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JIE LIAN, University of Louisiana at Lafayette, USA
JIADONG LOU, University of Louisiana at Lafayette, USA
LI CHEN, University of Louisiana at Lafayette, USA
XU YUAN∗, University of Louisiana at Lafayette, USA

Indoor localization has played a signi�cant role in facilitating a collection of emerging applications in the past decade. This
paper presents a novel indoor localization solution via inaudible acoustic sensing, called EchoSpot, which relies on only one
speaker and one microphone that are readily available on audio devices at households. We program the speaker to periodically
send FMCW chirps at 18kHz-23kHz and leverage the co-located microphone to capture the re�ected signals from the body and
the wall for analysis. By applying the normalized cross-correlation on the transmitted and received signals, we can estimate
and pro�le their time-of-�ights (ToFs). We then eliminate the interference from device imperfection and environmental
static objects, able to identify the ToFs corresponding to the direct re�ection from human body. In addition, a new solution
to estimate the ToF from wall re�ection is designed, assisting us in spotting a human location in the two-dimensional
space. We implement EchoSpot on three di�erent types of speakers, e.g., Amazon Echo, Edi�er R1280DB, and Logitech z200,
and deploy them in real home environments for evaluation. Experimental results exhibit that EchoSpot achieves the mean
localization errors of 4.12<, 9.22<, 13.12<, 17.92<, 22.22<, respectively, at 1<, 2<, 3<, 4<, and 5<, comparable to results from
the state-of-the-arts while maintaining favorable advantages.
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1 INTRODUCTION
Indoor localization has attracted wide research attention due to its potential of facilitating a variety of applications
in smart homes such as security surveillance, elderly care, crowd monitoring, �tness tracking, etc. A report has
shown that a person may spend almost 88.9% of the day indoors [32]. Also, the market value of indoor positioning
and indoor navigation is expected to exceed $23.6 billion dollars in 2023 [18], substantiating that there is a large
demand for e�ective indoor localization technology. The commonly used localization systems based on Global
Positioning System (GPS) are not applicable to indoor environment, due to signi�cant signal attenuation when
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penetrating the wall that leads to meter-level localization error. This is unacceptably large in indoor environment,
and reducing localization error at decimeter or centimeter level is highly desirable.

In the past decade, diverse technologies have been developed for indoor localization and tracking. While exten-
sive methods have been developed for localization via camera [48, 66], motion sensor [24], inertial measurement
unit (IMU) [64], �oor sensor [33], or light sensor [17, 71], they either require a user to carry/wear sensors, or
require to purchase and deploy the dedicate devices/sensors. These methods have the drawbacks of inconvenience
for use or causing privacy issues. For example, wearable solutions may need the user to wear the device all day
for continuous monitoring. The elders, sometimes, are likely to forget to wear devices, making it unsuitable for
elderly monitoring. Also, the wearable solutions are not suitable for some scenarios, such as localizing unde�ned
people. The camera-based solution could be accurate but likely to invade the user’s privacy and make users feel
uncomfortable. The RFID localization [19, 36, 51, 53], has become popular recently due to its low cost and ease
of use. However, most RFID-based localization techniques are based on the assumption of knowing the tags’
coordinates, which is impractical. Besides, many RFID-based systems heavily rely on ideal propagation models of
RF phase or the received signal strength indicator (RSSI), which may not be feasible.

On the other hand, the radio-frequency (RF) sensing solutions leveraging the Wi-Fi and mmWave for localiza-
tion have been extensively explored, producing promising results, i.e., decimeter-level accuracy in the several
meters sensing range. However, the Wi-Fi-based solutions [1, 12, 20, 21, 41, 45, 50, 52, 60, 61] occupy the data
communication channels of 2.4GHz or 5GHz which are already crowded with data tra�c, inevitably impacting the
nearby devices to some extent, especially for those using multiple channels so as to achieve good performance. In
addition, most of such systems require regular maintenance, or some of them need specialized signals, hindering
their wide deployment. The mmWave-based solutions [14, 39, 49, 69] do not cause interference to home devices,
but they require the specialized mmWave radar which is typically expensive.
In contrast to the aforementioned solutions, acoustic sensing is promising for localization which can take

advantage of the ubiquitously available audio devices without competing for radio resources with other home
devices. The low sampling frequency of the audio signal enables signal processing to be implemented on a
smart device. Existing e�orts [7, 26, 27, 30, 35, 40, 68, 70] for human localization via acoustic sensing are device-
dependent, requiring users to carry smartphones. Although device-free (without carrying the devices) acoustic
solutions [5, 15, 31, 34, 54, 55, 65] have been proposed for tracking the movement of hand, �nger, or mouth, for
the purposes of localization, activity recognition, or authentication, their e�ective sensing ranges are extremely
limited, no more than 1 meter.
In this paper, we propose a novel device-free localization solution via acoustic sensing, named EchoSpot,

that can be implemented in the commercially available o�-the-shelf (COTS) audio devices to work in home
environments. Di�erent from the existing work, we only rely on one speaker and onemicrophone with the reliance
of wall re�ection to precisely spot a human location in the two-dimensional space. Speci�cally, we program
the audio device to control its built-in speaker to periodically emit inaudible FMCW (Frequency Modulated
Continuous Wave) signals at 18kHz⇠23kHz and use the co-located microphone to receive the re�ected signals
from objects for analysis. Based on the re�ected signals, we generate time-of-�ight (ToF) pro�le and aim to
identify the peaks corresponding to the body re�ection. By eliminating the in�uence from the device imperfection
and from the environmental objects’ re�ection, we can identify ToF corresponding to the person re�ection,
allowing us to estimate the distance between the human body and the device. To locate a person’s position, we
continue to develop a new solution to identify the ToF corresponding to the wall re�ection and obtain the path of
human-wall-device. Then, we can calculate the position information of a person in a two-dimensional space.
Considering the potential impact of the multipath e�ect, we further apply the Kalman �lter to correct the position
information. In the end, EchoSpot is implemented on the commercial speaker and microphone, and deployed in
the real home environments for performance evaluation.

Comparing to the existing approaches, our contributions can be summarized as follows.
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• We design a novel device-free localization system EchoSpot, by leveraging only one speaker and one
microphone for precisely locating a human. It is a software-based system and can be implemented on the
COTS audio devices for conducting the localization services, rendering a wider application range in the
general house environment. While leveraging the acoustic signals at 18:�I ⇠ 23:�I, it does not cause
interference to the home Wi-Fi devices and is inaudible to human.

