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Fall Detection via Inaudible Acoustic Sensing
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The fall detection system is of critical importance in protecting elders through promptly discovering fall accidents to provide
immediate medical assistance, potentially saving elders’ lives. This paper aims to develop a novel and lightweight fall detection
system by relying solely on a home audio device via inaudible acoustic sensing, to recognize fall occurrences for wide home
deployment. In particular, we program the audio device to let its speaker emit 20kHz continuous wave, while utilizing a
microphone to record re�ected signals for capturing the Doppler shift caused by the fall. Considering interferences from
di�erent factors, we �rst develop a set of solutions for their removal to get clean spectrograms and then apply the power
burst curve to locate the time points at which human motions happen. A set of e�ective features is then extracted from the
spectrograms for representing the fall patterns, distinguishable from normal activities. We further apply the Singular Value
Decomposition (SVD) and K-mean algorithms to reduce the data feature dimensions and to cluster the data, respectively,
before input them to a Hidden Markov Model for training and classi�cation. In the end, our system is implemented and
deployed in various environments for evaluation. The experimental results demonstrate that our system can achieve superior
performance for detecting fall accidents and is robust to environment changes, i.e., transferable to other environments after
training in one environment.
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1 INTRODUCTION
Fall is one of the most common cause of serious injury for elders. Each year, 3 million older people would be
treated in hospitals due to falls [7], in which fractured bones and soft tissue injuries caused can lead to the death.
The report from [5] has shown that lying on the �oor for a long time after the fall may aggravate the injury.
Given this consideration, the development of e�ective fall detection systems has attracted growing research
attention in recent years, aiming to promptly discover the fall events of elders for needed immediate medical
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assistance. Such a system is important to enable rapid intervention and mitigate possible serious consequences
resulting from falls, desirable for home deployment to protect elders’ safety.

Diverse fall detection systems have been developed to serve this purpose for years, and they can be categorized
into two types: wearable detection systems and non-wearable detection systems. Among wearable systems, a
range of solutions have been proposed, based on accelerometers and gyroscopes [18, 34], RFID [10, 38], and
smartphones [1, 9]. However, this line of solutions require the elders to wear the sensors or carry a smartphone
using its built-in sensors to identify the fall events with high accuracy, albeit inconvenient. Given the elders may
forget or be reluctant to wear/carry the sensors/devices, the non-wearable based solutions are more attractive, with
a set of solutions being developed based on Wi-Fi, radars, and cameras. However, several limitations in existence
restrict the wide deployment of these solutions. Speci�cally, WiFi-based solutions [32, 43, 51, 55] typically need
to analyze CSI signal to extract features for the fall activities, usually calling for hardware level support to incur
high cost and development overhead. In addition, this category of solutions occupies the communication channels
on 2.4GHz or 5GHz, which competes for the channel resources with other Wi-Fi devices to degrade the quality of
data communication. The radar-based solutions [5, 12, 36] is promising, but they require to purchase an often
expensive radar device. The vision-based solutions [8, 19, 41], could also achieve high accuracy, but it would raise
serious privacy concerns. The acoustic-based solutions have been proposed in [21, 35, 39], and they detect the
fall by extracting Mel-Frequency Cepstral Coe�cients (MFCC) [44] through the fall sound. Unfortunately, such
solutions could be a�ected adversely by other acoustic sounds in the environment.
In contrast to existing solutions, we aim to propose a lightweight and convenient solution by leveraging the

home audio device to emit the ultrasonic sound for sensing fall occurrence events, applicable for home use.
Speci�cally, we control the speaker of an audio device to generate 20kHz ultrasonic signals inaudible by humans
while using the equipped microphone to receive re�ected signals for analysis. Since motions of a human in
general will cause the Dopper e�ect of re�ected signals, i.e., the frequency changes corresponding to di�erent
human activities to yield certain enclosed patterns, this allows us to detect the fall event through analyzing
patterns in the re�ected signals. Indeed, existing work based on Doppler radar [5, 12, 36], has demonstrated that
human falls can be detected via analyzing the Doppler signals. This inspires us to investigate the fall patterns out
of the Doppler e�ect of acoustic signals, distinguishable from other daily activities.

Our design relies only on one speaker and one microphone equipped in a typical audio device to achieve our
goal. The speaker would generate a sequence of 20kHz continuous wave, and the microphone would record
the Doppler signals for analysis. One key challenge here is that the signals include responses not only from
human falls but also from other human activities or object re�ection. Thus, it is necessary while challenging to
develop a series of signal processing solutions and perform the �ne-grained analyses to extract the desirable
signal patterns corresponding to falls and the features representing their characteristics. We �rst apply Short
Time Fourier Transform (STFT) for computing the spectrogram of received signals and then develop a collection
of solutions to remove the interferences caused by di�erent factors, i.e., direct transmission, environmental
re�ection, and system imperfection, resulting in the pure fall signals. The Power Burst Curve (PBC) is then
applied to the spectrogram for automatically detecting human motions from a sequence of received signals,
where the start and the end points of the falls, if any, can be identi�ed to indicate fall duration time. After that,
the e�ective features are extracted so as to represent the fall patterns. We continue to apply the Singular Value
Decomposition (SVD) to reduce the feature dimension to 1, so as to input to a Hidden Markov Model (HMM) for
training. Notably, the selection of SVD and HMM methods is mainly due to their low computational complexity
and few parameters involved, since we aim to deploy our system in commercial smart home devices with limited
processing capabilities. For example, the SVD is a simple and quick way for the feature reduction, while HMM
has a few parameters but is su�cient to tackle our binary classi�cation problem. Our system is implemented and
deployed in practical house environments for evaluation. The experimental results demonstrate that our system
can achieve superior performance for fall detection and it is robust to environmental changes.
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Our contribution can be summarized as follows:

• To the best of our knowledge, we are the �rst to explore fall detection via ultrasonic sensing, by leveraging
an existing home audio device, requiring no dedicated devices or the specialized changes on hardware. Our
system is operated at the 20kHz ultrasonic band, imperceptible to humans and also interference-free to
Wi-Fi devices.

• We design a series of solutions for e�ectively processing the acoustic signals and extracting the salient
patterns. Speci�cally, a set of interference cancellation solutions are designed to eliminate various noise or
interference, for obtaining the desired signals that include only clear human activity patterns. We extract a
set of e�ective features and then apply SVD to further reduce their dimensions so as to retain the useful
information, for inputting to a HMM model to train.

