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Abstract— We consider the scenario where human-
driven/autonomous vehicles with low/high occupancy are
sharing a segment of highway and autonomous vehicles are
capable of increasing the traffic throughput by preserving a
shorter headway than human-driven vehicles. We propose a
toll lane framework where a lane on the highway is reserved
freely for autonomous vehicles with high occupancy, which
have the greatest capability to increase the social mobility, and
the other three classes of vehicles can choose to use the toll lane
with a toll or use the other regular lanes freely. All vehicles
are assumed to be only interested in minimizing their own
travel costs. We explore the resulting lane choice equilibria
under the framework and establish desirable properties of
the equilibria, which implicitly compare high-occupancy
vehicles with autonomous vehicles in terms of their capabilities
to increase the social mobility. We further use numerical
examples in the optimal toll design, the occupancy threshold
design and the policy design problems to clarify the various
potential applications of this toll lane framework that unites
high-occupancy vehicles and autonomous vehicles. To our best
knowledge, this is the first work that systematically studies
a toll lane framework that unites autonomous vehicles and
high-occupancy vehicles on the roads.

I. INTRODUCTION

With the advancement of autonomous driving technolo-
gies, researchers and policy designers have been extensively
investigating the potential application of autonomous ve-
hicles in intelligent transportation systems. Compared to
human-driven vehicles, autonomous vehicles can be more
reliable by mitigating human operation errors [1], [2] and
more advantageous in sustainable development by optimizing
fuel consumption [3], [4]. Previous literature has also shown
that autonomous vehicles are capable of increasing lane
capacities by forming platoons and preserving a shorter
headway compared to human-driven vehicles, and therefore,
increase the traffic throughput [5]–[7].

However, some advantages of connected and autonomous
vehicles rely heavily on the organization of autonomous
vehicles on the roads. For example, gathering autonomous
vehicles on the roads together will facilitate the platooning
of autonomous vehicles and also be safer due to the lack
of disturbances from human-driven vehicles. Therefore, lane
policies for autonomous vehicles are of significant impor-
tance and can be decisive on the efficiency of employing au-
tonomous vehicles. Currently, there are two major categories
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of lane policies for autonomous vehicles. The first category
is the integrated lane policy [8]. The integrated lane policy
indicates that autonomous vehicles travel along with human-
driven vehicles on the same group of lanes. Such policies
are convenient but may compromise the platooning ability
and safety of autonomous vehicles. The second category
of policies are dedicated lane policies [9]–[11]. Under such
policies, some lanes are reserved exclusively for autonomous
vehicles. Such policies are preferred considering the safety
and the easy organization of autonomous vehicles. However,
when the penetration rate of autonomous vehicles is low,
the employment of dedicated lanes shows adverse effects
and compromises the social mobility [12], [13]. Further,
in [14], autonomous vehicle toll lanes are studied, which
admit autonomous vehicles to travel freely but also allow
human-driven vehicles to enter paying a toll. This way, when
the penetration rate of autonomous vehicles is low, human-
driven vehicles can effectively use the toll lane and relieve
congestion on regular lanes.

Even when autonomous vehicles are prevalent and ded-
icated lanes are necessary in terms of the safety and ad-
vantageous mobility, the implementation or construction of
brand new dedicated lanes can be costly and time-consuming.
Therefore, researchers recently consider converting other ex-
isting dedicated lanes such as high-occupancy vehicle lanes
to dedicated lanes for autonomous vehicles. For example,
in [15], [16], simulations and experiments are conducted
to investigate the benefit of converting an existing high-
occupancy vehicle lane to a dedicated lane for autonomous
vehicles.

In this work, we consider the scenario where four classes
of vehicles are sharing a segment of highway: human-driven
vehicles with low occupancy, human-driven vehicles with
high occupancy, autonomous vehicles with low occupancy
and autonomous vehicles with high occupancy. Autonomous
vehicles are capable of increasing the traffic throughput by
preserving a shorter headway than human-driven vehicles.
High-occupancy vehicles carry multiple commuters per ve-
hicle and low-occupancy vehicles carry a single commuter
per vehicle. We propose a toll lane framework, where on
the highway, a toll lane is reserved freely for autonomous
vehicles with high occupancy and the other three classes of
vehicles can choose to enter the toll lane paying a toll or use
the other regular lanes freely. We consider all vehicles are
selfish and only interested in minimizing their own travel
costs. We then explore the resulting lane choice equilibria
and establish properties of the equilibria, which implicitly
compare high-occupancy vehicles with autonomous vehicles
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Fig. 1: Problem setting: all autonomous vehicles with high
occupancy travel freely on lane 1, whereas the other three
classes of vehicles either pay a toll traveling on lane 1 or
travel on lane 2 freely.

in terms of their capabilities to increase the social mobility.
We further use numerical examples to clarify the various
potential applications of this toll lane framework that unites
high-occupancy vehicles and autonomous vehicles in the op-
timal toll design, the optimal occupancy threshold design and
the policy design problems. To our best knowledge, this is the
first work that systematically studies a toll lane framework
that unites autonomous vehicles and high-occupancy vehicles
on the roads.