• A collection of acoustic signal processing techniques are developed, including generating the ToF pro�le,
removing the impact from the device imperfection, environment objects, and multipath e�ect. In addition, a
new solution is also proposed to identify the re�ection path from the wall. After applying these techniques,
EchoSpot can work suitably to spot a person’s location in the home environment.

• We implement EchoSpot with the COTS speaker and microphone for proof-of-concept validation. We
conduct experiments to demonstrate that EchoSpot can work e�ectively both to locate the static per-
son and to track the moving person. Experimental results exhibit that EchoSpot can achieve the median
errors of 8.52< and 19.82< for locating the static person and the moving person, respectively, compara-
ble to the reported results from the state-of-the-art. In addition, EchoSpot achieves the mean errors of
4.12<, 9.22<, 13.12<, 17.92<,, 22.22<, respectively, at the distances of 1<, 2<, 3<, 4<, and 5<, for locating
the static person.

2 RELATED WORK
We review the state-of-the-art solutions for indoor localization that fall into three categories: 1) Sensor-based, 2)
RF-based, and 3) Acoustic sensing-based localization.
Sensor-based Localization. A number of solutions for indoor localization have been developed by relying
on camera, �oor sensor, IMU sensor, light sensor, etc. In particular, the IMU sensor-based solution [64] tracked
human motion by the captured acceleration and gyroscope data. Such methods are inconvenient and cumbersome
as they need users to wear/carry the sensors, and it is likely that users will feel uncomfortable or forget to
wear/carry the devices. Also, the IMU-based solutions could not directly provide the accurate location information,
because they need to double integration of acceleration information, which introduce large error [10]. Many
works also employed the camera for localization [2, 48, 62, 66]. However, such a method [47] highly depends on
lighting conditions and features, thus is not robust in di�erent environments. In addition, the dedicated camera is
required for localization and tracking, which will incur non-negligible costs and raise privacy concerns. The �oor
sensor [33, 38] and light sensor [11, 17, 22, 28, 56, 59] are also used for localization, but they again require the
purchase of dedicated sensors and incur considerable deployment overhead.
RF-based Localization. RF-based sensing for localization has widely attracted research attention, which
leverages the variation of RF signals. Extensive works have developed solutions by relying on RFID for localiza-
tion [19, 36, 51, 53], but they require users to wear RFID tags for detection, which is inconvenient and cumbersome.
Although some contactless methods [6, 63] have been proposed, the sensing range is limited within 2 meters.

A series of prominent solutions have been proposed for localization with Wi-Fi signals, including but are not
limited to [1, 12, 20, 21, 41, 45, 50, 52, 60, 61]. However, suchWi-Fi-based solutions occupy the data communication
channels, especially for those using multiple channels at 2.4GHz or 5GHz by design to achieve good performance,
inevitably competing for radio resources with other smart home applications. In addition, most of them require
multiple transmission links, either using custom hardware (e.g., USRP or WARP) or deploying multiple access
points (APs), to form large antenna arrays, which are typically not available at home. Moreover, custom hardware
processing (e.g., software radio) that is unavailable in commodity devices may also be required. On the other hand,
the mmWave-based solutions [14, 39, 49, 69] are also proposed for indoor location tracking, but they require
the dedicated devices, i.e., the specialized mmWave radar, for emitting the ultra frequency signals, incurring
non-negligible costs.
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Acoustic Sensing. Recently, acoustic sensing has attracted considerable interest. This line of research takes
advantage of the ubiquitous availability of speakers and microphones built in commercial devices, which is closely
related to our work. Speci�cally, some research e�orts have been undertaken to explore the device-dependent
localization via acoustic sensing [7, 26, 27, 30, 40, 68, 70]. The nature of these solutions is to locate smartphones,
requiring users to carry them to receive the acoustic signals for localization. On the other hand, some researchers
have focused on exploring the device-free acoustic sensing for activity tracking, recognition, and authorization,
which do not require users to carry sensors or smartphones. For instance, in [5, 15, 31, 34, 54, 55], acoustic
systems have been developed to track hand/�nger movement and recognize gestures by generating ultrasonic
signal from speakers; the re�ected signals from human body are captured by microphones, and the frequency
shifts/phase shifts are then analyzed. In addition, [67] analyzed the Doppler shifts of re�ected signals caused by
user’s articulatory gestures to achieve liveliness detection, while [29] further analyzed the uniqueness of Doppler
pro�les caused by mouth movement for the purpose of user authentication. BreathPrint [4] was proposed to sense
user’s breathing patterns via analyzing the re�ected acoustic signals for authentication. The aforementioned
device-free systems can achieve e�ective activity recognition, but they all require the devices to be close to the
target body part and all rely on the strict multipath assumption, which cannot support our application scenarios
at home use with the sensing range desired to be several meters. Covertband [35] implemented the device-free
localization for tracking users and capturing various categories of human motions, but its localization relied on at
least two microphones and one speaker. In contrast, our system only relies on one microphone and one speaker.
Strata [65] was proposed for tracking the �nger movement based on the phase change of a signal. It only works
within a limited range (i.e., 0.5 meters), and the proposed phase-based method is not suitable for our application
scenario since we target the room-scale localization, whereas the phase of signals can be signi�cantly a�ected
by the long-range multipath propagation. Instead, we apply the time-of-�ight (i.e., TOF) to measure the signal
propagation delay for calculating the distance. VoLoc [44] was proposed to localize a user’s voice for spotting his
position. Only when a user is talking, his location can be identi�ed; otherwise, VoLoc cannot work. This system
can be easily interfered by environmental noise, such as music playing, washer sound, refrigerator sound, and
many others. In addition, the microphone array has to be leveraged in his system. In contrast, our EchoSpot relies
on using the speaker to emit inaudible ultrasound and using the microphone to capture the re�ected signals
from the human body for localization. It is implemented on only one pair of speaker and microphone without
requiring the microphone array while being robust against environment sounds, thereby more promising.

3 SYSTEM DESIGN
In this section, we present our design of the EchoSpot system, aiming to leverage only one speaker and one
microphone available on o�-the-shelf (COTS) device as the sensing tool to implement precise human localization.
We program the audio device to control its built-in speaker to emit inaudible signals at 18kHz⇠23kHz and use
the co-located microphone to receive the re�ected signals from objects for analysis. For localization, a series of
solutions need to be developed to identify the time-of-�ight (ToF) for the signals of interests. In this context, a
number of technical challenges are encountered to be addressed, brie�y summarized as follows.

