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Abstract—The control of cryogenic qubits in today’s super-
conducting quantum computer prototypes presents significant
scalability challenges due to the massive costs of generat-
ing/routing the analog control signals that need to be sent from
a classical controller at room temperature to the quantum chip
inside the dilution refrigerator. Thus, researchers in industry
and academia have focused on designing in-fridge classical
controllers in order to mitigate these challenges. Due to the
maturity of CMOS logic, many industrial efforts (Microsoft,
Intel) have focused on Cryo-CMOS as a near-term solution
to design in-fridge classical controllers. Meanwhile, Supercon-
ducting Single Flux Quantum (SFQ) is an alternative, less
mature classical logic family proposed for large-scale in-fridge
controllers. SFQ logic has the potential to maximize scalability
thanks to its ultra-high speed and very low power consumption.
However, architecture design for SFQ logic poses challenges
due to its unconventional pulse-driven nature and lack of dense
memory and logic. Thus, research at the architecture level
is essential to guide architects to design SFQ-based classical
controllers for large-scale quantum machines.

In this paper, we present DigiQ, the first system-level design
of a Noisy Intermediate Scale Quantum (NISQ)-friendly SFQ-
based classical controller. We perform a design space explo-
ration of SFQ-based controllers and co-design the quantum
gate decompositions and SFQ-based implementation of those
decompositions to find an optimal SFQ-friendly design point
that trades area and power for latency and control while
ensuring good quantum algorithmic performance. Our co-
design results in a single instruction, multiple data (SIMD)
controller architecture, which has high scalability, but imposes
new challenges on the calibration of control pulses. We present
software-level solutions to address these challenges, which if
unaddressed would degrade quantum circuit fidelity given the
imperfections of qubit hardware.

To validate and characterize DigiQ, we first implement it
using hardware description languages and synthesize it using
state-of-the-art/validated SFQ synthesis tools. Our synthesis
results show that DigiQ can operate within the tight power
and area budget of dilution refrigerators at >42,000-qubit
scales. Second, we confirm the effectiveness of DigiQ in running
quantum algorithms by modeling the execution time and
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Figure 1: (a) Today’s controller design: controller at room

temperature, (b) DigiQ: controller close to quantum chip.

fidelity of a variety of NISQ applications. We hope that
the promising results of this paper motivate experimentalists
to further explore SFQ-based quantum controllers to realize
large-scale quantum machines with maximized scalability.

Keywords-SFQ-based quantum gate; Quantum optimal con-
trol; Scalable quantum computer; Cryogenic electronic;

I. INTRODUCTION

Superconducting quantum computing is one of the

promising technologies for building a quantum computer

[1], [2], with many prototypes having been manufactured

in the recent years [3]–[6]. However, today’s prototypes

rely on sending separate analog microwave control pulses

for each qubit through coaxial cables from a classical

controller at room temperature to the quantum chip inside

the dilution refrigerator (see Fig. 1(a)). This design is sim-

ple and straightforward, however presents severe scalability

challenges due to the massive costs of generating/routing the

analog microwave signals, and significant heat dissipation

at millikelvin temperatures due to using a large number of

high bandwidth coaxial cables [7]–[9]. Thus, it is essential

to build compact controllers as close as possible to quantum

chips in order to generate and route the control signals lo-

cally and address the scalability problem of today’s systems

(see Fig. 1(b) for an example of such a controller).
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Cryo-CMOS is an excellent near-term solution to increase

the scalability of today’s quantum machines, and controller

prototypes based on Cryo-CMOS have been manufactured

[10] which can scale to >800 qubits (see Sec. III). Mean-

while, Superconducting Single Flux Quantum (SFQ) logic

[11], [12] is an emerging classical logic family and is

recognized as a promising solution to maximize the scalabil-

ity of in-fridge controllers due to its unique characteristics

such as ultra-high speed and very low power [7]–[9], [13].

However, a key remaining step is designing an SFQ-friendly

controller architecture that operates within the tight power

and area budget of dilution refrigerators at large scales, while

ensuring good quantum algorithmic performance.

Prior work has demonstrated quantum gates based on

SFQ logic [8], [9], [13], and has outlined a vision for an

SFQ-based controller for fault-tolerant quantum computing

that relies on repeated streaming of quantum instructions

that are stored in SFQ registers [7]. These studies done

by physicists are essential in order to show the feasibility

of performing SFQ-based quantum gates, and envision the

potentials of SFQ logic in controlling large-scale quantum

chips. However, the following architectural shortcomings

remain to be addressed: (1) prior work does not consider

scenarios where we are no longer primarily repeating the

same quantum instructions. Thus, they are especially not

suitable for running Noisy Intermediate Scale Quantum

(NISQ) algorithms; (2) there has not been a detailed synthe-

sis of a complete SFQ-based controller architecture in order

to get an accurate estimate of power and area, and determine

the scale we can achieve with such controllers given the

power and area budget of dilution refrigerators; (3) there

has not been an analysis of the implications of SFQ-based

quantum controllers on quantum algorithmic performance.

This analysis is necessary to assess the cost and effectiveness

of SFQ-based controller designs; (4) there has not been an

analysis on the robustness of SFQ-based controllers to the

qubit imperfections in NISQ systems.

In this paper, we address the above architecture-level

shortcomings and present DigiQ, the first system-level de-

sign of a scalable NISQ-friendly SFQ-based classical con-

troller. Inspired by the SuperNPU paper [14], which demon-

strates architecture design for SFQ-based neural processing

units, our paper guides architects to design SFQ-based

controller architectures for large-scale quantum computers.

Architecture design for SFQ logic is different from that of

CMOS logic, due to its unconventional pulse-driven nature

and lack of dense memory/logic. In addition, implementation

of quantum gates using SFQ pulses is different from that

of microwave pulses. Thus, novel SFQ-friendly controller

architecture designs are essential. We perform a design

space exploration of SFQ-based controllers and co-design

the quantum gate decompositions and SFQ-pulse implemen-

tation of those decompositions to ensure that our design both

works within the tight power and area budget of dilution

refrigerators at large scales and provides good algorithmic

performance.
Quantum gate parallelism is essential to preserve good

quantum algorithmic performance in many NISQ applica-

tions [15]. Our quantum-classical co-design demonstrates

that due to the lack of dense memory/logic in SFQ and

tight power and area budget of dilution refrigerators, we

cannot afford to simultaneously send tailored quantum

gates to many qubits at large scales. The implementation

of quantum algorithms with significant gate parallelism

therefore requires sharing SFQ-based quantum instructions

among multiple qubits (i.e., single instruction, multiple data

(SIMD)). Getting good algorithmic performance on a SIMD

NISQ architecture is especially challenging because of qubit

variations and frequency drift, which typically require gates

to be uniquely calibrated for each qubit. We propose novel

software-level solutions to address these challenges and

preserve SIMD parallelism.
To validate and characterize DigiQ, we first work out the

details of quantum program execution flow, starting from our

compiler at room temperature and ending with sending the

control signals to qubits. Then, we implement our complete

design in hardware description languages, and synthesize

it using state-of-the-art/validated SFQ synthesis tools [16]–

[19] to measure power, area, and delay values. Our syn-

thesis results are obtained post-layout based on accurate

extraction of the gate layouts and passive transmission lines

and subsequently simulated using well-established tools for

superconductive electronic applications [16], [20], [21], and

are thus highly accurate and reliable. Finally, we show the

effectiveness of DigiQ in running quantum algorithms by

compiling a variety of NISQ algorithms for our system, and

modeling the resulting execution time and fidelity.
We position ourselves as addressing the physical chal-

lenges in scaling up the NISQ machines. Our work is com-

plementary to Perfect Intermediate Scale Quantum comput-

ing (PISQ) [22] approach, which suggests developing new

quantum algorithms assuming perfect qubits and evaluating

them with classical simulators. PISQ is a great approach

since it separates the development of quantum algorithms

and applications from hardware and architectural research

and allows researchers to focus on the development of new

quantum algorithms in various scientific fields.
To summarize, our key contributions are as follows:

• Architecting SFQ-based controllers: We guide archi-

tects to design large-scale SFQ-based controllers by

taking into consideration the opportunities (efficient on-

chip broadcast and ultra-fast clock) and challenges (lack

of dense memory/logic) of SFQ.

• Quantum-classical co-design: By co-designing quan-

tum gate decompositions and SFQ-based implementa-

tion of those decompositions, we present DigiQ, an

SFQ-friendly SIMD controller architecture.

• Addressing the SIMD calibration challenges: We
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present software solutions to address the quantum gate

calibration challenges of SIMD hardware to make it

robust to imperfections in qubit hardware.

• Characterizing controller hardware: We implement

DigiQ in hardware description languages and show

its feasibility in large scales in terms of power, area,

and delay using state-of-the-art/validated SFQ synthesis

tools.

• Characterizing algorithmic performance: We con-

firm the effectiveness of DigiQ in running quantum

algorithms by compiling a variety of NISQ applica-

tions for DigiQ and modeling their execution time and

fidelity.

The rest of the paper is organized as follows. Sec. II

provides a background on quantum controllers, SFQ logic,

and discusses the opportunities and challenges of SFQ-based

controllers. We present related work in Sec. III. Sec. IV

demonstrates the details of DigiQ, our scalable digital SFQ-

based quantum controller architecture. Sec. V discusses the

quantum gate calibration challenges of DigiQ, and presents

software-level solutions to address them. Sec. VI shows our

methodology and thorough evaluation of DigiQ. Finally, Sec.

VII concludes the paper and discusses the future work.

II. BACKGROUND AND MOTIVATION

Here we provide a background on quantum computing

followed by a discussion of quantum gates/controllers in

existing systems and their limitations. We then present a

background on SFQ logic and discuss the opportunities and

challenges of SFQ-based controllers.

A. Quantum computing

A quantum algorithm specifies a series of transformations

on quantum systems called qubits, which are analogous

information carriers to classical bits. The state of a single

qubit can be represented as a linear combination of two

states:

|ψ〉 = α |0〉+ β |1〉
where the amplitudes α, β ∈ C satisfy |α|2 + |β|2 = 1. It

is useful to visualize the state of a single qubit as a vector

on the unit Bloch sphere as shown in Fig. 2(a), where α =
cos θ/2 and β = eiφ sin θ/2. A multi-qubit state may be

written as |ψ〉 = ∑
i αi |i〉, where

∑
i |αi|2 = 1 and |i〉 =

|in−1〉 . . . |i1〉 |i0〉 are the computational basis states of the

n-qubit quantum system.

Quantum gates are unitary operators which modify the

state of the qubit system. Any single-qubit gate can be

represented as a rotation on the unit Bloch sphere (see Fig.

2(a)). Rotations around any two axes can be combined to

perform arbitrary single-qubit gates. Combined with a two-

qubit entangling gate (i.e., a gate which cannot be decom-

posed into one-qubit gates), this is sufficient for universal

quantum computation [23].

x y

z(b)

x y

z(a)

(c)

Figure 2: (a) Bloch sphere representation of a qubit; (b)

SFQ driven trajectory. The blue trajectory is driven by the

periodic SFQ pulse train shown in (c), and the orange

trajectory is driven by the qubit free evolution; (c) SFQ pulse

train in the time domain. f is the qubit oscillation frequency.

B. Superconducting qubit controllers and their limitations

Superconducting qubits are nonlinear LC circuits built

with Josephson junctions (JJ) that operate at near absolute

zero temperature and oscillate at microwave frequencies.

Qubits are defined using the quantized ground (|0〉) and

first excited (|1〉) states of the oscillator, where the qubit’s

oscillation frequency is defined as the energy difference

between the two levels. Transmons are a simple form of

superconducting qubit comprising a JJ and a shunt capacitor,

designed to reduce the qubit’s sensitivity to electrical charge

noise [24], and is the qubit technology in many state-of-

the-art systems [3]. Flux-tunable transmons allow tuning

the qubit oscillation frequency, and are implemented by

replacing the transmon’s JJ with a pair of parallel junctions

separated by a small distance. The qubit frequency can then

be shifted by driving an external magnetic flux (using a

small electrical current, ∼1 mA) through the enclosed loop

[25]. The relationship between frequency and flux can be

fine tuned by varying the parameters of each JJ individually,

creating what’s known as an asymmetric transmon [26].

Superconducting quantum computer prototypes perform

single-qubit gates by driving transitions between the oscil-

lator’s |0〉 and |1〉 states using microwave pulses. Control-

lable multi-qubit operations require a means of selectively

interacting qubits through some coupling architecture. Two-

qubit gates such as CZ can be implemented using flux-

tunable transmons by changing the frequency of the qubits

temporarily such that their quantum states are on resonance

[25].

Superconducting quantum computers have received sig-

nificant attention due to their convenient qubit design and

configurability [25], leading to rapid advances in their size,

coherence time, and gate fidelity [3]–[5]. However, they

also pose significant challenges which must be addressed

for superconducting quantum computing to be scalable.
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Superconducting qubits need cooling to very low tempera-

tures (∼20 mK) which is expensive and complicates control

hardware. Further, unlike technologies such as trapped ion

(in which qubit uniformity is guaranteed by nature [27]),

the characteristics of superconducting qubits are subject to

variation and drifts over time.

The controller design in today’s prototypes relies on

separate cables from room temperature to control individ-

ual qubits [3]. This approach has severe scalability issues.

First, there is a massive electronics cost for generating and

routing the analog control pulses from room temperature

including the cost of arbitrary waveform generators (AWGs),

microwave sources, IQ mixers (which modulate the in-phase

and out-of-phase components of the drive signal [25]), and

amplifiers and attenuators that are used for thermal property

matching at each stage of the fridge [7], [8], [25]. Second,

the cooling power at millikelvin stage of the fridge is

very limited (<10 μW [28]) and a large number of high

bandwidth coaxial cables create a big heat load problem at

this stage. Thus, alternative quantum controller architectures

are needed to realize scalable and robust quantum machines.

