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a b s t r a c t

Suppose I and J are proper ideals on some set X . We say that I
and J are incompatible if I∪J does not generate a proper ideal.
Equivalently, I and J are incompatible if there is some A ⊆ X

such that A ∈ I and X \ A ∈ J . If some B ⊆ X is either in I \ J

or in J \ I, then we say that B chooses between I and J .
We consider the following Ramsey-theoretic problem: Given

several pairs (I1,J1), (I2,J2), . . . , (Ik,Jk) of incompatible ide-
als on a set X , find some A ⊆ X that chooses between as many
of these pairs of ideals as possible. The main theorem is that for
every n ∈ N, there is some I(n) ∈ N such that given at least I(n)
pairs of incompatible ideals on any set X , there is some A ⊆ X

choosing between at least n of them.
This theorem is proved in two main steps. The first step is to

identify a (purely finitary) problem in extremal combinatorics,
and to show that our problem concerning ideals is equivalent
to this combinatorial problem. The second step is to analyze the
combinatorial problem in order to show that the number I(n)
described above exists, and to put bounds on it. We show

1
2n log2 n − O(n) < I(n) < n ln n + O(n).

The upper bound is proved by considering a different but
closely related combinatorial problem involving hypergraphs,
which may be of independent interest. We also investigate

✩ The second author was supported in part by NSF, USA grants DMS-1201494 and DMS-1764320. Both authors wish
to thank Louis DeBiasio for his input on an earlier draft of this paper, especially his thoughts concerning the numbers
H(n).

E-mail addresses: wbrian@uncc.edu (W. Brian), larsonpb@miamioh.edu (P.B. Larson).
URLs: http://wrbrian.wordpress.com (W. Brian), http://www.users.miamioh.edu/larsonpb/ (P.B. Larson).

https://doi.org/10.1016/j.ejc.2021.103349
0195-6698/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ejc.2021.103349
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2021.103349&domain=pdf
mailto:wbrian@uncc.edu
mailto:larsonpb@miamioh.edu
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://wrbrian.wordpress.com
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
http://www.users.miamioh.edu/larsonpb/
https://doi.org/10.1016/j.ejc.2021.103349


W. Brian and P.B. Larson European Journal of Combinatorics 96 (2021) 103349

some applications of this theorem to a problem concerning
conditionally convergent series.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

An ideal on a set X is a set I of subsets of X such that

◦ every finite subset of X is in I,
◦ if A, B ∈ I then A ∪ B ∈ I, and
◦ if A ∈ I and B ⊆ A, then B ∈ I.

An ideal I is proper if I ̸= P(X) or, equivalently, if X /∈ I. Two proper ideals I and J on a set
X are incompatible if their union is not contained in any proper ideal. Equivalently, I and J are
incompatible if there is some A ⊆ X such that A ∈ I and X \ A ∈ J . If B ⊆ X and if either B ∈ I \J

or B ∈ J \ I, then we say that B chooses between I and J .
This paper investigates the following Ramsey-theoretic problem: given several pairs (I1,J1),

(I2,J2), . . . , (Ik,Jk) of incompatible ideals on a set X , find some A ⊆ X that chooses between as
many of these pairs of ideals as possible. In other words, we would like to make many choices
simultaneously, using a single A ⊆ X .

Main Theorem. For each n ∈ N, there is some I(n) ∈ N such that for any collection of I(n) pairs of

incompatible ideals on a set X, there is some A ⊆ X that chooses between at least n of those pairs.

This theorem is proved in two stages. The first stage is to identify a (purely finitary) problem
in extremal combinatorics, and to show that our problem concerning ideals is equivalent to this
combinatorial problem. The second stage is to analyze the combinatorial problem to show that the
number I(n) exists. We also put bounds on I(n), namely

1
2n log2 n − 1

2n + 3
2 < I(n + 1) < 1 +

∑n

k=1
n
k

Let us note that
∑n

k=1
n
k

< n ln n + γ n + 1
2 , where γ ≈ .5772156649 is the Euler–Mascheroni

constant, so that the upper and lower bounds on I(n) match up to a constant factor. In other words,
I(n) = Θ(n log n).

The first stage of this proof is contained in Section 2, and the second in the first part of Section 3.
The second part of Section 3 and all of Section 4 are devoted to finding upper and lower bounds
for I(n). The upper bound is proved by introducing a second problem of extremal combinatorics
concerning hypergraphs. Roughly, the problem is, given some hypergraph (V ,H), to find some
X ⊆ V and H

′ ⊆ H, with X as large as possible, so that H′ induces a partition on X . This problem,
which may have some independent interest, is described more precisely and analyzed in Section 3.

In Section 5, we apply the main theorem to a problem concerning infinite series. A conditionally

convergent series is a sequence ⟨an: n ∈ N⟩ of real numbers such that
∑

n∈N an converges but
∑

n∈N |an| does not. Every conditionally convergent series ⟨an: n ∈ N⟩ has a subseries
⟨

ank : k ∈ N
⟩

summing to ∞ (e.g., the subseries obtained by summing only over positive terms), and a different
subseries summing to −∞ (e.g., the subseries obtained by summing only over negative terms).
Every conditionally convergent series also has many subseries that diverge by oscillation; for
example, one may construct such a subseries by interleaving long stretches of positive terms with
long stretches of negative terms.

Definition 1.1. Let us say that a set A ⊆ N sends a series
∑

n∈N an to infinity if either
∑

n∈A an = ∞
or

∑

n∈A an = −∞.

2
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Notice that in this definition, we require each subseries to diverge either to ∞ or to −∞, and not
merely to diverge by oscillation. Recently, the first author has investigated the problem of sending
several series to infinity simultaneously, using a single A ⊆ N. In summary:

◦ For any three conditionally convergent series, there is a single A ⊆ N sending all three series
to infinity simultaneously. (Brian [3])

◦ The analogous statement for four series is false: there is a collection of four conditionally
convergent series such that no single A ⊆ N sends all four series to infinity. (Nazarov [10],
[3, Section 3])

These results suggest the following Ramsey-theoretic problem: given several conditionally
convergent series, find some A ⊆ X that sends as many of them as possible to infinity. In other
words, we would like to send many series to infinity simultaneously, using a single A ⊆ X . As a
corollary to the main theorem we obtain:

Theorem. For each n ∈ N, there is some ß(n) ∈ N such that for any collection of ß(n) conditionally
convergent series, there is some A ⊆ N sending at least n of the series to infinity simultaneously.

Specifically, we show that ß(n) ≤ I(n) = Θ(n log n). The best lower bound for ß(n) that we
know is 2n − 5 ≤ ß(n), which is proved in Section 5. This is accomplished by generalizing the
aforementioned example of Navarov to find, for every n ≥ 2, an example of 2n conditionally
convergent series such that no single A ⊆ N can send more than n + 2 of them to infinity
simultaneously. Finally, Section 6 contains an infinitary version of the result on conditionally
convergent series:

Theorem. For any infinite collection of conditionally convergent series, there is a single A ⊆ N sending

infinitely many of the series to infinity.

2. The reduction

In this section we reduce the main theorem stated in the introduction to a (purely finitary)
problem of extremal combinatorics. One may think of this as the first half of a proof of the main
theorem. The second half, contained in the next section of the paper, is to analyze the combinatorial
problem.

We begin with a formal definition of I(n):

Definition 2.1. For each n ∈ N, let I(n) denote the least k ∈ N with the following property:

(∗)n For any set X and any collection (I1,J1), (I2,J2), . . . , (Ik,Jk) of k pairs of incompatible ideals
on X , there is some A ⊆ X such that A chooses between Iℓ and Jℓ for at least n different values
of ℓ.

If there is no such k ∈ N, then we say that I(n) is not well-defined.

We now define another number Ĩ(n) for each n ∈ N. As with I(n), we define it in such a way
that it is not yet assumed to be well-defined. The notation Ĩ(n) is used only in this section; it is not
needed in later sections because, as we shall show shortly, Ĩ(n) and I(n) are the same.

Definition 2.2. Let Fn(k, 2) denote the set of all functions from a subset of {1, 2, . . . , k} to {p, n}.
We say that F ⊆ Fn(k, 2) is full provided that, for every i ∈ {1, 2, . . . , k} and j ∈ {p, n}, there is some
f ∈ F with f (i) = j. For each n ∈ N, let Ĩ(n) denote the least k ∈ N with the following property:

(²)n For any full F ⊆ Fn(k, 2), there is some G ⊆ F and D ⊆
⋃

g∈G dom(g) such that |D| ≥ n, and
no two members of G disagree on D.

If there is no such k ∈ N, then we say that Ĩ(n) is not well-defined.

3
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In what follows, we shall sometimes represent functions as sets of ordered pairs, and sometimes
we shall represent functions and sets of functions as pictures. For example the following two
pictures represent subsets of Fn(3, 2):

The picture on the left represents the subset of Fn(3, 2) containing the three functions {(1, p)},
{(1, p), (2, p), (3, p)}, and {(2, n), (3, n)}. The picture on the right shows a full subset of Fn(3, 2). (The
collection of functions represented on the left is not full.) The reader may check that the family
represented by the picture on the right witnesses that k = 3 fails to have property (²)3 (i.e., the
family is full, but there are no G and D as described). Thus this picture shows Ĩ(3) > 3, assuming
that Ĩ(3) is well-defined.

Theorem 2.3. For each n ∈ N, the properties (∗)n and (²)n are equivalent. Hence I(n) is well-defined if

and only if Ĩ(n) is, and if they are both well-defined then I(n) = Ĩ(n).

Proof. We prove first that (²)n implies (∗)n. Fix k ∈ N and suppose that (²)n holds. Let X be a set
and let (I1,J1), (I2,J2), . . . , (Ik,Jk) be pairs of incompatible ideals on X .

For each A ⊆ X , define a function φA ∈ Fn(k, 2) as follows. For every ℓ ∈ {1, 2, . . . , k}, let
ℓ ∈ dom(φA) if and only if A chooses between Iℓ and Jℓ, and for all ℓ ∈ dom(φA), let

φA(ℓ) =

{

p if A ∈ Iℓ \ Jℓ

n if A ∈ Jℓ \ Iℓ.

Let us say that A ⊆ X is tame if for all ℓ ∈ {1, 2, . . . , k}, either A ∈ Iℓ or A ∈ Jℓ. Then let

F = {φA: A ⊆ X is tame} .

Clearly, F ⊆ Fn(k, 2).

Claim. F is full.

Proof of Claim. For every m ∈ {1, 2, . . . , k}, use the fact that Im and Jm are incompatible to fix
some Am ⊆ X such that Am ∈ Im and N \ Am ∈ Jm. For convenience, let Ap

m denote Am, and let An
m

denote N \ Am.
Fix ℓ ∈ {1, 2, . . . , k}, and partition Aℓ into 2k−1 sets as follows. For each function f from

{1, 2, . . . , k} \ {ℓ} to {p, n}, define

A
f

ℓ =
⋂

{

A
f (m)
m :m ∈ {1, 2, . . . , k} \ {ℓ}

}

∩ Aℓ.