• The signal modulation is important to determine the resolution of capturing a person’s subtle movement,
which further limits localization precision. While we only rely on the COTS devices, the suitable method to
modulate the emitting signals that can be implemented on while having the potential of achieving high
resolutions for serving our purpose has to be determined, which is important while challenging.

• The received signals are weak and mix the superposition of signals re�ected from environment objects and
multipath. How to locate the signals of interest (i.e. direct re�ection) from the human body is a challenging
problem, requiring us to develop a collection of techniques for e�ectively mitigating the interference from
environment objects and multipath re�ection.
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Fig. 1. The workflow of EchoSpot.

• The target ToF can only help identify the distance of a human to the device rather than the position. In
general, multiple pairs of speakers and microphones are required to pinpoint the human position by �nding
the intersection points of their respective ellipse curves after getting the distances. However, EchoSpot
is expected to only employ one speaker and one microphone, which is more general in home devices. It
remains challenging to determine the position information in the two-dimensional space.

3.1 System Overview
Our design of EchoSpot consists of four components: Signal Generation, ToF Pro�le Generation, Localization, and
Location Correction, as shown in Figure 1. In the Signal Generation module, EchoSpot programs the speaker to
emit inaudible acoustic signals at 18kHz⇠23kHz. Speci�cally, it modulates the FMCW signal and periodically
sends FMCW chirps while using the microphone to record the re�ected FMCW signals. The sampling frequency
of the speaker is set to 48kHz. According to the Nyquist Sampling Theorem [43], the re�ected signal can be
entirely reconstructed from the recorded signals.
The signal is then sent to the ToF Pro�le Generation module to generate the ToF pro�le for further analysis.

This module contains three components, i.e., Cross Correlation, Starting Time Error Cancellation, and Interference
Cancellation. Particularly, in the �rst component, the cross-correlation is applied on the received signal and the
transmitted signal, creating the raw TOF pro�les. We next identify the starting point of the pro�le and eliminate
the starting time error caused by device imperfection. As the TOF pro�les contain peaks of static re�ections, we
cancel these peaks in the Interference Cancellation module, with the direct re�ection remained.

In the Localization module, we build a location model that utilizes the distances of direct re�ection and of wall
re�ection to calculate the location. We pick up the peaks of the human re�ection and wall re�ection from the
residual TOF pro�le after the interference cancellation aforementioned, and roughly estimate the distance to be
fed into the location model. Finally, in the Location Correctionmodule, we apply Kalman �lter to further eliminate
the potential measurement errors caused by multipath e�ect, system defects, etc., to improve the accuracy of
location estimation.

3.2 Signal Generation
In Signal Generation module, EchoSpot controls the speaker to generate the FMCW (Frequency Modulated
Continuous Wave) [3, 46] signals for sensing. In particular, it periodically transmits chirps and within the
duration of a chirp, the operating frequency keeps changing from 5min to 5max. So, for each chirp with the duration
of time ) , the frequency of signals can be expressed as

5 (C) = 5min +
⌫C

)
, (1)
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where ⌫ is the signal bandwidth, de�ned as ⌫ = 5max � 5min. The phase of the transmitted FMCW signal can be
expressed as the integration of 5 (C) over time, i.e.,

_(C) = 2c
π C

0
5 (C) 3C = 2c (5minC + ⌫

C2

2)
) . (2)

Then, the FMCW signal could be expressed as 2>B (_(C)).
After the speaker transmits the FMCW signal 2>B (_(C)), the microphone will receive a re�ected signal cos(_(C�

g)), which can be considered as a time shifted version of the transmitted one with a delay of g . Here, g is called
as the time-of-�ight (ToF), which is the time from when the signal is generated at the speaker to when the
signal re�ected from the object is received at the microphone. In FMCW signal, according to the characteristic of
frequency change, g can also be measured as follows:

g =
�5⇣
X (5 )
X (C )

⌘ , (3)

where �5 represents the frequency shift and X 5 /XC denotes the frequency shift per unit of time. Here, X 5 /XC = ⌫/)
in each time period. The distance ' for the object that causes the direct re�ection can then be calculated by

' =
2g

2
=

2�5

2
⇣
X (5 )
X (C )

⌘ , (4)

where 2 is the speed of sound.
Since the duration of each FMCW chirp is ) , the minimum frequency resolution of the FFT is 1/) . The range

resolution X', which shows the ability of FMCW signal to capture the minimum movement, is determined by the
frequency resolution. Then, we have

X' =
2/)

2
⇣
X (5 )
X (C )

⌘ =
2

2⌫
. (5)

Obviously, the range resolution is determined by the bandwidth ⌫.
Considering that the commercial microphones can only record the signals below the 24kHz and the majority

of background noises (such as human conversation, music, FM radio wave, etc.) have frequencies up to 14kHz,
EchoSpot assigns the frequency of chirp ranging from 5min=18kHz to 5max =23kHz, with the bandwidth of 5kHz.
As such, the range resolution can reach 3.42< according to Eqn. (5), giving the sound speed 2 of 340</B .

Typically, the longer the duration time ) (chirp length), the more the overlapped parts among re�ected signals,
which brings di�culty in di�erentiating them. However, the long duration would help the system to �nd the big
re�ector in the environment. On the other hand, [42] has shown that a shorter duration of FMCW can lead to
higher tracking accuracy since it will result in a smaller Doppler shift caused by the movement. But considering the
limits of home devices, if the duration time is too short, the sound energy becomes too weak so that the re�ected
signals may not be detected due to the low SNR. Hence, choosing a duration time is very important to help
identify the echo re�ected from the body. We have conducted extensive experiments in di�erent environments,
aiming to identify an appropriate chirp duration ) , which works in the home environment while minimizing the
overlapping among re�ected signals. We found that if the duration is less than 0.02B , less overlapping is observed;
if it is longer than 0.005B , the target signal is stronger to be detected. As such, we set the duration of ) as 0.01B ,
resulting in strong enough signal for detecting the target while having less overlapping from the re�ections.
For the time interval between adjacent chirps, a short one would result in a high resolution of localization.

However, the received signals may be severely a�ected by multipath e�ect from the previous chirp. On the other
hand, considering a house environment, the maximum distance from a person to the device is around 7 meters.
Theoretically, the time interval should be larger than 14m

340m/s ⇡ 41.2ms, for su�ciently receiving the re�ection
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Fig. 2. Autcorrelation of the win-
dowed signal, with less sidelobes.