This paper is organized as follows. In Section II, we give
detailed descriptions of the toll lane framework and vehicles’
lane choice model. In Section III, we establish the properties
of the resulting lane choice equilibria. In Section IV, we
clarify how the toll lane framework can be used to find
the optimal toll that minimizes the total commuter delay.
In Section V, we clarify how the toll lane framework can be
used to design the occupancy threshold. In Section VI, we
clarify how the toll lane framework can be used to design the
lane policy. In Section VII, we propose an efficient method
to decrease the total commuter delay by differentiating the
tolls. Finally, in Section VIII, we draw conclusions of this
work.

II. THE MODEL

Let I = {1, 2} be the lane index set for a segment of
highway shown in Figure 1, where lane 1 is the reserved
toll lane, and lane 2 is a regular lane that can be used by
any class of vehicles freely. We consider that four classes
of vehicles are sharing the roads: human-driven vehicles
with low occupancy (HV,LO), human-driven vehicles with
high occupancy (HV,HO), autonomous vehicles with low
occupancy (AV,LO) and autonomous vehicles with high
occupancy (AV,HO). We assume high-occupancy vehicles
have n ≥ 2 commuters per vehicle and low-occupancy
vehicles have only one commuter per vehicle. Throughout
this work, we assume the commuter demands are inelastic.
Let dHV,LO be the fixed demand of commuters who individ-
ually drive a human-driven vehicle and let dHV,HO be the
fixed demand of commuters who carpool in a human-driven
vehicle. Similarly, we have dAV,LO as the fixed demand of
commuters who individually use an autonomous vehicle and

let dAV,HO be the fixed demand of commuters who carpool in
an autonomous vehicle. We collect the commuter demands
in the vector d :=

(
dHV,LO, dHV,HO, dAV,LO, dAV,HO

)
.

Therefore, on the segment of highway, we have dHV,LO

human-driven vehicles with low occupancy, d
HV,HO

n human-
driven vehicles with high occupancy, dAV,LO autonomous
vehicles with low occupancy, and dAV,HO

n autonomous vehi-
cles with high occupancy. Also in this framework, we assume
autonomous vehicles can preserve a shorter headway than
human-driven vehicles and therefore, increase the lane capac-
ities. We employ the concept introduced and studied in [8],
[17], the capacity symmetry degree µ ∈ (0, 1), to indicate
autonomous vehicles’ lane capacity-increasing ability. When
µ decreases, autonomous vehicles’ lane capacity-increasing
ability increases. When µ approaches 1, autonomous vehicles
have almost the same headway as human-driven vehicles
and barely increase lane capacity. In this work, autonomous
vehicles share a uniform and fixed capacity asymmetry
degree µ.

We reserve lane 1 for the autonomous vehicles with
high occupancy due to their best capability to increase
the social mobility among the four classes of vehicles by
carrying multiple commuters per vehicle and preserving a
shorter headway than human-driven vehicles. The other three
classes of vehicles can then choose to either pay a toll
and enter lane 1 or travel freely on lane 2. For i ∈ I ,
let fHV,LO

i be the flow of human-driven vehicles with low
occupancy on lane i, fHV,HO

i be the flow of human-driven
vehicles with high occupancy on lane i, and fAV,LOi be
the flow of autonomous vehicles with low occupancy on
lane i. We then have the flow distribution vector f :=(
fHV,LO
i , fHV,HO

i , fAV,LOi : i ∈ I
)
∈ R6. A feasible and

meaningful flow distribution vector f satisfies:∑
i∈I

fHV,LO
i = dHV,LO, (1)

∑
i∈I

fHV,HO
i =

dHV,HO

n
, (2)∑

i∈I
fAV,LOi = dAV,LO, (3)

fHV,LO
i ≥ 0, fHV,HO

i ≥ 0, fAV,LOi ≥ 0, ∀i ∈ I. (4)

For simplicity, we may use f :=(
fHV,LO
1 , fHV,HO

1 , fAV,LO1

)
∈ R3 for future reference

with constraints (1) – (4) implied.

