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Abstract: Video conferencing apps (VCAs) make it
possible for previously private spaces — bedrooms, liv-
ing rooms, and kitchens — into semi-public extensions
of the office. For the most part, users have accepted
these apps in their personal space without much thought
about the permission models that govern the use of their
private data during meetings. While access to a device’s
video camera is carefully controlled, little has been done
to ensure the same level of privacy for accessing the mi-
crophone. In this work, we ask the question: what hap-
pens to the microphone data when a user clicks the mute
button in a VCA? We first conduct a user study to an-
alyze users’ understanding of the permission model of
the mute button. Then, using runtime binary analysis
tools, we trace raw audio flow in many popular VCAs
as it traverses the app from the audio driver to the net-
work. We find fragmented policies for dealing with mi-
crophone data among VCAs — some continuously mon-
itor the microphone input during mute, and others do
so periodically. One app transmits statistics of the audio
to its telemetry servers while the app is muted. Using
network traffic that we intercept en route to the teleme-
try server, we implement a proof-of-concept background
activity classifier and demonstrate the feasibility of in-
ferring the ongoing background activity during a meet-
ing — cooking, cleaning, typing, etc. We achieved 81.9%
macro accuracy on identifying six common background
activities using intercepted outgoing telemetry packets
when a user is muted.
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1 Introduction
As the de facto alternative for in-person meetings dur-
ing the COVID-19 pandemic, the demand for online
video conferencing for professional and personal use in-
creased significantly. Video Conference Apps (VCAs),
such as Zoom, Slack, Teams, and Webex, became avail-
able on all modern devices and operating systems. To
support their functionality, these VCAs require access
to the device’s microphone and camera. Operating sys-
tems (OSes) provide the users with permission controls
that allow the app to access the microphone and cam-
era. Once granted, the app has access to both hardware
resources until the user revokes the permission.

In addition to OS-based controls, VCAs provide
their users with two privacy control mechanisms dur-
ing a call: turning off the camera and muting the mi-
crophone. In most OSes, such as Windows and macOS,
turning off the camera from the app engages an OS-level
control which prevents the app from accessing the cam-
era. A visible hardware indicator (e.g., a light near the
camera) informs the user whether an app is accessing
their camera. On the other hand, the implementation
of the mute button is app-dependent and rarely has a
visible hardware indicator. OSes do not expose an easily
accessible microphone switch to the apps without going
through many steps (e.g., via a control panel).

Apart from smart speakers, which pose tangible pri-
vacy threats, the mute button has received little atten-
tion in the context of VCAs. Previous research investi-
gates users’ privacy attitudes towards VCAs and alludes
to the mute button as a privacy control tool available
to the users during a virtual meeting [17, 25]. However,
the mute button’s privacy implications during the in-
teractions between the user and VCAs have not been
adequately addressed.

This paper investigates the privacy issues associated
with the mute button in VCAs, focusing on whether a
mismatch exists between the user’s perception of the
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mute button and its actual behavior. We follow a two-
pronged strategy to guide our investigation. First, we
design a user study to uncover what the users think the
mute button does (i.e., their understanding) and what
they believe it should do (i.e., their expectations). Sec-
ond, we compare the user study findings against an em-
pirical investigation of the actual behavior of the mute
button across a range of VCAs and operating systems.

We conducted a user study with 223 participants
recruited from Prolific. Our user study revealed that
the participants perceive the mute button of VCAs as a
privacy control, preventing other meeting participants
from overhearing them. We observed a dichotomy in
the understanding of the mute button: participants were
split about whether a VCA accesses the microphone af-
ter they click the mute button. However, most of them
indicated that the VCA should access the microphone
only when unmuted.

Based on the findings from the user study, we em-
pirically characterized the conditions in which the VCA
actively queries the microphone in different operating
systems. This task was challenging because OSes only
log microphone accesses for each app; they do not pro-
vide fine-grained statistics about microphone queries.
We addressed this challenge by instrumenting Windows,
macOS, Linux, and the Chromium browser to track the
fine-grained microphone queries by popular VCAs. We
conducted a set of experiments on each VCA-OS com-
bination to monitor the API accesses of each VCA un-
der different conditions. We discovered that all of the
apps in our study could actively query (i.e., retrieve raw
audio) the microphone when the user is muted. Inter-
estingly, in both Windows and macOS, we found that
Cisco Webex queries the microphone regardless of the
status of the mute button.

We followed our instrumentation efforts with an
analysis of Webex, a popular VCA for the enterprise
setting. We analyzed how it processes the queried mi-
crophone data to determine whether any audio-derived
data leaves the device. This analysis also proved chal-
lenging as the VCAs, such as Webex, encrypt outgo-
ing traffic. Further, tracking the data flow within apps
is not straightforward because they employ proprietary
and obfuscated libraries. To facilitate tracking of au-
dio data, we performed a backward search from the
encrypted network traffic to locate the inputs to the
encryption functions. This search allowed us to decrypt
the contents of the network packets sent by Webex to its
servers. We discovered that Webex sent periodic packets
containing audio-derived telemetry data to its servers,
even when the microphone was muted. Although these

packets are transmitted at a low rate (once per minute),
their audio-derived values correlate with the volume lev-
els of background activities.

To verify our hypothesis, we present a classifier
to fingerprint background activities from these teleme-
try values. Training this classifier was also challenging.
Without access to the proprietary algorithm that gen-
erates the audio-derived data, it is not feasible to use
existing audio datasets to create training data for the
classifier. Furthermore, the training data has to repre-
sent real-world situations, including realistic noise types
and varying volume levels. We address this challenge by
collecting Webex-based telemetry data corresponding to
more than 200 hours of background activities. Our eval-
uation of the classifier with over-the-air data shows that
telemetry data from Webex can conclusively fingerprint
a set of popular user activities, such as music, chat-
ting, and vacuum cleaning. We demonstrate that even
with user data that is compressed and transmitted on
a minute-by-minute basis, some activities have unique
patterns that are discernable in Webex’s telemetry data.

Our key contributions are as follows.

– User Study: We conduct a user study with 223 VCA
participants to assess their understanding and ex-
pectations regarding the mute button (Sec. 3).

– Audio Access Tracing: We analyze VCAs’ fine-
grained access to the microphone; we found that
most VCAs have access to audio-derived data even
when the user is muted (Sec. 4).

– Webex-based Case Study: We conduct a thorough
system-level study of the Webex Windows client.
We discover that, in contradiction to its claims in
the privacy policy, Webex sends periodic audio-
derived data to its servers (Sec. 5).

– Background Activity Detection: We present a de-
sign for a machine learning model the infers back-
ground activities from Webex’s audio-derived data
(Sec. 5.3).

– Mitigation Strategies: We distill our findings in the
form of mitigation strategies that provide users with
better control over the mute button (Sec. 6).

2 Related Work
In the following, we discuss the recent results about the
privacy of VCAs. While there is existing research study-
ing possible exfiltration of audio and video data from
mobile apps [37], we focus on the research specific to
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VCAs. We also include related work about mute but-
tons in the context of smart speakers. Finally, we discuss
the work surrounding background activity recognition,
which is relevant for our analysis in Sec. 5.3.

Privacy Issues in VCAs
The security and privacy of video conferencing plat-
forms has been studied since the early 2010s. In 2013,
Kilpi et al. examined privacy and security issues in fu-
ture (at that time) videoconferencing technologies [25].
They discuss the mute button as a necessary privacy
control for the users. More recently, Emami-Naeini per-
formed an online user study to understand the user
concerns with VCAs [17]. They found that users are
concerned about the security and privacy properties of
VCAs. They also found that individuals consider the
mute button as a privacy control: they perceive privacy
violations from forgetting to press the mute button.