Fig. 3. Autcorrelation of the unwin-
dowed signal, with many sidelobes.

signals from the body. In EchoSpot, we set the time interval to be 200<B to ensure that it is su�cient to receive
the re�ection signals while the multipath e�ect from one chirp will not impact the next chirp.
FMCW signal windowing. Inspired by [13], we then apply the Hanning window to reshape the FMCW signal
envelopes to increase the signal-to-noise ratio (SNR) by improving the peaks to the sidelobe ratio. The windowed
signal would have fewer sidelobes comparing to the raw signal without applying the window function. We
conduct an experiment to validate this point. Figure 2 and Figure 3 exhibit the autocorrelation of the windowed
signals and the raw signals, respectively. It is obvious that the autocorrelation from the windowed signal in
Figure 2 becomes stronger and has fewer sidelobes, resulting in a higher SNR. This phenomenon would be similar
when we perform the cross-correlation between the windowed signal and the re�ected signal. Fewer sidelobes
would result in a higher SNR, thus improving the accuracy.

To conclude, EchoSpotwill control the speaker to periodically send FMCWwave at the frequency of 18kHz⇠23kHz
with the time duration of 40<B for each chirp, the bandwidth of 5kHz, and the time interval of 200<B between
two chirps.

3.3 TOF Profile Generation
After receiving the re�ected signals, EchoSpot will measure the time of �ight (ToF) of the respective signals,
which will be further used to calculate the distances. Since FMCW signals range from 18kHz to 23kHz, we use
a band-pass �lter to extract the useful signals. We will �rst generate the time-of-�ight (ToF) pro�le and then
develop a series of solutions to remove the potential measurement errors from the system starting time error and
environmental interference.
ToF Pro�le. We pick up a series of # points from the transmitted signals and the received signals. Denote ECG (<)
and EAG (<) as the transmitted and received signals, respectively, at a point<. The normalized cross-correlation
is then applied to measure the similarity of transmitted signals and its =-sample shifted version of received ones,
expressed as follows:

% (=) =
1
#

Õ#
<=0 [EAG (<) � ĒAG ] [ECG (< � =) � ĒCG ]�Õ#

<=0 [EAG (<) � ĒAG ]2
Õ#

<=0 [ECG (< � =) � ĒCG ]2
 0.5 , (6)

where ĒCG and ĒAG indicate the average values of the transmitted and received signals, respectively, over the #
points. By picking up the corresponding lag of the peak on % (=), we can transform it into the ToF value, so as to
further calculate the distance value of the respective re�ection object, i.e.,

g =
=

�B
, (7)
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Fig. 4. TOF profile a�er eliminating
the time error.

Fig. 5. Denoised TOF profile, where
strong peaks represents the human
reflection. Some other multipath re-
flections from the human also remain.

where �B is the sampling frequency, which is set as 48kHz in EchoSpot.
Figure 6 shows an example of the % (=). After getting the % (=), we apply Hilbert Transform [16] to calculate

the envelope ⇢ (=) of % (=), as shown in Figure 7. where the G-axis represents the TOF, and the ~-axis represents
the cross-correlation value which measures the similarity of the transmitted and the received signals. In the
remaining of this paper, ⇢ (=) will be called as the ToF pro�le. Since we emit the FMCW signal every 200ms, each
ToF pro�le ⇢ (=) will be generated for this period.

From this step, we can roughly calculate the ToF pro�le, expressed by ⇢ (=). However, the unsychronization of
the speaker and microphone along with the environmental interference will signi�cantly a�ect the measurement
of ToF, making the ToF pro�le inaccurate.
Starting time error. Since the speaker and the microphone are co-located, the direct transmission time can be
ignored. However, due to the unsynchronization between speaker and microphone (i.e., device imperfection),
there is a certain delay for the signals to be received by the microphone. This delay is called the start time error.
Since the direct transmission signal is directly received without re�ection, it is stronger than all other re�ected
signals, allowing us to identify it by selecting the lag with the largest peak value. We denote this point as the
start time point, whose corresponding time of �ight indicates the start time error. This point has to be correctly
identi�ed so as to accurately perform the calculations in remaining steps. As shown in Figure 7, the start time
error is 0.107B . By removing the peak value before the start time point in the Figure 7, we get the TOF pro�le
without the start time error, as shown in Figure 4. In Figure 4 the lag values directly correspond to the time of
�ight of the re�ection signals, so we could use it to calculate the time of �ight.
Interference Cancellation The environment object will also cause re�ection, which thus generate a set of peaks
in ToF pro�le, misleading our selection of these re�ected signals from the human body. In Figure 4, we observe
two main peaks, however, not all of them are from body re�ection. We will show how to remove the peaks that
do not correspond to the body re�ections so as to mitigate the interference from the environment re�ection.

Since the positions of objects in a room are �xed, their respective ToF �les are relatively same within a certain
time. Hence, EchoSpot records 10 ToF pro�les in the static environment without human movement and calculates
the averaged correlation value for each corresponding lag within these 10 ToF pro�les. We use a vector p̄ to
indicate a series of averaged values corresponding to all lag points. By subtracting p̄ from the peak values of
ToF pro�le ⇢ (=), we can eliminate those peaks corresponding to the environmental interference, resulting in a
denoised ToF pro�le (Figure 5) with a vector of peak values denoted as E3 . Comparing to Figure 4, we could see
the second peak is totally removed, with only one peak remaining which is the body re�ection peak.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 113. Publication date: September 2021.



EchoSpot: Spo�ing Your Locations via Acoustic Sensing • 113:9

Fig. 6. Example of cross correlation.
0.10763 and 0.20905 indicate the start
time error and its corresponding peak
value.

Fig. 7. Example of TOF profile, where
the peaks refer to the reflections in
the environment.

In the real-world deployment, it is not necessary to let the speaker keep sending the higher power FMCW
signals for sensing. Considering that the environment state typically is static, EchoSpot can periodically transmit
high power FMCW signal for capturing the environment ToF in each 30 minutes for updating. Meanwhile,
EchoSpot can periodically (say 10B) transmit the FMCW signals at a low rate and low signal power (50% of its
working power) to sense the environment for detecting the appearance of a person. Once a person is detected
from the low power signals, it will be immediately triggered to transmit the higher power signal at a higher rate
to start working. Then, EchoSpot can perform the subtraction of the environments from the current ToF pro�les,
which can result in the pure ToF pro�les used for localization. When the person leaves the room, the re�ection
signals will become weaker, so EchoSpot will resume to the low power state.