We naturally assume vehicles are selfish and the three
classes of vehicles make their lane choices to minimize
their own travel cost. In this framework, we use the type of
volume-capacity delay models (such as BPR functions [18]),
in which the travel delay is a continuous and increasing
function of the flow-capacity ratio. For lane i ∈ I , let Di

be the travel delay on the lane. To incorporate the impact
of autonomous vehicles, we refer to the results from [19]
and [8], and for lane i ∈ I , we let fi be the effective flow
on lane i, which indicates the impact of the mixed autonomy



flow on the lane delay. We have

f1 := fHV,LO
1 + fHV,HO

1 + µ

(
fAV,LO1 +

dAV,HO

n

)
, (5)

f2 := fHV,LO
2 + fHV,HO

2 + µfAV,LO2 . (6)

Therefore, for lane i ∈ I , we have that travel delay Di is
a continuous and increasing function of fi. Let fmin

1 be the
theoretical minimum of f1, and let fmax

1 be the theoretical
maximum of f1. Notice that for fixed commuter demands,
fmin
1 and fmax

1 are constants. We have

fmin
1 =

µdAV,HO

n
, (7)

fmax
1 = dHV,LO +

dHV,HO

n
+ µ

(
dAV,LO +

dAV,HO

n

)
.

(8)

We assume that a uniform toll price τ ≥ 0 is designed for the
three classes of vehicles. For lane 1, the travel cost equals
the sum of the travel delay and the toll, whereas for lane 2,
the travel cost is exactly the travel delay. Let Ci be the travel
cost for lane i ∈ I , and we have

C1(f) = D1(f1) + τ, (9)
C2(f) = D2(f2). (10)

Let the tuple G = (D,d, τ, n, µ) represent a segment of
highway shown in Figure 1 with the delay models D,
commuter demands d, a toll price τ , an occupancy threshold
n for high-occupancy vehicles and a capacity asymmetry
degree µ for autonomous vehicles. The selfish lane choice
equilibrium of the three classes of vehicles can then be
modeled as a Wardrop equilibrium [20] as below.

Definition 1. For a segment of highway G = (D,d, τ, n, µ),
a feasible flow distribution vector f is a lane choice equilib-
rium if and only if

fHV,LO
1 (C1(f)− C2(f)) ≤ 0, (11a)

fHV,LO
2 (C2(f)− C1(f)) ≤ 0, (11b)

fHV,HO
1 (C1(f)− C2(f)) ≤ 0, (11c)

fHV,HO
2 (C2(f)− C1(f)) ≤ 0, (11d)

fAV,LO1 (C1(f)− C2(f)) ≤ 0, (11e)

fAV,LO2 (C2(f)− C1(f)) ≤ 0. (11f)

The definition guarantees that at the choice equilibrium, if
the travel cost of lane 1 is higher than the travel cost of lane
2, then all of the three classes of vehicles would travel on
lane 2; if the travel cost of lane 1 is lower than the travel
cost of lane 2, then all of the three classes of vehicles would
choose to pay the toll and travel on lane 1; if the travel cost
of lane 1 is equal to the travel cost of lane 2, then any vehicle
of the three classes of vehicles could travel either on lane 1
or on lane 2. Moreover, if any of the three classes of vehicles
are on lane 1, then the travel cost of lane 1 cannot be higher
than the cost of lane 2; if any of the three classes of vehicles
are on lane 2, then the travel cost of lane 2 cannot be higher

than the cost of lane 1; if the any class of vehicles use both
lane 1 and lane 2, then the travel cost of lane 1 and lane 2
must be equal.

The metric we use in this framework to evaluate the social
mobility is the total delay of all commuters. The total delay
of all commuters at an lane choice equilibrium f can be
calculated as

J(f) =[
fHV,LO
1 + fAV,LO1 + n

(
fHV,HO
1 +

dAV,HO

n

)]
D1(f1)

+
(
fHV,LO
2 + fAV,LO2 + nfHV,HO

2

)
D2(f2). (12)

III. EQUILIBRIUM PROPERTIES

In this section, we establish crucial properties of the
resulting lane choice equilibria under the framework as
described in Definition 1. According to the core theorem
in [21], we give the following proposition without proof.

