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Abstract— The theory of learning in games has extensively
studied situations where agents respond dynamically to each
other by optimizing a fixed utility function. However, in many
settings of interest, agent utility functions themselves vary
as a result of past agent choices. The ongoing COVID-19
pandemic provides an example: a highly prevalent virus may
incentivize individuals to wear masks, but extensive adoption of
mask-wearing reduces virus prevalence which in turn reduces
individual incentives for mask-wearing. This paper develops a
general framework using probabilistic coupling methods that
can be used to derive the stochastically stable states of log-linear
learning in certain games which feature such game-environment
feedback. As a case study, we apply this framework to a
simple dynamic game-theoretic model of social precautions
in an epidemic and give conditions under which maximally-
cautious social behavior in this model is stochastically stable.

I. INTRODUCTION

In social systems and distributed engineered systems,
collective behavior is the result of many individuals making
intertwined self-interested choices. In many cases, the value
of a particular choice depends not only on the current choices
being made by others, but also on the history of past choices.

In principle, these socio-environmental feedback loops
can be analyzed using techniques from game theory, which
has a long history of analyzing the society-scale effects of
self-interested behavior. For instance, game theory has long
been used to study the spread of social conventions [1]
using models such as the graphical coordination game [2]
with the stochastic learning algorithm log-linear learning [3].
However, traditional analysis techniques almost uniformly
assume that the game’s utility functions are fixed for all time,
so that the agents’ choices over time can be described by a
stationary Markov process. However, such analysis fails or
becomes unwieldy when utility functions themselves depend
on the history of play.

Analysis techniques for history-dependent games have
broad potential applications. For example, in a global pan-
demic, the individual choice to adopt protective measures
(e.g., wearing masks) may be made in response to the
behavior of others and the prevalence of the disease. In turn,
the prevalence of the disease is a function of the history of
individual choices to adopt protective measures. As another
example, game theoretic methods are frequently proposed in
the area of distributed control of multiagent systems [4]–
[7]. However, in a distributed control application, agents’
actions may directly modify the strategic environment; for
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instance if a search-and-rescue UAV identifies a disaster
victim, that victim may be removed from the list of other
UAVs’ objectives. Other applications that can be modeled
by history-dependent games are in machine learning [8]–[10]
and biology [11], [12].

Owing in part to the challenges of modeling the complex
game-environment feedback inherent to history-dependent
games, general results on these games are elusive. Recent
work has focused on specific learning algorithms and strate-
gic environments, such as zero-sum games under replicator
dynamics [13]. In [14] the authors characterize an oscillating
tragedy of the commons effect under certain environmental
feedback scenarios.

In this paper, we develop a general framework for analyz-
ing the long-run behavior of binary-action history-dependent
games. In particular, we study the stochastically stable states
of the popular log-linear learning algorithm in such settings.
We show that if the utility functions of the history-dependent
game can be appropriately referenced to the utility functions
of a corresponding exact potential game, then the history-
dependent game of interest inherits the stochastically stable
states of the reference potential game. To accomplish this we
apply techniques from the theory of probabilistic couplings,
and derive a monotone coupling that relates play in the
history-dependent game with that in the reference potential
game. To showcase an application of the framework, we
present an epidemic model that intertwines the compart-
mental SIS disease model with a graphical coordination
game. Using our analysis framework we provide conditions
under which the stochastically stable states may be fully
characterized, despite their history-dependence.

II. MODEL

A. Game Formulation

In this work we consider binary action games. Let N =
{1, 2, 3, . . . , |N |} denote the player set; player i ∈ N has ac-
tion set Ai = {0, 1}. The joint action space is then given by
A = {0, 1}|N |. We denote an action profile as a ∈ A and use
ai to denote player i’s action. The actions of all other players
is then given by a−i = (a1, a2, . . . , ai−1, ai+1, . . . , a|N |).
We refer to the all 1 action profile as ~1 = (1)

|N |
i=1 and

similarly for the all zero profile, ~0. Further, let ∆(A) denote
the standard probability simplex over A.