3.4 Localization
After preprocessing in Section 3.3, we next show how to choose the correct peaks on the residual ToF pro�le for
calculating the distances, which can be eventually used for localization. Since our solution will rely on only one
speaker and one microphone, it is not su�cient to use only the ToF from a human for localization. Here, the ToF
from wall re�ection will assist us to spot a person’s location. In what follows, we will �rst show how to spot the
location of a human with the assistance of wall and then illustrate how to choose the ToFs corresponding to the
human re�ection and the wall re�ection.
Localization via One Speaker and One Microphone. We will show how to model the location of a person
when just using one speaker and microphone. We assume the distance between the wall and the device are
known, which can be obtained through the following way: letting the speaker periodically send acoustic signals
and the microphone receive the direct re�ection, then we measure the time-of-�ight from the re�ected signal
for calculating such a distance. As shown in Figure 8, the distance between the wall and the device is known,
denoted as F . ' and ( represent the person and the device, respectively. We draw a point (E in the opposite
side of the wall with a distance of F . In this �gure, (G,~) represents the relative distance of the person to the
microphone, which we aim to determine. The position of the speaker is assumed to be known, then we could
model the position of (G,~) as follows:

8>><
>>:

G2 + ~2 = 32 ,
3 + 3E = ⇡ ,
(2F � G)2 + ~2 = 32E ,

(8)
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Fig. 10. Reflection from body and
wall, the second peak is the reflection
from the wall.

where 3 is the distance between the device and the person, 3E is the distance from the person to (E . ⇡ represents
the distance from the device ( to the target ' and then to (E . This formula can be solved with solution of:

G = �⇡2+2⇡3+4F2

4F ,
~ =

p
32 � G2 .

(9)

Hence, G and ~ can be seen as the functions of ⇡ and 3 . Notably, 3 can be calculated by the ToF corresponding to
the body re�ection and ⇡ can be calculated by that corresponding to the wall re�ection through the human body.
Identi�cation of ToFs for Body Reflection. Through interference cancellation in Section 3.3, the interference
of re�ected signals from the static object has been eliminated. As shown in �gure 5, we could see a strong peak
that corresponds to the human re�ection. Hence, we can directly pick up the strongest peak E3 from �gure 5,
and treat the associated signal as being from the body re�ection. The corresponding lag value, assuming ;1, can
be used to calculate the time delay g1 and the distance 3 , i.e.,

g1 =
;1
�B
, 3 = 2 g12 (10)

However, the residual multipath re�ection will travel a longer distance and have a smaller peak value on ToF
pro�le. From the residual ToF pro�le on �gure 5, it is hard to directly pick up the peak from the wall re�ection.
Identi�cation of ToFs for Wall Reflection. We have two observations that could help us pick up the exact
location of the wall re�ection. The �rst observation is that the wall re�ection signals are strong, which may be
due to the large size of the wall, where di�erent multipath signals aggregate together on the wall, resulting in
a strong re�ection. That means the signal re�ected from the body then to the wall is detectable. The second
observation is there would be a similarity between the wall re�ection and body re�ection. When we apply the
cross-correlation, we observe a relatively small peak on the TOF pro�le at the wall re�ection distance. The small
peak means the wall re�ection is similar to the original signal. Also, the strong peak on the body re�ection means
the body re�ection is similar to the original signal. Since both the wall re�ection and body re�ection are similar
to the original FMCW signal, this further implies there would be a similarity between the wall re�ection and
body re�ection.

Based on the two observations, we propose a new solution, which can help us identify the re�ection distance
from the wall passed through the human body. We consider the human body as a virtual sender and the re�ected
signals from human body to the wall as the virtual sending signals. Due to the similarity between the wall
re�ection and body re�ection signal, we could apply the cross correlation to identify the wall re�ection signal.
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Figure 9 shows how the signal is re�ected from the body. Typically there are several paths. In the �gure, 3 is
the shortest re�ection path from the body to microphone in the horizon direction. 1 is the longest re�ection path
which is from feet to the microphone. The body re�ection signal length can be calculated as original signal length
+ (TOF of the longest path - TOF of the shortest path). Since the body re�ection signals are too long, which shall
contain the re�ection from other objects in the environment, we cannot directly take them as the virtual signals.
Instead, we only take signals at the time interval between the longest and short re�ection as our virtual signals,
to ensure that the majority are re�ected from the body.
As shown in Figure 9, the start time is determined by the shortest signal path, i.e., the distance from the

microphone to the human 3 , which has been calculated in the last step. The possible longest path can be
considered as the re�ection from the feet, with the distance denoted as 1 =

p
32 + ⌘2. If we get the height of the

speaker ⌘, we could get the length of the longest path. Then, the delay of this re�ection comparing to the shortest
path is Ĉ = 2(1 � 3)/2 . We set the duration to be around Ĉ for the virtual sending signals.

We take the FWCM signal with the duration of Ĉ and apply the cross-correlation on the received signals at the
microphone via Eqn. (6) to get a new ToF pro�le, as shown in Figure 10. Two sets of strong peaks appear on such
TOF pro�le. The �rst peak cluster can be considered as the direct transmission from the virtual sender (i.e., the
re�ection from the human body), while the second cluster can be considered as the nearby wall re�ection. We
apply the polynomial �t on the peak to estimate the body and wall re�ection location. As the �gure shows, the
orange curve is the polynomial �t curve. We take the second strongest peak on polynomial �t curve as the wall
re�ection and assume its lag value as ;2. Then, the time delay and distance (i.e., ⇡) from the body-wall-device can
be calculated as follows:

g2 =
;2
�B
,⇡ = 2g2 (11)

After having the values of 3 and ⇡ , we can apply them to Eqn. (9) and get the position (G,~) for the person '.
Notably, this solution relies on the location of wall. However, in practice, there may be two walls in the opposite

position of the person. Our solution still works as follows. Assume the distances from the device to the two walls
areF1 andF2, respectively. Through the correlation, there will be three strongest peaks in the new ToF pro�le.
While the �rst one is still the direct transmission from the virtual sender to the device, for the following two,
it is necessary to decide their correspondences toF1 andF2. We can assume the �rst one and the second one
are corresponding toF1 andF2, respectively, and use the aforementioned method to calculate two respective
positions. If the two calculated positions coincide, then we locate the person; otherwise, the �rst one and the
second one correspond toF2 andF1, respectively.

