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Abstract—With the growing effort to reduce power consump-
tion in machines, fault tolerance becomes more of a concern. This
holds particularly for large-scale computing, where execution
failures due to soft faults waste excessive time and resources.
These large-scale applications are normally parallel in nature
and rely on control structures tailored specifically for parallel
computing, such as locks and barriers. While there are many
studies on resilient software, to our knowledge none of them
focus on protecting these parallel control structures. In this
work, we present a method of ensuring the correct operation
of both locks and barriers in parallel applications. Our method
tracks the memory locations used within parallel sections and
detects a violation of the control structures. Upon detecting any
violation, the violating thread is rolled back to the beginning
of the structure and reattempts it, similar to rollback mecha-
nisms in transactional memory systems. We test the method on
representative samples of the BigDataBench kernels and find it
exhibits a mean error reduction of 93.6% for basic mutex locks
and barriers with a mean 6.55% execution time overhead at 64
threads. Additionally, we provide a comparison to transactional
memory methods and demonstrate up to a mean 57.5% execution
time overhead reduction.

Index Terms—algorithmic resilience, barriers, fault tolerance,
locks, parallel programming

I. INTRODUCTION

Program reliability is a major concern throughout many
fields of computing. Applications that cannot reliably produce
correct solutions are hardly useful. As chip designers drive
to reduce power consumption, the voltage levels separating
logic 0 and logic 1 become closer and provide less of an
error margin. This increases the probability of bit flips during
execution, where a 0 becomes a 1 or vice versa. Depending
on the locations of these bit flips, they can directly interfere
with program behavior and produce unexpected results.

Errors during execution can reveal themselves in different
ways, including hangs, crashes and silent data corruptions
(SDC). Crashes are the most obvious, where the process
simply exits suddenly. Hangs can be more deceptive as the
application may still seem to be doing work while actually
making no progress. Most difficult to detect during execution
are SDC, where a value used by the program is modified
without causing a crash or hang. For example, one of the
operands for an addition is corrupted, resulting in an incorrect
output value. This can become particularly dangerous when
errors propagate from one variable to another as the program
continues to execute [16]. These errors waste time and re-
sources as they go undetected.

While hardware solutions like error correcting memory
(ECM) exist [6], they can be expensive to apply and carry
overhead. This has led to an interest in software methods
for fault tolerance. These methods typically achieve good
error coverage with varying overhead costs depending on their
implementation details. Software fault tolerance methods [11]
for computing involve both a detection stage and a correc-
tion stage respectively for identifying and recovering from
errors. In order to trigger correction mechanisms, the detection
mechanism must first identify an error. Most methods exploit
features specific to the algorithms in question to identify these
irregularities during execution [12], [16], or require replication
and comparison of the process periodically during execution
to ensure correct behavior [3]. Newer approaches relying on
machine learning to identify program deviation have also been
introduced [14].

Correction mechanisms typically utilize a form of check-
pointing for error recovery [9], [13]. Checkpointing involves
taking snapshots of the process during execution and restoring
to a previous correct snapshot upon detecting an error [13].
This can be done at varying granularity and frequency based
on the application. Checkpointing is a relatively simple method
that works well for crashes and hangs, but can be insufficient
for SDC as the error can go unnoticed and result in erroneous
checkpoints. In order to alleviate this, some systems require
saving multiple checkpoints and more frequent checkpointing,
involving undesirably higher overhead.

These detection and correction methods are extremely im-
portant for large-scale computing, where processes may run for
many hours or even days on multiple nodes. If an SDC occurs
early during execution, the algorithm could run for a long
duration before the error is noticed, wasting substantial time,
resources and energy. These programs are typically parallel in
nature, employing fundamentally different techniques to solve
problems. They commonly rely in part on synchronization
mechanisms such as locks and barriers for sharing informa-
tion among threads and ensuring coherence. However, these
mechanisms themselves can be vulnerable to errors, leading
to error behavior that occurs only within parallel programs.
To our knowledge, there is little previous work aimed at
protecting these synchronization mechanisms from transient
faults. Application checkpointing systems can solve crashes
and hangs resulting from errors in synchronization mecha-
nisms but require additional detection for SDC. Transactional
memory has been proposed as a method to protect code
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executions from concurrency bugs [15], though its focus is
on programmer errors not transient faults.

