384
< (log i ) |Z‘7n/(210g2)

where the last inequality holds because 4=™ < |z| by the choice of n. This proves (3.6). O

Remark 3.3. The Holder exponent in Theorem 3.2 is not optimal. In general it is difficult to determine
the precise degree of Holder regularity of Green’s function, but see [4,16] for such results in the context of
Cantor-type sets.

We are ready to state and prove our main result.

Theorem 3.4. Suppose that for each n € N, E,, is a compact o, -uniformly perfect subset of C. Furthermore,
suppose E, — FE C C in the Hausdorff metric dy, where E is a compact set. If the sequence

1 1
dy(E,, E)exp (24 log — loglog > (3.11)
Ol Qn
is bounded, then cap(E,) — cap(E). In addition, if cap(E) > 0, then Green’s functions gg, (z) converge to
9r(2) uniformly with respect to z € C and the unbounded component Q of C\ E is a regular domain for the
Dirichlet problem.
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The proof requires a lemma from [9].

Lemma 3.5. [9, Lemma 2.1] If Q,, — Q in the sense of kernel with respect to w € €, and each domain Q,,

is reqular, then

sup (g(Z,’lU,Q) —g(Z,’UJ,Qn)) — 0.
zeC\{w}

Although in [9] we assumed all domains to be regular, only the regularity of €2, was used in the proof
of Lemma 3.5. We also note that when the complements 2¢ converge in the sense of Hausdorff metric, the
domains € converge in the sense of kernel (see e.g. [8, p. 54]) and therefore Lemma 3.5 applies.

Proof of Theorem 3.4. If cap(F) = 0, then the upper semicontinuity of capacity (2.6) implies cap(E,) — 0.
For the rest of the proof we assume cap(E) > 0. This ensures the existence of Green’s function gg. We write
g = gg and g, = gg, . Since E, is a uniformly perfect set, each component of its complement is regular [10,
Remark 1], and therefore g,, extends continuously to C.

Since diam E > 0, we may rescale the sets so that diam E = 1. The assumption dg(E,, E) — 0 implies
diam FE,, — 1. By discarding finitely many terms of the sequence {E,} we can ensure that dy(E,, E) <1/3
and diam E,, > 2/3 for all n.

Let M,, = M(ay,) and 3, = B(ay,) be as in (3.5). Theorem 3.2 yields

dist(z, Ey,) B .
< _— < . .
gn(z) < M, < diam B, ) , if dist(z, Ep,) <2/3 (3.12)
Our next step is to show that
Mudy(E,, E)P» = 0. (3.13)

Indeed, if a;, is bounded from below by a positive constant «, then M,, < M(«) and 3,, > M («), hence (3.13)
holds by virtue of dy (E,, F) — 0. Consider the case o, — 0. The logarithm of the left-hand side of (3.13)
does not exceed

384 1 1 288 '
A +loglog —- — C'log — loglog — (log —2> (3.14)
ag (7% Qp an

where A is some constant and

log(9/3)
=24—="" > 2
¢ 2log2 -

Up to a bounded additive term, the expression (3.14) simplifies to
1
(1-C/2)loglog — — —o0
Qn

which proves (3.13) in this case as well. The case when limsup «,, > liminf o,, = 0 follows by considering
subsequences.

We are now ready to prove that g, — ¢ uniformly on Q. Lemma 3.5 shows that limsup,,_, .. supg(g —
gn) < 0. Thus, uniform convergence on ) will be established once we show that

limsup sup(g, —g) <0 (3.15)

n—oo Q
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Because of (3.13), there exists a sequence of positive numbers §,, € (0,1/3] such that M, (dg(E,, E) +
8,)P" — 0. Suppose z € C is such that dist(z, E) < d,,. Since dist(z, E,,) < dg(E, E,) + §, < 2/3, we can
apply (3.12) which yields

IN

gn(2) < M, (Myn

diam FE,,

di(E, Ey) +0,\™ _
diam E,, o

(3.16)

IN

M,

where €, — 0.