During the pandemic, more people were exposed to
privacy and security risks caused by VCAs [34, 38]. In
2019, Zoom fixed a camera leakage vulnerability caused
by its casual use of a local web server [35]. Mean-
while, real-time background blurring for VCAs is widely
adopted to protect user’s privacy in an office or home
environment [36, 45]. However, VCAs may leak a user’s
video privacy in many ways. Kagan et al. [23] demon-
strated that collage images of video conference meetings
posted on public websites may leak sensitive informa-
tion such as users’ names, ages and genders. Altschaf-
fel et al. [8] showed that traffic patterns of encrypted
metadata and multimedia data exchanged during VCA
meetings, can be used to identify increased activity in
front of camera or even identify users. There are also
concerns with the information that VCAs collect about
their users. For example, Consumer Reports identified
privacy concerns with the data collection practices of
popular VCAs, such as Zoom, Google Meet, Microsoft
Teams, and Cisco Webex [40]. These concerns centered
around the purposes of collecting metadata from the
meetings.

In this paper, we follow-up on these previously-
reported vulnerabilities and privacy studies. In particu-
lar, we study the users’ understanding and expectation
of the mute button, and whether they match the VCAs’
behavior. We focus on the interaction between the VCA
and the user’s microphone when the user presses the
mute button, as opposed to previous research that stud-
ies the mute button in the context of protecting the
user’s privacy from other meeting participants.

Mute Button in Voice Assistants
Researchers have also considered the privacy issues from
always-listening smart home devices[6, 26]. Smart home
devices continuously process the raw audio to detect a
trigger word or phrase. As such, the privacy threats arise
from these devices accidentally or maliciously recording
the user’s background activities [7]. Researchers have
first discussed the efficacy of the physical mute but-
ton as a privacy control to mitigate these threats. The
mute button was found to be inconvenient and suffer-
ing from user trust issues [14, 26]. Follow-up works pro-
posed other privacy controls, such as ultrasound jam-
ming [14, 15, 41], cutting the power [14], and employing
interpersonal communication cues [32].

Contrary to the smart device case, VCA users
widely utilize the mute button to prevent others from
listening to their background activities (Sec. 3). Users
trust that other meeting participants cannot hear them
after applying the mute button. However, the behavior
of the VCA, after applying the mute button, is less un-
derstood. In this paper, we characterize the operation of
the mute button from the perspective of the interaction
between the user and the VCA.

Activity Fingerprinting
Finally, we discuss research about fingerprinting activ-
ities from audio-derived data. User activities and con-
textual information, including walking, driving, and rid-
ing, can be inferred from ambient sound. Lu et al. [29]
presents an audio event classifier that identify user’s cur-
rent activities utilizing the microphone input of mobile
phones. Not only the ambient sound, but encrypted au-
dio traffic can be used to infer user’s private informa-
tion. Previous studies proved that encrypted IoT traf-
fic might leak private information of their environment,
including device status and user activities. Traffic anal-
ysis of the video streams from home security cameras
enables monitoring daily activity patterns [11, 16, 28].
Li et al. [27] further demonstrated the possibility of de-
tecting fine-grained activities, including dressing, mov-
ing, and eating, from encrypted home security camera
traffic. Similar to encrypted traffic analysis, Schuster et
al.[39] performed an encrypted Video Stream Identifi-
cation by analyzing bitrate burst and time interval of
video streaming traffic. They utilized the segment trans-
mission mechanism of MPEG-DASH and successfully
identified Netflix video titles using a trained classifier.

Kennedy et al. and Wang et al. [24, 43] demon-
strated that an attacker can infer which voice commands
a user says to a smart speaker, by eavesdropping and an-
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alyzing outgoing encrypted traffic from smart speakers
to a cloud server. Wang et al. [43] further manifested
the incoming traffic from the server also leak voice com-
mands information. Moreover, Bae et al. [5] presented
a video streaming service identification attack by mon-
itoring video downstreaming traffic through LTE net-
works with high accuracy.

These research works demonstrate that data derived
from audio streams can be used to fingerprint their con-
tent and is therefore relevant to our discussion in Sec. 5.3
about inferring the background activities while the user
is muted.

3 User Study
Our first objective is to study the user perceptions of the
mute button along with their understanding of its func-
tionality. Towards that end, we conduct an online user
study with 230 VCA users. Our study aims to answer
two questions about VCA users: (1) When do they think
the VCA accesses their microphone? and (2) When do
they think the VCA should access their microphone?.
Answering these questions allows us to characterize the
user’s understanding and expectations of the mute but-
ton, respectively. In the following, we describe the design
of the user study, the recruitment, and the findings.

3.1 Study Design

We designed a Qualtrics survey1 to help answer our re-
search questions. We used partial disclosure to hide the
fact that the study was about the privacy implications
of the mute button. The description of the survey and
its title focus on capturing the users’ general experi-
ence with VCAs during the pandemic. The survey has
four major sections; the first section collects optional
demographic information. The second section collects
information about the preferred VCA and frequency of
usage.

1 The full survey can be found here: https://osf.io/szd4x/.
Upon completion of our study, we discovered that our Qualtrics
form automatically collected IP address and location data by
default. Our consent form did not account for this behavior.
Nevertheless, upon discovery of this issue, we deleted all sensi-
tive data, including data hosted at Qualtrics and locally. The
IP address data and location data were never processed or an-
alyzed in any form during our study. Our final dataset removes
any potentially identifiable markers.

The third section asks the respondents about their
experience with the mute button. We adapt the ques-
tions from Lau et al. [26], which studies the mute but-
ton in smart speakers. In particular, we probe the users
about their usage of the mute button, their reasons, and
their understanding of its functionality using questions
in Table 1. This section contains three open-ended ques-
tions and two multiple-choice questions.

The last section adopts a refined version of Internet
Users’ Information Privacy Concerns (IUIPC-8) from
Groß [21] to measure the participants’ privacy concern.
This survey section contains the first mention of pri-
vacy, after the respondents have answered the questions
related to the mute button. Finally, the survey includes
two attention checker questions and was exempted by
the IRB at our institution.

Participant Recruitment and Demographics
We recruited participants from the Prolific data collec-
tion platform. We employed Prolific’s prescreening crite-
ria to enforce gender balance and to forward the survey
to only those who have worked from home during the
COVID-19 pandemic with 90% approval rate in previ-
ous studies. Before conducting the survey, we conducted
a pilot study with 15 users to calibrate the payment
and ensure that the study design is clear. Through Pro-
lific, we were able to recruit 299 participants, where we
kept 223 responses from participants who passed the
attention checkers. The median completion time was 8
minutes, and we paid each participant $1.5; the median
hourly rate was $11.

Among our participants, 96.8% are between 18 to
44 years old, 63.2% of them work in sales, service, man-
agement and professional industry, and 82.5% achieved
at least a college degree. During COVID-19, 54.7% of
our participants answered that they have used video
conferencing apps more than once a day and 40% of
them used once a day or once every few days. The most
popular video-conferencing app among the participants
is Zoom, and the other popular apps include Microsoft
Teams, Google Meet and Cisco Webex.

We map the responses to the IUIPC-8 question to
a score based on seven-point Likert scale, represent-
ing participant’s privacy attitudes. The average scores
is 2.02 for all participants, implying that most partici-
pants are privacy-conscious in our study. The value of
Cronbach Alpha Index is 0.7915 for privacy attitudes
responses from 223 participants, which indicates a good
internal consistency and reliability of these responses.

https://osf.io/szd4x/
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Open Ended Questions

Q1. Why do you use the mute button?
Q2. What activities do you perform or
take place in your background when
you are muted?
Q3. Please describe what does the app
do when you press the mute button.

Multiple Choice Questions

Q4. For your most frequently used
video meeting app, when do you think
it has access to your microphone?
Q5. For your most frequently used
video meeting app, when should it
have access to your microphone?

Multiple Choice Answers for Q4 and Q5

S1. When the app is not running.
S2. You start the app but are not in a meeting.
S3. You’re in a meeting but you apply the mute button
in the app.
S4. You’re in a meeting and you are unmuted.
S5. You leave the meeting while the app is still running.