In this work we present a method for identifying and cor-
recting violations of these synchronization mechanisms caused
by transient faults via local logging systems. Tracking thread
locations during execution reveals violations of the synchro-
nization mechanisms. We implement a local checkpointing and
recovery mechanism for the threads through Intel Pin [7] by
exploiting the conceptual properties of these mechanisms. We
include an investigation into the results of faults within these
synchronization components to demonstrate the effectiveness
of such methods, and a measurement of the overhead costs
for implementation. Finally, we provide a comparison with
transactional memory, another form of local logging and
rollback for parallel systems that can act as an alternative
for lock-based mechanisms. Our system implements similar
logging mechanisms to an eager transactional memory system,
but it benefits from simplified conflict detection when fewer
conflicts can occur. Note that our mechanism also differs from
conventional checkpointing in that it conducts logging at each
parallel control structure (locks and barriers) in preparation
for rolling back, if required, as opposed to collecting system
execution states periodically or adaptively [13] under conven-
tional checkpointing.

The contributions of this work can be summarized as
follows:

o We examine vulnerability of BigDataBench kernels [1] to
soft faults within concurrency control mechanisms during
execution.

o We design and develop a logging mechanism based on
transactional memory to detect and correct the resulting
concurrency bugs by enforcing the control mechanisms.

e We demonstrate a mean 93.6% error coverage from the
resulting concurrency bugs caused by these soft faults
with a mean 6.55% overhead in the execution time at 64
threads.

e We compare the overhead of our developed logging
mechanism against a full transactional memory system
and find up to a mean 57.5% reduction in execution time
overhead relative to transactional memory.

II. BACKGROUND

A. Concurrency Control

As previously mentioned, many fault tolerant methods
exploit program features to increase coverage and reduce
overhead. We focus specifically on locks and barriers as our
synchronization structures. These fundamental mechanisms
provide building blocks for more complex parallel data struc-
tures. However, these locks and barriers perform different
functions and present different vulnerabilities. Locks protect
critical sections of code, where only one thread should enter
at any given time. Violations can cause race conditions where
multiple threads access values at the same time. Failing to
unlock locks, or poorly coordinating the order with which
a thread claims multiple locks, can also lead to deadlocks,
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Fig. 1. Execution outcome breakdowns for various benchmarks under 2, 4,
and 8 usable threads.

halting execution progress. Locks can be employed in either a
fine-grained or coarse-grained manner. Coarse-grained locking
protects a large amount of code that may not all be needed by
the thread. It is easier to implement at the cost of performance,
as more threads compete for the critical section. Fine-grained
locking by comparison enables more parallelism by locking
small sections of code that are specifically necessary for the
thread, but it is difficult to implement and may be more prone
to deadlocking.

Barriers by comparison act as a trap, where no thread
is allowed to pass until all involved threads have reached
the barrier. Barriers are commonly used with an alternating
computation and communication paradigm. When a thread
finishes computation and needs to share information, each
thread waits until every thread has completed computation and
is ready for sharing. This prevents threads from overwriting
values that are still needed by other threads, or reading old
values that are no longer valid. Violations of the barrier
would cause threads to sneak past, potentially causing these
problems. Both locks and barriers are typically implemented
using atomic operations that allow a thread to perform a
combination of reads and writes as one single operation,
ensuring coherence among multiple threads operating on a
shared value. The most common example is the compare-and-
swap (CAS), which compares a value m in memory to a given
value v, and writes a third value to memory if m and v are
equal.

B. Transactional Memory

There are other methods to ensure thread coherence besides
directly using locks and barriers. The most relevant to note
here is transactional memory. By automatically fine-grained
locking individual memory locations, developers do not need
to manually implement locking mechanisms. Instead, a thread
simply marks the beginning and the end of a transaction,
wherein all operations will be executed as if they were atomic.
If there are conflicts due to multiple threads modifying the
same memory locations, one thread is chosen to commit
its transaction while others are forced to reattempt. These
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Fig. 2. Execution flowchart showing executions with no conflicts (green),
immediate rollback (red) and forced rollback (orange).

transactional memory-based systems provide an alternative for
developers, potentially allowing for greater parallelism in their
fine-grained nature. By being aware of how threads operate
on a memory location (read vs write), such a system can also
allow multiple reads simultaneously as memory is then not
modified. Transactional memory has previously been adopted
to address concurrency bugs which result from developer
errors but are not transient faults [15].