There are only finitely many functions from {1, 2, . . . , k} \ {ℓ} to {p, n}, so (because Jℓ is closed
under finite unions) if every A

f

ℓ were in Jℓ then Aℓ =
⋃

f :{1,2,...,k}\{ℓ}→{p,n} A
f

ℓ would also be in Jℓ. But

Aℓ /∈ Jℓ, because N \ Aℓ ∈ Jℓ. Thus there is some f such that Af

ℓ /∈ Jℓ. On the other hand, Af

ℓ ∈ Iℓ

because A
f

ℓ ⊆ Aℓ ∈ Iℓ. Hence A
f

ℓ chooses between Iℓ and Jℓ, and in fact φ
A
f
ℓ

(ℓ) = p.

For each m ∈ {1, 2, . . . , k} \ {ℓ}, either A
f

ℓ ⊆ A
p
m, in which case A

f

ℓ ∈ Im, or A
f

ℓ ⊆ An
m, in which

case A
f

ℓ ∈ Jm. From this and the fact that Af

ℓ ∈ Iℓ, it follows that Af

ℓ is tame.
Thus we have found a tame A ⊆ X with φA(ℓ) = p. A similar argument (which proceeds

by partitioning N \ Aℓ instead of Aℓ) shows that there is a tame A ⊆ X with φA(ℓ) = n. As
ℓ ∈ {1, 2, . . . , k} was arbitrary, we conclude that F is full. □

4
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Applying (²)n, there is some G ⊆ F and some D ⊆
⋃

g∈G dom(g) such that |D| ≥ n, and no two
members of G disagree on D. For each g ∈ G, fix some particular tame subset Ag of X such that
φAg = g . Let A =

⋃

g∈G Ag . We claim that A chooses between the ideals Iℓ and Jℓ for every ℓ ∈ D.
Fix ℓ ∈ D, and suppose that g(ℓ) = p for every g ∈ G with ℓ ∈ dom(g). Then Ag ∈ Iℓ \ Jℓ for all
g ∈ G with ℓ ∈ dom(g). For ℓ /∈ dom(g), Ag ∈ Iℓ and Ag ∈ Jℓ (because Ag is tame). Hence Ag ∈ Iℓ

for all g ∈ G. As Iℓ is closed under finite unions, this implies A ∈ Iℓ. Because Jℓ is closed under
taking subsets, if A ∈ Jℓ then Ag ∈ Jℓ for every g ∈ G. But this is not the case, because ℓ ∈ dom(g)
for at least one g ∈ G, in which case g(ℓ) = p and Ag /∈ Jℓ. Thus A ∈ Iℓ \Jℓ. Similarly, if g(ℓ) = n for
every g ∈ G with ℓ ∈ dom(g), then A ∈ Jℓ \ Iℓ. Either way, A chooses between Iℓ and Jℓ. Because
this is true for every ℓ ∈ D, and because |D| ≥ n, the set A chooses between at least n of the pairs
(I1,J1), (I2,J2), . . . , (Ik,Jk). This completes the proof that (²)n implies (∗)n.

We now prove the converse direction, that (∗)n implies (²)n. Fix k ∈ N, and suppose that (∗)n
holds. Let F ⊆ Fn(k, 2) be full.

Let X = F × N and for each ℓ ≤ k define two ideals Iℓ and Jℓ as follows:

Iℓ = {A ⊆ X : A ∩ ({f } × N) is finite for every f ∈ F with f (ℓ) = p} ,

Jℓ = {A ⊆ X: A ∩ ({f } × N) is finite for every f ∈ F with f (ℓ) = n} .

Fix ℓ ≤ k. Because F is full, there is some f ∈ F with f (ℓ) = p. Therefore X /∈ Iℓ. All the other
parts of the definition of an ideal are easy to check for Iℓ, so Iℓ is an ideal on X . Similarly, the
fullness of F implies that Jℓ is an ideal on X . To see that Iℓ and Jℓ are incompatible, consider

A =
⋃

{{f } × N: f ∈ F and f (ℓ) ̸= p} .

It is clear that A ∈ Iℓ, and that

N \ A =
⋃

{{f } × N: f ∈ F and f (ℓ) = p}

⊆
⋃

{{f } × N: f ∈ F and f (ℓ) ̸= n} ∈ Jℓ.

Thus Iℓ and Jℓ are incompatible for each ℓ ≤ k.
Applying (∗)n, there is some A ⊆ X such that A chooses between at least n of the pairs

(I1,J1), (I2,J2), . . . , (Ik,Jk). Let

G = {f ∈ F: A ∩ ({f } × N) is infinite} ,

D = {ℓ ≤ k: A chooses between Iℓ and Jℓ} .

By our choice of A, we have |D| ≥ n. Thus, to prove (∗)n, it suffices to show that D ⊆
⋃

g∈G dom(g)
and that no two members of G disagree on D.

If ℓ ∈ D, then A chooses between Iℓ and Jℓ, and in particular, either A /∈ Iℓ or A /∈ Jℓ. Either
way, this implies A ∩ ({f } × N) is infinite for some f ∈ F with ℓ ∈ dom(f ). But then f ∈ G, so this
shows ℓ ∈

⋃

g∈G dom(g). As ℓ was an arbitrary member of D, we have D ⊆
⋃

g∈G dom(g).
If ℓ ∈ D, then A chooses between Iℓ and Jℓ, and in particular, either A ∈ Iℓ or A ∈ Jℓ. Suppose

for now that A ∈ Iℓ. The definition of Iℓ implies that A ∩ ({f } × N) is finite for every f ∈ F with
f (ℓ) = p; but then the definition of G implies that f /∈ G. Hence if A ∈ Iℓ, then g(ℓ) ̸= p for all
g ∈ G (by which we mean that if g ∈ G then either g(ℓ) = n or ℓ /∈ dom(g)). Similarly, if A ∈ Jℓ,
then g(ℓ) ̸= n for all g ∈ G. Either way, no two members of G disagree at ℓ. As ℓ was an arbitrary
member of D, no two members of G disagree on D. □

3. Partitions in hypergraphs: an upper bound for I(n)

In this section we prove the main theorem by showing that I(n) is well-defined for all n ∈ N,
and obtain the upper bound I(n + 1) ≤ 1 +

∑n

k=1
n
k
, which implies

I(n) < n ln n + γ n − ln n + 3
2 − γ ,

where γ ≈ .5772156649 is the Euler–Mascheroni constant.
To show that I(n) is well-defined and prove this upper bound, we do not analyze I(n) directly.

Instead we introduce another problem of extremal combinatorics, defining another function H(n).

5
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This function has a simpler definition than I(n), and seems significantly easier to work with. We
show that I(n + 1) ≤ H(n) + 1 for all n, so that any upper bounds one might find for H(n)
automatically give upper bounds for I(n) also.

Recall that a hypergraph is a set V (of vertices) together with a collection H of subsets of V (called
hyperedges). A hypergraph (V ,H) is said to contain a partition of size n if there is some D ⊆ V and
P ⊆ H such that |D| = n and every member of D is contained in exactly one member of P . In this
case, we say that D and P form a partition in (V ,H).

For example, the picture on the left above shows a hypergraph with 8 vertices and 4 hyperedges.
The picture on the right shows that it contains a partition of size 4.

Given a hypergraph (V ,H), a vertex v ∈ V is called isolated if v /∈
⋃

H.
Given a hypergraph, we will be interested in the problem of finding in it a partition involving

as many vertices as possible. For example, in the hypergraph above we found a partition of size 4,
and one may check that this is the largest possible: there is no partition of size ≥5.

Definition 3.1. Define H(n) to be the greatest k ∈ N such that there is a hypergraph (V ,H) with
|V | = k having no isolated vertices and containing no partitions of size greater than n. If there is
no such k, then we say that H(n) is not well-defined.

For example, because the hypergraph pictured above does not contain any partitions of size >4,
it shows that if H(4) is well-defined, then H(4) ≥ 8.

Theorem 3.2. Let n ∈ N. If F ⊆ Fn(k, 2) is full and k > H(n), then F satisfies property (²)n+1.
Consequently, if H(n) is well-defined, then so is I(n + 1), and I(n + 1) ≤ H(n) + 1.

Proof. Let F ⊆ Fn(k, 2) be full, and suppose that k ≥ H(n) + 1. Define a hypergraph by setting
V = {1, 2, . . . , k} and

H = {dom(f ): f ∈ F} .

Because F is full,
⋃

H = {1, 2, . . . , k}. In other words, the hypergraph (V ,H) has no isolated points.
Because k > H(n), (V ,H) contains a partition of size greater than n. Fix some E ⊆ H and some D ⊆ V
with |D| > n such that every member of D is contained in exactly one member of E .

For each G ∈ E , choose a function fG ∈ G with dom(fG) = G. Let G = {fG:G ∈ E}. Then
D ⊆

⋃

E =
⋃

f∈G dom(f ), but no two members of G contain a common member of D. Hence all the
functions in G agree on D, and as |D| ≥ n + 1, it follows that G satisfies property (²)n+1. □

To prove our paper’s main theorem, it remains now to show that H(n) is well-defined for every
n. In fact, this is relatively easy: the more difficult part of this section is to prove an upper bound
with leading term n log n. The well-definedness of H(n) can be proved in a paragraph or two by
using the sunflower lemma of Erdős and Rado [6], or by using the Sauer–Shelah lemma [11,12].
(Shelah attributes the lemma to Perles; it was proved independently, and possibly earlier, by Vapnik
and Červonenkis [13]). The proof we give presently is neither of these, however. While slightly
longer, it has the advantage of being elementary and entirely self-contained. This proof of the
well-definedness of H(n) and I(n) gives quadratic polynomials for their upper bounds.

If (V ,H) has no isolated points, but (V ,H \ {E}) does have isolated points for any E ∈ H, then
(V ,H) is called economical.

Lemma 3.3. Suppose (V ,H) is a hypergraph with no isolated points. If H is finite, then there is some
H

′ ⊆ H such that (V ,H′) is economical and has no isolated points.

6
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Proof. Delete hyperedges from H, one by one, as long as it is possible to delete a hyperedge without
creating any isolated points. When it is no longer possible to do so (which must be the case after
finitely many steps), we have found H

′. □

Theorem 3.4. Suppose (V ,H) is a hypergraph without isolated points, and |V | > n2. Then (V ,H)
contains a partition of size greater than n.

Proof. If any E ∈ H contains more than n vertices, then taking X = E and P = {E} shows that
(V ,H) contains a partition of size >n. So let us suppose that each E ∈ H contains at most n vertices.

Suppose V is finite. This implies H is also finite (of size at most 2|V |). By the previous lemma,
there is some H

′ ⊆ H such that (V ,H′) is economical. Because H
′ is economical, we may for every

E ∈ H
′ find some vE ∈ V such that vE is isolated in (V ,H′ \ {E}). Then

{

vE : E ∈ H
′
}

and H
′ form a

partition in (V ,H) of size |H′|. As (V ,H) contains no isolated points, and |V | > n2, and every E ∈ H
′

contains at most n vertices, we have |H′| > n. This finishes the proof for the case that V is finite.
Now suppose V is infinite. Pick some finiteW ⊆ V with |W | > n2, and let HW = {W ∩ E: E ∈ H}.