3.5 Correcting the Location
Ideally, from aforementioned steps, we should have spotted the location (G,~) of a person. However, there
may be some potential errors due to the wrong selection of peak values from the residual multipath re�ection.
Considering the characteristic of a moving person, a series of his relative positions at di�erent time points can be
traced to further correct our calculation. Here, we leverage the Kalman �lter [57] by taking into account two
consecutive measurements for correcting the current location. In Kalman �lter, we consider two consecutive
measurements and use the previous calculated location to predict the one at the next time point, which can be
modeled as follows:

x̂C = L x̂C�1 + H0C , (12)
where x̂C = [?̂C , ÊC ]) and ?̂C represents the predicted (G,~) and ÊC indicates the predicated velocity at time C . ĜC�1
represents the prediction at the time point C � 1. 0C is the acceleration speed of the moving person. We assume
the motion of a human contains both the acceleration and deceleration phases, so acceleration shall follow a
Gaussian distribution with the mean of 0. [23] suggests the maximum acceleration speed of a walking person
is 0.2g to 0.3g. As the human would have a relatively low speed in indoor environment, we choose 0.6 as the
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variance f0 roughly. Then the 0C could be represented as 0C ⇠ N
�
0,f2

0

�
. L is the transmission matrix and H is

the control matrix, which can be expressed as:

L =

1 �C
0 1

�
,H =


�C2

2
�C

�
, (13)

where �C is the elapsed time between two consecutive measurements. Denoting V C as the prediction covariance
matrix at time C and W as the covariance matrix of the acceleration 0C , we have:

V C = LV C�1L
Z + W . (14)

Notably, V C is determined by 0C . According to Kalman �lter, we have

zt = NxC + s,
XC = NV CN

Z ,
(15)

where zt = (G,~), calculated in Section 3.4, and N is de�ned as N =
�
1 0

�
, as we do not aim to calculate the

velocity. xC is de�ned as the actual location which is the hidden state. s is the observation noise of the system
that could not be directly measured. XC is the covariance matrix corresponding to (G,~).

Since zt is known, we could update the estimation by

x̂
0
C = x̂C + Q

0 (zC � Nx̂C ) , (16)

where x̂ 0
t is denoted as the updated estimation of the G,~. Q 0 can be expressed as Q 0 = V CN

Z �
NV CN

Z + XC
��1.

Through this way, we can get a better estimation of the current location. This process can be continued so that
we can have a series of new estimation of a person location at di�erent time.

4 PERFORMANCE EVALUATION
In this section, we implement the EchoSpot system and deploy it in the real home environment for experiments.
A set of experiments has been conducted and analyzed to show the performance of the EchoSpot in terms of
localization accuracy for both static and moving person at di�erent positions.

4.1 Experiments
We use one pair of commodity speaker (Edi�er R1280DB) and microphone (SAMSON MeteorMic, 16 bit, 48 KHz),
and bind them together to work as our experimental devices. The output power of the speaker is set to around
80% of the speaker’s maximum power. We measure the sound pressure level at 1 meter from the speaker, which is
45dB. The speaker is programmed as the signal transceiver to transmit FMCW signals with the carrier frequency
sweeping from 18kHz to 23kHz. The microphone works as the signal receiver to record the re�ected signals at a
48kHz sampling rate. It is connected to a laptop and uploads the re�ected signals to this laptop for processing.
Our localization algorithm is implemented on this laptop with Matlab.
For performance validation, we mark some reference points and draw one trajectory with known positions

on the �oor to serve as the ground truth. They will be used to measure the performance of EchoSpot in terms
of spotting the static locations and continuous locations, respectively. For static localization, we ask the target
person to stand on each reference point for 10B . For continuous localization, the target person will be asked to
walk along this prede�ned trajectory. We consider the following performance measurement metrics:

• Localization Error is the distance between the measured position and the ground truth reference point.
• Trajectory Error is the vertical distance between the walking trajectory and ground truth trajectory.
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Fig. 11. Averaged localization errors
at 1<, 2<, 3<, 4< and 5<.

Fig. 12. Tracking the moving trajec-
tory of a person, where the red lines
indicate the predefined rectangle tra-
jectory, serving as the ground truth,
while the irregular blue curve repre-
sents the measured trajectory by our
EchoSpot.

Fig. 13. Locating a static person at dif-
ferent reference points, where the red
points indicate the reference points
and the blue points represent the spot-
ted location by our EchoSpot.

4.2 Performance of Localization
We place the speaker to be 1002< away from the wall and 1102< height above the ground in a room.
Locating a static person.We consider the distance ranges of 1<, 2<, 3<, 4< and 5< away from the speaker, and
at each distance range, we take 10 di�erent reference points. We ask a person to stand at the 10 di�erent reference
points corresponding to each distance range and use EchoSpot to spot his position. At each reference point,
this person will stand 10B , so we can collect 50 location data at this point, giving that EchoSpot sends one chirp
within each 200<B . We calculate these 50 positions and average them to be used as the located position of this
person. Figure 11 shows the averaged localization error over the 10 reference points at each distance. Speci�cally,
EchoSpot achieves the averaged localization errors of 4.12<, 9.22<, 13.12<, 17.92<, 22.22<, respectively, at the
distance of 1<, 2<, 3<, 4< and 5<. The median error is 12.42<, which is comparable to the state-of-the-art Wi-Fi
and mmWave-based localization systems [21, 60] with median error over 232<. We observe that the localization
error grows with the increase of distance range. This is due to the signal attenuation: the longer range will result
in weak peak, making the peak selection more di�cult.
Locating a moving person. We continue to show the performance of EchoSpot for localizing a moving person.
We ask this person to walk in his natural speed and pattern along a prede�ned rectangle trajectory, indicated
by the red line in Figure 12. The microphone and speaker are placed at the coordinate of (0, 0) and the wall is
at G = �0.5. The irregular blue curve represents the measured trajectory from EchoSpot by spotting a series of
positions of the walking person. In this measured trajectory, the averaged trajectory error is 21.92<. As shown
in the �gure, when the person is far away from the wall, the trajectory error will become large. The reason is
that the wall re�ection would be weaker than that from other objects, which may result in wrong peak selection
corresponding to the wall re�ection. However, we also observe when the person walks along the wall, the
trajectory error is also relatively large. The reason is that when a person walks along the wall, the error is caused
by the arm or leg swing, resulting in the strongest peak appearing at the wrong place, leading to wrong peak
selection and a�ecting the distance estimation.

We further compare its performance to the case that the static person stands on a series of reference points on
the rectangle trajectory. In Figure 13, the red points indicate the reference points on the rectangle trajectory, and
the blue points represent the spotted locations from the EchoSpot. Figure 14 shows the CDF of the trajectory
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Fig. 14. CDF for Trajectory Error and
Localization Error.