Proposition 1. For a segment of highway G =
(D,d, τ, n, µ), there always exists at least one lane choice
equilibrium as described in Definition 1.

The next theorem claims that the resulting lane choice
equilibrium is generally only unique if at the equilibrium,
all of the three classes of vehicles travel on the same lane.

Theorem 1. For a segment of highway G = (D,d, τ, n, µ),
the lane choice equilibrium as described in Definition 1 is
unique if and only if any of the following conditions holds:

• τ ≥ D2

(
fmax
1 − fmin

1

)
−D1

(
fmin
1

)
,

• τ ≤ D2 (0)−D1 (f
max
1 ) .

Proof. The travel cost on lane 1, C1(f) is a continuous,
increasing function of f1, thus can be written as C1(f1).
Also notice that, we always have

f1 + f2 = fmax
1 . (13)

Thus with slight abuse of notation, we can treat the travel
cost on lane 2, C2(f) as a continuous, decreasing function
of f1, written as C2(f1). Three possible sketches of C1(f1)
and C2(f1) for f1 ∈ [fmin

1 , fmax
1 ] are shown in Figure 2.

In case (a), C1(f1) ≥ C2(f1) for any possible f1 ∈
[fmin

1 , fmax
1 ], thus all of the three classes of vehicles would

use lane 2, and the lane choice equilibrium is unique at
(0, 0, 0). In case (c), C1(f1) ≤ C2(f1) for any possible
f1 ∈ [fmin

1 , fmax
1 ], thus all of the three classes of vehicles

would use lane 1, and the lane choice equilibrium is unique
at
(
dHV,LO, dHV,HO

n , dAV,LO
)

.
In case (b), the resulting lane choice equilibria are in

general not unique. One can check that possible lane choice
equilibria that satisfy Definition 1 must satisfy

C1(f
∗
1 ) = C2(f

∗
1 ), (14)

where f∗1 ∈ (fmin
1 , fmax

1 ) is the value of f1 at the equilibria.
Thus according to Equation (5), the resulting equilibria must
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Fig. 2: Possible sketches of the travel cost on both lanes. Resulting lane choice equilibria are indicated by the green dots.
Non-unique equilibria only exist in case (b).

satisfy

fHV,LO
1 + fHV,HO

1 + µfAV,LO1 = f∗1 − fmin
1 . (15)

All resulting equilibria should also satisfy the feasibility
conditions, thus the resulting equilibria lie in a simplex
S ⊂ R3 which can be characterized as

S := {f ∈ R3 : f satisfies (15), (1), (2), (3), (4)}. (16)

Through the proof, for a segment of highway G =
(D,d, τ, n, µ), the resulting lane choice equilibrium is only
unique if the toll is so big or so small that at the equilibrium,
all of the three classes of vehicles choose the same lane.
Otherwise, we can easily characterize the non-unique lane
choice equilibria by a simplex S in Equation (16). The total
commuter delay at the equilibrium can be ambiguous if there
are multiple equilibria. Therefore, we give the following
theorem to further characterize the non-unique equilibria in
terms of the total commuter delay, which is helpful for future
analysis. For a segment of highway G = (D,d, τ, n, µ)
with non-unique equilibria, we let f+ ∈ S be the worst
equilibrium that satisfies

J (f) ≤ J
(
f+
)
, ∀f ∈ S, (17)

and f− ∈ S be the best equilibrium that satisfies

J (f) ≥ J
(
f−
)
, ∀f ∈ S. (18)

Theorem 2. For a segment of highway G = (D,d, τ, n, µ)
with non-unique lane choice equilibria as described in
Definition 1:

• if n > 1
µ , we have

f+ =

(
max
f∈S

fHV,LO
1 , min

f∈S
fHV,HO
1 , ∗

)
, (19a)

f− =

(
min
f∈S

fHV,LO
1 , max

f∈S
fHV,HO
1 , ∗

)
, (19b)

• if n < 1
µ , we have

f+ =

(
max
f∈S

fHV,LO
1 , ∗, min

f∈S
fAV,LO1

)
, (20a)

f− =

(
min
f∈S

fHV,LO
1 , ∗, max

f∈S
fAV,LO1

)
, (20b)

• if n = 1
µ , we have

f+ =

(
max
f∈S

fHV,LO
1 , ∗, ∗

)
, (21a)

f− =

(
min
f∈S

fHV,LO
1 , ∗, ∗

)
, (21b)

where ∗ indicates the quantity can be any value that
fulfills that f+ ∈ S and f− ∈ S .