Table 1. The main questions used in the user study. Q1-Q3 are open-ended questions with answers coded by researchers. Q4 and Q5
are multiple choice questions where the participant selects one or more statements from S1-S5 in response. The full list of questions is
available in the Appendix.

Fig. 1. The distribution of the codes about reasons users reported
for using the mute button as extracted from answers to Q1.

3.2 Findings

We report the key findings from our user study, through
analyzing the participants’ responses. We coded the re-
sponses to the open-ended questions (Q1, Q2, and Q3 )
following this procedure. For each question, two au-
thors independently coded the responses, after which
they generated a consolidated codebook describing the
responses. For Q1, we settled on five codes about the
reasons for which participants use the mute button. For
Q2, the codebook consists of twelve codes describing the
background activities. The codebook for Q3 contains
nine codes representing the participants’ description of
the mute button operation. Then, each coder indepen-
dently coded the first 30 responses for each question;
the resulting Cohen’s kappa is 0.85 for Q1, 0.90 for
Q2, and 0.82 for Q3, indicating strong agreement [30].
The coders split and coded the rest of the responses.
See detailed codebooks of the open-ended questions in
Appendix G.

Usage Patterns: We start by analyzing the responses
to Q1, where 214 participants out of 223 indicated that
they have used the mute button before. The responses
for Q1, as shown in Fig. 1, reveal two main reasons
why users employ the mute button: (1) hide background
activities and (2) avoid interrupting or disturbing others
on the call. It is interesting that the participants regard

Fig. 2. The distribution of the codes about the background activ-
ities as extracted from answers to Q2.

Fig. 3. The distribution of the codes about the users’ understand-
ing of the mute button operation from answers to Q3.

the mute button as a privacy control measure to prevent
others from hearing them. For example, P19 mentioned
the reason for using the mute button is: “So that people
won’t listen to private activities or conversations.”

The responses for Q2 indicate an array of back-
ground activities the participants perform while muted,
as indicated in Fig. 2. Participants mentioned more
than one activity in their responses; For example, P166
mentioned: “Talking, loud video watching, cat activ-
ity (meows, occasional falling and crashing of items),
cleaning (including vacuuming).” The most prevalent
activity was related to preparing food, cooking, snack-
ing, or eating. Other frequent activities include chat-
ting, watching TV, cleaning, typing, or watching online
videos. We elaborate more on these background activi-
ties in Sec. 5.3.
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Fig. 4. The distribution of responses to Q4. The statements S1-
S5 are defined in Table 1.

Understanding of the Mute Button: As indicated
earlier, we asked the participants two questions (Q3
and Q4 ) to gauge their understanding of the mute but-
ton. To gain initial insights into the participants’ un-
derstanding of the mute button, we study the coded
responses to Q3, as evident from Fig. 3. The most fre-
quent response was that by using the mute button, the
app prevents others in the call from hearing the user.
For example, P16 indicated that: “It doesn’t produce my
audio on the other participant’s platform or computer.”
Moreover, other participants focused on the interface
change when the mute button is pressed, as in the case
of P119 : “It shows me the mic with a line crossing it sig-
nalling it is not working.” . Meanwhile, 59 participants
mention that the mute button disables the microphone.
For example, P161 mentions: “When I press the mute
button, my microphone is muted and disabled on the app
from picking up any sound waves from where I am.”

For Q4, we provide five situations, S1-S5, in our user
study as shown in Table 1. The responses to Q4 indicate
that the participants exhibit a diverse understanding of
the operation of the mute button, as shown in Fig. 4.
Out of the 223 responses, 69 participants selected only
S4 as a response to Q4. These participants think the
app only accesses the microphone when they are in the
meeting and the mute button is not pressed.

Further, we found that the participants were split
in their selection of S3 as a response to Q4. Nearly half
of the participants (111) did not select S3, indicating
that the app does not access the microphone when the
mute button is pressed. The other half indicated that
the app accesses the microphone, even when muted. In-
terestingly, we observe that 49 participants selected S2,
S3, S4, S5 when responding to Q4, indicating that the
app accesses the microphone as long as it is running.
Also, we observe that 36 participants selected S3 and
S4, indicating that the app accesses the microphone as
long as the user is in a meeting. In all the cases above,

Fig. 5. The distribution of responses to Q5. The statements S1-
S5 are defined in Table 1.

we found no correlation between the responses and the
IUIPC-8 privacy attitude scores.

Expectations of the Mute Button: Finally, we an-
alyze the responses to Q5, about when do the partic-
ipants think the VCAs should access the microphone.
The responses reveal that the participants have clear
expectations about the operation of the mute button,
as indicated in Fig. 5. Among the 223 responses, 173
participants selected only S4 as a response to Q5. These
participants indicated that the app should only access
the microphone when the meeting is running and the
user is unmuted. Interestingly, 27 respondents selected
both S3 and S4 as a response to Q5.

In conclusion, the results from the user study sug-
gest that the user’s understanding of the mute button
does not match their expectations of its behavior. In
the rest of this paper, we study the actual behavior of
the mute button and analyze whether it matches user
understanding and expectations.

4 Analysis of Mute Button
Following the results from our user study, we investi-
gate whether the actual behavior of VCAs matches user
expectation by focusing on desktop environments. Our
objectives are to determine: (1) if VCAs actively access
the microphone when muted and (2) what kind of in-
dicators (if any) they give users that the microphone is
being accessed.

4.1 Overview of VCAs and Platforms

There are two broad categories of runtime environments
in which VCAs execute: native apps that run directly
in the operating system and web apps hosted by a web
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App Windows Linux macOS

Zoom (Enterprise) X X X

Slack X X X

MS Teams/Skype X 5 X

Google Meet ◦ ◦ ◦

Cisco Webex X ◦ X

BlueJeans X ◦ X

WhereBy ◦ ◦ X

GoToMeeting X ◦ X

Jitsi Meet X ◦ X

Discord ◦ X ◦

Table 2. A summary of the VCAs we studied. X: native app
◦: web-based app 5: No implementation.

browser. Each has a different permission model for ac-
cessing the microphone. Most of the VCAs we study in
this work have a native app implementation for the ma-
jor operating systems (macOS and Windows) and a web
app used on unsupported platforms (Linux and others).
The VCAs that we studied (listed in Table 2) exhibit a
consistent look and feel across platforms. Their imple-
mentation, however, on each platform is different, due
to syscall interfaces and display APIs. Zoom on Win-
dows, for example, is a self-contained Windows-specific
software package. Zoom on macOS has a similar user in-
terface to its Windows counterpart, but the underlying
code base appears to be different.

Native apps can collect data from the micro-
phone with few restrictions. Web apps—implemented in
JavaScript— request access to the microphone through
a web browser, which generally has more restrictive poli-
cies for data collection and more tools that allow the
user to control the app’s access to hardware.

Browser Based Apps
Browser-based VCAs rely on their host browser to me-
diate their interactions with the operating system and
the hardware. The browser-based VCAs that we stud-
ied are implemented entirely in JavaScript, and they use
a special-purpose API called WebRTC [19] for driver
interactions—including microphone accesses—that are
typically not available to web apps. WebRTC is a na-
tive interface written in C++ and C, acting as a driver
for the hardware within the browser that can call the
operating system to access the microphone. Information
transferred by WebRTC is subject to controls and poli-
cies of the browser. Web-based VCAs are sandboxed
inside the browser and do not circumvent WebRTC.

There are two ways a user can mute a web-based
VCA: (1) using a browser-level mute button or (2) us-
ing a WebRTC software mute signal from the app. Both
techniques are more trustworthy than app-controlled
mute because they are implemented and enforced by
the browser, not the app.