• Extensive experiments are conducted in di�erent environments, demonstrating that our system can achieve
superior performance in detecting the fall and distinguish it from other normal activities. In addition, we
show the transferability of our system, i.e., the model trained in one environment (or frequency) can be
applied directly to other environments (or other inaudible frequencies) without noticeable performance
degradation.

2 RELATED WORK
Our work closely relates to two research directions: 1) fall detection and 2) acoustic-based sensing. We review
the state of the arts as follows.

2.1 Fall Detection
Fall detection has attracted considerable interests in healthcare in the past decade. Roughly, the fall detection
systems can be classi�ed into two categories: wearable sensor-based systems and non-wearable systems.

Wearable solutions are typically based on accelerometers and gyroscopes [18, 34], smartphones [1, 9], RFID [10,
38], etc. These systems can work when users who wear/carry speci�c devices. In addition to their inconvenience,
wearable-based solutions tend to have limited deployment due to the memory decline of the elders that make
them forget to wear/carry the sensors/devices. In addition, some older people feel uncomfortable to wear the
devices and will be reluctant to use them at home [61].

On the other hand, non-wearable technologies overcome the aforementioned limitations, enabling continuous
fall monitoring without the need to wear/carry devices. Di�erent categories of non-wearable solutions have been
designed, including camera-based, radar-based, ambient-based, and Wi-Fi-based approaches. The camera-based
system [8, 19, 41] leveraged a camera to capture the photos or video sequences of human activities and developed
activity classi�cation algorithms for discovering the fall events. However, it has been well known that this
line of solutions will invade people’s privacy, su�er from occlusion, and require intensive computation cost
for real-time processing. The Doppler radar-based approaches [5, 12, 36] can directly measure motion velocity
by leveraging the Doppler frequency relationship, but they require dedicated radar devices that work in high
frequency bandwidth to achieve high resolutions. Meanwhile, ambient-based approaches have been proposed
to monitor the sound of fall for detection. In [21, 35, 39], the MFCC features of fall sound were extracted and
then processed by the machine learning classi�er. However, these solutions rely on audible sounds, which could
result from many daily activities, such as playing music, talking, etc., to yield degraded performance and be
environment-speci�c.
The Wi-Fi-based sensing has become popular in recent years, with many solutions being proposed for fall

detection. For example, some systems measure the fall based on the changes of the received signal strength
indicator (RSSI) [14, 16, 23]. However, such RSSI-based solutions are not easy to deploy due to the requirement of
sensors and the detailed �ngerprinting of environment. In addition, the CSI-based solutions [32, 43, 51, 55] have
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been proposed, utilizing the Short Time Fourier Transform (STFT) or the wavelet transformation to estimate fast
changes in the RF signals. For example, WiFall [55] leveraged the CSI amplitude related time domain features to
characterize falls of a single person. RTFall [51] took into account both CSI amplitude and CSI phase while Fallde�
[32] extracted a set of features from the CSI, to characterize the fall activity. However, Wi-Fi-based solutions
require certain hardware changes for receiving the CSI signals. They also occupy the data communication
channels, inevitably causing interference to home Wi-Fi devices.

2.2 Acoustic Sensing
Recently, acoustic sensing has also attracted wide attention, and it can be categorized into two lines of research.
The �rst research line is device-dependent, requiring users to hold a device for sensing. Solutions [24, 48, 59, 60]
have been developed for motion tracking. Relying on the low propagation speed of acoustic signals, they could
achieve high accuracy. The core idea is to estimate the phase change of the signals from the transceiver to
calculate the distance. But the nature of these systems is to track the device movement via acoustic signals, rather
than a human activity.
The other research line is device-free, freeing the user from carrying a device for sensing. Recent works

[26, 27, 40] have shown that acoustic sensing with the FMCW signals can achieve the high accuracy in terms of
respiration sensing with a limited range (i.e., about 1 meter). However, the FMCW signal is unsuitable for use in our
system. Notably, our system relies on analyzing the Doppler shift signals for detecting the fall occurrence. Since
the FMCW signal continuously swipes its frequency, the multi-path re�ection signals in the room environments
will somewhat overlap with the Doppler signals caused by the fall in the frequency domain. Hence, it is di�cult
for our system to remove the re�ection signals for acquiring the Doppler signals due to fall events.

Acoustic signal has also been used for gesture recognition [13, 37, 54], in which the Doppler shifts are leveraged
from inaudible acoustic transmissions for recognizing di�erent hands movement patterns and gestures. However,
such designs require hands to be close to the mobile devices. Some systems [28, 42, 52] also have been developed
to perform contactless tracking via acoustic signals. The basic idea of these systems is to generate the special
modulated signal such as the OFDM symbols for measuring the distance between the target and the transmitter
by the Time of Flight (TOF) or the phase changes of re�ected signals. However, their sensing ranges are usually
limited within one meter, unsuitable for home applications. A recent work RTrack [25] enables the room-scale
hand motion tracking by combining the signal from a microphone array with a series of signal processing
techniques and an RNN. Requiring a microphone array, it is not pervasive at home for AOA measurement, and
its performance tends to be a�ected by the microphone layout.

In addition, some systems focus on human activity recognition. For example, covertband [29] enables activity
recognition by the inaudible OFDM symbols. It employed a smart speaker as the transceiver and two microphones
as the receiver for identifying rhythmic motions such as jumping, pumping arms, or pelvic tilts, by analyzing
OFDM symbols’ correlation pro�le. However, fall detection is not considered in its design. Separately, other
systems [4, 53, 57] can identify human’s gait patterns from Doppler signals via extracting a set of features to
train a machine learning classi�er. Our design of e�ective fall detection via acoustic sensing is inspired in part by
them.

3 PRELIMINARIES
We brie�y present the preliminary knowledge and necessary background below.

3.1 Acoustic Sensing
In acoustic sensing, acoustic signals re�ected from a moving object yield a frequency change, called the Doppler
e�ect. The frequency shift is determined by the source frequency and the velocity of a moving object. Denote 5C
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(a) Fall (b) Sitting down

(c) Standing up (d) Jumping

Fig. 1. Spectrogram of di�erent activity

as the source frequency emitted from the speaker and 5A as the perceived frequency at the microphone, then the
Doppler shift phenomenon can be modeled as

5A = 5C ·
✓
2 + E · cos\
2 � E · cos\

◆
, (1)

where 2 is the sound speed in air, E is the human motion velocity, and \ is the angle between the motion and the
beam of signals.