Transactional memory systems have been implemented both
in hardware [10] and in software [4]. Both implementation
methods have their respective benefits, with hardware systems
typically having better performance in exchange for flexibility
and simplicity. Transactional memory systems have also been
proposed for accelerators like GPUs [2], [5]. As shown in
the following sections, we utilize methods similar to eager
transactional memory to protect coarse-grained locks and bar-
riers. While similar to transactional memory, it is considerably
simpler due to a limitation in the types of conflicts that may
arise.

III. MOTIVATION

It is important to note that transient errors in these par-
allel programs may differ considerably from those found in
sequential programs. In sequential programs, faults may cause
crashes, hangs or incorrect output by modifying pointers,
loop control structures or variables holding important data.
In parallel programs, crashes, hangs and SDC can all result
from faults targeting parallel control structures like locks and
barriers. For example, a fault that occurs in data used within
or leading up to “xchg” or CAS instructions may cause the
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synchronization mechanism to fail. These failures can result
in crashes, hangs, or SDC when threads violate concurrency
control, either through race conditions in critical sections or
accessing improperly synchronized data. SDC caused by these
failures can further propagate into different errors, which may
be difficult to identify, locate and recover from. Due to the
different nature of these errors, we make the first attempt
to detect and correct them in non-traditional manners, as
discussed in Section IV.

We aim demonstrate the importance of protecting concur-
rency control mechanisms in parallel applications by exam-
ining the vulnerability of three representative benchmarks of
the BigDataBench kernels under 2, 4, and 8 threads. The full
list representative benchmarks for the BigDataBench kernels
is shown in Table I. We simulate transient faults using the
Intel Pin Fault Injector (PINFI) [8]. As the errors can occur
in different locations in each trial, we simulate transient faults
rather than hardware faults. This automated fault injection tool
targets instructions within select functions and modifies the
bits to simulate soft errors during execution. For these exper-
iments, we limit injection to the synchronization mechanisms
contained within the programs. We inject a single fault into
every lock encountered during execution. Hence, the number
of faults injected for one trial equals the number of locks
encountered over the course of execution. The results from
these trials are shown in Fig. 1.

It is evident that as the number of threads increases, error
frequency also increases. Having more threads in contention
for the control structures results in more CPU time spent wait-
ing at these structures during execution. As more instructions
are executed involving these wait loops, it becomes more likely
for errors to break these loops and thus break the control
structures. It is worth noting the variety of error profiles
among benchmarks. FFT is completely vulnerable to SDC,
while radix is only mildly vulnerable. In comparison, BFS
contains vulnerabilities not present in the other two, including
a sizable number of crashes and some hanging executions.
These outcomes are caused by soft fault injection into the
control structures which can cause race conditions, deadlock,
or direct crashes as shown.

Which outcomes are observed depends heavily on the algo-
rithm itself. Programs like BFS that rely heavily on pointers
experience more crashes as errors due to failed synchronization
may corrupt these pointers and result in erroneous memory
access. Conversely, programs that include many logical or
arithmetic instructions like FFT are more vulnerable to SDC as
errors due to failed synchronization are more likely to simply
modify data and not cause crashes. This observation supports
other works in that the use of algorithm-specific methods
for detection and correction throughout the entire execution,
may be more efficient than generic methods, confirming the
importance of protecting locks and barriers.