C. Opportunities and challenges of SFQ quantum con-
trollers

Superconducting Single Flux Quantum (SFQ) is a

magnetic-pulse based device and a single quantum of mag-

netic flux, Φ0 = h/2e = 2.07 mV·ps, is used for logic bit

representation. In this representation, presence of a pulse

has the meaning of “logic-1”, while absence of a pulse is

considered as a “logic-0”. Operation of SFQ logic is based

on overdamped JJs [11], [12], [29]–[31]. There are two types

of D-Flip-Flops (DFFs) in this technology: Destructive Read

Out (DRO) DFF and Non-Destructive Read Out (NDRO)

DFFs. In the first type the stored data will be erased after

one read operation and the DFF will be reset back to its zero

state. However, in the second type, multiple read operations

can be done without erasing the content of DFF. SFQ devices

with switching delay of 1 ps and switching energy of 10−19

J are considered great candidates to provide high speed

solutions post-silicon and post-CMOS [14]. Moreover, these

Niobium-based devices are extremely low power and despite

their cryo-cooling overhead they still consume significantly

less power compared to the state-of-the-art silicon-based

devices [32]. These unique properties make SFQ an attrac-

tive logic technology to implement classical controllers with

maximized scalability for quantum computers.

SFQ can be utilized not only to implement classical con-

troller logic, but also to perform quantum gates locally. Prior

work demonstrated that SFQ pulse trains can be utilized to

perform single-qubit gates [8], [13], [33]. For example, an

intuitive approach to do rotations along the y-axis, Ry(θ),
is to apply one SFQ pulse every qubit oscillation period

as shown in Fig. 2. The time integral of an SFQ pulse is

equal to the superconducting flux quantum and determines

the energy deposited in the qubit. The result of this energy

deposition is a small rotation of δθ around the y-axis. We

can perform a rotation along the y-axis by keep applying

one SFQ pulse every qubit period. An arbitrary single-qubit

gate can be represented by a bitstream (denoted as SFQ

bitstream); the gate is applied by applying the SFQ bitstream

to the qubit, one bit at a time: if the bit is 1 (0), we apply

(don’t apply) an SFQ pulse to the qubit at the corresponding

SFQ chip cycle.

Despite its high potentials, SFQ imposes unique con-

straints on the controller design. First, limited JJ density

in existing technology (100X-10,000X lower density than

CMOS [34]) leads to lack of dense memory/logic in SFQ.

Second, SFQ design is different from that of CMOS due to

unconventional pulse-driven nature of SFQ logic. SFQ logic

gates receive clock signals and they are evaluated by arrival

and consumption of clock pulses. Therefore, balancing the

circuit path by inserting extra DFFs is essential to ensure

that inputs are consumed at correct clock cycles [17]. The

extra DFFs further increase the logic area (and power), and

might incur significant costs in complex logic designs. Thus,

we need to take these constraints into consideration and (1)

use limited SFQ storage; (2) keep the logic simple.

III. RELATED WORK

In this section we discuss prior research on in-fridge

quantum gates and controllers based on various technologies,

and also SFQ-based accelerators.

A. Cryo-CMOS based quantum controllers

Due to maturity of CMOS technology, Cryo-CMOS is an

attractive technology to do computation at the 4 K stage of

the fridge. In [10], single-qubit gate operation using a Cryo-

CMOS controller prototype is demonstrated, which is done

by generating microwave control signals inside the fridge

using the pulse information that is stored in on-chip SRAMs.

The prototype presented in [10] can scale to >800 qubits

given 12 mW/qubit power consumption reported in the paper

and 10 W power budget [7]. In comparison, SFQ logic can

potentially maximize the scalability of quantum controllers

(>42,000 qubits in our SIMD design) due to its very low

power consumption. Note that SIMD can potentially increase

the scalability of today’s Cryo-CMOS prototypes as well,

which we see as important future work (see Sec. VII).

B. SFQ-based quantum gates and controllers

In [8], coherent control of a qubit using SFQ pulse trains

is demonstrated using a DC/SFQ converter that is fabricated

on the qubit chip; the experimental results in the paper show

the feasibility of performing quantum gates using SFQ. In

[9], the authors propose a method to find SFQ bitstreams

for qubits with different frequencies using one single SFQ

clock. A genetic algorithm is used in [13] as an approach to

find efficient SFQ bitstreams to reduce leakage errors (i.e.,
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Table I: Design space for SFQ-based single-qubit gate controllers.

SFQ SIMD decomp (DigiQ)
SFQ MIMD naive SFQ MIMD decomp

DigiQ min DigiQ opt

Scalability
Limited by

power, area, and bandwidth
Limited by

power and area
High scalability

Quantum program
execution

No gate serialization No gate serialization
Long

decompositions
Potential

serialization
Pulse calibration Hardware Hardware Software

unwanted energy transfer to states other than |0〉 and |1〉)
and gate time. Reinforcement learning is another approach

that has been utilized to find efficient SFQ bitstreams to

perform quantum gates [35]. In [7], the authors outline a

vision to perform fault tolerant quantum computing that

relies on repeated streaming of stored SFQ bitstreams, and

present a simple estimation of power by adding the power of

SFQ registers. In contrast to these works, DigiQ is the first

system-level design of a scalable NISQ-friendly SFQ-based

controller.

C. SFQ-based accelerators

SFQ has been utilized to design hardware accelerators

thanks to its ultra-high speed. In [36], the authors propose

an SFQ-based error decoder to accelerate quantum error

correction. In [14], the authors present an ultra-fast SFQ-

based neural processing unit. In contrast to these works, our

focus is on designing a scalable SFQ-based controller rather

than accelerating a task.

IV. DIGIQ QUANTUM CONTROLLER

In this section we provide guidelines for designing scal-

able SFQ-based controller architectures for universal quan-

tum computation, and present DigiQ, our novel SFQ-based

controller architecture.

A. SFQ-based universal quantum computation

1) Design space for single-qubit gate controllers: A

naive design to do arbitrary single-qubit gates is to allo-

cate separate SFQ registers for SFQ bitstreams per qubit

(similar to [7]) and update them as needed. This design,

denoted as SFQ MIMD naive, is similar in spirit to today’s

microwave-based designs, but relies on digital communica-

tion from room temperature rather than analog communi-

cation. SFQ MIMD naive is straightforward and provides

quantum gate parallelism (i.e., multiple instruction, multiple

data (MIMD) paradigm). However, it requires high com-

munication bandwidth from room temperature in scenarios

where we are not primarily repeating the same quantum

gates, and thus need to update a large number of SFQ reg-

isters on-the-fly during the quantum program execution. In

addition, SFQ MIMD naive is expensive in terms of power

and area (5.01 mW/qubit and 13.9 mm2/qubit just for 300-bit

SFQ registers based on our results obtained using detailed

SFQ synthesis tools and cell libraries). Thus, the scalability

of SFQ MIMD naive, is limited by power/area/bandwidth.