Let Ui : A→ R be player i’s utility function. We denote
U = {U}i∈N as the collection of all players’ utility function.

A game g = (N,A,U) is an exact potential game if there
exists a potential function φ such that

Ui(a
′
i, a−1)− Ui(ai, a−i) = φ(a′i, a−1)− φ(ai, a−i) (1)



for any a ∈ A, and ai, a′i ∈ Ai.
In this work we generalize the above by allowing each

history of play to have a unique utility function. We write AT
to denote the set of joint action histories of length T ∈ N,
and denote the set of all histories as A = ∪T∈NAT . We
write α ∈ AT to refer to a history of action profiles (or
path) and use superscripts to denote time indices so that
α = (α1, . . . , αT ). We abuse notation and write αT to denote
the last action profile in any path α. We also define A,AT
as partially ordered sets by first defining partial order ≥A,
where a′ ≥A a whenever a, a′ ∈ A and a′i ≥ ai for all
i ∈ N , recalling that a′i, ai ∈ {0, 1}. Using this we define
partial order ≥AT as ᾱ ≥AT α whenever α, ᾱ ∈ AT and
ᾱt ≥A αt for all t ∈ {1, 2, ..., T}.

To model history-dependent utility functions, let Uαi :
A → R, where this utility function is not only spe-
cific to player i but also to the history α. Let Uα =
(Uα1 , U

α
2 , ..., U

α
|N |) denote each player’s utility function given

history α and let UA = {Uα | α ∈ A} be the set of utility
functions across all paths. We denote a history-dependent
game as tuple (N,A,UA) and let GA be the set of all
such tuples. We now present a class of games that combines
potential games and history dependence.

Definition 1: We call a tuple g = (N,A,UA) ∈ GA
an aligned history-dependent game if there exists an exact
potential game ĝ = (N,A, Û) with potential function φ̂ such
that:

1) {~1} = arg maxz∈A φ̂(z)
2) Uαi (1, αT−i) ≥ Ûi(1, a−i)
3) Ûi(0, a−i) ≥ Uαi (0, αT−i)

for any α ∈ A, a, a′ ∈ A, T ∈ N such that αT−i ≥A−i a−i
and a, a′ vary by only a unilateral deviation. For convenience,
we denote ordering ≥A−i over A−i = {0, 1}|N |−1 equiva-
lently to ≥A.

B. Learning in Games

In this work we focus on the learning algorithm log-linear
learning, which is a discrete time asynchronous learning
algorithm [3], [15]. That is, for game g ∈ GA at each time
step log-linear learning selects a single agent uniformly at
random to update their action.

Pαi (ai) =
exp( 1

τU
α
i (ai, α

T
−i))∑

a′i∈Ai
exp( 1

τU
α
i (ai, αT−i))

, (2)

where exp(x) := ex, and τ is the temperature, a parameter
which governs the rationality of agents. As τ → 0 agents
best respond with high probability, and as τ → ∞ agents
choose actions uniformly at random. Note that we take the
last action profile in the history αT as the behavior of the
other agents. The probability that α ∈ AT transitions to
a′ ∈ A under log-linear learning in a single transition is

Pα(a′) =


1
|N |
∑
j∈N Pαj (a′j) αT = a′

1
|N |P

α
i (a′i) αTi 6= a′i, α

T
−i = a′−i

0 else.

(3)

This can be interpreted as the probability that given history
α the next action profile αT+1 = a′.

We say a ∈ A is strictly stochastically stable if the
following definition holds, due to [16]. For any ε > 0 there
exists T > 0, T <∞ such that

Pr(s(t; τ, π, g) = ~1) > 1− ε whenever t > T, τ < T (4)
where s(·) is a random variable representing the action
profile at time t under log-linear learning, given temperature
τ , initial distribution π ∈ ∆(A) and game g.

Exact potential games under log-linear learning may be
analyzed using a theory of resistance trees [1], [3], [15],
[17] to relate potential function maximizers to stochastic
stability. However, this analysis depends on the fact that log-
linear learning induces an ergodic Markov process on the
action profiles of any exact potential game, and it is unclear
how to apply resistance tree techniques generally on history-
dependent games to show stochastic stability.