If z € Q and dist(z, E) < 0, then g,(2) — g(2) < gn(2) < €, by (3.16). Since the singularity of g, — g at
oo is removable, the maximum principle shows that g, — g < €, everywhere in 2. This concludes the proof
of (3.15) and of the uniform convergence g, — g on Q.

Using the asymptotic expansion

gr(z) =log|z| — logcap(E) + o(1), 2z — oo,

we conclude that cap(E,) — cap(E).
The uniformity of convergence g, — ¢g on §2 allows us to interchange limits with respect to n € N and
z € § below: for every ¢ € 0N
lim g(z) = lim_lim gn(2) = lim lim gn(z) = lim gn(C) =0 (3.17)
where the last step uses (3.16) and the fact that lim,,_, dist(¢, E,) = 0.
Property (3.17) shows that € is a regular domain. Thus, we have gg = 0 on the complement of .

It remains to show that g, — 0 uniformly on C \ Q. The continuity of g, and the estimate (3.16) imply
In < €, on IN. By the maximum principle, g, < €, on C \ Q, which completes the proof. O

Remark 3.6. The boundedness assumption in Theorem 3.4 holds if for all sufficiently large n,

1 1 logb,

log — < — _—o’n
o8 an, — 24loglogb,

(3.18)

where b, = 1/dy(E, E,) — 00 as n — 0.
Indeed, for large n we have loglogb,, > 1, hence (3.18) implies

1 1 logb
241log — loglog — < L(log log b,, — log 24) < logb,
ap, o, log log b,,

Therefore the sequence (3.11) is bounded by 1.
4. Examples and applications

If a sequence of a,-uniformly perfect sets F,, has a, — 0 much faster than dg(F,, E) — 0, the log-
arithmic capacity of F,, may fail to converge to the logarithmic capacity of E. The following proposition

presents a concrete form of this observation.

Proposition 4.1. In Theorem 3.4, the sequence (3.11) cannot be replaced by dgy (E,, E)log «,,. More precisely,
there exists a sequence of compact sets E,, which are cu,-uniformly perfect and converge to T in the uniform
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metric in such a way that dgy(E,, E)logay, is bounded, yet the uniform convergence of Green’s functions
fails.

Proof. The idea of this example goes back to Ahlfors and Beurling [1, Theorem 17]. Given a sequence of
numbers L, € (0,7), we construct a sequence of compact subsets of the unit circle T as follows:

E,={z¢eT: |arg(z")| < L,}

where arg is the principal branch of the argument, taking values between —7 and 7. The set E,, consists of
n uniformly distributed arcs of length 2L, /n. The gaps between these arcs have length 2(7 — L,,)/n, which
implies that

w—L

dy(E,, T)=2sin

5 (4.1)
Hence E,, — T in the Hausdorff metric.

The diameter of each connected component of E,, is 2sin(L,/n) and the distance from a component
to the rest of E, is 2sin((r — L,)/n). Suppose that an annulus {z: r < |z —a| < R} separates E,.
Since the disk {z: |z — a] < r} contains a connected component of F,,, we have r > sin(L,,/n). Since also
R —r < 2sin((w — Ly,)/n), it follows that

2sin((m — Ly)/n)

<1
=t sin(L,,/n)

R
.

Hence, E, is a,-uniformly perfect with

o 2> (1 + QSins(i:EL_n/Lg))/n))l

If L,, — 0, this bound on o, is asymptotic to L, /(2).

The logarithmic capacity of the circular arc '), = {e®: |t| < L, } is equal to sin(L,,/2) (see e.g. [12, Ch. 5,
Table 5.1, p. 135]). Since the set E,, is the preimage of I',, under the polynomial z — 2", it follows that
([12, Theorem 5.2.5, p. 134])

cap B, = (capT,)/™ = (sin(L,/2))"/"

Thus, cap E,, — cap T =1 if and only if log(1/L,,) = o(n) as n — 0.