Proof. In this proof, we first give a detailed explana-
tion for f+ when n > 1

µ . When n > 1
µ , let f =(

fHV,LO
1 , fHV,HO

1 , fAV,LO1

)
∈ S and f 6= f+. Due to

f ∈ S and f+ ∈ S , we have that f and f+ both satisfy
Equation (15). Thus we have

J (f)− J
(
f+
)

=

[
fHV,LO
1 −max

f∈S
fHV,LO
1 −

1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
D1 (f

∗
1 )

−
[
fHV,LO
1 −max

f∈S
fHV,LO
1 −

1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
D2 (f

max
1 − f∗1 ) (22)



=

[
fHV,LO
1 −max

f∈S
fHV,LO
1 −

1

µ

(
fHV,LO
1 −max

f∈S
fHV,LO
1 + fHV,HO

1 −min
f∈S

fHV,HO
1

)
+ n

(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
×

(D1 (f
∗
1 )−D2 (f

max
1 − f∗1 )) (23)

=

[(
1− 1

µ

)(
fHV,LO
1 −max

f∈S
fHV,LO
1

)
+

(
n− 1

µ

)(
fHV,HO
1 −min

f∈S
fHV,HO
1

)]
×

(D1 (f
∗
1 )−D2 (f

max
1 − f∗1 )) .

(24)

According to Equation (14), we have

D1 (f
∗
1 ) + τ = D2 (f

max
1 − f∗1 ) . (25)

Since τ ≥ 0, we have

D1 (f
∗
1 )−D2 (f

max
1 − f∗1 ) ≤ 0. (26)

Also, we have 1 − 1
µ < 0, n − 1

µ > 0, fHV,LO
1 −

max
f∈S

fHV,LO
1 ≤ 0 and fHV,HO

1 − min
f∈S

fHV,HO
1 ≥ 0, thus

we have

J (f)− J
(
f+
)
≤ 0. (27)

To complete the proof, we have to also show that f+ ∈
S exists. To show this, we prove that there exists ∗ that
both satisfies condition (15) and (3), i.e., there exists ∗ that
satisfies

max
f∈S

fHV,LO
1 + min

f∈S
fHV,HO
1 + ∗µ = f∗1 − fmin

1 , (28)

0 ≤ ∗ ≤ dAV,LO. (29)

Equivalently, we want to show that

0 ≤ f∗1 − fmin
1 −max

f∈S
fHV,LO
1 −min

f∈S
fHV,HO
1 ≤ µdAV,LO.

(30)

We first prove the first inequality. Let f̃HV,HO
1 be the flow

of human-driven vehicles with high occupancy on lane 1 at
any f ∈ S where the flow of human-driven vehicles with
low occupancy on lane 1 equals max

f∈S
fHV,LO
1 . According to

Equation (15), we must have

f̃HV,HO
1 ≤ f∗1 − fmin

1 −max
f∈S

fHV,LO
1 . (31)

Due to min
f∈S

fHV,HO
1 ≤ f̃HV,HO

1 , we have

min
f∈S

fHV,HO
1 ≤ f∗1 − fmin

1 −max
f∈S

fHV,LO
1 , (32)

which shows the first inequality. Then let f̃HV,LO
1 be the

flow of human-driven vehicles with low occupancy on lane
1, f̃AV,LO1 be the flow of autonomous vehicles with low
occupancy on lane 1 at any f ∈ S where the flow of
human-driven vehicles with high occupancy on lane 1 equals

min
f∈S

fHV,HO
1 . According to Equation (15), we must have

f∗1 − fmin
1 −min

f∈S
fHV,HO
1 = f̃HV,LO

1 + µf̃AV,LO1 . (33)

Due to f̃HV,LO
1 + µf̃AV,LO1 ≤ max

f∈S
fHV,LO
1 + µdAV,LO, we

have

f∗1 − fmin
1 −min

f∈S
fHV,HO
1 ≤ max

f∈S
fHV,LO
1 + µdAV,LO,

(34)

which shows the second inequality. With a similar process,
we can prove for the other claims. Thus details are omitted.