III. MAIN CONTRIBUTION

We now present our main result, giving that ~1 is stochas-
tically stable in aligned history-dependent games

Theorem 1: If g ∈ GA is an aligned history-dependent
game then ~1 is strictly stochastically stable in g under log-
linear learning.

The proof of Theorem 1 proceeds using Lemma 1, which
we present here and prove in Section V. The interpretation
of this lemma is that for an aligned history dependent game
g, the probability at any time step that g is in the ~1 action
profile is lower bounded by the probability its associated
exact potential game ĝ is in the ~1 profile.

Lemma 1: If g ∈ GA is an aligned history-dependent
game with associated exact potential game ĝ then
Pr(s(T ; τ, π, g) = ~1) ≥ Pr(s(T ; τ, π, ĝ) = ~1) for any
temperature τ > 0, π ∈ ∆(A), T ∈ N.

The proof of Lemma 1 is technically involved and de-
pends on our novel monotone coupling framework which
we present in Section V. Using this result we now present a
straightforward proof of Theorem 1.

Proof of Theorem 1: Let g ∈ GA be an aligned history-
dependent game and ĝ be its associated exact potential game.
It is well-known [15] that in an exact potential game a ∈ A
is a stochastically stable state under log-linear learning if

a ∈ arg max
a′∈A

φ(a′). (5)

Therefore, because ~1 is the lone maximizer of φ̂, it is strictly
stochastically stable. We apply Lemma 1 directly to the
definition of strict stochastic stability in (4). For any ε > 0
there exists T > 0, T <∞ such that

Pr(s(t; τ, π, g) = ~1) ≥ Pr(s(t; τ, π, ĝ) = ~1) > 1− ε (6)
for all t > T, τ < T , yielding stochastic stability of ~1 in
game g. �

IV. A SOCIAL DISTANCING EXAMPLE

To highlight Theorem 1’s ability to analyze stochastic
stability of history-dependent games, we exhibit a case study
on a simple model of epidemics. One challenge of epidemic
modeling is to account for the interplay between epidemic
severity and the voluntary adoption of preventative social
conventions. For example, in the absence of a epidemic



people prefer not to wear masks; however, in a widespread
epidemic people may prefer to take preventative measures.
To model this phenomenon we intertwine the SIS compart-
mental epidemic model and the graphical coordination game
(GCG) which models the spread and adoption of the relevant
preventative social conventions; we term this model SIS-
GCG. The fraction of individuals in the society susceptible to
infection is described by the nonlinear differential equation

ṡ = (1− s)(γ − β(t)s), (7)
where γ > 0 is the curing rate and β(t) > 0 is a rate
of infection which depends on agent actions. The action 1
represents a “safe convention” action in which a player is
acting to reduce contagion; the action 0 represents conven-
tions ignoring the pandemic. These actions are associated
with infection coefficients 0 < β1 < β0, respectively.
Accordingly, β(t) is simply the average infection rate of all
individuals, given their choices:

β(t) =
1

|N |
∑
i∈N

atiβ1 + (1− ati)β0, (8)

where ati is the action selected by player i at time t ∈ N. Ac-
tions are selected by agents in N dynamically on undirected
graph G = (N,E) according to log-linear learning (2). The
utility of agent i at time t is given by

Ūαi (ati, a
t
−i) = ai|Ni(1)|(q + I(t)) + (1− ai)|Ni(0)|, (9)

where Ni(x) = {j ∈ N | (i, j) ∈ E, aj = x} is the set
of i’s neighbors who play x ∈ {0, 1} = Ai, the fraction
of infected individuals is given by I(t) := 1 − s(t), and
q ∈ (0, 1] represents the agent’s willingness to practice safe
conventions in the absence of an epidemic.

Proposition 1: If s(0) ∈ [0, 1), then if s(t) is a solution
of (7) with β(t) given by (8), there exists a t̄ such that s(t) ≤
γ/β1 for all t ≥ t̄ almost surely.
This proof is omitted for space and appears online [18].