The browser-level mute button completely disables
microphone access to the VCA, as if the microphone
is not active within the system. Web-based VCAs also
implement an app-level mute button, which has simi-
lar functionality to the browser-level mute: it enables
a software mute inside of WebRTC, disabling all au-
dio transfers from the microphone. Users must trust the
web-based VCA to use the software mute functionality
rather than some internal mute button implementation.
We found that all of the studied apps use the WebRTC
mute functionality correctly. Furthermore, it is straight-
forward to verify that web-based VCAs correctly use the
software mute functionality through source code audits
and the WebRTC debugger built into Chromium.

Native Video Conferencing Apps
Native VCAs can directly call the operating system to
retrieve audio data from the microphone. Most of them
abide by the operating system (OS) rules to access the
microphone data, with some exceptions. The OS im-
poses fewer restrictions on native apps than the browser
runtime environment imposes on web apps.

All operating systems utilize a permissions-based
access system to retrieve data from the microphone. In
most cases, apps must have explicit permission to ac-
cess hardware resources such as the microphone. Each
app follows three steps to configure and use the micro-
phone: (1) user approval, (2) driver initialization, and
(3) audio data retrieval. Windows and macOS require
the user to explicitly provide permission for each app,
which the app retains indefinitely while it runs (unless
the user revokes the permission).

Once the user approves the access for the app, the
app must create an interface to the audio drivers. Some
OSes, like Windows, offer users a visual cue that indi-
cates when the app is using the microphone. But unlike
the WebRTC browser runtime, none of the major oper-
ating systems we are aware of support enforce a software
mute. This lack of an OS-mediated software mute means
each native app must implement its own internal mute
functionality. Even when a software mute is active, apps
can still access the microphone while the user is muted.
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4.2 Analysis Methodology

To understand what happens when the user presses the
mute button on desktop VCA clients, we utilize various
OS-based tools to trace audio data as it is transferred
from the operating system to the app. Our objective is
not just to establish whether the app has permission to
access the microphone when muted. Instead, we aim to
understand whether the app actually reads microphone
data when the user is muted.

Linux
Audio data transfer from the Linux kernel to the VCAs
is mediated through PulseAudio and ALSA. ALSA is a
kernel subsystem that provides a kernel-level interface
to the audio hardware, and PulseAudio is a userland
process that interfaces with ALSA and provides higher-
level features like mixing and multiplexing. All the
VCAs we studied interface with the userland PulseAu-
dio process.

To intercept audio data in transit from PulseAu-
dio to a VCA, we use the DynamoRIO runtime code
manipulation system [1], which allows us to inject for-
eign code into a running process. Our additional code,
written in C, is called each time a fresh buffer of mi-
crophone data arrives from PulseAudio. We write the
audio buffer’s address in the process’s memory space to
a log file. We then trace the buffer addresses from the log
using IDA Pro. The contents of the buffer are the raw
audio bytes from the microphone. DynamoRIO oversees
the process’s execution by loading and running modified
basic blocks one at a time, which substantially slows the
app’s execution, occasionally causing it to crash.

Windows
Although it is possible to track microphone access by
monitoring the system registry [22], we were not able to
track transfers in real time from the microphone to the
VCA. The registry only records times at which an app
opens or closes a connection to an audio device. The
OS registry—linked to a visual indicator in the system
tray—does not distinguish detailed API calls which en-
code information about whether a VCA is reading audio
data or accessing status flags about microphone activ-
ity.For fine-grained and detailed information, we inter-
cept syscalls from the VCA to the operating system.

In Windows 10, syscalls are obfuscated behind a
userland API library which acts as an intermediary be-
tween the apps and the OS. The Windows API library

is similar to the Linux/Unix C library syscall wrappers,
except that there is no one-to-one mapping between the
parameters that the app passes to the API and the pa-
rameters that the API passes to the OS. Instead, the
API functions as a higher-level wrapper around system
calls, and there is no official documentation available
from Microsoft detailing how to call the operating sys-
tem directly.

Windows implements many special-purpose API
functions for actions like accessing the microphone,
which in Linux and Unix are all handled as files. We
develop a two-step process to trace audio data in tran-
sit from the Windows OS to the native VCAs. First,
we use a tool called API Monitor [12] to instrument the
userland API with hooks to log pointers to the inputs
and outputs of several microphone-related API calls. We
then use a live binary analysis tool called x64dbg [4] to
read the contents of the buffers out to a log file. We uti-
lize an anti-anti-debugging library called Scylla-Hide [3],
which hides the fact that an app is being debugged to
prevent the app from crashing.

Chromium
Chromium acts as an intermediate layer between the
operating system and the browser based VCAs. To ver-
ify whether web-based VCAs access the microphone
while muted, we inject our own logging code in the
source of Chromium. We instrument the following three
browser functions in Chromium, which are responsi-
ble for transporting audio from the operating system
to the VCA2. First, the browser initiates audio-related
read_data function, which retrieves the raw microphone
data from the operating system and stores it in a raw au-
dio buffer. Then it calls encode and send_stream func-
tions, which transforms the raw audio into an encoded
stream and transfers the encoded audio stream to the
web-based VCAs.

macOS
An audio subsystem manages microphone data created
by Apple via AVFAudio or the AVAudioEngine inter-
faces [10]. These interfaces have the same purpose and
interact with the audio hardware in userland. VCAs
make a system call to mach_msg_trap within either an
audio interface thread managed by Apple and retrieve

2 Appendix B includes more details about the functions inside
Chromium.
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raw audio bytes from the microphone. All of the VCAs
we studied connect to the microphone using either of
these interfaces and make the same system calls when
reading bytes from the microphone.

To monitor VCAs’ microphone accesses we use a
XCode tool called Instruments [9] and the standard
Unix networking tool tcpdump. Instruments logs all sys-
tem calls and their arguments to a user interface in the
Apple system log. tcpdump records network traffic while
any of the VCAs are running. We attach Instruments
to a live VCA and perform a tcpdump on the networking
interface to extract and monitor the dataflow from mi-
crophone to the VCA. We then observe the results from
Instruments to correlate behavior patterns with with
Windows evaluation. VCAs in macOS behave similarly
to their Windows implementations.

4.3 Findings

To understand how VCAs consume microphone data, we
conducted experiments on each app-OS combo shown
in Table 2. We installed all VCAs and registered two
accounts for each app on each of the four operating sys-
tems. The app-OS combinations that are only accessi-
ble in a browser are tested in Linux on Chromium. We
initiated the meeting app for each meeting experiment
and used the techniques explained above to trace mi-
crophone data from OS to VCA under two conditions:
mute button toggled on and mute button toggled off.
Most platforms we studied display a visual indicator to
alert the user that an app is accessing the microphone3.
We found three broad policies that VCAs follow to read
data from the microphone while muted:

1. Continuously sampling audio from the mi-
crophone: apps stream data from the microphone
in the same way as they would if they were not
muted. Webex is the only VCA that continuously
samples the microphone while the user is muted. In
this mode, the microphone status indicator from an
operating system remains continuously illuminated.

2. Audio data stream is accessible but not ac-
cessed: apps have permissions to sample the mi-
crophone and read data; but instead of reading raw
bytes they only check the microphone’s status flags:
silent, data discontinuity, and timestamp error. We

3 Some Linux distributions do not provide any visual indication
that the microphone is in use.

assume that the VCAs, like Zoom, are primarily in-
terested in the silent flag to tell if a user is talking
while the software mute is active. In this mode, apps
do not read a continuous real-time stream of data in
the same way as they would while unmuted. Most
Windows and macOS native apps4 can check if a
users is talking even while muted but do not contin-
uously sample audio in the same way as they would
while unmuted. In this mode, the microphone status
indicator in Windows and macOS remains continu-
ously illuminated, reporting that the app has access
to the microphone. We found that applications in
this state do not show any evidence of raw audio
data being accessed through the API.

3. Software mute: apps instruct the microphone
driver to completely cut off microphone data. All of
the web-based apps we studied used the browser’s
software mute feature. In this mode, the microphone
status indicator in the browser goes away when the
app is muted, indicating that the app is not access-
ing the microphone.