I1V. DESIGN
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Algorithm 1 Lock Error Detection and Correction
Input: The instruction pointer p for the entry point of the
critical section, the current thread id tid, and a dictionary
of lock ownership status S
1: Atomically attempt to set S[p] = tid
if S[p| = tid then
Current thread successfully marked as owner, proceed
to the critical section
else
Send rollback signal to S[p]
Clear S[p]
Roll back to p to reattempt lock acquisition
end if

(98]

A

A. Detection

In order to detect these violations, we implement a logging
mechanism through Intel Pin [7] similar to an eager transac-
tional memory system. The tool identifies marked barriers and
locks in the binary and tracks their program locations during
execution. This allows us to identify at what points which
threads reside in critical sections or beyond barriers. Whenever
multiple threads are detected within a critical section simul-
taneously, we know that its associated lock has been broken
by faults. Similarly, if a thread ever passes a barrier before
other threads are able to reach it, we know that the barrier
had broken. Fig. 2 provides an example of both successful
and recovered execution paths.

Before entering a critical section, a thread must pass through
both the original lock and the following protection functions,
marked as (1) in Fig. 2. The log tracks a thread’s entrance
to the critical section and executes Algorithm 1 to detect if
the thread violates the exclusivity of the critical section. The
green line shows a thread which executes without interruption.
The orange line (thread 1) shows a thread that is interrupted
whereas the red thread (thread 2) erroneously breaks the lock
and enters the critical section. When thread 1 enters the critical
section first, it is marked as the owner of the lock within the
log and can progress into the critical section. When thread
2 enters the critical section before thread 1 has exited and
released ownership, the logging system is aware that the lock
has broken for thread 2 or thread 1 and thus correction is
attempted.

Additional work is necessary to ensure locks are correctly
unlocked when leaving a critical section. This is different
from atomicity violations where multiple threads enter the
critical section, possibly leading to deadlocks and program
hangs instead since no threads are then able to enter the
critical section. To address this form of fault, we track which
locks are owned by which threads. Upon exiting a critical
section, if a lock is still owned by any thread no longer within
the associated critical section, we can correctly identify the
occurrence of an error, resulting in failure to release the lock.
This occurs in stage (3) of Fig. 2.

A similar method is used for detecting errors within barriers
as illustrated in Algorithm 2. Note that all updates to counters
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Fig. 3. Execution flowchart of barrier protection showing correct (green) and
erroneous (red) threads.

are performed atomically to avoid race conditions. By inserting
functions directly before and after a barrier, we can identify
when a thread enters and exits the barrier. If any thread
attempts to exit the barrier before all involved threads have
reached the barrier, it has violated the expected behavior of the
barrier and is identified as an error. This requires knowledge
of the number of threads that are involved in the barrier, which
can be given as a parameter, collected from the initialization of
the barrier object, or assumed by default to be the number of
threads in use by the process. If the barrier in question can be
encountered multiple times, additional checks are performed
before Line 2 to ensure re-entering threads do not interfere
with exiting threads.

Algorithm 2 Barrier Error Detection and Correction

Input: The instruction pointer p for the barrier and the
number of threads involved in the barrier n
1: Initialize entrance_counter to n, exit counter to 0
When a thread attempts to enter the barrier:
Decrement entrance_counter
When a thread attempts to exit the barrier:
if entrance_counter is not 0 then

(98]

4:  Roll thread back to the barrier and wait
5. else if exit_counter is not n — 1 then

6:  Increment exit_counter

7: else

8:  Reset counters to initial values

9: end if

B. Correction

Having detected the presence of errors, a thread can attempt
local recovery via a rollback. This local recovery is similar to
an aborted transaction in transactional memory systems. For
barriers, rolling back is simple as errors are detected before
threads can modify shared memory. When a thread is found
to be exiting the barrier before all other threads have arrived,
it is rolled back and forced to wait. When all threads arrive,
the offending thread can then exit correctly together with all
others. An example of both correct and erroneous executions is
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shown in Fig. 3, where (1) and (2) mark the entry and the exit
stages respectively. This reinforces the conceptual behavior of
the barrier to ensure proper synchronization.

The process is somewhat more complex for locks as threads
may modify shared variables. Additionally, we cannot be
certain which thread within the critical section entered erro-
neously. Thus, both are rolled back and the logged writes are
cleared, marked as (2) in Fig. 2. Only one thread has reached
the point of modifying shared variables, so the rollback is
relatively simple. This means that the log does not have to
store backup values for a memory location for each thread.
Since only one thread has been modifying shared variables,
it can simply restore previous values while other threads reat-
tempt the lock. Due to our method of conflict detection, we do
not encounter situations where two threads can both modify a
shared variable before the conflict is detected, which simplifies
the logging and rollback processes. We recommend using re-
entrant locks in conjunction with our system, as the correct
owner will then be able to re-enter the critical section after a
rollback. Upon successfully exiting the critical section, thread
information is cleared from the log, allowing other threads
to enter. Ultimately this mimics the conceptual function of
the lock to ensure the correctness of the critical section.
In summary, each of these correcting methods enforces the
associated control structure behavior, thereby preventing the
propagation of SDC.