It can be seen from (9) that SISGCG can be represented by
a history-dependent game, as the utility function depends on
the history of play, so our Theorem 1 allows us to reference
SISGCG to a related exact potential game and deduce
conditions guaranteeing that ~1 is strictly stochastically stable.

Proposition 2: Let gS be an instance of SISGCG. If
β1/γ > 1, q+γ/β1 > 1 and I(0) > 0 then ~1 is stochastically
stable in g.

Proof: Let the SISGCG model be denoted by gS ,
which played on graph G = (N,E) with q + γ/β1 > 1
and I(0) > 0, and we consider gS as played after time t̄
as given by Proposition 1. Game gS is a history-dependent
game since (9) depends on I(t), which is itself a function of
the history α. Thus we have gS = (N,A, Ū) ∈ GA where
we let Ū = {Ūα | α ∈ A}.

Now we let ĝS = (N,A, ÛS) be a graphical coordination
game played on graph G, where the utility function ÛS is
given by (9) with I(t) = γ/β1. Standard results give that
ĝS is an exact potential game and that ~1 is its lone potential
function maximizer [1].

We now use ĝS to show gS is an aligned history-dependent
game. Now we verify Uαi (1, αT−i) ≥ ÛSi (1, a−1) anytime
αT−i ≥A−i a−i, t > t̄. This can be rewritten for t > t̄ as

∑
j∈Ni(1;αT−i)

q + I(t) ≥
∑

j∈Ni(1;a−i)

q + γ/β1 (10)

where Ni(1; a−i) denotes the neighbors of i who are playing
1 given profile a. This expression holds because αT−i ≥A−i
a−i ⇒ |Ni(1;αT−i)| ≥ |Ni(1; a−i)| and by Proposition 1. An
argument with the same structure holds for Ūαi (0, αT−i) ≤
ÛSi (0, a−1). Thus gS is an aligned history-dependent game,
and Theorem 1 gives ~1 is strictly stochastically stable.

V. PROOF OF LEMMA 1

A. A Primer on Monotone Couplings

We begin with the definition of a monotone coupling, the
core analytical device for our paper.

Definition 2: Let X be a countable set with partial or-
dering ≤X and p1, p2 be probability measures on measure
space (X,F). Then a monotone coupling of p1, p2 is a
probability measure p on (X2,F2) satisfying the following
for all x, y ∈ X∑
x≤Xy′

p(x, y′) = p2(y′) and
∑
y≥Xx′

p(x′, y) = p1(x′). (11)

A monotone coupling is a useful tool for analyzing the
component probability measures p1 and p2. In particular the
following property holds in general for monotone couplings.

Proposition 3 (Paarporn et al., [19]): Let p1, p2 be prob-
ability measures on (X,F). If p is a monotone coupling of
p1, p2 then for any increasing random variable Z : X → Z+

we have
Ep1(Z)− Ep2(Z) =

∞∑
η=0

p(Zcη, Zη) (12)

where Zη = {a | Z(a) > η}.
Here we denote Zc := X \ Z to be the complement set of
Z ⊆ X . The proof is given in [19, Proposition 1].

B. Notation Required for Proofs

Taking ĝ = (N,A,U), we give equations analogous to
(2), (3) that give the transition probabilities for ĝ under log-
linear learning. In particular, if agent i is selected to update
her action then she will do so with probabilities given by

P̂ai (ai) =
exp( 1

τUi(ai, a−i))∑
a′i∈Ai

exp( 1
τUi(a

′
i, a−i))

(13)

Building on (13), we define the probability that action profile
a transitions to a′ under log-linear learning in a single
transition as

P̂ a(a′) =


1
|N |
∑
j∈N P̂aj (aj) a = a′

1
|N | P̂

a
i (a′i) ai 6= a′i, a−i = a′−i

0 else

(14)

for some i ∈ N and a, a′ ∈ A. Additionally, we define the
probability that path α ∈ AT occurs with initial distribution
π ∈ ∆(A) as

P̂π(α) = π(α1)
T−1∏
t=1

P̂α
t

(αt+1) (15)

noting that π(α1) denotes the probability of α1 in initial
distribution π.