In order to reduce the required bandwidth from room

temperature, we can store a universal single-qubit gate set

per qubit on the SFQ chip, and send the quantum gate

decomposition information from the room temperature. In

the simplest case where the single-qubit gate set includes

two gates, we need to send only 1 bit per qubit at any

given time from room temperature to select/apply one of

the two gates. This design, denoted as SFQ MIMD decomp,

reduces the bandwidth requirement significantly compared to

SFQ MIMD naive. However, it further increases the power

and area as it allocates more than one SFQ register per qubit.

Thus, the scalability of SFQ MIMD decomp is still limited

by power/area.

Finally, we demonstrate our scalable design. Tight power,

area, and bandwidth budget of dilution refrigerators, and

lack of dense memory in SFQ (see Sec. II) leads us to a

design where we share SFQ bitstreams among a group of

qubits (i.e., SIMD). Grouping is static and done at the design

time, such that qubits in a group have the same nominal

oscillation frequency; we show that we can compensate for

frequency drift in software in Sec. V. Note that sharing the

bitstreams can be done efficiently in SFQ by broadcasting

the bitstreams (one bit per SFQ cycle) using splitter gates.

This design, denoted as SFQ SIMD decomp, is a potential

candidate to realize a controller with high scalability thanks

to its reduced power, area, and bandwidth requirements

compared to the other two designs. We therefore base DigiQ
on this design. Table I summarizes the investigated design

space.

2) Single-qubit gate decomposition: Out of the plethora

of proposed quantum gate decomposition protocols for

single-qubit gates, we must choose the ones that can be

implemented efficiently using SFQ. We prefer a decompo-

sition protocol that relies on storing/processing a limited

number of SFQ bitstreams (see Sec. II). This is important

because (1) there is a lack of dense memory in SFQ, thus

we can afford to store only a limited number of SFQ

bitstreams; (2) we need to keep the SFQ logic simple, thus

we can afford to process only a limited number of SFQ

bitstreams at any given time. We consider two SFQ-friendly

gate decompositions and present their corresponding SFQ-

based architecture designs.

Our first architecture, denoted as DigiQ min, is based on

a minimal universal single-qubit gate set that includes only

2-4 gates (e.g., [Ry(π2 ), T ] is sufficient for universal single-
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qubit computation [37], [38]) with the goal of minimizing

the hardware cost. Our digital controller works with a

clock (denoted as quantum controller clock), and similar to

classical computers, each quantum program is decomposed

into a number of quantum gates and each quantum gate is

finished in a number of controller cycles. In DigiQ min,

single-qubit gates are decomposed into a sequence of the

gates in the gate set, and each gate of the sequence is

executed in one controller cycle. At the beginning of each

controller cycle, the SFQ bitstreams corresponding to all

the gate are broadcasted to a group of qubit controllers.

Each qubit controller uses a simple SFQ-based multiplexer

to select/apply one of the possible bitstreams using the

control bits that are sent from the room temperature in each

controller cycle.

A concern is that DigiQ min needs long gate sequences to

perform arbitrary single-qubit gates. Thus, we also present

DigiQ opt, in which we implement the continuous gate

set {Ry(π2 ), Rz(φ);φ ∈ [0, 2π)}, enabling constant-depth

single-qubit gate decomposition [39]. Ry(π2 ) can be imple-

mented by storing an SFQ bitstream on the SFQ chip. The

next question is: how to implement Rz(φ) gates for arbitrary

φ efficiently?

In microwave-based systems, Rz(φ) gates can be done

virtually (in software) by changing the phase of the mi-

crowave pulses of the consecutive gates [25], [39]. But, in

the SFQ case, we do not have control over the phase of the

SFQ bitstream. Thus, we need to perform the Rz(φ) gates in

hardware. Thanks to the ultra-fast, precise clock on the SFQ

chip (in the order of ps), we can perform arbitrary Rz(φ) by

letting the qubits evolve freely for a precise number of SFQ

chip clock cycles, which is equivalent to applying an SFQ

bitstream consisting of only “0” bits. Every qubit oscillation

period, a qubit performs a full rotation around the z-axis with

a trajectory in the form of a unit circle (see Fig. 2). Now,

for any φ, there is a point on the unit circle corresponding to

Rz(φ) and we need to get as close as possible to that point

in order to perform Rz(φ) with high fidelity. By applying a

“0” bit every SFQ chip cycle, we get to multiple points on

the unit circle in one qubit oscillation period, and we cover

more points if we let the qubit evolve freely for more than

one qubit period. The longer we let the qubit evolve freely,

the more points we can get to on the unit circle and the

more precisely we can approximate Rz(φ) for arbitrary φ.

The fidelity of these gates is analyzed in Sec. V-A.

We now discuss implementation details of DigiQ opt
single-qubit gates. Any one-qubit gate can be decomposed

as U(φ3, φ2, φ1) = Rz(φ3)Ry(π2 )Rz(φ2)Ry(π2 )Rz(φ1). In

DigiQ opt, we break the U(φ3, φ2, φ1) into three parts,

Ry(π2 )Rz(φ1), Ry(π2 )Rz(φ2), and Rz(φ3). We perform

each of the first two parts in one controller cycle, and absorb

the Rz(φ3) to the next controller cycles. The controller

cycle length is equal to the Ry(π2 ) gate time plus N ∗
SFQ chip cycle length, where N is the maximum num-

..... Time 
1
0

0

SFQ Pulse

d “0”s N-d “0”s
Rz( ) bitstream Rz( ) - residual  Ry(    ) bitstream2

Figure 3: The sequence of gates in one cycle of DigiQ opt.
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Figure 4: (a) Circuit schematic of our current generator

design based on SFQ/DCs; (b) The electrical current pulse

generated by our design to realize CZ gates on flux-tunable

transmons.

ber of SFQ chip cycles that we let the qubits evolve freely

in order to perform Rz(φ) gates. We perform Ry(π2 )Rz(φ)
by applying a “0” bitstream of length 0 ≤ d ≤ N followed

by the Ry(π2 ) bitstream, which is equivalent to delaying the

Ry(π2 ) bitstream by d SFQ chip cycles as shown in Fig.

3. The value of d depends on the angle φ and is sent by

the compiler at room temperature every controller cycle; the

SFQ logic in DigiQ opt delays the stored Ry(π2 ) bitstream

by d SFQ chip cycles and broadcasts it to a group of qubit

controllers. The residual Rz(γ) rotation at the end of the

controller cycle (see Fig. 3) can be absorbed into the next

gate on that qubit.

The next question is: how many distinct Ry(π2 )Rz(φ)
gates out of a total of N+1 possible gates (denoted as BS)

are needed every controller cycle? The answer depends on

(1) the available power and area budget inside the fridge:

providing more distinct gates requires more complex logic

to delay the stored Ry(π2 ) bitstream by more distinct values

at the same time, and also broadcast and process more SFQ

bitstreams; (2) the similarity between the gates that qubits

inside a group perform in a given instant: there will be

serialization inside a group if not enough distinct gates are

available in a controller cycle. The lower the BS value,

the lower the hardware cost but the higher the chance of

serialization (see Sec. VI).