Theorem 2 implicitly compares the capability of au-
tonomous vehicles with low-occupancy and human-driven
vehicles with high-occupancy to decrease the total commuter
delay. When n > 1

µ , human-driven vehicles with high-
occupancy are more capable than autonomous vehicles with
low-occupancy, and therefore, among the multiple equilibria,
the best case equilibrium happens when we prioritize high-
occupancy vehicles instead of autonomous vehicles on the
toll lane 1. When n < 1

µ , human-driven vehicles with high-
occupancy are less capable than autonomous vehicles with
low-occupancy, and therefore, among the multiple equilib-
ria, the best case equilibrium happens when we prioritize
autonomous vehicles instead of high-occupancy vehicles on
the toll lane 1. In all cases, the least capable class of
vehicles is human-driven vehicles with low-occupancy, thus
the worst equilibrium happens when we prioritize human-
driven vehicles with low-occupancy on toll lane 1.

With Theorem 1, we can obtain the unique equilibrium
when conditions hold and when equilibria are not unique,
with Theorem 2, we can easily obtain the best/worst case
equilibrium in terms of the total commuter delay.

Example 1. To better clarify, we give a numerical exam-
ple. Let d = {dAV,HO = 4, dAV,LO = 3, dHV,HO =
4, dHV,LO = 5}. Assume the delay functions as BPR
functions [18] in the form:

Di(fi) = θi + γi

(
fi
mi

)βi

, ∀i ∈ I, (35)

with parameters D = {θi = 3, γi = 1, βi = 1, mi = 10 :
i ∈ I}. When {n = 4, µ = 0.5}, the lane choice equilibrium
always exists and is unique when τ ≥ 0.7. Setting τ = 0.5,
the resulting equilibria form a simplex. The best-case
equilibrium in terms of the total commuter delay lies at(
fHV,LO
1 = 0, fHV,HO

1 = 1, fAV,LO1 = 0
)

, and the worst

equilibrium at
(
fHV,LO
1 = 1, fHV,HO

1 = 0, fAV,LO1 = 0
)

.
When {n = 2, µ = 0.4}, the equilibrium is unique
when τ ≥ 0.74. Setting τ = 0.5, we have the best
equilibrium at

(
fHV,LO
1 = 0, fHV,HO

1 = 0, fAV,LO1 = 3
)

,
and the worst equilibrium at(
fHV,LO
1 = 1.2, fHV,HO

1 = 0, fAV,LO1 = 0
)

.
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Fig. 3: The best/worst-case total commuter delay versus
different toll values in Example 2.

IV. DESIGN THE TOLL

One intriguing problem for the policy designers is to
design the toll properly and therefore, induce the resulting
choice equilibrium to a socially optimal one. The optimiza-
tion problem can be formulated as

min
τ≥0

J(f)

subject to Conditions (1)− (11).

Usually, optimization problems with equilibrium conditions
are difficult to deal with. However, with the characterization
of the equilibria in section III, we propose a simple but
effective algorithm to find the optimal toll that minimizes
the total commuter delay.

At each value of toll, according to Theorem 1, the
equilibrium is either on the pure strategy points or in the
simplex S . The simplex is easily obtained by solving a single
variable equation (14). Moreover, according to Theorem 2,
the best/worst case equilibrium in terms of the total delay
can be easily selected from the contour of S . Therefore, at
each value of toll, the total delay or the best/worst total delay
are easily calculated. Naturally, the toll optimization problem
becomes a one dimensional search problem, which can be
readily solved by well established algorithms such as golden
section search. Also, the algorithm has no requirements for
the convexity of delay configurations.

Example 2. To better clarify, we use a numerical example
to validate our method. Let {dAV,HO = 4, dAV,LO =
3, dHV,HO = 4, dHV,LO = 5, n = 4, µ = 0.5}. Assume
the delay functions as BPR functions with parameters D =
{θi = 3, γi = 1, βi = 1, mi = 10 : i ∈ I}. The plot of
best/worst case total delay at different values of toll is shown
in Figure 3. As we can see, in this case, with toll increasing,
the worst case total delay increases, whereas the best case
total delay first decreases and then increases. We may choose
the toll to be 0 to minimize the worst case total delay or we
may choose the toll to be around 0.25 to minimize the best
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Fig. 4: The best/worst case total commuter delay versus
different values of occupancy threshold n in Example 3.

case total delay.