Correspondingly, the probability that path α ∈ AT occurs
with initial distribution π ∈ ∆(A) on g ∈ GA is



Pπ(α) = π(α1)
T−1∏
t=1

Pα
≤t

(αt+1) (16)

where we use α≤t ∈ At to mean history α until time t ∈
{1, 2, 3, . . . , T}.

We now present a result connecting the utility conditions
of aligned history-varying potential games to (13) and (2).

Lemma 2: Let g = (N,A,UA) ∈ GA, ĝ = (N,A, Û)
be an exact potential game and let i ∈ N, a ∈ A,α ∈ A
such that αT−i ≥A−i a−i. If Uαi (1, αT−i) ≥ Ûi(1, a−i) and
Ûi(0, a−i) ≥ Uαi (0, αT−i) then Pαi (1) ≥ P̂ai (1).
This proof is omitted for space and appears online [18].

Our framework requires a careful partitioning of the ac-
tion space corresponding to different types of agent action
deviations. Let f : A→ 2A be defined as f(a) = {a′ ∈ A |
ai 6= a′i, a−i = a′−i for i ∈ N} be the set of action profiles
reachable from a via exactly one unilateral deviation. For
a, a′ ∈ A let

g(a, a′) =

{
i ai 6= a′i
0 a = a′

(17)

indicate which agent unilaterally deviated their action be-
tween action profiles a, a′.

Now, let a, a′ ∈ A where a′ ≥A a. We denote several
disjoint subsets of f(a):

1) r(a) = {z ∈ f(a) | ag(a,z) = 1},
2) q(a, a′) = {z ∈ f(a) | z ≤A a′} \ r(a), and
3) s(a, a′) = f(a) \ (q(a, a′) ∪ r(a)).

These sets can be interpreted in the following way. The set
r(a) is the set of action profiles which decreased with respect
to ≥A and q(·), s(·) both increased. Between q(·) and s(·),
q(·)’s action profiles remain less than a′ and s(·)’s profiles
are greater then or incomparable to a′. We now present three
more analogous sets that are disjoint subsets of f(a′):

1) R(a′) = {z ∈ f(a′) | a′g(a′,z) = 0},
2) Q(a, a′) = {z ∈ f(a′) | z ≥A a} \R(a′), and
3) S(a, a′) = f(a′) \ (Q(a, a′) ∪R(a)).

The interpretation of these sets are reversed relative to r(·),
q(·) and s(·).

We now highlight some useful features of these sets. It is
evident that q(·), r(·), s(·) are a disjoint partition of f(a),
and that Q(·), R(·), S(·) are a disjoint partition of f(a′).
For any a, a′, a′ ≥A a we relate these sets by a function
ba,a

′
: f(a)→ f(a′). To evaluate ba,a

′
(ā), identify the agent

who deviated their action between a, ā and then deviate that
agent’s action in a′. Formally, ba,a

′
(ā) = (¬a′g(a,ā), a

′
−g(a,ā))

where we define ¬ai ∈ {0, 1} \ {ai} for ai ∈ Ai = {0, 1}.
In particular, this function relates the disjoint subsets of
f(a), f(a′) according to the following lemma.

Lemma 3: If a, a′ ∈ A and a ≤A a′, then the following
statements hold:

1) ba,a
′

: r(a)→ S(a, a′) is a bijection,
2) ba,a

′
: s(a, a′)→ R(a′) is a bijection, and

3) ba,a
′

: q(a, a′)→ Q(a, a′) is a bijection.
This proof is omitted for space and appears online [18].

C. The One-Step Couplings

To prove Lemma 1 and obtain Theorem 1, we construct
a monotone coupling ν ĝπ between measures Pπ, P̂π . We first
construct a family of monotone couplings for each one-step
transition (Theorem 2), which we apply to show the coupling
over histories (Theorem 3).