3.2 Disparate Pa�erns between Falls and Other Activities
Since we rely on the Doppler signal to detect falls, we should examine if there are disparate patterns between the
falls and other activities. We leverage a speaker on an audio device to emit continuous wave at 20kHz and use its
microphones to receive the re�ected signals. One participant is asked to perform di�erent actions in front of
the audio device, like falls, walking, sitting, jumping. Figure 1 shows the spectrograms corresponding to four
activities. Note that these �gures have been processed by our interference cancellation methods, to be introduced
in Section 4.2. From this �gure, we can see di�erent activities will result in total disparate patterns, making them
distinguishable through analysis. Speci�cally, we observe the fall usually happens with a sharp burst, comparing
to walking and sitting. This is due to the relatively high body moving speed caused by fall. For both walking and
sitting, their resulting peaks are slower and wider. Although a jump also results in a sharp peak, it is followed
by a set of small peaks, corresponding to a series of actions from landing to restoring balance. This experiment
con�rms the possibility of designing a solution for correctly distinguishing the fall from other normal activities
via acoustic sensing, making our fall detection system work. It also gives insights for the nature of our system
design, as detailed in Section 4.
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Fig. 2. The workflow of our fall detection system.

3.3 Hidden Markov Model
Hidden Markov Model (HMM) [15, 22, 45] is a double random process, in which each hidden state (human motion
state) has a translation probability to the following hidden state and a probability distribution related to the
possible observable state. HMM provides an approach to infer hidden states from the observation sequence. In
our context, fall events can be modeled as transitions of human motion states in HMM. The hidden states related
to states in a human fall include balance, losing balance, impact with �oor or other lower object, and stabilization
after impact. The observation sequence refers to the features extracted from the fall’s doppler signal. Based on
signals, HMMs are able to infer the hidden states during the fall, providing a better description of the fall and
yielding more accurate recognition.

4 SYSTEM DESIGN
This section illustrates our design of the fall detection system via inaudible acoustic sensing. We control the
speaker to emit continuous ultrasound signals while letting the microphone record the re�ected signals. By
conducting a series of �ne-grained processing and analyses on the re�ected signals, our system can identify
the signal of interest and is capable of extracting the desirable features, realizing the fall detection goal. Many
technical challenges exist in the design of our system, including but not limited to:

• The received signals contain intensive interference coming from the object re�ection, multi-path and/or
system defection, which can substantially distort the desirable signals re�ected from the human fall events.
Sometimes, the energy level of such interference even exceeds that of the signal of interest. It is necessary
to develop a collection of solutions to eliminate them for gaining the pure signals resulting from fall events.

• To recognize fall events, the e�ective features should be extracted from the signals. However, the fall events
are diverse which can happen at di�erent directions, resulting in disparate patterns. How to extract a set of
features for characterizing all di�erent fall actions with disparate patterns is a challenging task. Essentially,
we aim to make our detection system be robust to di�erent fall direction changes. On the other hand, the
fast attenuation of acoustic signals will result in fall’s pattern unapparent, further elevating di�culty in the
feature extraction task and thus hindering the development of an e�ective detection system.

• The received signals also contain some from other irrelevant activities, such as walking. Typically, the
fall mostly happens when a person is walking. This brings a high requirement for our detection system,
which should be able to correctly detect the onset of a fall in a sequence of received signals. In addition,
some actions such as sitting down, standing up or jumping also have similar patterns as the fall. How to
distinguish them from the fall remains challenging.

Before we elaborate our detailed design, we give an overview of our system, consisting of six key modules:
Sensing, Signal Processing, Motion Locating, Feature Extraction, Feature Reduction and Classi�cation, as shown in
Figure 2. In the Sensing module, the system programs the built-in speaker in an audio device to emit inaudible
acoustic signals and uses its microphone to collect re�ected signal for analyses. In the Interference Cancellation
module, we develop solutions to cancel the interference from environment re�ections and system defects to get a
clean spectrogram for analysis. The Fall Locating module will apply the Power Burst Curve (PBC) to locate the
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fall event or other motion events from the signals. In the Feature Extraction module, a set of e�ective features that
characterize the fall events will be identi�ed and extracted from the spectrogram for classi�cation. Then, new
solutions based on the SVD decomposition and the K-means algorithm will be designed to reduce the feature
dimension and cluster the data, respectively, for getting rid of the redundant features and determining the hidden
state numbers in the Hidden Markov model (HMM), required by the Feature Reduction module. In the end, the
Recognition module takes the data to train a HMM for classifying the events as falls or non-falls.

4.1 Sensing
We program the built-in speaker in an audio device to emit continuous inaudible acoustic signals at 20kHz. Once
the signal is re�ected from the human motion, the Doppler e�ect will be generated for making the frequency shift.
The microphone is used to collect Doppler e�ect signals with a sampling frequency of 48kHz, which ensures
it is twice higher than the highest Doppler shift frequency. Notably, it is not necessary to let the speaker keep
sensing. We can program the speaker to periodically send low power 20kHz ultrasound when there is no human
motion in the room. Once the microphone senses a certain sound pressure level between 19kHz and 21kHz, our
fall detection system will be triggered to emit the ultrasonic signals with normal power.

After receiving the re�ected signals at the microphone, we generate its spectrogram for analysis, via applying
the short-time Fourier transform (STFT). In particular, the sequence of original signals is sliced by a set of small
windows, each with a length of 0.4s while any two consecutive windows have 95% overlapping. As such, a 1B
signal sequence would be sliced into 50 frames. Then we multiply each frame by a Hamming window, and apply
an 8192 point Fast Fourier transform (FFT) on each frame. That is, we divide each frame into 8192 sub-bands,
which produce a frequency resolution about 2.5Hz. After the above process, we construct a spectrogram for
further analysis.

4.2 Interference Cancellation
Since the speaker is omnidirectional, the received signal will contain not only the desirable signals, but also many
interferences. In our experiments, we observe three types of interferences resulted from 1) direct transmission,
2) environment re�ection, and 3) system defects. The �rst interference type represents the signals directly
transmitted from the speaker to the microphone. Since the speaker and the microphone are co-located, such an
interference will dominate the spectrogram. The second interference type is caused by the re�ection from the
environment objects. The last one is the noise generated due to the imperfection of devices.

We notice that the direct transmission and the environmental re�ection are static over time. So, to remove the
direct transmission noise, we can simply remove the energy on the spectrogram between 19.99kHz and 20.01kHz.
While the environmental re�ection can be considered as the stationary noise, we can remove it by using spectral
subtraction. To eliminate it, we enable the microphone periodically to record environmental re�ection when no
people is moving in the room. We also notice that such a re�ection varies only slightly with time, so we could
apply it to the whole signal in the same environment. We perform the STFT on the recorded re�ections to get the
noise spectrogram, and then subtract it from our spectrogram. Through the two steps, the direct transmission
and the re�ection of static objects could be completely removed.