Fig. 15. Impact of the speaker separa-
tion. Fig. 16. Impact of the device heights.

error and the localization error, corresponding to Figure 12 and Figure 13, respectively. From this �gure, we can
see the overall performance of EchoSpot for tracking a moving person is promising, even though it performs a
little worse than that in the static status. Speci�cally, the median errors are 19.82< and 8.52<, respectively, in
the walking and static status. This is due to the fact that, when walking, localization data collected by EchoSpot
at each point is much less than that at the static status. Thus, the calculation error from one location data will
signi�cantly impact the performance. However, in the static status, EchoSpot can collect 50 location data and
average them, mitigating the errors from some location data. On the other hand, the movement of the leg and the
arm will cause strong re�ection, which will lead to the wrong peak selection for wall re�ection.

4.3 Impact of Device Placement
We next conduct experiments to show the impact of device placement on the performance of EchoSpot. In a
home environment, the devices may be placed di�erently, such as on the �oor, on the co�ee table or on a desk,
with di�erent distances to the wall and having di�erent heights. We will vary the separation distance between
the wall and the speaker, and the placement height to show EchoSpot’s localization errors.

First, we place the speaker at a 1002< desk and examine the impact of the distance between wall and speaker.
We let a person stand on four reference points on the straight line with 1<, 2<, 3<, and 4< away from the speaker.
At each point, the person will stay for 10B , so that EchoSpot will get 50 position data and average them. Figure 15
plots the localization errors with di�erent separation distance between the speaker and the wall. From this �gure,
we can see the localization errors decrease �rst and then grow up at each distance range (i.e., 1<, 2<, 3<, and
4<). The lowest localization errors are all achieved at the separation distance of 1002<. We notice that when the
separation distance is small, the error is relatively high. The reason is that, according to Eqn. (9), a small distance
(i.e.,F ) between wall and speaker will enlarge the distance estimation error of ⇡ , which thus will result in a large
G . On the other hand, we observe that the localization error will slightly increase when the separation distance is
more than 1002<. The reason is that when the separation distance increases, the signal path with respect to the
wall re�ection will become longer, leading to more attenuation of the re�ection signals. The peak value from the
wall re�ection will become smaller, making the peak selection incorrect.

Next, we use the same setting as the above experiment, except for �xing the distance between the wall and the
speaker as 1002< and varying the height of the speaker from 02< to 1002<. Figure 16 shows the localization
errors at the distance ranges of 1<, 2<, 3<, and 4< with respect to di�erent heights of the speaker. From this
�gure, we can see the localization errors drop with the increase of height. Speci�cally, when placing the speaker
on the ground, the shortest re�ection is from the leg or feet. From Section 3.4, we know the duration of the virtual
signal is determined by the height of person or height of the device. When the device’s height is larger than the
half of the person’s height, the duration is determined by the height of device and could be calculated through
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Fig. 17. Impact of the moving speed. Fig. 18. Impact of di�erent environ-
ments. Fig. 19. Impact of the Kalman filter.

the device’s height and shortest path. Otherwise, we could not accurately measure the duration, leading to the
wrong selection of wall re�ection.

4.4 Impact of Moving Speed
For the moving person setting, we further examine the impact of the walking speed to the localization accuracy of
EchoSpot. We consider a person walking at a very low speed, at his normal speed, and at a high speed, respectively,
toward the speaker from 4< to 1<. Figure 17 shows the quartiles �gure under three walking speeds. The green
point is the mean error and the orange horizontal line is the median error. The maximum point represents 90th
percentile error, and the minimum point represents the minimum error. The upper quartile represents 75th
percentile error, and the lower quartile represents 25th percentile error. From this �gure, we can see EchoSpot
has the averaged error of 13.12< at a very low speed, which increases to 19.22< and 26.62< at the normal
and high speeds, respectively. The median errors are 13.82<, 18.52<, 25.72< and the 75th percentile errors are
17.12<, 23.22<, 32.82<, corresponding to the three walking speeds. Obviously, the error of EchoSpot increases
with the high walking speed, because when a person moves faster, the arm swing or leg swing will have more
impact on the peak selection.

4.5 Performance at Di�erent Room Layout
We also deploy EchoSpot in three rooms with di�erent layouts to show its performance. In all three rooms, the de-
vice is placed at 1102< height and at 1002< away from the wall. A person moves from 4< to 1< toward the speaker.
Figure 18 shows the localization errors at each room. At three rooms, the mean errors are 15.52<, 14.82<, 18.92<,
the median errors are 15.52<, 13.82<, 15.72<, and the 75th percentile errors are 21.52<, 21.92<, 23.22<, respec-
tively, without signi�cant change. This set of experiments demonstrate the robustness of EchoSpot in di�erent
layout environment.

4.6 Impact of Di�erent Devices
We evaluate the Echospot on various speakers, represented by Speaker 1 (Edi�er R1280DB), Speaker 2 (Logitech
z200), and Speaker 3 (Amazon Echo), to show that Echospot does not rely on speci�c hardware. We tune the
volume of these speakers so that they have similar transmission power. The Amazon Echo is connected via
Bluetooth pairing, which may occur a certain latency. But notably, our Starting Error Cancellation module in
Section 3 could eliminate such a latency. For each speaker, we use the same frequency, i.e., 18 � 23:⌘I. We draw
the CDFs of each device as shown in Figure 24. The median errors for speaker 1, speaker 2, and speaker 3 are
16.52<, 17.92<, and 20.42<, respectively. We could observe a similar trend on these CDFs. Notably, our system on
Amazon Echo achieves slightly worse performance than that on Edi�er R1280DB and Logitech z200. The reason
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Fig. 20. Spectrum in the
human talking environ-
ment.

Fig. 21. Spectrum in the
environment playing nor-
mal music.

Fig. 22. Spectrum in the
environment playing
rock music.

Fig. 23. Spectrum in the
environment washing
the utensils.

is that Amazon Echo generates the ultrasound to all directions, so the received signals will mix the re�ection
signals from di�erent directions. This results in a relatively low SNR for the target signals, deteriorating the
localization accuracy. Also, we could see the maximum tracking error is about 40cm. This is close to the width of
the human body, so such an error is acceptable when tracking a person. The similar CDFs on di�erent devices
implies that our system is robust against device heterogeneity.