The notable exceptions to these trends are the Mi-
crosoft VCAs (Teams and Skype) and Cisco Webex.
Microsoft VCAs are much more difficult to trace be-
cause they do not use the standard Windows userland
API. Instead, they directly make calls to the operat-
ing system. Since the Windows syscall interface is un-
documented, we could not determine how Teams and
Skype use microphone data when muted. More interest-
ingly, we observe that Cisco Webex — unlike the rest of
the Windows native VCAs — continuously accesses the
microphone while muted. Using x64dbg, we were able
to trace Webex’s copied audio buffer until that buffer
reaches the stack. We discovered that while the app was
muted, Webex’s audio buffer contains raw audio from
the microphone. In the next section, we focus our data
flow analysis on Cisco Webex in Windows because of its
popularity5 in the enterprise setting and, more impor-
tantly, its unusual behavior.

Recall that our user study reveals two main obser-
vations: participants are split whether the VCAs access
their microphone while muted, and expect them to ac-
cess the microphone only when they are unmuted. Our
results from this section indicate that the participants

4 Except Skype and Teams, which we cannot observe because
they do not use the conventional Windows API.
5 The monthly statistics from Cisco Webex include 600 million
participants and 6 billion calls [42].
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are largely unaware of the operation of the VCAs. More
importantly, the behavior of these apps violates user
expectations. This mismatch between user expectations
and app behavior highlights privacy issues with the de-
sign of the mute button.

5 Webex Case Study
Based on our findings from the previous section, we per-
form an in-depth analysis of the microphone access pat-
tern in Cisco Webex6. We focus on Windows 10 as it is
the most widely used operating system at home and in
enterprise7. As Webex continuously samples the user’s
microphone (when muted), we need to study whether
audio-derived data leaves the local device.

Determining whether audio-derived data from a
VCA is leaving on the network port is not a straight-
forward task because the network flow from VCA to
a server is encrypted. Raw dumps of the network traf-
fic from Wireshark are not informative about precisely
what the network traffic carries to the VCA’s server.
And we know that VCAs send and receive network pack-
ets that do not contain any audio or video data, so
counting network packets cannot give us an indication
of whether audio-derived data is leaving a device while
the VCA is muted. Instead of directly logging network
packets, we need to track how audio data is processed
within a VCA.

5.1 Methodology for Traffic Interception

Fig. 6 depicts the flow of data from microphone to net-
work in native Windows apps. Understanding how a
particular VCA handles data from the microphone re-
quires tracking the data as it traverses the chain of pro-
cessing shown in Fig. 6. Most of the data processing in
the VCAs we study is handled by proprietary DLLs8.
Tracking data through function calls from the main
VCA process to a DLL is unreliable because runtime bi-
nary analysis tools like IDA Pro [2] and x64dbg [4] often
cause the app to crash when they single-step through
function calls to a DLL. And since each VCA uses a
different set of external DLLs, we could not establish

6 We used Webex client version 41.12.3.11 through our study.
7 90% of respondents to our user study used Windows.
8 Dynamically Linked Libraries (DLLs) are the Windows im-
plementation of shared libraries.

a single workflow to analyze all VCAs. Existing tools
such as TaintDroid [18] are able to establish the data
flow within an application in older Android versions.
However, in native applications designed for Windows
and macOS, flow tracing is difficult and sometimes im-
possible.

It is easy to see when an app accesses the hardware
(networking and microphone) by monitoring Windows
API calls (see Sec. 4.2), but we are not aware of any
tool that can automatically follow data through an en-
tire Windows app. Tracking microphone data after each
instruction is not straightforward. Such data initially
exists inside of dynamically-allocated memory buffers.
Upon each access, this data might move to a new buffer
after undergoing a transformation, such as encryption,
compression, or encoding. Further, the new buffers may
originate from different allocator functions to be stored
in the main process’s memory image or in an exter-
nal DLL’s memory image. Race conditions among the
threads in Webex compound the difficulty of tracing:
all memory accesses at a specific address of the stack
require stoppages, logging, and memory analysis, all of
which take time to perform.

However, we do not necessarily need to show a link-
age between every successive subroutine that handles
microphone data in a VCA to demonstrate that audio-
derived data leaves on the network. We can already dy-
namically trace the audio into the app. We need to show
that data from that buffer leaves our machine and is
transmitted to a Webex server.

To design such a system, we first map all of the
outgoing traffic from Webex. The most efficient way
of doing so is to use the Microsoft Network Monitor
(MNM). We observe Webex’s network traffic using the
MNM while the app is muted and unmuted, and we no-
tice a set of packets that are periodically going to a user
metrics Cisco server. Now that we have our packets, we
need to ensure that the audio buffer within Webex is
accessed in the muted state.

Binary tracing on the audio buffer’s read/write ac-
cess using x64dbg always ends up in stack space which
thwarts our further tracing. However, while following
the bytes and logging API calls (from Sec. 4), we noticed
that Webex calls encoding libraries which access in some
time correlation with the audio bytes. We then trace
API calls to encryption methods to verify what is hap-
pening using the API Monitor. We capture all input ar-
guments and output buffers as a log file from these calls
while the user was muted during a Webex meeting. The
log contains timestamps, input parameters to the API
call, and the resulting output buffer. With the results
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Fig. 6. Data flow of audio bytes within a Windows 10 VCA. This pipeline is generalizable across the Windows platform. Our system
attaches to the bolded modules.

Fig. 7. Correlation between audio gain reported by Webex and in-
put audio signal power level (in dbA) when noise removal mode is
enabled. Although we cannot observe the raw audio while muted,
the statistics reported by Webex leak information about the user’s
background noise.

of the function logged, we compare the encrypted buffer
to network traffic leaving the machine and notice a one-
to-one match between the encrypted bytes (from Wire-
shark) and the data sections of network packets from
Webex. Consequently, we link the data regions of out-
going user metrics packets to our post-encrypted output
buffers. Upon observing the input, we notice that the
input arguments in these cases are in plain-text where
detailed data is compressed using base64 encoding. De-
coding the input arguments revealed the packet content
to be a JSON structure9, which contains audio-derived
data and other data elements.

5.2 Findings for Traffic Interception

The data we capture from the API hook is a JSON ar-
ray with unencrypted and unobfuscated attribute names
such as: audioMaxGain, audioMeanGain, audioMinGain,

9 An example of such a structure is here: https://osf.io/szd4x/

and many others. These JSON arrays are transmitted
by Webex once per minute to https://tsa3.webex.com,
a telemetry server, while the user is muted. The names
of these attributes suggest that the JSON array con-
tains audio-derived statistics, most probably connected
to the automatic gain control employed by Webex. Our
aim is to further analyze the attributes to understand
the relationship between the recorded audio levels and
these attributes values when the microphone is muted.

Webex has two microphone modes: music mode and
noise removal mode (the default mode). As the name
suggests, noise removal mode refers to Webex removing
background noise in real-time while the user is speak-
ing. Music mode, on the other hand, transmits audio
as the microphone hears it. We perform a small-scale
experiment to study whether the audio attributes from
Webex network traffic are correlated with the input au-
dio for both microphone modes. We play episodes of the
U.S. TV shows “Friends” and “The Office” into a micro-
phone during a Webex meeting while muted. To isolate
environmental factors, we feed the audio from the TV
shows directly into the Webex meeting through a virtual
microphone interface. We repeated each experiment for
both microphone modes.

We partition each audio file (corresponding to an
episode) into a set of one-minute windows. We then
compute the maximum and average magnitudes for each
window to report their correlation with audioMinGain
and audioMeanGain. Note that the audioMinGain value
would correspond to the maximum observed audio level
because it requires less gain control. Further, the min-
imum and mean values depend the most on the input
audio. On the other hand, the maximum depends more
on the input device and the amount of silent moments,
which are random in each episode.