The system defects will cause a certain level of noise, with one example shown in Figure 3, from which we can
see noise points spreading on the spectrogram. This type of noise appears even when there is no activity happens.
Our experiments show that the energy level of the system defect can be modeled as a Gaussian distribution. We
record the amplitude of noise at high frequencies (higher than 20.6kHz) of the spectrogram and construct a noise
histogram of amplitudes. A threshold #C needs to be set for removing the noise. Assume ` and f are the mean
and the standard deviation of the Gaussian approximation of the noise histogram, respectively, then we can
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Fig. 3. Noisy spectrogram. Fig. 4. Denoised spectrogram.

calculate them directly from this histogram. Hence, the threshold #C can be calculated by:

#C = ` + f (2)

We then apply the threshold #C to the spectrogram, yielding:

( (5 , C) =
⇢
( (5 , C) if ( (5 , C) � #C

0 if ( (5 , C) < #C
(3)

where ( (5 , C) represents the power at frequency 5 and time C on the spectrogram. This step will retain the points
on the spectrogram with their energy levels greater than the threshold.

Figure 4 shows the spectrogram after the above three-step process, observed to retain only the Doppler signals
and demonstrating the e�ectiveness of our interference cancellation methods.

4.3 Motion Locating
After canceling the interference, we obtain a clean spectrogram. Since the spectrogram in general contains
information about a sequence of events, with fall occurrences possibly accounting for a small fraction, it is
highly desirable to locate the onset of any human motion, if present, from the spectrogram, instead of processing
the spectrogram as a whole, to lower the processing time. Note that a fall event belongs to one kind of human
motions, which may also include other activities such as walks, jumps, sit-downs, etc. Thus, the next key step is
to locate the starting and end points of a human motion in the spectrogram. Considering that the motion involves
a set of limb movements, a series of high frequency will result due to the Doppler e�ect. This can be observed
as a power burst on the spectrogram. The power burst curve (PBC) is then applied to locate the motion, where
PBC represents the summation of signal power within a speci�c frequency range between frequencies 5; and 5D .
Taking the positive frequency (frequency higher than 20kHz) as an example, the Power Burst Curve (PBC) could
be represented as:

%⌫⇠ (C) =
5D’

5 =5;

|( (5 , C) |2 . (4)

Here 5; = 20.01:�I, is the lower frequency band after eliminating the direct transmission noise and the 5D is the
upper frequency band which can be set to 20.6:�I or higher. The energy components in this frequency range
include the large re�ection from the body. On the other hand, we set up a threshold value, i.e., %⌫⇠C⌘ , in this
frequency range, calculated by

%⌫⇠C⌘ =
5D’

5 =5;

#C . (5)
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Fig. 5. Motion curve caused by fall. Fig. 6. Motion curve caused by si�ing.

We sum up the signals in this range and compare the result with %⌫⇠C⌘ ; if the summation exceeds this threshold,
we consider the presence of a motion. The start and end points of the motion can be determined accordingly, by
identifying the two intersections between PBC and the noise threshold. We truncate signals between the start
point and the end point for further analysis.

4.4 Feature Extraction for Fall Detection
Once a motion event is identi�ed from the spectrogram, we next identify and extract a set of features representing
the fall’s characteristics. We observe that the fall spectrogram includes rich information such as the re�ection of
di�erent body parts. In particular, the unique movement of a fall yields a frequency distribution di�erent from
those of other activities. This allows us to extract a set of features from the spectrogram for characterizing the
body movement, in order to detect the fall. Collectively, we extract three sets of features.

The �rst set is the speed feature, including the torso speed curve and the arm speed curve, which can quantify
the moving speed and moving pattern of each body part during the fall. To compute the speed, we �rst calculate
the frequency shift caused by the movement of each body part. Inspired by the percentile method in Doppler
radar [46], we extract the frequency curve as follows:

) (5 , C) =
Õ5

5;
( (5 , C)

Õ5D
5;
( (5 , C)

, (6)

where ( (5 , C) represents the Doppler e�ect energy on the frequency 5 at a certain time C on the spectrogram,Õ5
5l
( (5 , C) denotes the cumulative energy associated with the frequency range from 5; to 5 , and

Õ5D
5;
( (5 , C)

represents the total cumulative energy of the Doppler signal at time t. Hence ) (5 , C) represents the ratio of
cumulative energy attributed by the frequency below 5 over the total Doppler e�ect energy needed at time C to
identify a point in the torso contour. Our extensive experiments exhibit that we can set the threshold value of
) (5 , C) as 30%, 75%, 95%, respectively, to roughly derive the frequency 5 corresponding to the torso movement, leg
movement, and arm movement. The reason for choosing such three thresholds is that they could better describe
the motion of each body part based on our experiments. We take a non-fall activity, i.e., sitting, for comparison,
as shown in Figure 6. Comparing Figures 5 and 6, we observe that although the fall and sitting events have
similar movement patterns, their motion curves di�er signi�cantly, i.e., maximum positive frequencies of the fall
curve and the sitting curve are 200Hz and 100Hz, respectively. Since the fall occurrence will cause strong power
appearing on both the positive frequency (higher than 20kHz) and the negative frequency (lower than 20kHz)
sides, we shall calculate the frequency curve on both sides to characterize human motions comprehensively.
As such, we can get a total of 6 frequency curves corresponding to arm movement, leg movement, and torso
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movement on both positive and negative sides. With the curves, we can apply Eqn. (1) to get the moving speed
curves of torso, leg, and arm.