3) Two-qubit gate design: In this paper, we develop SFQ

circuits to generate electrical current waveforms necessary

to realize CZ gates on flux-tunable transons (see Sec. II)
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Figure 5: Overview of our DigiQ architecture.

inside the fridge. The electrical currents are transmitted to

the quantum chip using superconducting microstrip flex lines

(see Fig. 4(a)). We deploy an array of SFQ/DCs, which

are commonly used SFQ blocks to convert the SFQ pulsed

representation to DC voltage levels [40]. When a start signal

is received by the SFQ/DC blocks, they start outputting

electrical current, and they keep doing so until they receive

a stop signal (we need to turn the SFQ/DCs on (off) in the

beginning (end) of the CZ gate). In order to target specific

pairs of qubits on a multi-qubit system we require current

waveforms to be applied to both qubits simultaneously (we

need one current generator per qubit). The only difference

between this approach and prior flux-tunable implementation

of CZ gates is that the electrical current is generated inside

the fridge. Note that we use the same two-qubit gate design

for both DigiQ min and DigiQ opt.
We use JSIM which is a detailed circuit simulator for

superconductive electronic applications [21] to simulate the

Fig. 4(a) current generator circuit. Fig. 4(b) shows the

simulated current waveform, which is generated by enabling

25 SFQ/DC blocks (the values of R1, R2, and C1 are 0.05

ohm, 0.05 ohm, and 10 nF, respectively). In Sec. V-B, we

use physical simulations to show that this waveform can

be combined with software calibration techniques to realize

low-error CZ gates even when qubits exhibit independent

frequency variation.

Recent studies have also suggested realizing two-qubit

cross-resonance gates using only SFQ pulses [35], [41]. The

design of an SFQ controller architecture based on such gates

would present a different set of challenges and opportunities,

the study of which we save for future work.

B. Overview of DigiQ architecture

Now we put it all together and demonstrate an overview

of our DigiQ architecture that is shown in Fig. 5. There

are G groups of qubit controllers. At the beginning of each

controller cycle, BS distinct single-qubit SFQ gates per each

group are broadcasted to all the qubit controllers in the

group. BS sel bits are used to select the BS distinct single-

qubit gates in DigiQ opt (DigiQ min does not need BS sel

bits since its universal single-qubit gate set includes only a

few gates, which are all broadcasted). Each qubit controller

uses an SFQ-based multiplexer and the 1q sel bits to either

select/apply one of the BS delayed bitstreams, or apply none

of them (e.g., in the two-qubit gate case). For two-qubit

gates, the qubit controllers of the two qubits involved use

the 2q sel bits to determine whether to start/stop performing

CZ gate by sending start/stop signals to the SFQ/DCs.

BS sel, 1q sel, and 2q sel control bits are sent from the

room temperature every controller cycle using Ctrl. data
cables; a Valid cable is used to determine the validity of

control data on data cables. A Load cable is also used to

load the SFQ bitstreams through the data cables, which is

done offline (i.e., not during the program execution); each

SFQ bitstream has ≤300 bits (the actual bitstream length

depends on the target gate and system Hamiltonian). After

the transmission of the control bits of the first controller

cycle is finished, a Go signal is sent from room temperature

to start the controller clock (which is implemented using a

counter that counts up every SFQ chip cycle and resets every

controller cycle). At the beginning of every controller cycle,

the control bits that are already buffered in a buffer (Buffer#1
in Fig. 5) are transferred to a second buffer (Buffer#2 in

Fig. 5) to be used by qubit controllers and SFQ bitstream

generators. While executing the current controller cycle, the

control bits of the next controller cycle are buffered in the

first buffer.

V. SOFTWARE CALIBRATION OF SIMD HARDWARE

Real superconducting qubits exhibit variations in their os-

cillation frequency which can drift from day to day in exper-

imental settings [42], [43]. Quantum gates are implemented

using precise control signals designed using careful physical

models of qubit evolution (that is, their Hamiltonian) [25],

which are extremely sensitive to small deviations in qubit

frequency. The accuracy of quantum gates optimized for

one set of qubit frequencies will therefore degrade rapidly

if the same control signals are used on qubits exhibiting

slight deviations from those frequencies. State-of-the-art

quantum gates therefore require regular recalibration using

experimental measurements of each qubit [42]. For small

systems with MIMD control, qubit-specific gate calibration

can be performed at the hardware level by precisely shaping

control pulses for each qubit. This is not possible for a

SIMD architecture such as DigiQ, in which control signals

are shared among many qubits and so cannot be calibrated

independently for each qubit.

Here, we show that this challenge can be overcome by

moving gate calibration to the software level, eliding unscal-

able qubit-specific hardware configurability. Our approach is

summarized in Fig. 6. In short, basis SFQ bitstreams that are

stored on SFQ chip are fixed, and calibration is performed by

adjusting the decomposition into the (frequency-dependent)

set of basis quantum operations resulting from those fixed
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Figure 6: Calibration process in (a) today’s microwave-based

quantum machines; (b) DigiQ.

bitstreams; note that applying the same SFQ bitstream to

multiple qubits with different qubit frequencies results in

different quantum operations. Though the focus of this sec-

tion is compensation for frequency drift, similar techniques

could be employed to mitigate other sources of systematic

error.

The gate errors reported through the remainder of this

paper are calculated as ε = 1 − F , where F is the

average gate fidelity [44], [45]. We calculate gate fidelities

by modeling and simulating the Hamiltonian of the quantum

hardware to provide an upper bound for the gate fidelity.

This approach is also used in studies on both SFQ-based

and microwave-based systems as a precursor to experimental

work [9], [46]; DigiQ shows comparable gate fidelity to

these studies as shown in Sec. VI-B2. Although we model

the key dominant sources of systematic error, experimental

evaluations on real hardware (currently available only at a

small scale) are subject to various sources of noise which are

not captured in the models, resulting in lower gate fidelities

[8], [47].

A. Calibrating single-qubit gates

The key idea behind gate calibration on DigiQ is that

these frequency-dependent operations still constitute uni-

versal gate sets for single-qubit computation [37]. We can

therefore account for frequency drifts and hardware variation

on each qubit by decomposing single-qubit gates on each

qubit using the unique set of basis operations resulting from

shared SFQ bitstreams. For both DigiQ opt and DigiQ min,

the single-qubit calibration procedure then consists of four

steps: (1) find SFQ bitstreams implementing a desired set of

basis gates with high fidelity on qubits with no frequency

variation, (2) characterize each qubit’s actual oscillation

frequency using experimental measurements [7], (3) use the

learned bitstreams and measured frequencies to determine

the actual basis operations implemented on each qubit by

the shared bitstreams, and (4) compile quantum circuits

using the actual single-qubit basis operations determined for

each qubit. The (classical) complexity of these steps scales

linearly with number of qubits and circuit size.