Theorem 2: Let g ∈ GA denote an aligned history-
dependent game and ĝ be its associated exact potential game.
Then a monotone coupling exists between P̂ a and Pα for
any α ∈ A, a ∈ A whenever a ≤A αT . This monotone
coupling νa,α : A2 → [0, 1] is given in (25) in Figure 1.

Proof: Let a ∈ A,α ∈ A such that a ≤A αT and
let g ∈ GA be an aligned history-dependent game where ĝ
is its associated exact potential game. To verify νa,α is a
monotone coupling we must show the following conditions
from Definition 2 for any ā, ā′ ∈ A:

1) νa,α is a well-defined probability measure,
2)

∑
z′≥Aā

νa,α(ā, z′) = P̂ a(ā), and

3)
∑

z≤Aā′
νa,α(z, ā′) = Pα(ā′).

We begin by verifying Condition 2. We consider cases
ā /∈ (f(a) ∪ {a}), ā ∈ q, ā ∈ r, ā ∈ s and ā = a separately.
We use the notational convention that q, s,Q, S are assumed
to take arguments (a, αT ) and r,R take the argument a, αT

respectively. The first case represents any ā that cannot be
achieved in a single unilateral deviation from a. Trivially, this
gives that P̂ a(ā) = 0, and thus all pairs of ā, z′ must satisfy
νa,α(ā, z′) = 0. This holds as all parts of (25) require ā ∈
(f(a) ∪ {a}) except (25h), which has the desired property.

We now consider the second case that ā ∈ q. Note that
only (25d) satisfies this condition, so∑

z′≥Aā′
νa,α(ā, z′) = νa,α(ā, αT )

= P̂ag(a,ā)(āg(a,ā))/|N | = P̂ a(ā)

(18)

as desired.
Next we consider ā ∈ r which satisfies (25c), (25f)

uniquely since ba,α
T

is a bijection by Lemma 3. Thus∑
z′≥Aā′

νa,α(ā, z′) =
1

|N |
(
P̂ag(a,ā)(0)

− Pαg(a,ā)(0) + Pαg(αT ,ā′)(0)
)

=
1

|N |
P̂ag(a,ā)(0) = P̂ a(ā)

(19)

where the second equality follows as g(a, ā) = g(αT , ā′) by
definition of ba,α

T

. The third equality follows as ā ∈ r =⇒
āg(a,ā) = 0.

Considering ā ∈ s, we find only (25e) applies, thus for∑
z′≥Aā′

νa,α(ā, z′) =
1

|N |
P̂ag(a,ā)(1) = P̂ a(ā) (20)

where ā ∈ s =⇒ āg(a,ā) = 1 or else ā would be in q.
The final case for Condition 2 is ā = a. we find cases

(25a), (25b), and (25g) apply yielding:



∑
z′≥Aā′

νa,α(ā, z′) =
1

|N |

(
|N | −

∑
z∈q∪r

P̂ag(a,z)(zg(a,z))

−
∑
z′∈R

P̂ag(αT ,z′)(1)

)
=

1

|N |
∑
z∈f(a)

(
1− P̂ag(a,z)(zg(a,z))

)
= P̂ a(ā)

(21)
where the first equality follows as sums over Q ∪ R are
equivalent to the sums over Q and R as Q,R are disjoint,
and that z′ ∈ R ⇔ z′g(αT ,z′) = 1 by definition of R. The
second equality follows as the R sum is equivalent to one
over s by bijection ba,α

T

, and then we may combine it with
the sum over q ∪ r, to a sum over f(a) and |f(a)| = |N |.
We omit arguments for Condition 3 as they run parallel to
Condition 2.

To verify Condition 1, we consider each case of (25)
separately. Equations (25b), (25d), (25e), (25f), and (25h) are
trivial as these probabilities are well defined by definition.
Lemma 2 provides:

Pαi (1) ≥ P̂ai (1)⇔ P̂ai (0) ≥ Pαi (0) (22)
where the right hand side follows from Pi(1, a′, w) +
Pi(0, a′, w) = 1 = Pi(1, a′, w0) + Pi(0, a′, w0). Equa-
tion (25a) follows directly from the hypothesis and (25c)
holds from the right side of the equivalence.