The second set of features is the extreme ratio curve, calculated by

'(C) = max
✓���� 5+max (C)
5�min (C)

���� ,
���� 5�min (C)
5+max (C)

����
◆

(7)

where 5+max(t) represents the max frequency shift above 20kHz, deriving from the Eqn. (6) by setting the threshold
to 95%. 5�min(t) represents the minimum frequency shift below 20kHz, calculated similarly as 5+max(t). Typically,
the extreme ratio curve of a fall accident is sharper, having a larger peak value than those of other activities.
This is due to no stationary movement of body parts in a fall event, so its energy amounts on both sides of the
spectrogram are highly asymmetric, resulting in a sharper and highly extreme frequency ratio curve. Other
types of motion such as sitting or standing, often have high and symmetric energy amounts in both positive and
negative frequency bands, making the extreme frequency curve more stable.
The third set of features is the spectral entropy, which measures the randomness of the energy distribution

on a spectrogram of the fall. Considering the quick and sudden motions of a fall event, it usually has a higher
entropy than other events at both positive and negative frequency bands due to high energy �uctuation on the
spectrogram. We calculate the spectral entropy, denoted by � , as follows:

� (C) = �
5D’

5 =5;

? (5 , C) ln? (5 , C)

where 5; and 5D are upper and lower frequency bounds. � (C) indicates the spectral entropy at a certain time C .
? (5 , C) is the normalized power spectral density at frequency 5 and time C , calculated by:

? (5 , C) = % (5 , C)Õ5D
5 =5;

% (5 , C)

where % (5 , C) is the Power Spectral Density, expressed by

% (5 , C) = 1
5D � 5;

5D’
5 =5;

|( (5 , C) |2 ,

where
Õ5D

5 =5;
|( (5 , C) |2 represents the cumulative sum of square for energy attributed by the frequency between 5;

and 5D .

4.5 SVD Algorithm
Due to the corresponding movement of the entire body, some features are highly correlated, so they may not
contribute useful information for our fall detection task. We can further apply singular value decomposition
(SVD) to get rid of the redundant features and reduce their dimensions. Here, SVD aims to reduce the feature
dimension to 1 before inputted to HMM, which will be elaborated in Section 4.7.
We assume 0.8s data are inputted each time to HMM. We extract 8 feature series in the above step, and all of

them have the same time resolution as our STFT, which is 0.02s. As such, we can get an 8⇥40 feature matrix as
the input, denoted by � . The SVD decomposition algorithm can be represented by:

� = * ⌃+) , (8)

where ⌃ is an 8⇥ 40matrix, with all its elements o� the main diagonal to be 0. Each element on the main diagonal
is called a singular value. * and + are unitary matrices, with their sizes of 8⇥8 and 40⇥40, respectively. To
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compute* , we multiply � and �) , to get an 8⇥8 matrix. Then we apply the Eigenvalue Decomposition to ��) :⇣
��)

⌘
D8 = _8D8 , (9)

where we can get 8 eigenvalues of matrix ��) and their corresponding 8 eigenvectors D. All the eigenvectors of
��) are transformed into 8⇥8 matrices, which together denote the* matrix given by Eqn. (8).

To calculate + , we multiply �) and � to obtain a 40⇥40 matrix. Then, we apply the eigenvalue decomposition
to �) � , yielding ⇣

�) �
⌘
E8 = _8E8 . (10)

We can get 40 eigenvalues of matrix �) � and their corresponding 40 eigenvectors E . The 40 eigenvectors E are
combined with the + matrix expressed by Eqn. (8).

We next compute ⌃, which has non-zero values only on its main diagonal, including the singular value f . With
the unitary matrices of* and + , we have

� = * ⌃+) ) �+ = * ⌃+)+ ) �+ = * ⌃

) �E8 = f8D8 ) f8 = �E8/D8 .
(11)

Note ⌃ is arranged in the descending order, so the reduction of singular values is extremely fast. In many cases,
the top 10% or even 1% of singular value account for more than 99% of the sum from all singular values. In other
words, we only need to use the largest : singular values and corresponding left and right singular vectors to
approximate the matrix. So, we have:

�<⇥= = *<⇥<⌃<⇥=+
)
=⇥= ⇡ *<⇥:⌃:⇥:+

)
:⇥= (12)

If : = 2, we can convert �8⇥40 to �2⇥40. By selecting the �rst line, we reduce the feature dimension to 1. Through
this way, we have compressed the multi-dimension features to a 1-D sequence.
We divide � into 10 data units and then calculate the averaged value on each unit to get the observation

sequence $ with length 10. Then we input $ to HMM for further classi�cation.

4.6 Data Cluster
We next cluster the data, to determine how many hidden states contained in a fall, so as to further improve the
performance of our detection system. The number of clusters is equal to the number of hidden states in HMM. In
our design, we employ the K-means algorithm [17] to cluster the features extracted from the fall spectrogram
analytic process. To be speci�c, we �rst randomly set a center for each cluster. Then the distances of each feature
vector to those centers are calculated. We associate each vector with one cluster that has the nearest center and
iteratively execute this step until a convergence. In the end, the number of clusters equals the number of hidden
states in HMM. Our experiments found 4 clusters, representing the number of invisible states in human fall
events, such as: balance state, losing balance state, impact state, and stable state after the impact.

4.7 HMM (Hidden Markov Model)
HMM had been widely applied to speech recognition [2, 31] and to the medical purpose [33, 58]. Its successful
application in this �eld proves the ability of HMM to process biological sequence signals. Although the human
motion-induced Doppler signal is very complex and dynamic with many di�erent features, we can transform it
to a simple feature sequence via our SVD algorithm. Then we apply HMM to process such a sequence to analyze
the state transition indirectly through the feature sequence extracted from the Doppler signals.

We denote the HMM that represents the fall process as _, yielding:

_ = (�,⌫, c) .
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where � is the state transition matrix, ⌫ is the Emission matrix, and c is the initial state distribution. The number
of observation values is 10, equal to the length of input $ .
To train _ = (�,⌫, c), the Baum-Welch algorithm [6] is applied. We �rst randomly initialize the parameters

of �,⌫, c . Then the forward and backward procedure would calculate the expected hidden states according to
the observed data $ 5 0;; and the parameters of �,⌫, c . We update the parameters to best �t the observed data
$ 5 0;; and the expected hidden states. These steps repeat until the parameters are converged. After being trained,
_ = (�,⌫, c) can describe the features of a fall process. With the trained HMM (i.e., _) and a new observation
series $=4F acquired from any motion process, the conditional probability % ($=4F | _) could represent the
marching degree of _ and $=4F .

4.8 Classification
In the feature series, we set the input length of HMM as 0.8s and the moving step length of the window as
0.1B . We slide a 0.8s data window on the signals, according to the method described in Section 4.4 for feature
series extraction. Then, we apply SVD to the features for dimensional reduction to get a 1-D sequence, serving
as the observation sequence $=4F of HMM. $=4F is inputted into the trained fall process model (Section 4.7)
for calculating the output probability % ($=4F | _). This probability is compared to a pre-set threshold % : if it is
greater than % , this sequence represents a fall event; otherwise, it does not. Our empirical experiments show that
% can be set to 0.156 for fall detection.