For steps (1) and (3) we employ single-qubit physical

simulations of the expected single-qubit unitary evolution

Ubs produced by an SFQ bitstream on transmon qubits (as

done in [9]). To ensure we are fully accounting for state

Table II: Optimal parking frequencies and drift tolerance for

Rz(φ) gates with ≤ 10−4 error for N = 255.

Parking frequency (GHz) Drift (GHz) for error ≤ 10−4

6.21286 ±0.01282
5.02978 ±0.01049
4.14238 ±0.00820

leakage, we model transmons using six energy levels, and

then compute single-qubit gate fidelities by projecting the

resulting evolution back into the two-level subspace (causing

any leakage to be captured as additional error [45]).

For DigiQ opt, calibrating gate decomposition

means finding a new set of delay intervals such that

the target operation is approximated by a sequence

Rz(φL)Ubs...Rz(φ1)UbsRz(φ0) (where the final Rz(φL) is

absorbed into a subsequent gate). We choose sets of delays

holistically for each gate, numerically searching for the

best combination of the available delays to implement that

gate. We find that L ≤ 2 is sufficient for most gates, but a

subset of gates nearing π rotations around the x or y axis

(e.g., Pauli X and Y operations) need L = 3 to obtain high

fidelity on qubits with the most significant drift (whereas in

the ideal case (i.e., Ubs = Ry(π2 )), L ≤ 2 is enough for all

single-qubit gates).

Two factors affect performance of the DigiQ opt de-

composition. First, the set of available Rz(φ) rotations is

highly dependent on qubit frequency, which determines how

well the N + 1 possible delay values cover the unit circle.

In the ideal case, the N + 1 phases are equally spaced

around the unit circle, and any Rz(φ) can be approximated

to within π/(N + 1) radians; in this case we find that

N = 255 is sufficient for error ε ≤ 0.25 · 10−4. We choose

target frequencies with the highest tolerance for variation,

as measured by the width of the interval in which any

φ can be approximated with < 10−4 error using one of

the available delays. These optimal parking frequencies and

their drift tolerance are shown for N = 255 in Table II.

Second, frequency variations can limit SIMD scheduling.

For example, if a circuit calls for the same gate to be applied

to many qubits, these may still require unique delay values

when the decomposition of that gate differs for each qubit.

However, we can increase parallelism by allowing a small

error margin when choosing delay values: often, multiple

sets of delays will approximate the same operation with

nearly equal error, so we can choose the one with lowest

cost in terms of serialization.

For DigiQ min, we decompose arbitrary single-qubit

gates into sequences of discrete, qubit-specific basis oper-

ations. We use a brute-force search algorithm to find the

optimal decomposition of single-qubit gates for each qubit,

working with the full six-level representation of the unitary

basis operations so that the decomposition accounts for and

mitigates leakage resulting from each basis operation.
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Figure 7: CZ gate error as a function of frequency drift,

assuming 1, 2, or 3 Uqq operations and ideal single-qubit

gates.

B. Calibrating two-qubit gates

The implementation of CZ gates using flux-tunable trans-

mons requires the shape and duration of each current pulse

to be carefully calibrated to the precise qubit frequencies

and hardware parameters. On a small system with MIMD

control, these pulses can be individually calibrated for each

pair of coupled qubits to account for variation and drift.

Without this fine-grained control, we are instead left with a

unique 2-qubit operation Uqq for each coupled pair of qubits.

Here, we argue that we can instead compose CZ gates for

each pair of qubits in DigiQ using pair-specific sequences

of Uqq operations and single-qubit gates, again relegating

calibration to software.

We can compute the unitary evolution Uqq for a pair of

qubits using physical simulations of the empirical current

waveform described in Sec. IV-A3. Starting with the nominal

pre-drift frequencies of 6.21286 and 4.14238 GHz from

Table II, we vary each qubit’s frequency and compare

the resulting Uqq to the target CZ operation. We compute

unitary evolution by numerically integrating the Schrödinger

equation using well-understood Hamiltonian models of pairs

of capacitively-coupled flux-tunable asymmetric transmons

[25]. We assume that each transmon has an anharmonicity of

250 MHz, and the capacitive coupling strength is 10 MHz.

In Fig. 7(a), we show the expected minimum error when

implementing a CZ gate using a single Uqq pulse as a

function of each qubit’s drift, allowing for arbitrary single-

qubit gates before and after the pulse. At the ideal qubit

frequencies, we find an expected error of ε = 3 · 10−4.

This error grows rapidly as the frequency difference between

qubits drifts. In Fig. 7(b) and (c), we show the gate error after

compiling CZ gates into sequences of 2 or 3 Uqq operations

and intermediary single-qubit gates, similar to the “echo”

sequences described in [47], [48] but with single-qubit gates

obtained via numerical optimization. Assuming ideal single-

qubit gates, we find that 3 Uqq operations are sufficient to

achieve ε ≤ 10−4 over a wide range of frequencies. In

Sec. VI-B2, we report empirical gate errors after single-qubit

gates are decomposed for either DigiQ opt or DigiQ min.

Table III: The library of RSFQ cells and corresponding

characteristics used for synthesis.

Cell Area (μm2) JJ Count Delay (ps)
AND2 3500 16 8.4
OR2 3500 14 6.1
XOR2 3500 18 5.8
NOT 3500 12 13.2
DRO DFF 3000 11 6.2
NDRO DFF 4500 18 9.3
Splitter 2000 6 7.1

VI. METHODOLOGY AND RESULTS

In this section, we present hardware synthesis results of

DigiQ, followed by an analysis of its algorithmic perfor-

mance.

A. Hardware results of DigiQ

We use detailed SFQ synthesis tools [17], [18], [49]–[51]

to synthesize, map, and finally calculate the power, area,

and delay values. The employed synthesis and technology

mapping flow is as follows: first, technology-independent

optimizations including balanced factorization and rewriting

[49] are performed on the input circuit, then the circuit

is mapped using a path balancing technology mapping

algorithm [17] and fully path balanced [51]. Next, a standard

retiming algorithm similar to [52] is employed to further

reduce the total memory element count. Finally, the memory

elements (e.g., latches) are replaced with SFQ DRO DFFs,

and splitters are inserted at the output of gates with more

than one fanout.

Rapid Single Flux Quantum (RSFQ) logic family [12] is

used in this paper, and the library of cells is listed in Table

III. For wiring, we use Josephson Transmission Line (JTL)

and Passive Transmission Line (PTL). JTL is used for short

connection for cells next to each other and its delay is ∼1.5-

2 ps. PTL is used for transmitting SFQ pulses from one logic

gate to another.

1) Validity of our synthesis results: We have the physical

layouts for all cells, including wires and logic cells. Our

RSFQ power, area and delay numbers are obtained post-

layout based on accurate extraction of the gate layouts and

passive transmission lines and subsequently simulated using

WRSpice [20] and JSim [21]. The simulation results are

thus highly accurate and reliable. The SFQ library cells

have been validated and their power/timing values calibrated

against manufactured test chips done in the MIT Lincoln

lab’s SFQ5ee process node [53]. The synthesis, place&route,

modeling/simulation, and formal verification tools have been

used to design and formally/simulatively verify tens of SFQ

circuits ranging from individual data path modules and reg-

ister files to major building blocks of the RISC-V Sodor core

[16], [54], [55]. In addition, prior work validated comparable

SFQ tools and simulators with SFQ chip fabrication [14].
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Figure 8: Power (a), area (b), and cable count (c) results of

DigiQ min and DigiQ opt architectures. SFQ MIMD naive
and SFQ MIMD decomp results are shown for comparison.