By the previous paragraph, (W ,HW ) contains a partition of size >n, i.e., there is some D ⊆ W with
|D| > n and some G ⊆ HW such that each member of D is contained in exactly one member of G.
For each G ∈ G, choose some EG ∈ H such that EG ∩ D = G. Then D and {EG:G ∈ G} form a partition
of size |D| > n in (V ,H). □

Theorem 3.5. H(n) and I(n) are well-defined for all n ∈ N. Furthermore, H(n) ≤ n2 and I(n) ≤
n2 − 2n + 2 for all n.

Proof. From Theorems 3.2 and 3.4 it follows that H(n) is well-defined and H(n) ≤ n2 for all n, and
that I(n) is well-defined and

I(n) ≤ H(n − 1) + 1 ≤ (n − 1)2 + 1 = n2 − 2n + 2

for all n ≥ 2. To finish the proof, all that remains is an easy observation: I(1) is well-defined, and
I(1) = 1. □

Now that we know I(n) and H(n) are well-defined, we proceed to sharpen our upper bound on
their values. As we will see in the following section, the next theorem gives the right growth rate
for I(n) and H(n), up to a constant factor.

Lemma 3.6. H(n) is equal to the greatest k ∈ N such that there is an economical hypergraph (V ,H)
with |V | = k containing no partitions of size greater than n.

Proof. By definition, there is a hypergraph (V ,H0) with |V | = H(n) containing no isolated points,
and containing no partitions of size greater than n. By Lemma 3.3, there is some H ⊆ H0 such
that (V ,H) is economical. If X and P form a partition in (V ,H), then they also form a partition in
(V ,H0); hence (V ,H) contains no partitions of size greater than n. Thus the number k described in
the lemma is ≥H(n). The reverse inequality follows immediately from the definition of H(n). □

Theorem 3.7. H(n) ≤
∑n

k=1
n
k
for all n ∈ N.

Proof. Fix n ∈ N, and let (V ,H) be an economical hypergraph containing no partition of size greater
than n. To prove the theorem, it suffices (by the previous lemma) to show |V | ≤

∑n

k=1
n
k
.

Recall that a vertex v ∈ V has degree d in (V ,H) if |{E ∈ H: v ∈ E}| = d. For each k ≤ n, define

Dk = {v ∈ V : v has degree k} .

More generally, if H′ ⊆ H then define

DH′

k =
{

v ∈ V : v has degree k in (V ,H′)
}

.

7
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Observe that D1 and H form a partition in (V ,H). This implies |D1| ≤ n. Because (V ,H) is
economical, there is an injection from H to V . (For example, any injection that maps each E ∈ H to
some vE that is isolated in (V ,H\ {E}).) Hence |H| ≤ |D1| ≤ n. It follows that (V ,H) has no vertices
of degree greater than n. As (V ,H) also has no isolated points,

V =

n
⋃

k=1

Dk and |V | =

n
∑

k=1

|Dk| .

For each k ≤ n, define mk = k|Dk|.
Fix j with 0 ≤ j < n. In the next part of the proof, our goal will be to produce an inequality,

labeled (Ineqj) below, that constrains the values of the mk for k ≤ j + 1.
Let ℓ = n−|H| and let F1, F2, . . . , Fℓ be any ℓ distinct sets that are not inH. Recall that |H| ≤ n, so

that ℓ ≥ 0. The Fi will be used as dummy variables below. (We think of the Fi as ‘‘fake hyperedges’’
whose purpose is to allow us to pretend that |H| = n, even if really |H| < n. In what follows, one
gets the right idea by thinking of each Fi as an empty edge.) Let

Deletej = {A:A ⊆ H ∪ {Fi: i ≤ ℓ} and |A| = n − j} .

Note that
⏐

⏐Deletej
⏐

⏐ =
(

n

j

)

.
Roughly, our idea for obtaining an inequality constraining m1, . . . ,mj+1 is as follows. Each

A ∈ Deletej gives rise to a subset A ∩ H of H. Observing that A ∩ H and DA∩H
1 form a partition in

(V ,H), this means that DA∩H
1 must have size ≤ n for each A. Summing over all A ∈ Deletej will

give the desired inequality.
Fix k ≤ n and v ∈ Dk = DH

k . Given any H
′ ⊆ H, note that v ∈ DH′

1 if and only if
⏐

⏐

{

E ∈ H
′: v ∈ E

}⏐

⏐ = 1, and this is the case if and only if
⏐

⏐

{

E ∈ H \ H
′: v ∈ E

}⏐

⏐ = k − 1.

Therefore, given A ∈ Deletej, v ∈ DA∩H
1 if and only if the j members of (H ∪ {Fi: i ≤ ℓ}) \ A consist

of exactly k − 1 members of the k-element set {E ∈ H: v ∈ E}, plus any j − (k − 1) other members
of the n-element set H ∪ {Fi: i ≤ ℓ}. Hence, defining

Sv =
{

A ∈ Deletej: v ∈ DA∩H

1

}

,

we have

|Sv| =

(

k

k − 1

)(

n − k

j − (k − 1)

)

= k

(

n − k

j − k + 1

)

whenever k ≤ j + 1, and |Sv| = 0 whenever k > j + 1. Note that |Sv| does not depend on v, but
only on the degree k of v and on j.

By varying k and v, and summing over all A ∈ Deletej, we obtain

∑

A∈Deletej

⏐

⏐DH∩A

1

⏐

⏐ =
∑

v∈V

|Sv| =

n
∑

k=1

∑

v∈Dk

|Sv| =

j+1
∑

k=1

∑

v∈Dk

|Sv|

=

j+1
∑

k=1

∑

v∈Dk

k

(

n − k

j − k + 1

)

=

j+1
∑

k=1

|Dk| k

(

n − k

j − k + 1

)

=

j+1
∑

k=1

mk

(

n − k

j − k + 1

)

.

Recall that for any H
′ ⊆ H, DH′

1 and H
′ form a partition in (V ,H). This implies

⏐

⏐

⏐
DH′

1

⏐

⏐

⏐
≤ n for all

H
′ ⊆ H, and so

∑

A∈Deletej

⏐

⏐DH∩A

1

⏐

⏐ ≤
∑

A∈Deletej

n = n
⏐

⏐Deletej
⏐

⏐ = n

(

n

j

)

.

8
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Putting these observations together, we arrive at what we were aiming for, namely an inequality
that constrains the mk for k ≤ j + 1:

j+1
∑

k=1

mj

(

n − k

j − k + 1

)

≤ n

(

n

j

)

. (Ineqj)

The next step in our proof is to take a positive linear combination of the inequalities (Ineq0),
(Ineq1), . . . , (Ineqn−1) in order to obtain a single inequality. The coefficients for this linear combi-
nation come from taking the reciprocals of row n−1 of Pascal’s triangle. That is, by taking the linear
combination

1
(

n−1
0

) (Ineq0) +
1

(

n−1
1

) (Ineq1) +
1

(

n−1
2

) (Ineq2) + · · · +
1

(

n−1
n−1

) (Ineqn−1),

we arrive at a new inequality combining all the (Ineqj):

n−1
∑

j=0

∑j+1
k=1 mk

(

n−k

j−k+1

)

(

n−1
j

) ≤

n−1
∑

j=0

n
(

n

j

)

(

n−1
j

) (⋆)

While it is far from obvious at this point, we shall see that (⋆) simplifies to the inequality claimed
in the statement of the theorem. The following claim shows how to simplify the left-hand side of
(∗).

Claim.
∑n−1

j=0

∑j+1
k=1 mk(

n−k
j−k+1)

(n−1
j )

=
∑n

k=1
nmk

k
.

Proof of Claim. Using a Fubini-like trick to rearrange the sum on the left, we obtain

n−1
∑

j=0

∑j+1
k=1 mk

(

n−k

j−k+1

)

(

n−1
j

) =

n−1
∑

j=0

j+1
∑

k=1

mk

(

n−k

j−k+1

)

(

n−1
j

) =
∑

0< k≤ j+1≤ n

mk

(

n−k

j−k+1

)

(

n−1
j

)

=

n
∑

k=1

n−1
∑

j=k−1

mk

(

n−k

j−k+1

)

(

n−1
j

) =

n
∑

k=1

mk

n−1
∑

j=k−1

(

n−k

j−k+1

)

(

n−1
j

)

Thus, to prove the claim, it suffices to show that

n−1
∑

j=k−1

(

n−k

j−k+1

)

(

n−1
j

) =
n

k
(³)

whenever 1 ≤ k ≤ n.
To see this, first recall that

(

m

r

)(

r

s

)

=

(

m

s

)(

m − s

r − s

)

for all m, r, s ∈ N with s ≤ r ≤ m.

(See, e.g., [7, Eq. 5.21].) Setting m = n − 1, r = j, s = k − 1 gives
(

n − 1

j

)(

j

k − 1

)

=

(

n − 1

k − 1

)(

n − k

j − k + 1

)

,

or equivalently
(

n−k

j−k+1

)

(

n−1
j

) =

(

j

k−1

)

(

n−1
k−1

) .

9
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Substituting this into the left-hand side of (³) yields

n−1
∑

j=k−1

(

n−k

j−k+1

)

(

n−1
j

) =

n−1
∑

j=k−1

(

j

k−1

)

(

n−1
k−1

) =
1

(

n−1
k−1

)

n−1
∑

j=k−1

(

j

k − 1

)

.

Now recall the well-known hockey stick identity [9], also sometimes known as the Christmas stocking

identity, which states that
m

∑

j=r

(

j

r

)

=

(

m + 1

r + 1

)

for all m, r ∈ N with r ≤ m.

Plugging in r = k − 1 and m = n − 1, we get

n−1
∑

j=k−1

(

j

k − 1

)

=

(

n

k

)

,

and combining this with our earlier observations gives

n−1
∑

j=k−1

(

n−k

j−k+1

)

(

n−1
j

) =
1

(

n−1
k−1

)

n−1
∑

j=k−1

(

j

k − 1

)

=

(

n

k

)

(

n−1
k−1

) =
n

k
,

which proves (³) and finishes the proof of the claim. □

Returning to the inequality (⋆), and applying the preceding claim, we obtain

n
∑

k=1

nmk

k
≤

n−1
∑

j=0

n
(

n

j

)

(

n−1
j

) .

To simplify the right-hand side, observe that

n−1
∑

j=0

n
(

n

j

)

(

n−1
j

) = n

n−1
∑

j=0

(

n

j

)

(

n−1
j

) = n

n−1
∑

j=0

n!
(n−j)!j!

(n−1)!
(n−j−1)!j!

= n

n−1
∑

j=0

n

n − j
.

Substituting k = n − j and reversing the order of the summation,

n

n−1
∑

j=0

n

n − j
= n

n
∑

k=1

n

k
.