Fig. 7 depicts the correlation between the estimated
power levels and measured gain values for noise removal
mode. As evident from the figure, the measured and es-
timated values exhibit high correlation; the correlation
with the mean gain is higher as it is a more robust met-
ric to window shifts. Note that we do not have access
to the source code when computing the gain values,

https://osf.io/szd4x/
https://tsa3.webex.com
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so a perfect correlation is unlikely. This correlation is
slightly lower than that of the music mode (Fig. 11 in
Appendix E), implying that the noise removal changes
the input audio. Still, the measured audioMinGain and
audioMeanGain are representative of the audio levels.

5.3 Classification of Background Activities

We established that Webex accesses the microphone
while muted and sends audio statistics to their servers.
Further, this data is highly correlated with the energy
level received at the microphone, and appears to be in-
dicative of the activity happening in the background.
The logical question that follows is: is there a poten-
tial of learning the user background activities from audio
statistics sent to Webex’s servers? In the following, we
describe how these statistics can fingerprint the user’s
background activities, when they are muted.

We analyze the inference of information from user’s
Webex telemetry traffic while being muted. For each
one-minute window, this information contains three val-
ues that change relatively : mean, min, and max audio
gains. An entity with access to this information, such
as Webex’s cloud service or any adversary able to view
this traffic in transit, can perform this analysis to infer
what activity is occurring in the user’s environment.

5.3.1 Data Collection

We focus on the background activities from our user
study of Sec. 3. In Fig. 2, we highlight twelve activities
that happen in the user’s background. Out of these ac-
tivities, we do not consider: (1) silent and physical activ-
ities as they do not result in gain changes, (2) bathroom
as it is unlikely that the user’s microphone will pick up
bathroom noises, (3) street noise as it does not repre-
sent a private activity, and (4) diverse noise such as TV
shows which may contain all of the classes in a single
30-minute instance. As such, our objective is to iden-
tify whether the gain values can fingerprint six types of
activities: (1) music playing, (2) cooking or eating, (3)
people talking, (4) animal sounds (especially dog bark-
ing), (5) keyboard typing, and (6) cleaning.

To simulate the real-world environment with spe-
cific background activities, we choose multi-hour long
ASMR YouTube videos that consist of single back-
ground activity. Each video is different such that the
videos are produced by different people (YouTube users)
doing the same task. The purpose of selecting the videos

Fig. 8. Clusters of audio statistics data color coded by back-
ground activity type. Clusters are visually separable.

in such a way is to minimize the effects from the
recording environment. We play each video over the
air through a Webex meeting, while muting the micro-
phone, and log the extracted gain values.

Our data collection consists of two Windows 10
machines. The first machine plays the videos using its
speaker and hosts the meeting for the other machine.
The other machine runs a Webex meeting client (with-
out any other app running). One machine is equipped
with a Logitech QuickCam Pro 9000 while the other
uses a Logitech C920S Pro HD 1080p webcam for mi-
crophone input. Both machines then join the same meet-
ing room and collect data simultaneously; on both, we
mute the microphone, turn off the camera, and keep the
default microphone settings.

We place the machines in a 12 f t × 7 f t × 10 f t room.
We adjust the distance from the speaker to the two
microphones and generate multiple datasets based on
the varying distances. Webex only allows for meet-
ings to last for 24 hours. For each Webex meeting,
we can extract around 1440 data points, stamped with
the corresponding label. Each data point corresponds
to three features: audioMaxGain, audioMeanGain, and
audioMinGain, representing three user metrics values
from one minute of audio. In summary, we performed
data collection over the course of two months, yielding
over 180 hours of data points.

We visualize the distribution of the six background
activities in Fig. 8. This figure shows that it is feasible
to fingerprint background activities by analyzing the ex-
tracted gain values from Webex. Each activity exhibits
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relatively consistent and distinguishable gain values, de-
spite sampling diverse videos to represent each activity.

5.3.2 Classifier Training

We design a classifier to highlight how the background
activities can be fingerprinted based on the observed
gain values. In what follows, we describe how we curate
the data for this classifier, how we design and train the
classifier, and the results of the classification.

Data Preprocessing
We split the YouTube videos into a development set
(training and validation) and an evaluation set. The two
sets have no overlaps in the videos. We set the distance
from the microphone to speaker as 10 cm, 25 cm, and
50 cm for both sets of videos, whereas we added an extra
distance condition, 100 cm, for the evaluation set.

Table 3 shows the data distribution for the devel-
opment and evaluation sets. We split the development
set into a training set (80%) and validation set (20%)
for hyper-parameter tuning. We split the evaluation set
into two subsets to study the effect of distance. The
first evaluation subset is collected at distances of 10 cm,
25 cm, and 50 cm between the speaker and microphone.
The second subset is collected at a distance of 100 cm;
the data in the second evaluation subset has no over-
lap with the development set in terms of distance and
source videos.

For a t-minutes long YouTube Video, we extract t
data points; each data point is assigned the same la-
bel derived from the title of the video. To accommodate
videos of varying lengths, we limit the input to the clas-
sifier to clips of length n. Thus, we apply a sliding win-
dow with length n to each window and set the moving
stride to be 1. We define each clip as:

Clip =


maxi maxi+1 ... maxi+n−1
meani meani+1 ... meani+n−1
mini mini+1 ... mini+n−1

 , (1)

where maxi represents the audioMaxGain for the ith

minute in the window.

Model Design and Training
We train a supervised multi-class classifier to distinguish
background activities given clip data of length n. Similar
to Schuster et al. [39], we use a Convolutional Neural
Network (Fig. 10 in Appendix); the network consists

Class Train Val Eval1 Eval2

classical music 168 43 379 184
cooking/eating 500 126 486 169
crowd talking 656 164 1191 568
dog barking 408 103 726 691
keyboard 359 90 1324 580
vaccume/cleaning 544 136 668 572
total (minutes) 2637 660 4774 2764

Table 3. Dataset distribution, development set (training and vali-
dation) and evaluation set (subset 1 and 2).

of two 1-dimensional convolution layers, flatten layer,
three dense layers, and a softmax layer (of size 6). The
design of the convolutional layer takes into account fea-
ture and temporal correlations.

We train the network using an Adam optimizer with
a cross-entropy function as the loss calculation function.
We set the learning rate to 0.001 and initialize model
parameter weights in a random uniform distribution.
As the total length of the training set and validation
is around 3000, we evaluate different batch sizes: 50,
500, 1000, 1500, and 3000. We utilize early stopping to
prevent over-fitting. Because the dataset is imbalanced,
we calculate the precision separately for each class and
compute the average precision score weighted by their
proportion in the validation dataset. Then we use the
weighted average of precision score and accuracy of all
classes as the early stopping criterion. We select the
best-performing epoch index and batch size to train the
optimal classifier for each window length.

We train the network on windows of size n: 3,5,7,10.
Comparing the performance of 4 optimal classifiers for
each window length, we observe that n = 7 (96.13%
precision on validation set) outperforms windows n = 3
(92.26%) and n = 5 (92.98%), in terms of the accu-
racy score and precision score of the validation set. We
achieve 96.90% with windows length n = 10 but we re-
move it in case of over-fitting.

5.3.3 Classification Results

We present the per-class performance of classifier with
window lengths 3 and 7 in Fig. 12 and Fig. 9. For win-
dow size of n = 7, we achieve 77.75% macro accuracy on
evaluation set 1 and 89.03% macro accuracy on evalua-
tion set 2. The average of per class precision for evalua-
tion set 1 is 73.07% while that is 87.47% for evaluation
set 2. Note that evaluation set 2 is collected with 100 cm
microphone to speaker distance; our results suggest that
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the volume level and video content do not considerably
hurt the classifier performance.

For window size of n = 3, we achieve 78.70% macro
accuracy on evaluation set 1 and 78.48% macro accuracy
on evaluation set 2. The average of per class precision
for evaluation set 1 is 79.35% while that is 84.35% for
evaluation set 2. Both classifiers follow our early stop-
ping criteria and achieve high performance on evalua-
tion sets. This performance indicates that, even with
three-minutes worth of measurements, it is possible to
infer the ongoing background activities.