V. DESIGN THE OCCUPANCY THRESHOLD

Another interesting problem is to find a proper occu-
pancy threshold n. With the fixed total commuter demands,
policy designers may want to set the value of n higher
to encourage a higher occupancy of vehicles, however, the
carpooling difficulty at a higher n also increases, which may
lead to a decreased demand of commuters who are willing
to carpool. To address such trade-off, in this section, we
assume the demand of commuters who take human-driven
or autonomous vehicles is fixed, and is denoted by dHV and
dAV respectively. Also, for an occupancy threshold n ≥ 2,
the probability of a commuter to carpool is p(n) ∈ [0, 1].
The function p(·) is a non-increasing function. Therefore,
we have

dHV,LO = dHV(1− p(n)), (36)

dHV,HO = dHVp(n), (37)

dAV,LO = dAV(1− p(n)). (38)

To find the optimal n, we are solving the optimization
problem:

min
n≥2

J(f)

subject to Conditions (1)− (11).

Similar to the toll design problem, we propose an effective
solution algorithm with no requirement for the convexity
of the delay configurations. At each value of n, we either
obtain a pure strategy equilibrium or a simplex S according
to Theorem 1. The best/worst case equilibrium in terms of
the total delay can then be easily selected by Theorem 2.
Therefore, at each value of n, the total delay or the best/worst
total delay is obtained. Naturally, the n-optimization problem
becomes a one dimensional search problem, which can be
solved by algorithms such as golden section search. Notice
that the algorithm works fine with any candidate range of n
even when the range is discrete.



Example 3. We employ the following numerical example
to support the proposed algorithm. Let {dAV = 7, dHV =
9, µ = 0.5, τ = 0.5}. Assume the delay functions as BPR
functions with parameters D = {θi = 3, γi = 1, βi =
1, mi = 10 : i ∈ I}. We assume p(n) = 1

n for any
n ∈ [2, 4]. The corresponding total delay of each value of
n is shown in Figure 4. As we can see from the result,
increasing n does not necessarily decrease the total delay.

VI. DESIGN THE POLICY

Currently on the roads, we have high-occupancy vehicle
lanes which are reserved freely for high-occupancy vehicles
and let other vehicles enter with a toll. With the development
of the autonomous driving technologies, the concept of
dedicated lanes, which are reserved freely for autonomous
vehicles and other vehicles may enter with a toll, has also
been proposed and experimented. However, in a scenario
where human-driven/autonomous vehicles with low/high-
occupancy are sharing the roads, with limited budget, is
it better to employ a high-occupancy vehicle lane or a
dedicated lane for autonomous vehicles? In this section, we
first elaborate how the policies of high-occupancy vehicle
lanes and dedicated lanes for autonomous vehicles fit into
the toll lane framework in section II and further investigate
the proper choice of the policy.

The high-occupancy vehicle lane policy admits all high-
occupancy vehicles to travel freely. Thus, we can see the
high-occupancy vehicle lane policy as a special case when
we always have fHV,HO

1 = dHV,HO

n . And the two classes of
vehicles making lane choices are human-driven/autonomous
low-occupancy vehicles. The properties of the resulting equi-
libria then can be investigated by Theorem 1 and 2. The
dedicated lane policy admits all autonomous vehicles freely.
Thus, we can see the dedicated lane policy as a special case
when fAV,LO1 = dAV,LO. And the two classes of vehicles
making lane choices are human-driven low/high-occupancy
vehicles. Theorem 1 and 2 can then be applied to characterize
the properties of the resulting equilibria.

For a specific segment of highway with a uniform toll,
under either of the policies, according to Theorem 1, the
resulting equilibrium can be obtained if it is unique or
otherwise, the best/worst case equilibrium in terms of the
total delay can be obtained by Theorem 2. Therefore, the
evaluation of the strategies becomes a rather simple problem.

Example 4. To better clarify, we use the following numerical
example. Let {dAV,HO = 4, dAV,LO = 3, dHV,HO =
4, dHV,LO = 5, n = 4, µ = 0.5}. Assume the delay
functions as BPR functions with parameters D = {θi =
3, γi = 1, βi = 1, mi = 10 : i ∈ I}. The comparison
of the two policies can be seen in Figure 5. As we can see,
for this segment of highway, with any toll value, the high-
occupancy vehicle lane policy outperforms the dedicated lane
policy for autonomous vehicles.

VII. DIFFERENTIATE THE TOLLS

Further, we consider the scenario where the three tolled
classes of vehicles are assigned with heterogeneous tolls.
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Fig. 5: The best/worst case total delay versus different
toll values under the dedicated lane policy for autonomous
vehicles (DLA) or the high-occupancy vehicle lane policy
(HOVL) in Example 4.