5 PERFORMANCE EVALUATION
We implement our fall detection system and deploy it in di�erent room environments for performance evaluation.
Our goal is twofold. First, we aim to examine the e�ective detection range and the accuracy of fall detection via
acoustic sensing and also to show its capabilities of distinguishing fall accidents from other human activities.
Second, we conduct various experiments under di�erent environments in order to show the robustness of our
system.

5.1 Experiment Setup
Our system is implemented on a speaker (Edi�er R1280DB) and a microphone (SAMSON MeteorMic, 16 bit, 48
kHz), which are binding together as one device placed on the desk, with the speaker generating and emitting
signals at 20kHz. The microphone’s sampling frequency is set to 48kHz. The recorded Doppler signals are sent to
a laptop for further analyses, with Matlab employed as the signal processing and machine learning tools. We set
the transmission power to the 80% of speaker’s maximum power and then measure the sound pressure at 1m
away from the speaker, to get 45dB.
We conducted our experiment in four di�erent environments: 1) a living room in an apartment with several

tables and chairs, 2) a lab with tables and chairs, 3) a meeting room with a long table and dozens of chairs around,
and 4) a long corridor.

5.2 Data Collection
Since the fall event may cause potential risks to elders, we only recruit 6 elders (5 males and 1 female) to participate.
Besides, 17 young people are also recruited for mimicking the elders’ behaviors. Hence, there are a total of 23
participants, whose ages range from 60 to 75 for elders and from 24 to 40 for young people. Among them, there
are 17 males and 6 females. Notably, a mattress is provided for protection from being injured when they fall
down. For each participant, we collect a continuous stream of activities, mixing the fall, fall-like, and other daily
activities as listed in Table 1. We ask the elders to walk in their nature ways and then fall on the mattress, for
collecting their fall events. All participants are asked to perform the fall actions according to their experiences
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Table 1. Activities types

Fall activities Fall-like activities Daily activities

Lose balance-Forward Jump Walk
Lose balance-Backward Sit-down on �oor Picking up
Lose balance-Left Sit-down on chair Open the door
Lose balance-Right Stand-up from �oor Eat food
Trip-Forward Stand-up from chair Drink water
Trip-Backward Raise hand Working on computer
Trip-Left Picking up
Trip-Right Large objects falling
Slip-Forward
Slip-Backward
Slip-Left
Slip-Right
Lose consciousness-Forward
Lose consciousness-Backward
Lose consciousness-Left
Lose consciousness-Right

for simulating 1) the sudden loss of balance, including losing balance, losing consciousness, trip, and slip, and 2)
fall forward, backward, and sideward. In addition, we also ask them to perform some non-fall activities and daily
activities (see Table 1). For young people, we let them mimic elders’ behaviors as follows. First, we ask them to
walk at a slow speed (i.e., less than 1m/s) when collecting the continuous data, because [3] shows elders with a
slow gait speed have a high risk of falling down, as expected due to the loss of muscle strength and mass [47].
Also, we ask them to try their best to mimic the falls of elders. Second, we ask them to do some fall-like activities
and daily activities to mimic the elders’ behaviors; for example, sitting down and standing up slowly, while
supporting the body by hand. All collected data are labeled manually, serving as the ground truth.

5.3 Evaluation Metrics
We de�ne the following evaluation metrics for measurement.

• Accuracy: which is de�ned as the ratio of correctly identi�ed samples over all samples, i.e., Accuracy
= TP+TN

TP+TN+FP+FN .
• Precision: which is the ratio of the correctly detected falls over all detected falls, i.e., Precision = TP

TP+FP .
• Recall: which means the ratio of correctly detected falls over the total falls. i.e., Recall = TP

TP+FN .
• F1-score:, which re�ects the overall performance of the classi�er, de�ned as F1 score = 2⇥ Recall ⇥ Precision

Recall + Precision .
Here, TP represents the true positive, which is the correctly detected falls. TN represents the true negative, which
is the correctly detected non-falls. FP represents the false positive, which refers to non-falls but wrongly detected
as falls. FN is the false negative, denoting falls but wrongly detected as non-falls.

5.4 E�ective Detection Range
We test the working range of the system in this experiment, by letting a participant perform both fall and non-fall
activities at di�erent distances to the device. We collect 100 fall events from 1< to 5< as the training data to train
a HMM. Then, another 100 fall events and 100 non-fall events are collected at 1<, 2<, 3<, 4<, and 5<, with each
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Fig. 7. Detection Range. Fig. 8. Evaluation on Elders.

Fig. 9. Impact of di�erent environ-
ments and di�erent participants. Fig. 10. Impact of the nLoS.

Fig. 11. Evaluation of the non-fall ac-
tivities.

distance collecting 20 falls and 20 non-falls. Figure 7 shows the performance of our system in terms of precision
and recall at various distances. Detection performance degrades when the distances from person to the sensing
device increase. This is due to signal attenuation, where the signals re�ected from the longer distance will result
in the low SNR, making the feature extraction tasks much harder. At 5 meters, our precision can still maintain
more than 80%. The recall stays higher than 95% up to 4 meters. Even when a person moves to 5 meters away,
our system can still maintain 80% recall for fall detection. In the following experiments, we set the distance to 3
meters.

5.5 Performance on Elders
In this experiment, we evaluate our system on 6 old participants. We train a model based on the fall data collected
from 2 young participants and then collect a set of fall, fall-like and daily activities for testing from the elders. In
addition, we also collect data from the 2 young participants for testing. Figure 8 shows our system performance
in terms of accuracy, precision, recall, and F1 score. From this �gure, we observe our system can achieve very
high performance for detecting the fall from elders, with the accuracy, precision, recall, and F1 score of 96%, 95%,
95%, and 95%, respectively. The performance on the young participants is even better, to be 97%, 98%,95%, and
96%, respectively. Such results show that our system could reliably detect falls from elders. In addition, it also
demonstrates that our system does so, without collecting elders’ data for training (in the purpose of protecting
elders), amenable to real-world deployment.