C. Examples

For clarity, we provide two following examples to cover
both thread and barrier encounters. Both examples will utilize
two threads, thread A and B, to showcase the protection and
correction mechanisms.

Locks: Suppose thread A encounters a lock at instruction p.
The thread attempts to lock the lock, and our system attempts
to claim ownership of the lock for thread A in line 1 of
Algorithm 1. If thread A successfully claims ownership (line
2), we assume thread A has appropriately locked the lock and
can continue with the critical section (line 3) while logging
the usage of shared variables. Assume thread B encounters the
lock while thread A is in the critical section. It is possible that
thread B passes the lock entrance due to a fault in its or thread
A’s locking process. Either way, the fault is detected in line 2
when thread B fails to take ownership. Both threads are then
forced to reattempt acquisition of the lock in lines 5-7, rolling
back any changes made by thread A.

Barriers: Suppose thread A encounters a barrier expecting
two threads at instruction p before thread B. When thread
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A enters the barrier to wait, marked as (1) in Fig. 3, en-
trance_counter is decremented from n 2ton =1 as
shown in line 2 of Algorithm 2. Thread A should not pass this
barrier until thread B arrives to ensure proper synchronization.
If an error occurs to cause thread A to pass the barrier early,
the check in line 3 succeeds and line 4 is executed, forcing
thread A back to waiting. When thread B arrives at the barrier,
we again execute line 2. Both threads attempt to exit the
barrier, this time failing the check on line 3. Both threads
can thus exit the barrier, one executing line 5-6 to increment
the exit_counter and the other simply exiting and resetting the
initial values.

D. Implementation

For testing, we implement this method via Intel Pin as a Pin
tool, which makes it flexible to work with any binary compiled
for Intel processors. Intel Pin allows for both static and
dynamic analyses and modifications of a program. As such, not
only can we implement the transaction begin and end functions
statically before execution, we are also able to track program
locations and the control structure status dynamically during
execution. Fig. 4 shows the overall workflow of the tool. Upon
loading the binary, Pin applies the tools to the binary in two
steps, called the instrumentation and the inspection passes.
Instrumentation traverses the program statically to identify any
instructions of interest, namely those related to the locks and
barriers we aim to protect. It then inserts inspection functions
into the binary that will be executed during run-time. At
run-time, these functions intervene in the program execution,
carrying out the logging methods as necessary to track the
program status. Specifically, we locate every lock and barrier
used by the program and add protection functions to each of
them. These protection functions initialize the logging system
with the program counter and thread information. This allows
the logging system to detect the violations of the associated
synchronization mechanisms.

Although our implementation is purely software, it could
be augmented with hardware support. Our synchronization
protection mechanisms need the additions of (1) an on-chip
lock ownership directory, whose entries, say S[p], record the
ID of the thread entering Lock p; see Algorithm 1, (2) an
on-chip SRAM partitioned statically into zones, with Zone
p for holding the log associated with Thread S[p], and (3)
control logic for generating appropriate control signals and
maintaining ownership directory entries. Both (1) and (2)
are in the form of on-chip SRAM to improve performance.
Additional instructions, similar to previous atomic instructions,
could also be included to manage the lock ownership and
logging operations involved with these added on-chip SRAM
zones.