Instead of using a uniform toll, we define a vector toll
τ :=

(
τHV,LO, τHV,HO, τAV,LO

)
containing the tolls for

the three classes of vehicles. Correspondingly, we let J(τ )
be the total commuter delay under the heterogeneous vec-
tor toll τ . The toll optimization problem as described in
Section IV when tolls are heterogeneous is a nontrivial bi-
level optimization problem, which may potentially be solved
by iterative optimization algorithms. However, iterative algo-
rithms may take time to converge and for non-convex delay
configurations, the convergence is not guaranteed. Therefore,
we propose another efficient method to decrease the total
delay: first, assuming all tolls are uniform, find the optimal
toll which has the smallest best case total delay according to
the method described in Section IV; second, if the optimal
toll is non-zero and there are multiple equilibria under the
optimal uniform toll, differentiate the tolls and induce the
best case equilibrium under the optimal uniform toll. This
way, we can effectively decrease the total delay without any
requirement for the algorithm convergence. Notice that we
exclude the case when the optimal toll is zero, since the
multiple equilibria under zero toll share the same total delay.
Specifically, we can differentiate the tolls according to the
following proposition.

Proposition 2. For a segment of highway G =
(D,d, τ∗, n, µ), where τ∗ > 0 is a predetermined optimal
uniform toll which induce non-unique equilibria, let J∗(τ∗)
be the best total commuter delay under the uniform toll τ∗.
Let τ− ≥ 0 be any value of toll satisfying τ− < τ∗ and
τ+ > 0 be any value of toll satisfying τ+ > τ∗.
• If n ≤ 1

µ ,

– if f∗1 ≤ µ
(
dAV,LO + dAV,HO

n

)
, then set τ =

(τ+, τ+, τ∗) and we have J (τ ) = J∗ (τ∗).
– if µ

(
dAV,LO + dAV,HO

n

)
< f∗1 ≤ dHV,HO

n +

µ
(
dAV,LO + dAV,HO

n

)
, then set τ = (τ+, τ∗, τ−)



and we have J (τ ) = J∗ (τ∗).
– if d

HV,HO

n +µ
(
dAV,LO + dAV,HO

n

)
< f∗1 , then set τ =

(τ∗, τ−, τ−) and we have J (τ ) = J∗ (τ∗).
• If n > 1

µ ,

– if f∗1 ≤ dHV,HO

n +µd
AV,HO

n , then set τ = (τ+, τ∗, τ+)
and we have J (τ ) = J∗ (τ∗).

– b) if dHV,HO

n + µd
AV,HO

n < f∗1 ≤ dHV,HO

n +

µ
(
dAV,LO + dAV,HO

n

)
, then set τ = (τ+, τ−, τ∗)

and we have J (τ ) = J∗ (τ∗).
– c) if dHV,HO

n + µ
(
dAV,LO + dAV,HO

n

)
< f∗1 , then set

τ = (τ∗, τ−, τ−) and we have J (τ ) = J∗ (τ∗).

Proof. We give the detailed explanation for the first sub-
case when n ≤ 1

µ . According to Theorem 2, when n ≤ 1
µ ,

we should first prioritize autonomous vehicles with low
occupancy on lane 1. When f∗1 ≤ µ

(
dAV,LO + dAV,HO

n

)
,

the best equilibrium under the optimal uniform toll would
be (0, 0,

f∗
1−f

min
1

µ ). One can check that (0, 0,
f∗
1−f

min
1

µ ) is
an equilibrium and is the only equilibrium that fulfills
Definition 1 when tolls are selected as τ . The proof for other
cases follows the same logic, thus omitted here.

The general idea of this toll design proposition is to first
identify the best equilibrium, and then assign the toll of
τ∗ to the class of vehicles that use both lanes at the best
equilibrium, a toll higher than τ∗ to the class of vehicles
less prior and a toll lower than τ∗ to the class of vehicles
more prior.

VIII. CONCLUSION

We proposed a toll lane framework where four classes
of vehicles are sharing a segment of highway: autonomous
vehicles with high occupancy travel freely on a reserved
lane and the other three classes of vehicles: human-driven
vehicles with low occupancy, human-driven vehicles with
high occupancy, autonomous vehicles with low occupancy
can choose to enter the reserved lane paying a toll or use the
other regular lanes freely. We consider all vehicles are selfish
and established desirable properties of the resulting lane
choice equilibria, which implicitly compare high-occupancy
vehicles with autonomous vehicles in terms of their capabil-
ities to increase the social mobility. We further clarified the
various potential applications of this toll lane framework that
unites high-occupancy vehicles and autonomous vehicles in
the optimal toll design, occupancy threshold design and the
policy design problems.
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