2) Delay results: Our synthesis results show that the

worst stage delay in DigiQ is 34.5 ps, which determines

the maximum clock frequency that our SFQ chip can work

with. We choose 40 ps as our SFQ chip clock period (similar

to [9]), thus the bit period in our SFQ bitstreams is 40 ps.

3) Power and area results: Fig. 8(a) and Fig. 8(b) show

the total power and area of DigiQ, respectively. We present

the results for different BS and G values.

As mentioned in Sec. IV-A1, in DigiQ opt, only BS
distinct delays are available every controller cycle for single-

qubit gates, and that can potentially lead to quantum gate

serialization inside a group. One solution to mitigate this

serialization is to increase the value of BS, which would

increase the hardware cost of quantum controller modules as

they would need more complex SFQ-based multiplexers to

select one out of a larger number of delayed bitstreams (see

Fig. 5). Another solution to mitigate the serialization is to

increase the G value. This solution decreases the number of

qubits per each group which means less congestion and less

serialization, while not increasing the hardware cost of gate

controller modules. Thus, at the design time, we expected

that among all the designs with the same BS ∗ G, the

ones with higher G value have lower hardware cost as they

need less complex quantum controller modules. However,

our synthesis results surprised us. As shown in Fig. 8, the

hardware cost of the designs with the same BS ∗ G value

does not differ significantly. The reason is that increasing

the G value also increases the overall hardware cost due

to an increase in the number of SFQ bitstream generators

(see Fig. 5). Given our synthesis results, we conclude that

keeping the G value small and increasing the BS value is

preferred because it provides more flexibility in allocating

delayed bitstreams to qubits. Smaller G values are preferred

for DigiQ min as well, as increasing the G value increases

the hardware cost with no significant algorithmic advantage.

The smallest G value or the maximum number of qubits

in a group is determined by the area of one SFQ chip; if

we cannot fit a group on one chip, we need to use multiple

chips and replicate the bitstreams on each chip to avoid long

distance communications, which is equivalent to dividing the

qubits into multiple groups. Our results show that for 1024-

qubit scale, we can fit all the designs with G = 2 on at

most two SFQ chips (one per group), thus we use G = 2
for 1024-qubit benchmarks in Sec. VI-B.

Our results show that even our largest designs can operate

within the power budget of typical dilution refrigerators

at 4 K stage (i.e., a few watts [7], [10], [28]), and can

be implemented on only a few SFQ chips at 1,024-qubit

scale; clock synchronization between the SFQ chips is done

using SFQ phase locked loops (PLLs) [56]. We replicate

the 1,024-qubit design in order to scale to larger number of

qubits (note that replicating the 1,024-qubit design naturally

increases the number of groups). DigiQ min(BS=2) has

the lowest hardware cost and highest scalability (>42,000

qubits given 10 W power budget [7]). Increasing the BS
value in DigiQ min increases the hardware cost, but also

can potentially increase the algorithmic performance (we

see diminishing returns after BS = 4). The scalability of

DigiQ opt is also high, allowing >25,000 qubits (>17,000

qubits) for BS = 8 (BS = 16).

4) SFQ storage and Cable count results: DigiQ min
stores BS bitstreams per group and each bitstream has ≤300

bits. DigiQ opt stores one bitstream with ≤300 bits per

group which is delayed by BS different values at each

controller cycle (see Sec. IV). With both designs, for each

qubit at each controller cycle, we need enough control bits

from room temperature to determine whether to apply one of

the BS distinct gates, start/stop performing two-qubit gates,

or perform no operation. For DigiQ opt, an additional BS
delay values for each group at each cycle are needed; since

we have 256 possible delay values, each delay value requires

log2 256 = 8 bits.

Fig. 8(c) shows the number of required cables to send

Go, Valid, Load, BS sel, 1q sel, and 2q sel bits from the

room temperature in one controller cycle given 10 Gbps

return-to-zero (RZ) cables [12]. We calculate the number

of data cables assuming a minimum controller clock period

of 9 ns for DigiQ min and 9 ns + 10.2 ns for DigiQ opt
(10.2 ns corresponds to 255 delay cycles) – we need
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Table IV: NISQ benchmark algorithms.

QGAN Quantum generative adversarial learning network [59]
Ising Linear Ising model spin chain simulation [60]
BV 1024-bit Bernstein-Varzirani algorithm [61]

Add1 256-bit ripple-carry adder [62]
Add2 256-bit parallel carry-lookahead adder [63]

Sqrt10 10-bit square root via Grover search [64]–[66]

enough data cables to send one set of control bits from

the room temperature within one controller cycle (see Sec.

IV-B). DigiQ min(G=2,BS=2) requires only 39 cables per

1,024 qubits (52.5X less than a microwave-based quantum

computer with 2 cables per qubit, 1 drive line and 1 flux

line [3]). DigiQ opt requires just 33 cables per 1,024 qubits

in G = 2, BS = 16 design. DigiQ min’s high cable count

relative to most DigiQ opt configurations is due to its shorter

controller cycle.

B. Algorithmic performance results of DigiQ

In order to study the algorithmic impacts of DigiQ,

we compile a common set of NISQ benchmarks for each

design. The benchmarks chosen are described in Table IV,

and together represent a diverse sample of common circuit

formulations. Benchmark circuits are algorithmically gen-

erated and mapped to a 32 × 32 square grid via SWAP-

gate insertion using the stochastic transpiler pass packaged

with Qiskit Terra [57]. Each circuit is then decomposed into

CZ and single-qubit gates, and a crosstalk-aware scheduling

pass [58] is used to sort and group commuting two-qubit

gates which can be executed simultaneously without inter-

ference.

To model frequency variation, each qubit is modeled as an

asymmetric transmon with σ = 0.2% variability in each of

its Josephson energies (sampled from a normal distribution).

At our target frequencies, this corresponds to about ±6 MHz

fluctuation in oscillation frequency, in keeping with design

targets for future superconducting systems [67]. Hardware

variability is considered with the addition of a σ = 1% error

to the output of each current generator. As in Sec. V, we use

these sampled hardware parameters to physically simulate

each basis operation on each qubit or qubit pair (similar

to prior work [9], [46]). We then use the resulting unitary

basis operations to decompose each gate in the benchmark

circuits. Gate errors in Sec. VI-B2 are determined by com-

puting the overlap between the decomposed and target gates.