Hence
n

∑

k=1

nmk

k
≤ n

n
∑

k=1

n

k

and dividing both sides by n gives
n

∑

k=1

mk

k
≤

n
∑

k=1

n

k
.

But recall the definition of mk, namely mk = k |Dk|, where Dk denotes the number of vertices in
(V ,H) of degree k. As every vertex has degree at least 1 (because there are no isolated points) and
at most n (because |H| ≤ n),

|V | =

n
∑

k=1

|Dk| =

n
∑

k=1

mk

k
≤

n
∑

k=1

n

k

as claimed. □

10
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The following corollary simply applies well-known results and techniques to rephrase the
conclusion of the previous theorem in a way that underscores the asymptotic growth rates of H(n)
and I(n).

Corollary 3.8. For every n ∈ N,

H(n) < n ln n + γ n + 1
2 ,

I(n) < n ln n + γ n − ln n + 3
2 − γ ,

where γ ≈ .5772156649 is the Euler–Mascheroni constant.

Proof. Let Hn = 1 + 1
2 + 1

3 + · · · + 1
n
denote the nth harmonic number. Bounds for Hn are given

in [4,8] (among other places), namely Hn < ln n+γ + 1
2n . The first assertion of the corollary follows

immediately from this and the previous theorem:

H(n) ≤ nHn < n ln n + γ n + 1
2 .

For the second assertion, Theorem 3.2 and the previous paragraph combine to give

I(n) ≤ nH(n − 1) + 1 < (n − 1) ln(n − 1) + γ (n − 1) + 3
2

≤ (n − 1) ln n + γ n − γ + 3
2 = n ln n + γ n − ln n + 3

2 − γ ,

which finishes the proof. □

The bound (n − 1) ln(n − 1) + γ (n − 1) + 3
2 ≤ n ln n + γ n − ln n + 3

2 − γ used in the proof
has optimal coefficients on the right-hand side for the first three terms, but the constant term is
asymptotically too large by 1. With a little more work one can obtain

I(n) < (n − 1) ln(n − 1) + γ (n − 1) + 3
2 ≤ n ln n + γ n − ln n + 1

2 − γ + 1
2n−1

for all n ∈ N.

4. Lower bounds for I(n) and H(n)

We now move on to the task of finding a lower bound for I(n).

Definition 4.1. Given n, k ∈ N, a subset F of Fn(k, 2) is called I(n)-bounding if it is full, and if for
every G ⊆ F and D ⊆

⋃

g∈G dom(g) with |D| ≥ n, there are two functions in G that disagree at a
point of D.

Observe that, for all n ∈ N,

I(n) = min {k: there is no I(n)-bounding family of size ≥k}

= max
{⏐

⏐

⋃

F
⏐

⏐ :F is I(n)-bounding
}

+ 1

Lemma 4.2. Define an infinite sequence k1, k2, k3, . . . of natural numbers via the following recurrence

relation:

k1 = 1 and kn =
⌊n

2

⌋

+ k⌊ n
2⌋

+ k⌊

n+1
2

⌋.

For every n, there is an I(n + 1)-bounding full subset of Fn(kn, 2).

Proof. We begin the proof by constructing a sequence T1, T2, T3, . . . of rooted trees. Afterward,
these trees will be used to construct the desired families of functions. Recall that every rooted
tree comes equipped with a natural partial order: v ≤ w if and only if the unique path from the

11
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root to w contains v. In what follows, we move freely between the notion of a rooted tree as a
particular type of pointed graph, and the notion of a rooted tree as a particular type of partial
order.

The construction of the Tn is by recursion. To begin, let T1 be the rooted tree with exactly one
vertex. Given T1, T2, . . . , Tn−1, the rooted tree Tn is defined so that

◦ the bottom of Tn consists of
⌊

n
2

⌋

linearly ordered vertices, the bottommost one being the root
of Tn.

◦ the topmost of these
⌊

n
2

⌋

linearly ordered vertices has two vertices immediately above it; one
is the root of an isomorphic copy of T⌊ n

2⌋
, and the other is the root of an isomorphic copy of

T⌊

n+1
2

⌋.

Let us say that a vertex v ∈ V (Tn) is splitting if it has more than one immediate successor. The
following claim is fairly obvious, but will be useful in what follows:

Claim. For each n ∈ N, every v ∈ V (Tn) that is not ≤-maximal either is a splitting vertex, or else it has

a splitting vertex above it. Also, every splitting vertex in V (Tn) has exactly two successors.

12
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Proof of Claim. Both assertions are easily proved by induction on n. □

For every non-maximal vertex v of Tn, let σ (v) denote the ≤-least splitting vertex w such that
v ≤ w. Some such vertex exists by the previous claim.

Recall that two vertices b and c in a partial order are incomparable if b ≰ c and c ≰ b. If b and c

are incomparable, then let us write b ∧ c to denote the ≤-greatest vertex that is below both b and
c. (Note that b∧ c is well-defined, because at least one vertex must be below both b and c , namely
the root.)

Claim. Fix n ∈ N, and let D ⊆ V (Tn) with |D| > n. Then there exist a, b, c ∈ D such that b and c are

incomparable, and σ (a) = b ∧ c.

Proof of Claim. The proof is by induction on n.
The base case n = 1 is vacuously true: T1 has only a single vertex, so there is no D ⊆ V (T1) with

|D| > 1.
Let n > 1 and suppose the claim holds for all m < n. (In fact, we really only need the inductive

hypothesis for m =
⌊

n
2

⌋

,
⌊

n+1
2

⌋

; observe that both these values of m are strictly less than n when
n > 1.) For convenience let A, B, and C denote, respectively, the

⌊

n
2

⌋

vertices at the bottom of Tn,

the
⏐

⏐

⏐
V (T⌊ n

2⌋
)
⏐

⏐

⏐
vertices forming an isomorphic copy of T⌊ n

2⌋
, and the

⏐

⏐

⏐

⏐

V (T⌊

n+1
2

⌋)

⏐

⏐

⏐

⏐

vertices forming an

isomorphic copy of T⌊

n+1
2

⌋.

Let D ⊆ V (Tn) with |D| > n. If |D ∩ B| >
⌊

n
2

⌋

then, because the claim holds for
⌊

n
2

⌋

by hypothesis
and the vertices in B form an isomorphic copy of T⌊ n

2⌋
, D ∩ B must contain some a, b, c such that

b and c are incomparable and σ (a) = b ∧ c . Similarly, if |D ∩ C | >
⌊

n+1
2

⌋

then, because the claim
holds for

⌊

n+1
2

⌋

by hypothesis, D∩ C must contain some a, b, c such that b and c are incomparable
and σ (a) = b∧c. For the remaining case, suppose that |D ∩ B| ≤

⌊

n
2

⌋

and |D ∩ C | ≤
⌊

n+1
2

⌋

. Observe
that

|D ∩ (B ∪ C)| = |D ∩ B| + |D ∩ C | ≤
⌊

n
2

⌋

+
⌊

n+1
2

⌋

= n

and because |D| > n, this implies D ∩ A ̸= ∅. Similarly,

|D ∩ (A ∪ B)| ≤ |A| + |D ∩ B| ≤
⌊

n
2

⌋

+
⌊

n
2

⌋

≤ n

and because |D| > n, this implies D ∩ C ̸= ∅. Similarly,

|D ∩ (A ∪ C)| ≤ |A| + |D ∩ C | ≤
⌊

n
2

⌋

+
⌊

n+1
2

⌋

= n

and because |D| > n, this implies D ∩ B ̸= ∅. Thus each of D ∩ A, D ∩ B, and D ∩ C is nonempty. It
is clear that if we choose any a ∈ D ∩ A, b ∈ D ∩ B, and c ∈ D ∩ C , then b and c are incomparable,
and σ (a) = b ∧ c. Thus the claim is true for n and, by induction, the claim is true for all n ∈ N. □

Recall that a maximal chain in one of the Tn is a set of vertices of Tn that is (1) linearly ordered by
≤, and (2) properly contained in no other linearly ordered set of vertices. Equivalently, a maximal
chain is (the underlying set of) a path in Tn connecting the root to a ≤-maximal vertex.

Claim. For every n ∈ N, there is an I(n + 1)-bounding family F ⊆ Fn(k, 2), where k = |V (Tn)|.

Proof of Claim. Fix n ∈ N, and let ≤ denote the natural tree order on V (Tn). Every splitting vertex in
V (Tn) has exactly two successors by a previous claim; for every splitting vertex s ∈ V (Tn), arbitrarily
define a bijection λs from the two successors of s to the set {p, n}. For each maximal chain P ⊆ V (Tn),
if v is not the topmost vertex of P then let succP (v) denote the vertex in P immediately above v.

13
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To each maximal chain P in Tn we now associate two functions, denoted f +
P and f −

P . The domain
of both functions is P . If v ∈ P is not the topmost vertex of P , then define

f +
P (v) = f −

P (v) = λσ (v)(succP (σ (v)))

and if v is the topmost vertex in P , then let f +
P (t) = p and f −

P (t) = n.

By relabeling the vertices of Tn, we may consider

F =
{

f +
P , f −

P : P is a maximal chain in Tn
}

to be a subset of Fn(k, 2), where k = |V (Tn)|. We claim that F is I(n + 1)-bounding.
For every non-maximal vertex v of Tn, there are maximal chains P and Q containing v, such

that P and Q include different successors of σ (v). But then v ∈ dom(f +
P ) and v ∈ dom(f +

Q ), and
f +
P (v) ̸= f +

Q (v), so that {f +
P (v), f +

Q (v)} = {p, n}. If v is a maximal vertex of Tn, then there is a unique
path P containing v, and we have f +

P (v) = p and f −
P (v) = n. Hence F is full.

Suppose that G ⊆ F , that D ⊆
⋃

g∈G dom(g), and that |D| ≥ n + 1. We claim that some two
functions in G disagree on D. By a previous claim, |D| > n implies that there are some a, b, c ∈ D

such that b and c are incomparable, and σ (a) = b ∧ c. Let gb, gc ∈ G such that b ∈ dom(gb) and
c ∈ dom(gc). By our construction of the functions in F , we must have a ∈ dom(gb) ∩ dom(gc), and
gb(a) = gb(σ (a)) ̸= gc(σ (a)) = gc(a).

Hence F is I(n + 1)-bounding. □

It is obvious from the construction of the Tn that |V (Tn)| = kn for every n, so this claim completes
the proof of the theorem. □

Theorem 4.3. Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2.

I(n) ≥ kn−1 + 1

14
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for every n > 1. Moreover, kn > 1
2 (n − 1) log2(n − 1) − 1

2n + 2, and thus

I(n) > 1
2 (n − 1) log2(n − 1) − 1

2n + 2

for every n > 1.

Proof. Let f (x) = 1
2 (x log2 x− x+ 1). Note that the second derivative of f (x) is positive everywhere

on the interval (0, ∞):

f ′(x) = 1
2 ln 2 (1 + ln x) − 1

2 and f ′′(x) = 1
(2 ln 2)x > 0.