The lone remaining case is (25g), for which we define sets
Nq = {g(a, z) | z ∈ q}, NQ = {g(αT , z) | z ∈ Q} and so
on for r, s, R, S. We denote unions of these sets as Nqr :=
Nq∪Nr, NQR := NQ∪NR and so on for other combinations
of q, r, s and Q,R, S. Recalling q, r,Q,R are partitions over
states that a, αT may transition to, similarly, Nqr, NQR are
partitions of agents whose unilateral deviations result in such
transitions. This enables us to expand (25g):

νa,α(ā, ā′) =
1

|N |

( ∑
i∈Nqr∩NQR

(1− P̂ai (¬ai)

− Pαi (¬αTi ))

+
∑

i∈Nqr\NQR

(1− P̂ai (¬ai))

+
∑

i∈NQR\Nqr

(1− Pαi (¬αTi ))

)
.

(23)

This expansion takes advantage of |N | = |f(a)| which
allows |N | to enter the sums as 1. It now suffices to show
that the summand of each sum is a well defined probability,
of which the last two terms clearly are.

We begin by investigating i ∈ Nqr ∩ NQR. In particular,
we have Nq = NQ, Ns = NR, Nr = NS due to ba,α

T

and
its bijectiveness due to Lemmas 3. By disjointness of q, r
we have Nqr = NQS which we apply to Nqr ∩ NQR =
NQS ∩NQR = NQ = Nq . Applying definitions of q,Q we
find i ∈ Nq =⇒ ¬ai = 1,¬αTi = 0. Thus the summand of
the first sum for i ∈ Nq is given by

1− P̂ai (1)− Pαi (0) ≥ 1− Pαi (1)− Pαi (0) = 0 (24)
wherein the inequality is by (22), giving that the summands
in the first term of (23) are themselves well defined proba-

bilities. As all conditions have been met, νa,α is a monotone
coupling as desired.

D. A monotone coupling over histories

We now present coupling ν ĝπ which is constructed using
the one-step coupling. Using this coupling we then go on to
prove Lemma 1. We define indicator function 1 such that
1(P ) = 1 if P is a true logical proposition and 1(P ) = 0
else.

Theorem 3: Let g ∈ GA be an aligned history-dependent
game and ĝ be its corresponding exact potential game. Then
ν ĝπ : A2

T → [0, 1] is a monotone coupling between P̂π, Pπ .
This coupling is given by

ν ĝπ(α, ᾱ) = π(α1)1(α1 = ᾱ1)
T−1∏
t=1

να
t,ᾱ≤t(αt+1, ᾱt+1)

(26)where α, ᾱ ∈ AT , π ∈ ∆(A).
Proof: Let α, ᾱ ∈ AT and let g ∈ GA, and let ĝ be the

corresponding exact potential game. We begin by showing
that if α �AT ᾱ, then ν ĝπ(α, ᾱ) = 0. Immediately, we have
ν ĝπ(α, ᾱ) = 0 if α1 6= ᾱ1, so we need only consider cases
where α1 = ᾱ1. Inductively we find that if α �AT ᾱ there
must exist some t ∈ {1, 2, 3, . . . , T −1} such that αt ≤A ᾱt
but αt+1 �A ᾱt+1, and let t be the minimal such value. In
this case we have να

t,ᾱ≤t(αt+1, ᾱt+1) = 0 because να
t,α̂≤t

is a well defined monotone coupling by Theorem 2, yielding
ν ĝπ(α, ᾱ) = 0 as desired. It also follows that ν ĝπ will always
yield a well defined probability as it is either 0 or a product
of well defined probabilities. Thus we only need to show
that the marginal probabilities are preserved given by (11).
We begin by showing the left equation of (11), that is:∑

α≤AT z

ν ĝπ(α, z) = P̂π(α) for each z ∈ AT (27)

and omit the proof for the right hand equation as it proceeds
identically. By inspecting (26), we only need to consider z
such that z1 = α1 and z features at most a single unilateral
deviation between any t, t+1. With these two conditions we
rewrite∑
α≤AT z

ν ĝπ(α, z) =
∑

α≤AT z

π(α1)

T−1∏
t=1

να
t,z≤t(αt+1, zt+1)

= π(α1)
∑

α2≤Az2
να

1,z≤1

(α2, z2) . . .