V. EVALUATION

A. Vulnerability and Resilience

In order to test the effectiveness of our system, we execute
the benchmark programs both with and without our protection
mechanisms. All experiments have been run on a workstation
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Fig. 5. Execution outcome breakdowns versus benchmarks under 64 threads.

with two Intel Xeon Platinum 8260 processors which support
up to 48 threads each when enabling Hyperthreading, resulting
in 96 total available threads. We test only up to 64 threads
as some benchmarks require the thread count to be a power
of two. As we have displayed in Fig. 1, higher thread count
results in greater vulnerability, so unless otherwise noted,
our experiments use the full 64 threads possible on our test
machine. Once again, we use PINFI [8] to simulate transient
faults by injecting one fault into each lock encountered during
execution. For the following experiments, we restrict fault
injection to both the synchronization code regions and our
added protection code regions where applicable. We must in-
ject into our added protection mechanisms to properly evaluate
the vulnerability of the final system. This prevents full error
coverage as the added code itself is vulnerable, although to a
lesser extent.

The BigDataBench benchmarks and their categories [1]
are listed in Table I. Specifically, we test the Fast Fourier
Transform (FFT), LU matrix decomposition (LU), radix sort-
ing (RADIX), graph operations (BFS), sampling operations
(MH, Metropolis-Hastings implementation of the Markov
chain Monte Carlo method), WordCount (WC), and set union
(UNION). We have chosen not to test the Logical Operations
category of the BigDataBench suite as its many samples are
intrinsically sequential. Therefore, we have covered 7 out of 8
categories of parallel BigDataBench kernels. Both the baseline
and protected versions of each benchmark are run through
Intel Pin to provide a proper comparison between the two test
cases with the maximum number of threads. The protection
mechanisms are simply disabled in the baseline case. All
benchmarks are executed with 64 threads. Our results are
displayed in Fig. 5 and Table 1.

As shown previously in Fig. 1, different benchmarks have
different vulnerability profiles. FFT, LU and radix sort show
varying degrees of SDC vulnerability, while the remaining four
display considerable numbers of SDC and crashes. However,
it is evident that the protection system removes almost all
occurrences of crashes, hangs and SDC during the execution of
these programs by correcting the soft faults within the control
structures. It achieves a mean 93.6% error coverage across all

6

TABLE I
EXECUTION OUTCOMES FOR EACH BENCHMARK WITH (PROT) AND
WITHOUT (BASE) OUR PROTECTION MECHANISM. A TOTAL OF 1000
TRIALS HAS BEEN EXECUTED FOR EACH BENCHMARK UNDER 64
THREADS. ER %: THE ERROR REDUCTION PERCENTAGE WHEN
COMPARING THE NUMBER OF ERROR OCCURRENCES BETWEEN THE BASE
AND PROT MODELS

[ Category | Benchmark | Outcome [ ER % |
[ [ [ Correct | SDC [ Hang | Crash | |
Transform FFT-base 0 1000 0 0
Operations FFT-prot 962 0 31 7 96.2
Linear LU-base 831 169 0 0
Algebra LU-prot 986 0 12 2 91.7
Sorting radix-base 733 267 0 0
radix-prot 959 0 32 9 84.6
Graph bfs-base 387 283 316 14
Operations bfs-prot 974 0 17 9 95.8
Sampling mh-base 645 272 73 10
mh-prot 984 0 13 3 95.5
Statistics wc-base 501 469 27 3
Operations wc-prot 980 0 13 5 96.4
Set union-base 387 334 244 35
Operations | union-prot 975 0 18 7 95.9

kernels, with RADIX having the lowest coverage of 84.6%
and WC having the highest coverage at 96.4%. We believe
RADIX and LU show lower error coverage as they are already
more resilient to errors and therefore there are fewer to correct.
Interestingly, the protected benchmarks only contain crash and
hang errors without any SDC occurrences. These crash and
hang errors are preferable over SDC as they are more easily
detectable and correctable during execution. Note that we do
not claim that this method will address all possible errors
that can occur in the program in general. Rather, the method
focuses only on errors within the synchronization mechanisms,
with errors beyond these synchronization structures deemed
outside the scope of this work. By reducing these errors we
prevent error propagation into other forms that may be more
difficult or costly to detect with other methods.