This implies that f (x) is convex on (0, ∞), meaning that if 0 < a < b, the graph of y = f (x) contains
no points strictly above the line segment connecting (a, f (a)) and (b, f (b)). In particular, if x ∈ (0, ∞)
then

f (x + 1
2 ) ≤ 1

2 (f (x) + f (x + 1)),

and this implies f
(⌊

n
2

⌋)

+ f
(⌊

n+1
2

⌋)

≥ 2f
(

n
2

)

for every n ∈ N.
Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2. We prove by induction on n that

f (n) < kn for all n ∈ N. The base case is straightforward: f (1) = 0 < 1 = k1. For the inductive step,
fix n > 1 and suppose kℓ < f (ℓ) whenever ℓ < n. Using the conclusion of the previous paragraph
and the inductive hypothesis, we have

kn =
⌊n

2

⌋

+ k⌊ n
2⌋

+ k⌊

n+1
2

⌋ >

⌊n

2

⌋

+ f
(⌊

n
2

⌋)

+ f
(⌊

n+1
2

⌋)

≥ n−1
2 + 2f

(

n
2

)

= n−1
2 + n

2 log2
n
2 − n

2 + 1 = 1
2 (n log2

n
2 ) + 1

2 = 1
2 (n log2 n − n + 1) = f (n).

By induction, f (n) < kn for all n ∈ N as claimed.
By Lemma 4.2, there is for every n ∈ N an I(n + 1)-bounding full subset of Fn(kn, 2). Thus for

every n > 1,

I(n) ≥ kn−1 + 1 > f (n − 1) + 1 = 1
2 (n − 1) log2(n − 1) − 1

2n + 2,

as claimed. □

Corollary 4.4. Let k1, k2, k3, . . . denote the sequence defined in Lemma 4.2. Then for every n, H(n) ≥ kn
and consequently,

H(n) > 1
2n log2 n − 1

2n + 1
2 .

Proof. The first inequality follows from the previous theorem and Theorem 3.2, which asserts that
H(n) ≥ I(n+1)−1 for all n. The second inequality is then a direct consequence of the lower bound
on the kn found in the proof of Theorem 4.3. □

The bound in this corollary implies that there is, for every n, a hypergraph on kn vertices
containing no partitions of size greater than n. Indeed, the proof of Lemma 4.2 gives us such
hypergraphs: for each n, if Bn denotes the set of all branches through the tree Tn, then the
hypergraph (Tn,Bn) is a witness to the assertion H(n) ≥ |Tn| = kn.

The next corollary simply converts the bound from Theorem 4.3 into a form that reveals its
asymptotic growth rate.

Corollary 4.5. For every n ∈ N,

I(n) > 1
2n log2 n − 1

2n − 1
2 log2 n + ln 16−1

ln 4 .
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Proof. First note that if 0 < x < 1, then, using the Taylor series for ln(1 − x),

(

1
x

− 1
)

ln(1 − x) =

(

1

x
− 1

) ∞
∑

k=1

−xk

k
=

∞
∑

k=1

−xk

k

(

1

x
− 1

)

= x − 1 +
x2

2
−

x

2
+

x3

3
−

x2

3
+

x4

4
−

x3

4
+ · · ·

= −1 +

∞
∑

k=1

xk

k(k + 1)
≥ −1.

If n > 1, then putting x = 1
n
shows

(n − 1) ln
(

1 − 1
n

)

= (n − 1) ln
(

n−1
n

)

= (n − 1) ln(n − 1) − (n − 1) ln(n) ≥ −1

or, after rearranging and dividing by ln 2,

(n − 1) log2(n − 1) ≥ n log2 n − log2 n − 1
ln 2 .

Combining this with Theorem 4.3, we get

I(n) > 1
2 (n − 1) log2(n − 1) − 1

2n + 2

≥ 1
2

(

n log2 n − log2 n − 1
ln 2

)

− 1
2n + 2

= 1
2n log2 n − 1

2n − 1
2 log2 n + ln 16−1

ln 4

for all n > 1. It is easy to check that this bound also holds for I(1) = 1. □

Asymptotically, our lower and upper bounds for I(n) and H(n) differ only by a constant multiple,
so we have proved that I(n) = Θ(n log n) and H(n) = Θ(n log n). We conjecture that H(n) =
n ln n+ o(n log n), so that it is the upper bound, rather than the lower bound, that gives the correct
coefficient for the n log n term.

For small values of n, our upper and lower bounds for I(n) and H(n) agree, and therefore give us
the exact values of these numbers. We record this observation in the next theorem, and compute
as well a few other values of I(n) and H(n).

Theorem 4.6. The first six values of I(n) and H(n) are:

◦ I(1) = 1
◦ I(2) = 2
◦ I(3) = 4
◦ I(4) = 6
◦ I(5) = 9
◦ I(6) = 11

◦ H(1) = 1
◦ H(2) = 3
◦ H(3) = 5
◦ H(4) = 8
◦ H(5) = 10
◦ H(6) = 14

Proof. One may easily check that the sequence k1, k2, k3, . . . defined in Lemma 4.2 begins
1, 3, 5, 8, 10, 13, . . . . By Theorems 3.2, 3.7, and 4.3, we know that

kn + 1 ≤ I(n + 1) ≤ H(n) + 1

for all n > 1 and

kn ≤ H(n) ≤

n
∑

k=1

k

n

for all n. For n = 1, 2, 3, 4 these bounds match (after rounding the upper bound for H(n) down to
the nearest integer), thus proving that

16
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◦ I(2) = 2
◦ I(3) = 4
◦ I(4) = 6
◦ I(5) = 9

◦ H(1) = 1
◦ H(2) = 3
◦ H(3) = 5
◦ H(4) = 8

Furthermore, it is easy to see that I(1) = 1. Putting n = 5 into the inequalities above, we get

11 ≤ I(6) ≤ 12 and 10 ≤ H(5) ≤ 11,

and for n = 6 we get

13 ≤ H(6) ≤ 14.

To finish the proof of the theorem, we must show that H(5) ≤ 10 (which implies I(6) ≤ 11) and
that H(6) ≥ 14.

To show H(6) ≥ 14, it suffices to exhibit a hypergraph on 14 vertices containing no partitions
of size greater than 6. Here are two such examples:

For each of these hypergraphs, it is not obvious that there are no partitions of size > 6, but it
can be checked manually with sufficient patience. For each subset of the hyperedges, one merely
has to check that no more than 6 vertices are contained in exactly one member of the subset. This
is trivial for each particular subset of the hyperedges; the only trouble is that there are 26 = 64
cases to check for each hypergraph.

To show H(5) ≤ 10, let us suppose (aiming for a contradiction) that H(5) ≥ 11. By Lemma 3.6,
if H(5) ≥ 11 then there is an economical hypergraph (V ,H) with |V | ≥ 11 containing no partitions
of size greater than 5.

As in the proof of Theorem 3.4, we may for every E ∈ H find some vE ∈ V such that vE is isolated
in (V ,H \ {E}). Then {vE : E ∈ H} and H form a partition in (V ,H) of size |H|. Hence |H| ≤ 5. Also,
every E ∈ H has size ≤5, because E and {E} form a partition in (V ,H) of size |E|.

If |E| ≤ 3 for every E ∈ H, then (as there are no isolated points) |H| ≤ 5 and |V | ≥ 11 imply
there are at least 7 vertices each contained in exactly one member of H. But then these 7 or more
vertices together with H form a partition of size ≥7. Thus H contains hyperedges of size 4 or 5.

In fact, H must contain hyperedges of size 5. To see this, suppose (aiming for a contradiction)
that |E| ≤ 4 for every E ∈ H. Using the previous paragraph, fix E ∈ H with |E| = 4. Observe that
|F \ E| ≤ 2 for all F ∈ H: otherwise, we would have both |F \ E| ≥ 3 and (using |F | ≤ 4, which
together with |F \ E| ≥ 3 implies |E ∩ F | ≤ 1) also |E \ F | ≥ 3, in which case taking X = E△F and
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P = {E, F} would give a partition of size ≥ 6. Let W = V \ E. Then |W | ≥ 7 and (we just showed
that) each member of H\ {E} contains at most two points of W . As |H \ {E}| ≤ 4, this implies there
are at least 6 points of W each of which is contained in exactly one member of H \ {E}. But then
taking X to be this set of ≥6 points and P = H \ {E} gives a partition of size ≥6.

Thus H contains a hyperedge E of size 5. As in the previous paragraph, observe that |F \ E| ≤ 2
for all F ∈ H: otherwise, we would have both |F \ E| ≥ 3 and |E \ F | ≥ 3, in which case E△F and
{E, F} would form a partition of size ≥6.

Let W = V \ E and let G = {F ∩ W : F ∈ H \ {E}}. Note that |G| ≤ 4 and that the hypergraph
(W , G) has no isolated points. Also |W | = |V | − |E| ≥ 6, and by the previous paragraph, each
member of G has size ≤ 2. G cannot consist of singletons because |G| < |Y |; thus there is some
G ∈ G with |G| = 2.

Similarly, let X = W \ G and let F = {F \ G: F ∈ G \ {G}}. Then, arguing as in the previous
paragraph, |X | ≥ 4 and |F| ≤ 3, so F cannot consist of singletons. Thus there is some F ∈ F such
that |F | = 2. But since the members of G all have size ≤2, this implies F ∈ G, and that G ∩ F = ∅.

Thus there are G, F ∈ G with |G| = |F | = 2 and G ∩ F = ∅. By the definition of G, this means
that there are A, B ∈ H such that |A \ E| = |B \ E| = 2 and (A \ E) ∩ (B \ E) = ∅.

If |E \ (A ∪ B)| ≥ 2, then taking P = {A, B, E} and

X = (E \ (A ∪ B)) ∪ (A \ E) ∪ (B \ E)

gives a partition of size ≥ 6. Thus |E \ (A ∪ B)| ≤ 1. But recall that |A|, |B| ≤ 5, so this implies
that

A \ (E ∩ B) ̸= ∅ and B \ (E ∩ A) ̸= ∅,

which means A△B has size ≥ 6. But then A△B and {A, B} form a partition of size ≥ 6. Hence
H(5) ≤ 10. □

One question left open by the previous proof is whether I(7) is equal to 14 or to 15. (Using
the bounds stated in the proof, it must be one of these.) Either answer would be interesting. If
I(7) = 14, then we would know that the upper bound I(n) ≤ H(n−1)+1 can be strict. If I(7) = 15,
then we would know that the lower bound I(n) ≥ kn−1 + 1 can be strict. At the moment we do
not know that either of these inequalities can be strict, because there are no cases where we can
compute I(n), except where n = 1 or where (as in the previous proof) our upper and lower bounds
match.