4.7 Impact of Noise
We continue to conduct experiments to evaluate the performance of Echospot under di�erent types of noise:
human talking and playing music. The source of noise is 0.5m away from the system. Figure 25 shows the errors
under the silent, human talking and playing music environments. From the �gure, we observe EchoSpot performs
similarly in the three environments, having the 75th percentile errors of 21.52<, 23.42<, 22.62<, respectively. The
mean errors are 18.12<, 19.52<, 18.92<, respectively. The median errors are 18.52<, 19.22<, 18.72<, respectively.
Thus, we can conclude that these audible noises can only slightly a�ect EchoSpot. The reason is that EchoSpot’s
working frequency is higher than the noise level. To validate this point, we generate the spectrum under the
scenarios of human talking and playing music when no human exists. Figures 20 and 21 show the respective
spectrum, which clearly show that all generated noises are much lower than 20khz.
We continue to consider more real scenarios when playing the rock music and washing the utensils in the

apartment. Figures 22 and 23 show their respective spectrum. From the two �gures, we could see sounds generated
from these noise sources are still much lower than our working frequency, which shall have no overlapping
with our Doppler shift frequency and can be easily subtracted via EchoSpot. This further demonstrates that our
EchoSpot is robust to the environmental noises.

4.8 Impact of Location Correction Module
We conduct experiments to validate the importance of Location Correction (Kalman �lter) module in our system
by comparing EchoSpot’s performance with and without this module. We ask a person to walk at his normal
speeds towards the speaker from 4< to 1<. Figure 19 compares the localization errors of EchoSpot without and
with the Kalman �lter. From this �gure, we can observe the 75th percentile errors of the two cases are 27.32<
and 21.52<, respectively. The mean errors are 22.92< and 18.12<, respectively. The median errors are 21.62<
and 18.42<, respectively. Such performance results indicate that this module is important to improve our system
performance.

5 DISCUSSIONS
EchoSpot aims to demonstrate the feasibility of only using one speaker and one microphone to perform acoustic
sensing for precise human localization, with the e�ective working range to be several meters. Notably, it is
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Fig. 24. Impact of the device. Fig. 25. Impact of the noise.

not necessary to keep EchoSpot always on. In practical deployment, we can let it continuously play the low
energy ultrasound sound to sense the TOF pro�le of the re�ected signals and then compare the ToF pro�le to the
prerecorded environment ToF pro�le. Only once the di�erence between them reaches to a certain level, indicating
that a moving object is detected, EchoSpot is triggered to generate the normal power ultrasound signals.
The current design of EchoSpot still has some limitations in the practical deployment. We brie�y discuss

some of them and leave the exploration in our future work. First, EchoSpot is sensitive to the complex indoor
environment, whereas the multi-path re�ection from di�erent furniture may signi�cantly degrade the localization
performance, requiring to have the strong interference cancellation technologies for processing. Besides, the
device placement also plays a key factor to impact EchoSpot’s performance. As shown in Section 4.3, when the
separation distance between EchoSpot and the wall is large, or the height of EchoSpot is low, the performance of
EchoSpot will drop. To be robust to device placement, one plausible solution is to modulate the signals to contain
the correlation after a long propagation, for example, generating OFDM symbol as the transmitted signal. This
allows us to keep detecting the clear wall re�ection, even when there is a large separation between the wall and
EchoSpot. Another solution is to increase the signal’s volume to enhance the signal strength. To eliminate the
in�uence of device placement height, we can get a human’s height information and obtain the re�ection from
head for better estimating the duration of the virtual sending signals.

Second, the performance of EchoSpot is a�ected by the target speed. As shown in Section 4.4, when the target
has a high moving speed, the performance of EchoSpot will drop. To address this issue, one plausible solution is
to send more FMCW signals per second so as to obtain more sample points of the walking trajectory, which can
help reduce the calculation error to a certain extent. However, a short time interval between consecutive FMCW
signals would increase the in�uence of multipath e�ect, i.e., the multipath e�ect from the previous FMCW signal
would severely a�ect the ToF pro�le corresponding to the current FMCW signal. This requires us to develop a
new interference cancellation method to eliminate multipath interference.

Third, the current design of EchoSpot can only locate one person each time, while the multi-person localization
remains open and challenging. If there are multiple people in the environment, it is challenging to pinpoint the
re�ection peak corresponding to each person. One possible solution is to apply the machine learning method.
Due to di�erent heights and contours among people, there exist notable di�erences between di�erent person’s
virtual signals. The wall re�ection is caused by the re�ection of the virtual signal, thus the di�erence among
wall re�ections should be similar to the corresponding virtual signals. We could learn features to evaluate the
similarity of the wall re�ections and virtual signal to identify the corresponding peaks.
Fourth, our system is based on the ultrasonic signal. A concern is that ultrasonic signals may a�ect brain

activity, which is called hypersonic e�ect [37]. The hypersonic e�ect sometimes would relax the person, and the
side e�ect of ultrasound is still questionable. Existing works [8, 25] also provided di�erent safety guidelines of the
ultrasound. Among them, 70 dB is the most strict guideline. On the other hand, [58] pointed out that the COTs
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devices have limited ability to play the ultrasound. According to these existing studies, we believe our sound
pressure level 45dB (complying with the safety guidelines) played by the COTS devices, has no harm to humans.
Lastly, EchoSpot may be a�ected by the temperature, considering the slight change of the speed of sound.

According to [9], the relationship between temperature and sound speed can be modeled by E = 331 + 0.6⇤T,
where T is the celsius temperature. From this equation, we can see a 5-degree temperature variation will lead to
the 3</B sound speed change, which can impact the performance of our system to a certain extent if we cannot
adapt to the new speed. But we would like to argue that, our system targets at the indoor localization, which
typically has the A/C to maintain the stable temperature. Hence, the temperature variation can be ignored. On
the other hand, since most smart devices have the built-in thermometers and hygrometers, we can incorporate
their sensing into our system for adaptively adjusting the sound speed being used.

6 CONCLUSION
This paper proposes a novel device-free indoor localization system, EchoSpot, that leverages only one speaker
and one microphone for localization via acoustic sensing. While controlling the speaker to emit the FMCW
signals and using the co-located microphone to record the re�ected signals, we develop a series of solutions for
e�ectively processing to identify the ToF pro�le corresponding to the body re�ection. Meanwhile, we propose a
new approach by considering the body as sending virtual signals to identify the ToF pro�le corresponding to
the wall re�ection. In the end, we calculate the position based on the two re�ections and then further correct it
using the Kalman �lter. Through implementing EchoSpot in the commercial device and conducting extensive
experiments, we exhibit that EchoSpot can achieve promising localization accuracy, comparable to the state-of-
the-art RF-based methods. In addition, it possesses salient advantages, including but are not limited to: 1) it is a
software-based system that can be self-installed in COST audio devices; 2) it emits inaudible acoustic signals,
which does not generate noise in a house; 3) it does not occupy the communication channels which thus has
no interference to home Wi-Fi devices; 4) it cannot be a�ected by the lighting condition; 5) it does not require
multiple receivers or transceivers.
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