B. Overhead

Execution Time Overhead To properly compare the cost
of our system, we also investigate execution time overhead
incurred by the implemented protection mechanisms on each
benchmark under 4 to 64 threads. Both the baseline and the
protected version are again executed through Intel Pin to
provide an accurate comparison of the overhead caused by
the system itself. We calculate the execution time overhead
using Overhead = % where T}, is the average
execution time of 1000 trials of the protected benchmarks,
and Tp,sc is the average execution time of 1000 trials of the
unprotected benchmarks. These results are shown in Fig. 6,
where most benchmarks are found to have an overhead of
less than 10% at all thread counts, with a mean overhead of
at most 6.55% under 64 threads. These overhead levels are
acceptable considering the improvement in error occurrences
and the complete removal of SDC errors. It is clear that both
BFS and LU have somewhat higher overhead than the others at
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Fig. 7. Memory overhead for all benchmarks under 4 to 64 threads.

many thread counts. BFS is a larger application with greater
memory requirements, leading to relatively higher overhead
when experiencing context switching. Both BFS and LU also
contain more complex and frequent concurrency control use,
resulting in a higher accumulated overhead. As a result, it
may not be wise to apply the protection mechanisms to every
program; instead they should be applied on an algorithm-to-
algorithm basis.

Memory Overhead For further evaluation of the system,
we measure the memory overhead of our system on all bench-
marks under 4 to 64 threads, as shown in Fig. 7. To calculate
this, we record the memory high-water mark measured from
within the program during execution. Note that the memory
overhead is very small relative to the total amount of memory
used by the programs. Most benchmarks use a maximum of
0.6-2.5GB memory during execution. As such, the overhead
of 300-700KB is relatively negligible. As expected, we see
larger overheads at higher thread counts.

C. Comparison with Transactional Memory

We additionally provide a comparison against complete
software transactional memory systems, since our protection
mechanism relies on similar checkpointing and rollback op-
erations. Specifically, we test against the C++ atomic library
and its included transactional memory interface. We do not
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Fig. 8. Comparative time overhead percentages of our protection mechanism
(prot) and transactional memory (TM) for LU under 4 to 64 threads.

compare with hardware transactional memory systems, which
are incomparable to our software-based protection mechanism.
Specifically, since we enforce the high-level behavior of locks,
our system handles entire critical sections in addition to log-
ging individual memory locations. As such, we can frequently
detect conflicts when threads first enter a critical section rather
than at every individual memory access. Given that our logging
mechanisms are less intrusive than full transactional memory,
they should therefore demonstrate lower overhead. To test this,
we modified kernels for evaluation, with the results for LU
and FFT shown in Fig. 8 and Fig. 9 respectively. Our baseline
protects the shared variables using standard pthread locks and
barriers for comparison against both our protection mechanism
and the transactional memory implementation. We test the
programs under 4 to 64 threads to gain insights into how the
systems handle varying numbers of parallel agents. According
to Figs. 8 and 9, the largest gap in execution time overhead
overhead percentages occurs for FFT under 16 threads, with a
difference of 10%. In total, we observe a geometric mean
reduction of 47.3% and 57.5% in overhead for LU and
FFT respectively. As we can see, the log-based protection
mechanism consistently outperforms its transactional memory
system counterpart at each thread count. While not displayed
here, comparative overhead results for the remaining tested
benchmarks exhibit similar performance gaps. This supports
our previous claim that the protection mechanism is more
lightweight than full transactional memory systems, resulting
directly from simplifying many of the conflicts it must handle.

We also compare the memory usage for both our system
and the transactional memory implementation, shown in Figs.
10 and 11. At all thread counts, our system consistently
uses considerably less memory than the transactional memory
implementation. Since our system can resolve conflicts sooner
due to detecting the higher-level concurrency failures, it does
not have to log as many values at one time for potential
rollbacks, reducing the total memory used. Again, note that
these values are still small relative to the total memory
consumption of these benchmarks.
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VI. CONCLUSION

In this work we have presented a method for ensuring the
correct and reliable operation of synchronization structures
within parallel programs, specifically focusing on locks and
barriers. By utilizing a logging system that tracks program
locations, we can identify violations of these structures and
recover from them locally, rather than requiring system wide
checkpointing and recovery methods. Through our experi-
ments, we demonstrate that this method can achieve a re-
duction in error of up to 93.6% for the representative Big-
DataBench kernels while maintaining acceptably low over-
head, averaging 6.55% above the baseline. When compared
with transactional memory, we find up to a 57.5% reduction
in execution time overhead.
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