We suspect that both inequalities can be strict. Concerning the question of whether the bound
I(n) ≥ kn−1 + 1 can be strict, let us remark that even if the families of functions constructed
in the proof of Lemma 4.2 are optimal in size, they are not unique. For example, the picture
following Definition 2.2 gives an example of a I(3)-bounding family F that is different from the
one constructed from T2 in the proof of Lemma 4.2. Similarly, the following picture shows a
I(4)-bounding family that seems completely unrelated to the one constructed from T3:
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5. Conditionally convergent series

In this section we apply the results of Sections 2 and 3 to prove the second theorem stated in
the introduction.

In what follows, ā always denotes a sequence ⟨an: n ∈ N⟩ of real numbers; similarly, āi always
denotes a sequence

⟨

ain: n ∈ N
⟩

. If ā is a sequence of real numbers and A ⊆ N, then
∑

(ā, A) denotes
the subseries

∑

n∈A an.

Definition 5.1. For each n ∈ N, let ß(n) denote the least k ∈ N with the following property:

(³)n For any k conditionally convergent series, there is some A ⊆ N sending at least n of those
series to infinity.

If there is no such k ∈ N, then we say that ß(n) is not well-defined.

Theorem 5.2. The number ß(n) is well-defined for each n ∈ N. Furthermore, ß(n) ≤ I(n) for all n.

Proof. Let k ≥ I(n) and let {ā1, ā2, . . . , āk} be a collection of k conditionally convergent series. For
each ℓ ∈ {1, 2, . . . , k}, define the following two ideals:

Iℓ =
{

A ⊆ N:
∑

(āℓ, {n ∈ A: an > 0}) converges
}

,

Jℓ =
{

A ⊆ N:
∑

(āℓ, {n ∈ A: an < 0}) converges
}

.

It is not difficult to see that Iℓ and Jℓ are incompatible ideals on N for every ℓ ≤ k. It also is not
difficult to see that if A ∈ Iℓ \ Jℓ, then

∑

(āℓ, A) = −∞, and if A ∈ Jℓ \ Iℓ, then
∑

(āℓ, A) = ∞.
Hence if A chooses between Iℓ and Jℓ, then A sends āℓ to infinity. As k ≥ I(n), there is some A ⊆ N
that chooses between Iℓ and Jℓ for at least n distinct values of ℓ; hence there is some A ⊆ N that
sends at least n of these k series to infinity. □

The inequality stated in the theorem above can be strict: It is proved in [3] is that ß(3) = 3, but
we saw in Theorem 4.6 that I(3) = 4.

The inequality ß(n) ≤ I(n) gives us an n log n-type upper bound for ß(n) via the results of
Section 3, namely ß(n) ≤ n ln n + γ n − ln n + 3

2 − γ . Our next theorem provides a nontrivial lower
bound for ß(n).
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Theorem 5.3. ß(n) ≥ 2n − 5 for every n ∈ N.

Proof. To prove this theorem, we construct for every n ∈ N a collection of 2n conditionally
convergent series, such that no more than n+2 of the series can be sent to infinity simultaneously.
This shows that ß(n + 3) > 2n, or equivalently that ß(n) ≥ 2n − 5, for every n. The proof expands
on an idea of Nazarov [10] presented in [3, Section 3], where the bound ß(4) ≥ 5 is proved. The
presentation here follows [3, Section 3] as closely as possible.

Fix n ∈ N. Partition N into adjacent intervals I1, I2, I3, . . . (the lengths of which will be specified
later in the proof). For each m ≥ 0, let bm denote the length of the interval Im. The function m ↦→ bm
is rapidly increasing (and just how rapidly it should increase is specified below). For convenience,
we shall take each bm to be an even number, so that the first member of every interval Im is an odd
number.

We now define our collection of 2n series (modulo the as-yet-undefined sequence of bm’s)
by specifying the terms of each one on each of the intervals Im. Let us denote the series by
ā1, ā2, . . . , ā2n, and write āi =

⟨

aik: k ∈ N
⟩

. Given m = ℓn + j, 0 ≤ j < n, define aik on the interval Im
as follows:

◦ If i ≤ n and i ̸= j, then aik = 1
m

for odd k and aik = − 1
m

for even k.

◦ a
j

k = − 1
m

for odd m and a
j

k = 1
m

for even m.
◦ If i ≥ n and i ̸= n + j, then aik = 0 for all k.
◦ a

n+j

k = − 1
bm

for odd k and a
n+j

k = 1
bm

for even k.

Explicitly, our 2n series look like this on Im when m ≡ j (modulo n):

series 1 : + 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

. . .

series 2 : + 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

. . .

...
...

...
...

...
...

...
...

...

series j : − 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

. . .

...
...

...
...

...
...

...
...

...

series n : + 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

+ 1
m

− 1
m

. . .

series n+1 : +0 +0 +0 +0 +0 +0 +0 +0 . . .

series n+2 : +0 +0 +0 +0 +0 +0 +0 +0 . . .

...
...

...
...

...
...

...
...

...

series n+j : + 1
bm

− 1
bm

+ 1
bm

− 1
bm

+ 1
bm

− 1
bm

+ 1
bm

− 1
bm

. . .

...
...

...
...

...
...

...
...

...

series 2n : +0 +0 +0 +0 +0 +0 +0 +0 . . .

Assuming limm→∞ bm = ∞, it is clear that each of these series converges conditionally to 0.
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Before proceeding with a detailed proof of why these 2n series have the stated property, we
describe the idea behind it; this paragraph can be omitted by readers who just want the detailed
proof. Suppose A ⊆ N sends the series ān+1 to infinity. Because this series only has nonzero terms on
blocks of the form Iℓn+1, we must have A∩ Iℓn+1 ̸= ∅ for infinitely many ℓ. In fact, we can say more:
if

∑

(ān+1, A) = ∞, then A ∩ Iℓn+1 must contain ‘‘significantly more’’ odds than evens, for infinitely
many ℓ. This has an effect on the series ā1, ā2, . . . , ān. Specifically, we must include ‘‘significantly
more’’ positive than negative terms in the series ā2, ā3, . . . , ān on the block Iℓn+1, and we must
include ‘‘significantly more’’ negative than positive terms in the series ā1 on the block Iℓn+1. By
making bℓn+1 large enough, we can ensure that including ‘‘significantly more’’ positive terms than
negative will force the partial sum of the series ā2, ā3, . . . , ān to be above 0 by the end of block Iℓn+1,
and including ‘‘significantly more’’ negative terms than positive will force the partial sum of the
series ā1 to be below 0 at the end of block Iℓn+1. Thus having

∑

(ān+1, A) = ∞ forces the partial sums
of

∑

(ā2, A), . . . ,
∑

(ān, A) to be positive infinitely often, but it forces the partial sums of
∑

(ā1, A)
to be negative infinitely often. Thus, if

∑

(ān+1, A) = ∞, then we cannot have
∑

(ā1, A) = ∞, and
we cannot have

∑

(āi, A) = −∞ for any 2 ≤ i ≤ n. Similarly, if
∑

(ān+1, A) = −∞, then we cannot
have

∑

(ā1, A) = −∞, and we cannot have
∑

(āi, A) = ∞ for any 2 ≤ i ≤ n. In other words, if A
sends ān+1 to infinity, and also sends ā1 to infinity and (some of the) āi as well for 2 ≤ i ≤ n, then
∑

(ā1, A) must be different from all of the
∑

(āi, A) for 2 ≤ i ≤ n; i.e., if the one is ∞, then the
others are −∞, and vice versa. Similarly, sending any ān+j to infinity (where 1 ≤ j ≤ n), along with
āj and (some of the) āi for 1 ≤ i ≤ n, i ̸= j, forces

∑

(āj, A) to be different from all of the
∑

(āi, A)
for 1 ≤ i ≤ n, i ̸= j. But of course, everyone cannot be ‘‘different’’ at the same time. If ℓ of the
series ān+1, ān+2, . . . , ā2n are sent to infinity by some A ⊆ N, then at most n + 2 − ℓ of the series
ā1, ā2, . . . , ān are sent to infinity by A.

We will employ the following notation: given A ⊆ N, let

◦ A+ =
{

i ∈ {1, 2, . . . , 2n}:
∑

(āi, A) = ∞
}

,

◦ A− =
{

i ∈ {1, 2, . . . , 2n}:
∑

(āi, A) = −∞
}

,

◦ A∨ = A+ ∪ A−.

Our goal is to show |A∨| ≤ n + 1 for all A ⊆ N.
Let b1, b2, . . . , bm, . . . be an increasing sequence of even numbers, with b1 = 2, satisfying the

following recurrence relation:

bm+1 ≥ m3(b1 + b2 + · · · + bm)

Consider the 2n series defined above in terms of the bm, and let A ⊆ N.

Claim. Let i ∈ {1, 2, . . . , n}.

◦ If n + i ∈ A+, then i /∈ A+ and j /∈ A− for all j ∈ {1, 2, . . . , n} \ {i}.
◦ If n + i ∈ A−, then i /∈ A− and j /∈ A+ for all j ∈ {1, 2, . . . , n} \ {i}.

Proof of Claim. Suppose n+ i ∈ A+. For each m, let ∆(m) denote the imbalance of odd terms over
even terms in A from block m:

∆(m) = |{ℓ ∈ A ∩ Im: ℓ is odd}| − |{ℓ ∈ A ∩ Im: ℓ is even}| .

Observe that we may use the quantity ∆(m) to compute the sum of our (n + i)th subseries on the
mth block: if m ≡ j (modulo n), then

∑

(ān+i, A ∩ Im) =

{

∆(m)
bm

if j = i

0 if j ̸= i.

It follows that ∆(m) > bm/m2 for infinitely many m ≡ i (modulo n) because, if not, then
∑

(ān+i, A) =
∑∞

m=0

∑

(ān+i, A ∩ Im)
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cannot grow fast enough to sum to ∞. More precisely, if there were some M such that ∆(ℓn+ i) ≤
bℓn+i/(ℓn+i)2 for every ℓ ≥ M , then

∑

(ān+i, A ∩ [Mn, ∞)) =
∑∞

m=Mn

∑

(ān+i, A ∩ Im)

=
∑∞

ℓ=M
∆(ℓn+i)
bℓn+i

≤
∑∞

ℓ=M
1

(ℓn+i)2
< ∞,

which shows that
∑

(ān+i, A) converges on a tail, contradicting the assumption that n + i ∈ A+.
Thus, for infinitely many m ≡ i (modulo n),

∆(m) >
bm

m2
≥ m(b1 + b2 + · · · + bm−1).

Now consider the ith subseries
∑

(āi, A) =
∑∞

ℓ=0

∑

(āi, A ∩ Iℓ). By the definition of āi, if m ≡ i

(modulo n), then
∑

(āi, A ∩ Im) = −∆(m)
m

,

and in particular, if ∆(m) > m(b1 + b2 + · · · + bm−1) then
∑

(āi, A ∩ Im) = −∆(m)
m

< −b1 − b2 − · · · − bm−1.