For both window sizes, dog barking, crowd talking,
and cleaning show high precision as well as accuracy on
both evaluation datasets. Some music and people talk-
ing samples are misclassified as keyboard typing on eval-
uation set 1 and 2 respectively, while cooking and eating
shows a lowest performance among the six background
activities. On both evaluation sets 1 and 2, “cooking
or eating” data points are severely mingled with “key-
board typing” as both classifiers cannot accurately clas-
sify these two classes at the same time. We discuss this
aspect in Sec. 6.1.

Finally, we test whether Webex’s noise-canceling
feature affects the statistics reported in log packets. The
results are nearly identical with noise-canceling disabled
or enabled. However, there is a difference between the
logged gain values from Webex when alternating be-
tween the music and noise-removal modes. Therefore, we
only collect and present results based on data collected
with noise-canceling enabled — the default setting —
through our entire classification process.

Our classifier performs well on both evaluation sets
in under various kinds of background noise, recording
environments and volume levels. The gain values logged
by Webex and sent to its cloud server can be used to
distinguish multiple types of background activity.

6 Discussion
In the following, we discuss some of the limitations with
our methodology. We also discuss possible mitigation
strategies, including an improved OS-level permission
model and user education.

6.1 Limitations of the Study

Using live binary analysis tools, we developed a tech-
nique to trace incoming audio data from the microphone

driver to the operating system’s socket API; our meth-
ods are in compliance with each app’s Terms of Service
(ToS). We conducted a thorough evaluation of the We-
bex native Windows app, demonstrating that we could
distinguish a variety of background activities that were
most commonly reported in our user study. We discuss
limitations in (1) our binary analysis techniques, (2) our
dataset and (3) our background activity classifier.

The first limitation is that our binary analysis tech-
nique does not easily generalize to other apps because
different VCAs have different mechanisms for preparing
and encrypting network traffic. Many of the apps we
studied encrypt the outgoing data stream before pass-
ing it to the operating system’s socket interface, making
it impossible to search the binary’s memory image for
the raw microphone data. Only in Webex were we able
to intercept plaintext immediately before it is passed to
the Windows network socket API.

The second limitation is that the findings from the
user study might not generalize to the general popu-
lation. The user study participants are young and edu-
cated professionals, who are potentially more tech-savvy
than the general population. However, the responses to
our questions did not reveal a high level of technical so-
phistication when describing the operation of the mute
button. Fig. 3 shows that handful of participants were
able to correctly describe the operation of the mute but-
ton.

The third limitation is that we collected data for our
Webex case study in only one room. We do not consider
the impacts of the speaker’s volume level or the room’s
acoustic properties that may affect the microphone in-
put. It may be possible to infer a relationship between
the room’s acoustic properties and the audio statistics
that Webex reports using raw audio data acquired while
the app is unmuted.

Finally, our classifier targets single background ac-
tivity at a time, and it does not perform well on all
background activities. Differentiating between multiple
sources is potentially possible, however, due to a lim-
ited data collection scheme we did not evaluate multiple
simultaneous events. Furthermore, the “cooking” back-
ground activity shows a low accuracy score and overlaps
with “keyboard” data points in Fig. 8. Poor performance
of the cooking class appears to be caused by inconsistent
noises that are generated by different cooking activities
like grilling, frying, baking, etc. Another reason for the
poor performance is that cooking and typing sound sim-
ilar at different distances. Also, our data does not ac-
count for noises that are short in duration. Sounds need
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(a) Validation Set (b) Evalset1 (c) Evalset2

Fig. 9. Background activity classifier performance with window length = 7. The six classes include Classical Music (cm), Cooking or
eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

to last at least a single minute to create a data point;
our techniques cannot evaluate unique but short noises.

6.2 An OS-Level Mitigation

To ensure a trustworthy permission model for micro-
phone access in VCAs, we suggest that operating sys-
tems adopt a “software mute” feature similar to the one
implemented in Chromium and WebRTC. Under that
model, the VCA calls an API function or syscall in the
OS to disable audio traffic flowing from the microphone
driver to the app, putting the OS in charge of the mi-
crophone data while the app is muted.

The OS’s microphone status indicator would serve
as an easy and nontechnical mechanism for users to au-
dit VCAs, ensuring that they use the software mute cor-
rectly. The microphone status indicator should be on
only when the VCA is unmuted and off otherwise. In
our analysis of mute button, we found that the operat-
ing system cannot detect the state of an app-controlled
mute button, and consequently the microphone status
indicator does not correctly reflect whether the VCA is
actively reading data from the microphone driver. Since
the mute functionality is currently implemented in the
VCA instead of the OS, there is no clear policy about
how microphone data should be handled during mute
that applies to every VCA. As we discovered, some apps
read from the microphone at a lower data rate during
mute, but Webex reads from the mic the same way re-
gardless of mute button status.

An OS-mediated software mute establishes clear
rules about when the VCA should be reading from the
microphone, making it clear to the OS when the micro-
phone status indicator should be illuminated and mak-

ing it clear to the user when the VCA is reading from
the microphone.

6.3 VCA Privacy Policies

Few participants in our user study were aware of the
data collection or sharing policies of popular VCAs.
Around 70% of our participants believe that the mute
button blocks the transmission of microphone data
or disables the microphone altogether. VCA service
providers should provide detailed definitions of data col-
lection scenarios rather than generic statements about
how they collect data about their users. All VCAs ac-
tively query the microphone when the user is muted,
and they might have legitimate purposes. For example,
Zoom alerts the user when they try to speak with their
microphone muted. The privacy policies of these services
need to be explicit about microphone access, which is
not currently the case.

We analyzed the privacy policies of the VCAs from
Table 2 to understand how do they describe their pri-
vacy practices. Other than Google [20], no privacy pol-
icy makes an explicit mention to the mute button
and how microphone data is accessed when the user
is muted. The mention of the mute button in Google
Meet’s privacy policy refers to the meeting organizer’s
ability to mute others. Also, the privacy policies are
vague about the data collected when the user is run-
ning a VCA. Some privacy policies, such as Whereby’s
and Google Meet’s, explicitly mention that they do not
collect audio data. Other VCA privacy policies do not
mention collecting audio data at all. Most policies de-
scribe their data collection, in general terms, as “de-
pend[ing] on the context of your interactions” [33]. The
common reasons that VCA service providers cite for col-
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lecting data are to improve “app performance” [13, 33],
to facilitate “research” [33, 44], and for “user analyt-
ics” [13, 33, 44].

Interestingly, Cisco’s privacy policy [13] mentions
audio data in the context of “types of personal informa-
tion that [Cisco] may process.” Cisco’s privacy policy
is not specific about when the collection is happening
and about the purposes of this collection. However, a
different privacy datasheet [31] from Cisco mentions:

Cisco Webex Meetings does not:
Monitor or interfere with your meeting traffic or content.

Our findings suggest that, contrary to the statement in
the privacy policy, Webex monitors, collects, processes,
and shares with its servers audio-derived data, while
the user is muted. To inform Cisco of our investigation
results, we opened a responsible disclosure with Cisco
about our findings. As of February 2022, their Webex
engineering team and Privacy team are actively working
on solving this issue.

7 Conclusion
In this paper, we present the first large scale study of
VCA mute-button privacy. Our user study shows that
users are unaware of Webex listening to their micro-
phone while muted. We examined all widely used VCAs
and desktop operating systems and pinpointed a poten-
tial privacy leakage within Webex. We discovered that
while muted, Webex continuously reads audio data from
the microphone and transmits statistics of that data
once per minute to its telemetry servers. Using runtime
binary analysis tools, we intercepted unencrypted copies
of the telemetry data before it was transmitted. We used
over 180 hours of simulated background noise to build
a data set for classification. Our classifier achieves an
81.9% macro accuracy on identifying six common back-
ground activities using intercepted outgoing telemetry
packets when a user is muted. Operating system vendors
can establish a stronger permission model for the micro-
phone by implementing an OS-level software mute.