5.6 Performance under Di�erent Environments and Di�erent People
We next evaluate our system performance under di�erent environments and users. In particular, this experiment
trains a HMM model only with the data collected from two participants in the apartment and then examine
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the model on di�erent participants under di�erent environments. To be speci�c, we conduct four experiments
on the 17 younger participants in four di�erent environments: apartment, lab, meeting room, and corridor.
For collection the testing data, the �rst experiment lets the same participants from the training set to perform
activities in the apartment, indicated as E1. The second experiment asks the same participants from the training
set to perform activities in other environments, denoted as E2. The third experiment lets participants other than
the training set perform activities in the apartment, indicated as E3. The last experiment asks participants other
than the training set to perform activities in other environments, indicated as E4. Figure 9 shows the averaged
results in each experiment in terms of four metrics. We can observe our system to always achieve very high
performance in the four scenarios (i.e., E1, E2, E3, and E4), with the the accuracy, precision, recall, and F1-Score of
97%, 97%, 95%, 96%, of 96%, 97%, 93%, 94%, of 95%, 94%, 92%, 93%, and of 94%, 94%, 90%, 92%, respectively. This set of
experiments demonstrate that our trained model at one environment can be transferred to di�erent environments
and di�erent people for use with negligible performance degradation.

5.7 Impact of Non-Line of Sight (nLoS)
In the experiments above, we observe that the environment change will have a certain impact on our system
performance. One possible reason is that the blocking of Doppler signals could somehow degrade system
performance. Hence, we design another set of experiments to evaluate the impact of the nLoS path and show
how to minimize its impact. We put a chair between the person and the device to simulate an nLoS scenario.
Three experiments are conducted: 1) the chair is placed at the original place, so there is an LoS path between
the person and the device; 2) the chair is placed on the LoS path, blocking the signals (i.e., nLoS scenario); 3)
retraining the model by the nLoS data. In the �rst two experiments, the HMM model is trained under the LoS
path scenario. Then, we ask a participant to perform 20 falls and 20 fall-like activities in the �rst two experiments.
In the third experiment, we ask a student to conduct 60 falls to retrain the HMM model for the nLoS scenario and
then evaluate the rebuilt model with data collected in the �rst and second scenarios to evaluate its performance.
Figure 10 shows the results of three experiments. From this �gure, a model trained under the LoS path scenario is
observed to degrade its detection performance greatly when the chair is moved to the LOS path (from the �rst
experiment to the second experiment), with all evaluation metrics declines to around 60% (see the red bar). This
is due to the signi�cant change of Doppler signals and the reduction of SNR caused by the obstacle. However, we
found that if the model was reconstructed using the training data collected in the nLoS setting (i.e., the third
experiment), the results restore to a comparable level, with all performance metrics recovering to around 90% (see
the green bar). In addition, we also observe that when applying our model trained on the nLoS setting to test data
from the �rst scenario (LoS sample), all metrics can still reach around 90% (see the gray bar). This experiment
indicates that our system could eliminate the impact of nLoS path by retraining the model with the nLoS data.
It gives us the insight that we can collect a rich set of training data to cover all scenarios for maintaining the
robustness of our system.

5.8 Evaluation of Non-fall Activities
This section presents experiments to demonstrate system’s performance in detecting di�erent types of non-fall
activities. Three types of non-fall activities are experimented: (a) objects (i.e., ball, book, and box) falling; (b)
fall-like activities; and (c) some daily activities. In (a), an object is falling from a high place. In (b) and (c), the
detailed fall-like and daily activities are shown in Table 1. For each activity type, we collect 60 samples for 40
fall activities in each experiment. We employ the model trained from two young people, as in Section 5.6. Our
performance results are illustrated in Figure 11, where the purple, red, and green bars correspond respectively
to the experiments for (a), (b), and (c). From this �gure, we see our system to always achieve high accuracy
in distinguishing these non-fall activities, with all metrics greater than 90%. Speci�cally, it has the highest

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 114. Publication date: September 2021.



114:16 • Lian et al.

Fig. 12. Impact of the ambient sound. Fig. 13. Impact of the devices. Fig. 14. Impact at di�erent time.

performance in recognizing fall occurrences from the object falling. The reason is that the trajectory of any object
falling is close to a straight line in the vertical direction, whereas that of a human’s fall consists of a series of
limbs’ movements in di�erent directions, causing a more complex Doppler signal. In addition, the sizes of these
objects are relatively small comparing to that of a human body, resulting in their generated Doppler signals being
much weaker. As a result, human fall accidents can be easily distinguished from the falls of those objects.

5.9 Impact of Time
We built a model based on the training data collected in November 2020, and then evaluated its performance
for detecting human falls in November, December, January, and February. Notably, the worn clothes vary in
di�erent months due to the weather changes. We collect 40 fall events and 40 non-fall activities in each month
for evaluation. Figure 14 shows the precision and recall at the four months. From this �gure, we observe that the
performance of our system changes only slightly across di�erent months. This experiment demonstrate that the
impact of clothes is negligible.

5.10 Impact of Ambient Sound
Since our system relies on acoustic signals, we evaluate the impact of ambient sound on our system. We conduct
the experiments in the environment when playing music or having human talk. The sound sources are at 0.5<
away from the device. The music volume is the same as that used for sending ultrasonic signals in our system,
and people talk in the normal voice. Figure 12 depicts the performance of our system in the two scenarios for
comparison with the scenario of no ambient sound (i.e., silent). Theoretically, the audible noise should not a�ect
our system, since they are operating at di�erent frequency bands. However, the �gure reveals that the audible
noises still have certain impacts on our system, despite slightly. This is due to the frequency leakage, which results
in additional frequency components of the noises spreading to around 20kHz and mixing with the resulting
Doppler signals of falls. Since the frequency leakage is not ubiquitous in the signals, its impact to our system is
not severe.

5.11 Impact of Di�erent Directions
We also ask one participant to fall in di�erent directions for evaluating our system. Speci�cally, we make the
participant fall in the 0°, 90°, -90°, and arbitrary degrees. The 0° means the participant falls along the line right in
front of the speaker, whereas 90° and - 90° mean the fall directions are perpendicular to the sound propagation
direction. Figure 15 shows the performance of our system in the four experiments. Our system is observed to
perform the best along the 0° direction, with its accuracy, precision, recall, and F1 score equal to 98%, 97%, 97%,
and 97%, respectively. When falling in an arbitrary direction, the four metrics drop to 92%, 92%, 91%, and 91%,
respectively. Notably, when the fall direction is strictly perpendicular, one may assume no Doppler signals to be
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Fig. 15. Impact at di�erent directions. Fig. 16. Impact of the frequency.

generated so our system becomes inoperative. However, our experiment �nds that strong Doppler signals are
still generated, and our system can achieve the accuracy, precision, recall, and F1 score of around 91%, 85%, 90%,
87%, respectively. This could be due to the complex moving patterns of human falls. For example, the arm swing
and the body movement would generate strong signals. Also, due to the relative short-range between the device
and the participant (within a room), the sound waves are not con�ned to one plane. Instead, there is always an
angle between the fall motion and the wave surface, resulting in a strong Doppler signal.