This negative sum is greater in absolute value than all the preceding terms of the subseries
combined. To see this, note that |aik| = 1

j
whenever k ∈ Ij, which implies

⏐

⏐

∑

(āi, A ∩ Ij)
⏐

⏐ ≤ |Ij|
1
j

=
bj

j
;

thus
⏐

⏐

∑

(āi, A ∩ [1,min Im))
⏐

⏐ ≤
∑

j<m

⏐

⏐

∑

(āi, A ∩ Ij)
⏐

⏐

≤
∑

j<m

bj

j
< b1 + b2 + · · · + bm−1.

Hence, if m ≡ i (modulo n) and ∆(m) > m(b1 + b2 + · · · + bm−1), then
∑

(āi, A ∩ [0,max Im)) =
∑

(āi, A ∩ [0,min Im)) +
∑

(āi, A ∩ Im) < 0.

By the previous paragraph, ∆(m) > m(b1 + b2 + · · · + bm−1) for infinitely many m ≡ i (modulo n).
Thus the finite partial sums of

∑

(āi, A) are negative infinitely often. It follows that i /∈ A+.
Next consider the jth subseries

∑

(āj, A) for some j ∈ {1, 2, . . . , n} \ {i}. If m ≡ i (modulo n), then
a
j

k = −aik for all k ∈ Im. Thus, if m ≡ i (modulo n) and ∆(m) > m(b1 + b2 + · · · + bm−1) then
∑

(āj, A ∩ Im) = −
∑

(āi, A ∩ Im) = ∆(m)
m

> b1 + b2 + · · · + bm−1.

Just as in the previous paragraph, this positive sum is greater in absolute value than all the preceding
terms of the subseries combined. Hence, as before, if m ≡ i (modulo n) and ∆(m) > m(b1 + b2 +
· · · + bm−1) then

∑

(āj, A ∩ [0,max Im)) > 0.

Thus the finite partial sums of
∑

(āj, A) are positive infinitely often, and it follows that j /∈ A−.
An essentially identical argument shows that if n + i ∈ A−, then i /∈ A− and j /∈ A+ for all

j ∈ {1, 2, . . . , n} \ {i}. □

Let X =
{

i ∈ {1, 2, . . . , n}: i, n + i ∈ A∨
}

. The previous claim implies that either A+∩{1, 2, . . . , n}

= {i} or else A− ∩ {1, 2, . . . , n} = {i}, depending on whether n + i ∈ A− or n + i ∈ A+. It follows
that |X | ≤ 2, and from this it follows that |A∨| ≤ n + 2. □

6. The infinite version

In this section we prove an infinite version of Theorem 5.2:

Theorem 6.1. Let
{

āi: i ∈ ω
}

be a countably infinite collection of conditionally convergent series. There

is some set A ⊆ N such that
∑

(āi, A) = ∞ for infinitely many i.
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As in the previous section, we will write āi to denote the infinite sequence
⟨

ain: n ∈ N
⟩

.

Definition 6.2. Suppose C =
{

āi: i ∈ ω
}

is a collection of conditionally convergent series. A ⊆ N
is called tame with respect to C if for each i ∈ ω, all the terms of the subseries

∑

(āi, A) have the
same sign, with at most finitely many exceptions (not counting zeros). If the collection C is clear
from context, we simply say that A is tame.

Note that the tameness of A can be expressed in terms of incompatible pairs of ideals: A ⊆ N
is tame if for every i ∈ ω, A is a member of at least one of the incompatible ideals I =
{

X ⊆ N:
{

n ∈ X: ain > 0
}

is finite
}

and J =
{

X ⊆ N:
{

n ∈ X: ain < 0
}

is finite
}

.

Notation. Given a collection C =
{

āi: i ∈ ω
}

of conditionally convergent series and A ⊆ N, we
define (as in the proof of Theorem 5.3)

◦ A+ =
{

i ∈ I:
∑

(āi, A) = ∞
}

,
◦ A− =

{

i ∈ I:
∑

(āi, A) = −∞
}

, and
◦ A∨ = A+ ∪ A−.

Definition 6.3. Suppose C =
{

āi: i ∈ ω
}

is a collection of conditionally convergent series. If f is a
function from a subset of ω to {1, −1}, we say that f is represented by A ⊆ N if f −1(1) = A+ and
f −1(−1) = A−. For each A ⊆ N, let fA denote the function represented by A; that is, define

fA(i) =

{

1 if
∑

(āi, A) = ∞,

−1 if
∑

(āi, A) = −∞

and leave fA(i) undefined otherwise.

Lemma 6.4. Let ā be a conditionally convergent series, and let A ⊆ N. If
∑

(ā, A) = −∞ then
∑

(ā,N \ A) = ∞.

Lemma 6.5. Let
{

āi: i ∈ ω
}

be a countable collection of conditionally convergent series. For each i ∈ ω,

there is a tame A ⊆ N with i ∈ A+.

Proof. For convenience, let us set i = 0 and show that there is some tame A ⊆ N with
∑

(ā0, A) = ∞. An essentially identical argument works for any other value of i.
We begin with a recursive construction of a decreasing sequence C0 ⊇ C1 ⊇ C2 ⊇ . . . of subsets

of N and an increasing sequence k0 < k1 < k2 < . . . of non-negative integers. In the end, we will
take A =

⋃

n∈ω Cn ∩ (kn, kn+1].
To begin, take C0 =

{

n ∈ N: a0n ≥ 0
}

. Let k0 = 0 and let k1 be the smallest natural number with
the property that

∑

(ā0, C0 ∩ [1, k1]) ≥ 1.

Some such number k1 must exist by our choice of C0.
For the recursive step, we begin with sets C0 ⊇ C1 ⊇ . . . ⊇ Cℓ−1, and with natural numbers

0 = k0 < k1 < k2 < · · · < kℓ satisfying the following inductive hypotheses:

◦ C0 ⊇ C1 ⊇ . . . ⊇ Cℓ−1 and k0 < k1 < k2 < · · · < kℓ.
◦ For each i ≤ j < ℓ, all the numbers in

{

ain: n ∈ Cj

}

have the same sign.
◦

∑

(ā0, Cℓ−1) = ∞.
◦ For each i < ℓ,

∑

(ā0, Ci ∩ (ki, ki+1]) ≥ 1.

We then partition Cℓ−1 into two sets as follows:

C
≥
ℓ−1 =

{

n ∈ Cℓ−1: a
ℓ
n ≥ 0

}

,

C<
ℓ−1 =

{

n ∈ Cℓ−1: a
ℓ
n < 0

}

.
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Because
∑

(ā0, Cℓ−1) = ∞, and because every term in this sum is positive, we must have either
∑

(ā0, C≥
ℓ−1) = ∞ or

∑

(ā0, C<
ℓ−1) = ∞ (possibly both). We choose Cℓ to be either of C≥

ℓ−1 or C<
ℓ−1,

so long as
∑

(ā0, Cℓ) = ∞. Then let kℓ+1 be the smallest natural number with the property that
∑

(ā0, Cℓ ∩ (kℓ, kℓ+1]) ≥ 1.

Some such number kℓ+1 must exist by our choice of Cℓ. This completes the recursive step of the
construction, and it is not difficult to see that all four of the above hypotheses remain true for the
next stage of the recursion.

The result of this construction is a decreasing sequence C0 ⊇ C1 ⊇ C2 ⊇ C3 ⊇ . . . of subsets of
N and an increasing sequence k0 < k1 < k2 < k3 < . . . of non-negative integers such that

◦ for each i ≤ j ∈ ω, all the numbers in
{

ain: n ∈ Cj

}

have the same sign, and
◦ for each i ∈ ω,

∑

(ā0, Ci ∩ (ki, ki+1]) ≥ 1.

Let A =
⋃

n∈ω Cn∩(kn, kn+1]. For each i ∈ ω, the series
∑

(āi, A) consists of terms all having the same
sign, with a finite number of exceptions (specifically, the possible exceptions are only the terms
with index < ki). Hence A is tame. Also,

∑

(ā0, A) = ∞ because each term of this sum is positive,
and for each i ∈ N the finite partial sum

∑

(ā, A ∩ [1, ki+1]) is at least
∑i

j=0

∑

(ā, A ∩ (kj, kj+1]) =
∑i

j=0

∑

(ā, Cj ∩ (kj, kj+1]) ≥ i + 1. □

Proof of Theorem 6.1. Let
{

āi: i ∈ ω
}

be a countably infinite collection of conditionally convergent
series. Suppose for some A ⊆ N that the domain of fA is infinite. If f −1

A (1) is infinite, then
∑

(āi, A) =

∞ for infinitely many i, and we are done. If not, then f −1
A (−1) must be infinite, in which case

∑

(āi,N \ A) = ∞ for infinitely many i by Lemma 6.4, and again we are done.
Thus, in order to prove the theorem, it suffices to show that for some A ⊆ N, the function fA has

infinite domain. Aiming for a contradiction, let us suppose the opposite: that every A ⊆ N has finite
domain.

Let F = {fA: A ⊆ N is tame}. Let us say that a subset G of F is large if for infinitely many i ∈ ω,
there exists some f ∈ G such that f (i) = 1. Observe that F is large by Lemma 6.5, and that if a large
subset of F is partitioned into finitely many pieces, then one of those pieces must also be large.

We now use recursion to define a function g : ω → {−1, 0, 1}. This function is constructed
via a recursively defined sequence of increasingly large approximations to g , namely finite partial
functions g0, g1, g2, . . . . Along with the gi, we also construct a decreasing sequence F0 ⊇ F1 ⊇
F2 ⊇ . . . of large subsets of F .

To begin, let F0 = F and g0 = ∅. At stage ℓ of the recursion, we begin with a finite partial
function gℓ : {0, 1, 2, . . . , ℓ − 1} → {−1, 0, 1} and a large Fℓ ⊆ F . Partition Fℓ into three parts as
follows:

F
1
ℓ = {f ∈ Fℓ: f (ℓ) = 1} ,

F
−1
ℓ = {f ∈ Fℓ: f (ℓ) = −1} ,

F
0
ℓ = {f ∈ Fℓ: ℓ /∈ dom(f )} .

Because Fℓ is large, at least one of these three pieces is large as well; choose some such piece F
j

ℓ.
Then set Fℓ+1 = F

j

ℓ and set gℓ = gℓ−1 ∪ {(ℓ, j)}.
The result of this construction is a function g : ω → {−1, 0, 1} with the property that, for every

ℓ ∈ ω, the set of all f ∈ F satisfying

(∗) For i < ℓ, i ∈ dom(f ) if and only if g(i) ̸= 0, and furthermore f (i) = g(i) for i ∈ dom(f ).

is large, because it contains Fℓ.
We now use g as a ‘‘guide’’ for recursively constructing some A ⊆ N with dom(fA) infinite. There

are three cases to consider.

Case 1: Suppose g(i) = 1 for infinitely many i ∈ ω.
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In this case, we recursively construct a sequence A0, A1, A2 . . . of tame subsets of N. These sets
can then be combined to form the desired set A.

To begin the construction, let i0 be the first natural number for which g(i0) = 1, and choose
some tame A0 ⊆ N such that fA0 (i0) = 1. Some such A0 exists by property (∗) above, and because
g(i0) = 1.