Our analysis of the VCAs provide new insight to a
user’s understanding of the mute button. We show that
Webex transmits audio-derived data while the user is
muted. Counter-measures should be supported by poli-
cies and regulations to ensure that users’ private back-
ground activities are not monitored.
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A Model Architecture

Fig. 10. The classification architecture for the background activi-
ties.

During training, we observe that batch size affects
training speed and performance. Our classifier is trained
with batch size of 500, epoch of 400, window length of
7 and learning rate of 0.001 .

B Chromium API
Chromium acted as a layer between the operating sys-
tem and the browser based VCAs. To verify microphone
access we injected our own logging scripts in the source
code of Chromium. Knowing when an app accesses the
microphone requires several functions to be monitored,
the main functions we observed were:

1. PulseAudioInputStream::ReadData() ReadData
indiscriminately reads audio frames from the oper-
ating system into a local buffer, regardless of the
VCA’s mute status (muted or unmuted).

2. opus_encode_native() After receiving a full mi-
crophone audio frame from the operating system,
PulseAudioInputStream::ReadData() passes that
frame to opus_encode_native(), regardless of the
VCA’s mute status.

3. AudioSendStream::AudioSendStream() – transfers
the encoded audio stream to the web-based VCA.
It is also a WebRTC API call that executing code
can call. AudioSendStream only hands the encoded
audio data to the VCA if WebRTC’s software mute
function is disabled.

These three functions outline a general flow of au-
dio data within Chromium in Linux(as of writing this).
Logging important variable’s states within these three
functions painted an accurate picture of microphone us-
age while the user was muted.

C YouTube Video List
Development Set (Training set and validation set) is
based on YouTube Video List I. Evaluation set is based
on YouTube Video List II.

C.1 YouTube Video List I

– Dogs Barking for 12 hours - High Quality Sounds:
https://www.youtube.com/watch?v=3Go2_VXy1Tg

– ASMROne Hour of Soothing Grill Sounds – Sizzling
Meat:
https://www.youtube.com/watch?v=NKoJDyKo1Q

– Vacuum Cleaner Sound - Extended 10 Hours |
White Noise Sounds - Sleep, Study or Soothe a Baby
:
https://www.youtube.com/watch?v=Ms8oZeywjyM&t=7s

– People Talking Sound effect (10 Hours) :
https://www.youtube.com/watch?v=y32-rwUr0Nk

– Baroque Music Collection - Vivaldi, Bach, Corelli,
Telemann... :
https://www.youtube.com/watch?v=ApSoNBu2wt8

– 10 Hours Typing | Cherry MX Blue Mechanical
Keyboard | Gaming Keyboard ASMR :
https://www.youtube.com/watch?v=h8nmVF0IDCs
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C.2 YouTube Video List II

– ASMR Cooking No talking 5 hours deep relaxation
sleeping AD free No ads:
https://www.youtube.com/watch?v=DoRSCsrKbq8

– 1 HOUR Barbecue Sound | Soothing Grill Sounds |
Sounds :
https://www.youtube.com/watch?v=va6AOQy8sWM

– Vacuum Cleaner Sound and Video 3 Hours - Relax,
Focus, Sleep, ASMR :
https://www.youtube.com/watch?v=KilQtE5Nl90

– Vacuum Cleaner Sound & Video 2020 Christmas
Edition 3 Hours :
https://www.youtube.com/watch?v=BFNUEVR_Ps8

– BESTE Baby Einschlafmusik Staubsauger Vacuum
Cleaner Sound // 3 Hours // P :
https://www.youtube.com/watch?v=csHiTtxDmx0

– 1 Hour of Dog Barking :
https://www.youtube.com/watch?v=7ej1ur8amCo

– DOG BARKING 12 Hours Sound Effect :
https://www.youtube.com/watch?v=fecqn9fnG0s

– ASMR Typing | Ducky One 2 Mini | Cherry MX
Blue (1 HOUR) :
https://www.youtube.com/watch?v=vlgch5z4y7Y

– 10 Hours of People talking :
https://www.youtube.com/watch?v=PHBJNN-M_Mo

– Anne Pro 1 Hour Keyboard Typing Sounds ASMR
(No talking, No music, No mid-roll ads) :
https://www.youtube.com/watch?v=qMtIOlS_WAo

D Windows API
We can trace the data using the following three meth-
ods, which are part of the Windows API DLLs:

1. BCryptEncrypt in the ncryptsslp.dll library for
encrypting network traffic before sending.

2. IAudioRenderClient::GetBuffer method in the
Windows 10 32-bit Audio interface which fills a local
buffer with raw audio data.

3. IAudioRenderClient::ReleaseBuffer method in
the Windows 10 32-bit Audio interface which re-
leases the buffer space acquired in the getbuffer
method call.

The BCryptEncrypt function is the method that some
VCAs executes right before they send a packet over
the network. After this method is executed, Wireshark
captures the post-encrypted packet generated from the
BCryptEncrypt function as it leaves the machine. Thus,

being able to capture calls at the method before sending
the packets grants us unencrypted network traffic. The
GetBuffer method fills a local array in the app’s mem-
ory space with raw audio data. Using the argument’s
address, we can follow each call and verify if the au-
dio buffer that an app has is changing even while the
user is muted. The ReleaseBuffer method tells us how
many frames the app filled their own local buffer with,
which gives us a good length of what the app is seeing.
Examining the data we extracted from these methods
we can build a dataset that, with confidence, observes
audio data from the microphone to the network.

E Music Mode Correlation
Results

Fig. 11. Correlation between audio gain reported by Webex and
input audio signal power level (in dbA) when music mode is en-
abled. Although we cannot observe the raw audio while muted,
the statistics reported by Webex leak information about the a
user’s background noise.

F Window Length 5 and 10
We present the confusion matrix of window length 5 and
10 in Fig. 14 and Fig. 13.
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(a) Validation Set (b) Evalset1 (c) Evalset2

Fig. 12. Background activity classifier performance with window length = 3. The six classes include Classical Music (cm), Cooking or
eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

(a) Validation Set (b) Evalset1 (c) Evalset2win5

Fig. 13. Background activity classifier performance with window length = 5. The six classes include Classical Music (cm), Cooking or
eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

(a) Validation Set (b) Evalset1 (c) Evalset2win10

Fig. 14. Background activity classifier performance with window length = 10. The six classes include Classical Music (cm), Cooking or
eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

CodeBook for Q3 Description

Generic A generic description of the mute button
Indicator visual cue/icon notifying the user of the muting event
Block sending user experience: block tranmission of audio data to the other clients
Correct the respondent understands the correct operation of mute button
Disable Access The respondent mentions microphone is disabled or cut when mute button is clicked
Suspicious The respondent suspects the app keeps recording their voice after they apply the mute button
Sound detection The respondent mentioned the app notify them of possible speaking when muted.

Table 4. Codebook for responses to Survey Question Q3
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CodeBook for Q1 Explanation

No Talk No need to talk, so muted; or out of concern, in online classes no need to talk,
No interruption Do not bother others, do not interrupt others from noise
Hide Activities Hide private activities in the background; hide conversations in background
Generic no reason in particular
Comfort The participant just feels more comfortable

Table 5. Codebook for responses to Survey Question Q1

G Codebooks
We present our consolidated codebooks to three open-
ended questions (Q1, Q2, and Q3 ) that are indepen-
dently generated by two authors in Tables 5, 6, and 4.

Consolidated codebook - Q2 Activities

Music Talking
Dog Barking Street Noise
Watching TV Physical Activity
Keyboard Bathroom
Cooking/eating Silent activities
Cleaning/Vacuum Online Videos/game
Talking Cleaning/Vacuum

Table 6. Codebook for responses to Survey Question Q2
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