5.12 Transferability of Our System
We next evaluate our system with three di�erent speakers, i.e., Edi�er R1280DB, Logitech z200, and Amazon
Echo, denoted as Speaker 1, Speaker 2, and Speaker 3. The �rst speaker is our default speaker, which is used
for collecting the training data. We tune their volumes to the same transmission power and let them emit the
signals at the same frequency, i.e., 20:�I. The performance of our system with these three speakers are shown
in Figure 13. We observe that Speaker 1 achieves the best performance whereas Speaker 3 achieves the worse on
all four metrics. The reason is that Speaker 3, i.e., Amazon Echo, is a home speaker, which is not designed for
generating the ultrasonic signal, emitting unstable signals on the high frequency band. However, our system
with Amazon Echo still exhibits the accuracy, precision, recall, and F1 score of 87.5%, 85.7%, 90%, and 87.8%,
respectively. This experiment demonstrates the transferability of our system with di�erent devices.

In addition, we also conduct experiments to showmodel transferability across di�erent frequencies. In particular,
our experiment evaluates three working frequencies, i.e.,19kHz,20kHz, and 21kHz. We collect the training data
only on the 20kHz, while conducting the detection tasks under 19kHz, 20kHz, and 21kHz. Figure 16 shows the
performance of our detection tasks on the three frequencies. This �gure reveals that, when comparing to that
on the 20kHz, the performance outcomes of 19kHz and 21kHz degrade only slightly for the detection tasks.
Speci�cally, the accuracy, precision, recall, and F1 score are 94%, 95%, 90%, and 93% ( or 93%, 92%, 90%, and 91%),
respectively, on 19kHz (or 21kHz). This experiment indicates that our system trained on one frequency can be
generalized for use under other frequencies.

5.13 Computational Cost
We next measure the processing time of each main component in our system. Since our system aims to work
in a real-time manner by processing the time sequence signals, we only need to take one sliced signal (over
0.8s) for measurement. The major computational costs come from the STFT and Interference Cancellation
(Denoise) in signal processing, feature extraction, SVD decomposition, and HMM classi�cation, which are
21<B, 20<B, 6.7<B, 3.2<B, and 1.2<B , respectively. The computational costs from other components are negligible
and can be omitted. Hence, the total processing time for each sliced signal is only around 52.1<B , deemed to be
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much less than the moving step length of the HMM window (= 0.1B). This experiment validates that our system
could support the real-time processing for fall accident detection.

6 DISCUSSIONS
Our work successfully demonstrates the feasibility of employing an existing home device to conduct acoustic
sensing for the fall detection purpose. It provides a proof of concept for validating the potential practice use of
acoustic sensing in home applications. Yet, this system has some limitations that can be improved, leaving in our
future work.

First, experimental results exhibit that our system is not perfect, unable to achieve 100% detection accuracy for
surely identifying both fall and fall-like activities. This is due to many reasons, with one common reason being
that some fall-like activities are very similar to falls under a certain context, misleading our system’s detection.
For example, when a person quickly sits down onto the chair or �oor, its resulting pattern is very close to that
of a fall. But, fortunately, these activities are not uniform for elders, and thus their information has little value
for practice use. Nevertheless, we can investigate more salient and inconspicuous features as the input to help
distinguish the fall and the fall-like activities. Another plausible solution is to collect more training data covering
various fall-like activities to better training our model.

Second, our detection performance drops markedly in the nLoS scenario, where some objects block the signals.
This makes the signal of interest to be much weaker and incurs more interference to degrade the performance of
our system. In addition to retraining our model as discussed in Section 5.7, another plausible solution is to utilize
multiple devices to cover all possible angles. Furthermore, the location information obtained by those devices can
also be leveraged in our detection algorithm to improve its performance. In essence, we may �rst leverage the
Doppler re�ection to roughly estimate such a location information, and then train a location-based model for fall
detection.

Third, the current e�ective detection range is still limited. For further practical deployments, we need to extend
this range to be more than 5 meters. Several directions can be explored, such as developing more advanced
interference cancellation and signal processing techniques to obtain more clear spectrogram, extracting more
subtle and �ne-grained features for event mining, among others.
Fourth, our work aims to demonstrate the possibility of developing a solution with only one speaker and

one microphone for conducting fall detection, given that some homes do not possess any device with multiple
microphones. De�nitely, our developed system can also be directly migrated to multi-microphone devices with
no changes. Thus, our solution is more general for home use. If we make a certain change (in the interference
cancellation phase) by applying the beamforming algorithms [49, 50] with multiple microphones, our solution is
expected to yield better performance.
Lastly, although ultrasound cannot be heard by the human being, it is reported in [30] that exposing one in

the ultrasound environment would a�ect one’s brain activity, known as the hypersonic e�ect. However, [11]
shows no signi�cant negative consequences observed when temporarily exposed in the environment even with
the sound pressure level of 94dB. [20] continued to suggest a 70 dB guideline, since some people might be more
sensitive to ultrasound. Hence, the safety guidelines for ultrasound are highly controversial. On the other hand,
[56] exhibited that Commercial O�-the-Shelf (COTS) devices have the limited powers to produce ultrasound, so
even the most sensitive people could hardly hear the ultrasound generated by them. Nonetheless, during our
experiment, the transmission power is only set to 80% of the speaker’s maximum power and the Sound Pressure
Level (SPL) of the sensing signal is measured to be only 45dB at 1m away from the device. This SPL attenuates
noticeably with an increase in distance, making us believe that our system is safe enough with little risks to the
human being.
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7 CONCLUSION
This paper has addressed the design and implementation of a non-wearable and accurate fall detection system,
which leverages solely on an existing home audio device, widely applicable for home use. We control the
speaker on the audio device to emit inaudible ultrasonic signals and let the co-located microphone to capture the
re�ected Doppler signals. Through developing a collection of solutions, including signal processing, interference
cancellation, feature extraction, feature reduction, and model training, our system can get clear and rich patterns
for fall events, distinguishable from other normal activities. We have evaluated our system with diverse fall
types and di�erent daily activities, demonstrating that it can achieve the precision and the recall of 92.6% and
of 90.4% respectively in our default environment. When transferred to di�erent environments, our system can
still maintain its high accuracy, with over 90% for both precision and recall. In sharp contrast to the existing
wearable and non-wearable solutions, our system possesses such salient features as convenient and easy for
deployment, no additional cost to purchase dedicated devices, no resource competition with home Wi-Fi devices,
among others, widely deployable for home use.
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