For the recursive step, we begin with natural numbers i0 < i1 < · · · < ik−1 such that
g(i0) = g(i1) = . . . = g(ik−1) = 1, and with A0, A1, . . . , Ak−1 ⊆ N, all tame. Let ik denote the
first natural number such that

ik > max
(
⋃

j<k dom(fAj )
)

(recalling that, by assumption, fA has finite domain for every A ⊆ N) and such that g(ik) = 1. Then
choose some tame Ak ⊆ N such that

fAk (i0) = fAk (i1) = . . . = fAk (ik) = 1.

Some such Ak exists because g(i0) = g(i1) = g(i2) = . . . = g(ik) = 1. In fact, our choice of g ensures
that a ‘‘large’’ set of fAk has this property.

The result of this construction is a sequence A0, A1, A2, . . . of tame subsets of Nwith the property
that, for all k, fAk (i0) = fAk (i1) = . . . = fAk (ik) = 1, and iℓ /∈ dom(fAk ) for all ℓ > k. In particular, we
have

◦ for each ℓ ≤ k,
∑

(āiℓ , Ak) = ∞, and all but finitely many terms of this sum have the same
sign (necessarily positive), and

◦ for each ℓ > k,
∑

(āiℓ , Ak) converges absolutely. (This follows from the tameness of Ak together
with the fact that iℓ /∈ dom(fAk ).)

The first bullet point implies that for each k ∈ ω, there is some Mk ∈ N such that aiℓn ≥ 0 for all
ℓ ≤ k and n ≥ Mk. Let

A =
⋃

k∈ω Ak ∩ [Mk, ∞).

We claim that
∑

(āik , A) = ∞ for every ik, k ∈ ω. To see this, fix k ∈ ω and partition A into the
following two sets:

A<k =
⋃

ℓ<k Aℓ ∩ [Mℓ, ∞)

A≥k =
⋃

ℓ≥k Aℓ ∩ [Mℓ, ∞).

It is clear that
∑

(āik , A<k) converges absolutely and that
∑

(āik , A≥k) = ∞. Because A = A<k ∪ A≥k,
it follows that

∑

(āik , A) = ∞, as desired.

Case 2: Suppose g(i) = −1 for infinitely many i ∈ ω.
Proceeding just as in Case 1, we may find a set A ⊆ N such that

∑

(āi, A) = −∞ for infinitely
many i ∈ ω.

Case 3: Suppose g(i) = 0 for infinitely many i ∈ ω.
As in case 1, we construct a sequence A0, A1, A2 . . . of tame subsets of N along with a sequence

i0 < i1 < i2 < . . . of natural numbers, and afterward these will be used to define A.
To begin, let i0 be the least natural number such that g(i0) = 0, and choose some tame A0 ⊆ N

such that fA0 (i0) = 1. Some such A0 exists by Lemma 6.5.
For the recursive step, we begin with natural numbers i0 < i1 < · · · < ik−1 and with

A0, A1, . . . , Ak−1 ⊆ N. Recall that, by the definition of g , there is a large set G of functions fA such
that fA(i0) = fA(i1) = . . . = fA(ik−1) = 0. By the definition of ‘‘large’’ we may find some tame Ak ⊆ N
such that

fAk (i0) = fAk (i1) = . . . = fAk (ik−1) = 0

and such that fAk (ik) = 1 for some ik > max
(
⋃

j<k dom(fAj )
)

.
The result of this construction is a sequence A0, A1, A2, . . . of tame subsets of Nwith the property

that, for all k, fAk (ik) = 1, and iℓ /∈ dom(fAℓ
) for all ℓ ̸= k. In particular, we have
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◦
∑

(āik , Ak) = ∞ for each k, and
◦

∑

(āiℓ , Ak) converges absolutely for each ℓ ̸= k.

For each k, choose Mk ∈ N large enough so that
∑

(⟨

|a
iℓ
n |: n ∈ N

⟩

, Ak ∩ [Mk, ∞)
)

< 1/2k

for each ℓ < k, which is possible because each of the finitely many series
∑

(āiℓ , Ak), for ℓ < k,
converges absolutely. Let

A =
⋃

k∈ω Ak ∩ [Mk, ∞).

To finish the proof, we claim that
∑

(āik , A) = ∞ for every ik, k ∈ ω. To see this, fix k ∈ ω and
consider the following three subsets of A:

A<k =
⋃

ℓ<k Aℓ ∩ [Mℓ, ∞)

A′
k = Ak ∩ [Mk, ∞)

A>k =
⋃

ℓ>k Aℓ ∩ [Mℓ, ∞).

The series
∑

(āik , A>k) converges absolutely, because

∑

(⟨

|a
ik
n |: n ∈ N

⟩

, A>k

)

≤
∑

ℓ>k

∑

(⟨

|a
ik
n |: n ∈ N

⟩

, Aℓ ∩ [Mℓ, ∞)
)

≤
∑

ℓ>k

1/2ℓ =
1

2k
.

The series
∑

(āik , A<k) converges absolutely, as A<k =
⋃

ℓ<k Aℓ ∩ [Mℓ, ∞) and each of the (finitely
many) series

∑

(āik , Aℓ ∩ [Mℓ, ∞)), where ℓ < k, converges absolutely. On the other hand,
∑

(āik , A′
k) = ∞. Because A = A<k ∪ A′

k ∪ A>k, it follows that
∑

(āik , A) = ∞ as desired. □

This theorem raises the question of whether there is a corresponding infinite version of the main
theorem, dealing with arbitrary pairs of incompatible ideals:

◦ Given an infinite sequence (I1,J1), (I2,J2), (I2,J2), . . . of incompatible ideals on some set
X , is there a single A ⊆ X that chooses between infinitely many of these pairs?

The answer to this question is negative, as the following example shows.

Example 6.6. Let X = 2ω denote the set of all functions ω → {0, 1}, and let X be endowed with
its usual product topology as the Cantor space. That is, the topology on X has a basis consisting of
the sets of the form

[s] = {x ∈ X: x ↾ length(s) = s} ,

where s is a function m → {0, 1} for some m ∈ ω.
Recall that A ⊆ X is called nowhere dense if A has empty interior, or equivalently, if A does not

contain any of the basic open sets [s] described above. For each n ∈ ω, let In denote the set of all
A ⊆ X that are nowhere dense in {x ∈ X: x(n) = 0}, and let Jn denote the set of all A ⊆ X that are
nowhere dense in {x ∈ X: x(n) = 1}.

It is not difficult to check that In and Jn are incompatible ideals on X for all n ∈ ω. We claim that
any given A ⊆ X cannot choose between infinitely many of the pairs (In,Jn). Indeed, if A chooses
between In and Jn for any n, then A is somewhere dense in X , i.e., A contains a basic open subset
[s] of X . But if [s] ⊆ A, then A /∈ Ik and A /∈ Jk for all k ≥ length(s). Thus A does not choose between
Ik and Jk for any k ≥ length(s). □

Note that this example can be modified to make the set X countable: simply replace 2ω with a
countable dense subset of 2ω in the example above. We can also modify the example to make the
ideals In and Jn into P-ideals: simply replace ‘‘nowhere dense’’ with ‘‘meager’’ in the example above,
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and note that if A ⊆ 2ω is non-meager, then there is some open U such that A ∩ V is non-meager
for every open V ⊆ U .

In closing, let us point out that the ideas in this paper emerged from set-theoretic investigations
into cardinal characteristics of the continuum in [2]. In the course of these investigations, the
question arose: How small can a collection C of conditionally convergent series be with the property

that every A ⊆ N fails to send some member of C to infinity? (Specifically, the answer to this question
is the so-called ‘‘Galois–Tukey dual’’ – see [14], or [1, Section 4] – of the uncountable cardinal ßi as
defined in [2].) We suspected that the answer to this question should be an uncountable cardinal
number. It was a surprise to discover that the correct answer is 4, or, in the terminology of Section 5,
the least n such that n ̸= ß(n). This surprise led us to investigate the function ß(n) generally, and
its upper bounds I(n) and H(n).

In the same way that the function ß(n) is related to the cardinal invariant ßi from [2], the function
I(n) suggests a new cardinal invariant of the continuum, a natural upper bound for ßi. Namely, this
cardinal invariant is defined as the answer to the following question: How small can a collection A

of subsets of N be with the property that for every pair of incompatible ideals on N, some A ∈ A chooses

between them? To end our paper, we show that this ‘‘new’’ cardinal invariant is not really new at
all:

Theorem 6.7. Suppose A is a collection of subsets of N such that for every pair of incompatible ideals

on N, some A ∈ A chooses between them. Then |A| = c.

Proof. Let A be any collection of subsets of N such that for every pair of incompatible ideals on
N, some A ∈ A chooses between them. Let C denote the closure of A under the Boolean operations
of taking complements, finite unions, and finite intersections. Because |C| = max{ℵ0, |A|}, to prove
the theorem it suffices to show that |C| = c.

Our proof uses the topological space N∗, the space of all non-principal ultrafilters on N. Recall
that if A ⊆ N, then A∗ = {u ∈ N∗: A ∈ u} is a clopen subset of N∗, and the sets of this form constitute
a basis for N∗.

For each u ∈ N∗, let û = {A ⊆ N:N \ A ∈ u} = {A ⊆ N: A /∈ u}. Each û is an ideal on N.
Furthermore, if u, v ∈ N∗ and u ̸= v, then there is some A ⊆ N such that N \ A ∈ û and A ∈ v̂. Thus
for any distinct u, v ∈ N∗, û and v̂ are incompatible ideals on N.

Therefore, whenever u, v ∈ N∗ with u ̸= v, some A ∈ C chooses between û and v̂. This could
mean that A ∈ û \ v̂, in which case A ∈ v and N \ A ∈ u, or else that A ∈ v̂ \ û, in which case A ∈ u

and N \A ∈ v. In either case (because C is closed under taking complements), we see that there are
A, A′ ∈ C such that u ∈ A∗ and v ∈ (A′)∗.

Let C∗ = {A∗: A ∈ C}. By the previous paragraph, C∗ separates points in N∗, meaning that for any
two distinct points of N∗, there are disjoint sets in C

∗ each containing one of the two points. We
claim that this implies C

∗ is a basis for N∗. To see this, first note that, because C is closed under
finite unions and intersections, C∗ is as well (because (A ∪ B)∗ = A∗ ∪ B∗ and (A ∩ B)∗ = A∗ ∩ B∗

for any A, B ⊆ N). Thus C
∗ forms the basis for some topology τ on N∗. The topology τ is Hausdorff

(because C
∗ separates points), and is coarser than the usual topology on N∗. But the usual topology

on N∗ is compact and Hausdorff, and it is well-known that no Hausdorff topology is strictly coarser
than a compact Hausdorff topology [5, Corollary 3.1.14]. Thus τ is coarser than the usual topology
on N∗, but not strictly coarser: that is, they are the same. Hence C

∗ is a basis for the usual topology
on N∗.

The usual topology on N∗ has no basis of size < c [5, Theorem 3.6.14], so the previous paragraph
implies |C| = c as claimed. □
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