For example, the choice L, = exp(—n) results in cap E, /4 capT, which also indicates the failure
of uniform convergence of Green’s functions. With this choice we have log1/a,, asymptotic to n and
dp(En, T) < m/n by virtue of (4.1). Thus the product di(F,, T)loga is bounded. O

There remains a substantial gap between the assumptions of Theorem 3.4 and Proposition 4.1. As an
application of Theorem 3.4 we consider the NED property of Cantor-type sets. The notion of an NED set
is an important function-theoretic concept of a removability, introduced by Ahlfors and Beurling in [1]. For
example, NED sets are removable for holomorphic functions f with finite Dirichlet integral [ |f’ |2 and for
extremal distances. We do not state the general definition of NED sets here, because the following theorem
of Ahlfors and Beurling [1, Theorem 14] suffices for other purposes: a compact subset K of an interval I is
NED if and only if

cap(I \ K) = cap(I). (4.2)
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The left hand side of (4.2) is the inner capacity (2.5) of the non-compact set I \ K.

Let I = [0,1]. Given a sequence of numbers ¢, € (0,1), let Ky = I and inductively construct the sets
Ki; D Ky D ... so that K,, is obtained by removing the middle ¢,-part of each connected component
of K,,_1. The intersection K = ﬂff:o K, is a Cantor-type set which becomes the standard middle-third
Cantor set if €, = 1/3 for all n. Let E,, = I\ K,, for n =1,2,---. It is easy to show that E,, — [0,1] in the
Hausdorff distance; see the proof of Theorem 4.2 below. By the definition of inner capacity, property (4.2)

holds if and only if cap(E,,) — cap(I) as n — co. This leads us to the following result.

Theorem 4.2. Suppose K is a Cantor-type set determined by a sequence of numbers €, € (0,1) such that

, n>2, (4.3)

for some constant C < 1/(241log?2). Then (4.2) holds, and consequently K is an NED set.

Proof. Since K,, consists of 2" disjoint segments of equal length, each of them has length at most 27".
Therefore, the 27"~! neighborhood of E,, covers I. It follows that dy (E,,I) <27 "L

We claim that the set F,, is a,-uniformly perfect where a,, = %minkgn €. Since F; is an interval, it
suffices to consider n > 2. Note that the set Ej is constructed by inserting an interval in the middle of
each component of [0,1] \ Ex_1; the length of this interval is ez where £ is the length of the component.
Therefore, the distance from the inserted interval to Eji_1 is (1 — €x)¢/2. It follows that every connected
component J of the set E,, satisfies

1— o,

dist(J, Ep, \ J) < diam J. (4.4)

Qp
Suppose that a € E,, 0 < r < diam E, and the annulus {z: ar < |z—a| < r} is disjoint from E. Let k be the
smallest index such that Ejy N B(a, ar) is nonempty. If k = 1, then B(a, ar) contains [(1—€71)/2, (1 +¢€1)/2],
hence ar > € /2. And since r < diam E,, < 1, it follows that a > €;/2 > «,, as claimed.
Suppose k > 2. If B(a,ar) contained more than one component of Ej, then it would also contain a
component of Ej_; situated between those, contrary to the choice of k. Thus, the set J = Ex N B(a,ar) is
connected. Since diam J < 2a;,r, the estimate (4.4) implies

(1 —a)r <dist(J, Ex \ B(a,ar)) =dist(J, By \ J) < (1 — ayp)r,

hence o > «,,. This completes the proof that E,, is a,-perfect.

To justify the application of Theorem 3.4, we use Remark 3.6. Indeed, in the inequality (3.18) we have
logb, =log(1/du(E,,I)) > (n+1)log?2, which in view of (4.3) implies that (3.18) holds. Thus, cap(E,) —
cap(I). O
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