For DigiQ opt, we use a 20.32 ns controller cycle time,

comprising 10.12 ns for SFQ bitstreams and 255 delay

cycles. The CZ gate time is 60 ns (determined from the

analysis in Sec. V-B), which expands over three controller

cycles. Single-qubit gates are expanded into at most three

Ubs pulses (see Sec. V-A). For DigiQ min, single-qubit gate

times for the 6.21286 and 4.14238 GHz qubit frequencies

are respectively 10.12 ns and 9.00 ns, again with a 60 ns

CZ gate time. We decompose single-qubit gates until the
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Figure 9: DigiQ quantum circuit execution time normalized

to the Impossible MIMD system.

approximation error falls below 10−4, up to a maximum

depth of 28 (at which point we find that only about 1% of

gates have errors above 10−4). There is no feedback loop in

our benchmarks, thus we do not consider the communication

latency from outside the fridge.

1) Circuit execution time: Fig. 9 shows the execution

time results for DigiQ with 1024 qubits, normalized to

an Impossible MIMD system which is assumed to have

the same gate times as DigiQ (which are also similar to

those of recent microwave-based systems [3], [42]) but

with unlimited parallelism. We emphasize that the MIMD

system is impossible at large scales (see Sec. II); we

compare our results with the Impossible MIMD system just

to quantify the serialization cost of realizing a controller

design that is feasible at large scales, and to give readers a

sense of how DigiQ would compare to today’s prototypes

if they did not have scalability issues. Both DigiQ opt
and DigiQ min have some overhead in terms of execution

time compared to the Impossible MIMD system (DigiQ opt
due to serialization and DigiQ min due to longer gate

decompositions). The performance of DigiQ opt increases

by increasing the BS value, as expected, with BS = 16
providing the best performance. This difference is minimal

for benchmarks without significant parallelism (BV, Add1,

Sqrt10). For BS = 16, the execution time is only ≤ 2X
longer than what we would be able to achieve if DigiQ opt
could be built with zero quantum gate serialization (i.e.,

BS = ∞). In DigiQ min, increasing BS from 2 to 4

reduces the depth of single-qubit gate decompositions by

roughly half. However, the benefit is limited beyond BS = 4
due to the dominance of CZ gate decompositions which

do not benefit substantially from the larger single-qubit

gate set. DigiQ min performs similarly to DigiQ opt(BS=8)

for the benchmarks with more parallelism (QGAN, Ising,

Add2), in which DigiQ opt experiences more gate serial-

ization. For the remaining benchmarks, DigiQ min’s long

gate decomposition leads to worse performance than any

DigiQ opt configuration. Compared to Impossible MIMD

system, DigiQ opt(BS=16) is 4.7X-9.8X worse in terms of

circuit execution time, while DigiQ min(BS=4) is 11.0X-

14.4X worse.

2) Gate/circuit error: We estimate the overall circuit

error due to gate decomposition by taking the product of
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(a)

(b)

Figure 10: (a) Median single-qubit gate error on DigiQ opt
(BS=8) and DigiQ min (BS=2) with 1024 qubits (well

representative of other configurations); (b) CZ gate error on

each qubit pair. Software can map around the outliers using

the noise-adaptive mapping techniques [68].

the errors of each of its gates. For both designs, typical

gate error varies between qubits with different frequency

drifts. Fig. 10(a) shows the median error of single-qubit

gates (evaluated across all gates in all benchmarks) for

each qubit on DigiQ opt(BS=8) and DigiQ min(BS=2)

(the same conclusions hold for other BS values). We find

that DigiQ opt exhibits higher variability between qubits,

whereas DigiQ min is generally more stable but has a

small number of especially bad outlier qubits (where the

frequency drift brings the nominal T gate very close to the

identity, resulting in a poor single-qubit gate set). Similar to

microwave-based systems, we can map around these outlier

cases in software using noise-adaptive mapping techniques

[68]. The CZ gate error (Fig. 10(b)) is driven both by the

decomposition of CZ into Uqq and single-qubit gates, and

by the error with which we can decompose those single-

qubit gates on each architecture. The CZ error is >0.002

for 3% and 7% of qubit pairs in DigiQ min and DigiQ opt,
respectively. Note that the CZ error would be >0.002 for

84% of qubit pairs if we did not use our software calibration

techniques. Our results show that with software calibration

DigiQ can achieve similar gate error to that of hardware-

calibrated microwave-based gates [46].

VII. CONCLUSIONS AND FUTURE WORK

Large-scale quantum computers are essential in order to

perform many useful quantum algorithms. However, super-

conducting quantum computer prototypes have severe scal-

ability issues due to the massive overhead of generating and

routing control pulses from room temperature to quantum

chip inside the dilution refrigerator. In this work, we present

DigiQ, the first system-level design of a digital SFQ-based

quantum controller architecture to maximize scalability. We

provide architecture guidelines to design large-scale SFQ-

based controllers by taking into consideration the opportu-

nities (efficient on-chip broadcast and ultra-fast clock) and

challenges (lack of dense memory/logic) of SFQ. Our study

shows that we must deploy a SIMD architecture to operate

within the tight power/area budget of dilution refrigerators,

however, SIMD also introduces new challenges in terms of

control pulse calibration in NISQ machines with imperfect

qubits. We propose novel software-solution to address these

calibration challenges efficiently, and show that software

plays a key role in ensuring good quantum algorithmic

performance at large scales. We fully characterize DigiQ
controller hardware using state-of-the-art/validated SFQ syn-

thesis tools. We also show the effectiveness of DigiQ in

terms of quantum algorithmic performance under a variety of

NISQ algorithms. We model dominant sources of systematic

error in our evaluations and show that DigiQ has similar

fidelity to microwave-based systems under the same models.

Our analysis shows that DigiQ is a realistic path forward

to realize large scale quantum computers, and we hope the

promising results of this paper motivate experimentalists to

further explore SFQ-based controllers.

Going forward, the fidelity of quantum gates/circuits can

further be improved by performing further research at both

hardware and software levels. First, the main bottleneck in

increasing the gate fidelity in DigiQ is frequency drift of

imperfect qubits, thus developing better qubits with less drift

can increase the fidelity significantly. Second, decreasing

the power and area consumption of SFQ circuits would

allow the realization of more complex SFQ-based controllers

that can potentially perform hardware calibration, which

combined with our software calibration can further increase

the fidelity of quantum gates/circuits. Third, further research

at the software level can potentially lead to more robust

decompositions with higher fidelity.

Finally, we would like to mention that the ideas proposed

in this paper such as SIMD design and software calibration

can potentially increase the scalability of today’s Cryo-

CMOS controllers as well. However, further research on

such controllers based on Cryo-CMOS is needed. First, al-

though SIMD can reduce the cost of on-chip storage in Cryo-

CMOS, novel approaches are needed to share/broadcast the

instructions (i.e., amplitudes/phases of microwave pulses) on

the Cryo-CMOS chip with low cost to obtain overall cost

reduction. Second, Cryo-CMOS has denser memory/logic,

but much higher power, which would result in significantly

different set of design tradeoffs. Third, DigiQ relies on ultra-

fast clock in SFQ (i.e., in the order of ps), and Cryo-CMOS

requires different architectures and gate implementations as

it works with clocks in the order of ns.
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