∑
αT≤AzT

να
T−1,z≤T−1

(αT , zT ).

(28)
as the combinatorial form. Critically, this allows us to to ap-
ply the marginal sum properties of να

t,z≤t from Theorem 2
for each t ∈ {1, 2, .., T}. First, considering the rightmost
sum in (28), it holds that∑

αT≤AzT
να

T−1,z≤T−1

(αT , zT ) = P̂α
T−1

(αT ). (29)

Because this has no dependence on z we may factor out
P̂α

T−1

(αT ) and repeat the process on the new rightmost
sum. After performing this process recursively on all sums,
we have



νa,α(ā, ā′) =



1

|N |

(
Pαg(αT ,ā′)(1)− P̂ag(a′,ā′)(1)

)
ā = a, ā′ ∈ R (25a)

1

|N |
Pαg(αT ,ā′)(ā

′
g(αT ,ā′)) ā = a, ā′ ∈ Q (25b)

1

|N |

(
P̂ag(a,ā)(0)− Pαg(a,ā)(0)

)
ā ∈ r, ā′ = αT (25c)

1

|N |
P̂ag(a,ā)(āg(a,ā)) ā ∈ q, αT = ā′ (25d)

1

|N |
P̂ag(a,ā)(1) ā = ba,α

T

(ā′), ā′ ∈ R (25e)

1

|N |
Pαg(αT ,ā′)(0) ā ∈ r, ā′ = ba,α

T

(ā) (25f)

1
|N |

(
|N | −

∑
z∈q∪r

P̂ag(a,z)(zg(a,z))−
∑

z′∈Q∪R
Pαg(αT ,z′)(z

′
g(αT ,z′))

)
a = ā, αT = ā′ (25g)

0 otherwise. (25h)

Fig. 1. The full specification of the one-step monotone coupling for Theorem 2. We adopt the notational convention that q, s,Q, S are assumed to take
arguments a, a′ and r,R take the argument a, a′ respectively.

∑
α≤AT z

ν ĝπ(α, z) = π(α1)

T−1∏
t=1

P̂α
t

(αt+1) = P̂π(α) (30)

as desired, noting we accounted for the indicator functions
in ν ĝπ . This concludes the proof of Theorem 3.

Now that the necessary results have been developed we
proceed with the proof of Lemma 1.

Proof of Lemma 1: Let g ∈ GA be an aligned history-
dependent game and I ⊂ AT be an upper set. Define
1I(α) := 1(α ∈ I) as an indicator function. Consider
probability measures Pπ, P̂π coupled by ν ĝπ in Theorem 3,
we have

Pπ(I)− P̂π(I) = EPπ (1I)− EP̂π (1I)

= ν ĝπ(IC , I) ≥ 0.
(31)

where the second equality follows by Proposition 3 as 1I is
increasing in AT . Note (31) runs parallel to the proof of [19,
Corollary 3]. That is, for any upper set I ⊂ AT we have

Pπ(I) ≥ P̂π(I). (32)
Let ((~0)T−1

t=1 ,~1) ∈ I . This induces I such that it includes
every path such that at time T the ~1 state is played. This
yields the following interpretation

Pπ(I) = Pr(s(T ; τ, π, g) = ~1) (33)

representing the probability that at time T game g is in
the ~1 action profile given initial distribution π ∈ ∆(A)
and learning temperature parameter τ . Noting a parallel
interpretation to (33) holds for P̂π, ĝ, we apply these to (32)
to obtain

Pr(s(T ; τ, π, g) = ~1) ≥ Pr(s(T ; τ, π, ĝ) = ~1) (34)
as desired. �
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