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Abstract

Practical error analysis is essential for the design, optimiza-
tion, and evaluation of Noisy Intermediate-Scale Quantum
(NISQ) computing. However, bounding errors in quantum
programs is a grand challenge, because the effects of quan-
tum errors depend on exponentially large quantum states.
In this work, we present Gleipnir, a novel methodology to-
ward practically computing verified error bounds in quantum
programs. Gleipnir introduces the (4, §)-diamond norm, an
error metric constrained by a quantum predicate consisting
of the approximate state p and its distance ¢ to the ideal state
p. This predicate (P, §) can be computed adaptively using
tensor networks based on Matrix Product States. Gleipnir
features a lightweight logic for reasoning about error bounds
in noisy quantum programs, based on the (4, §)-diamond
norm metric. Our experimental results show that Gleipnir is
able to efficiently generate tight error bounds for real-world
quantum programs with 10 to 100 qubits, and can be used
to evaluate the error mitigation performance of quantum
compiler transformations.
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1 Introduction

Recent quantum supremacy experiments [4] have heralded
the Noisy Intermediate-Scale Quantum (NISQ) era [43], where
noisy quantum computers with 50-100 qubits are used to
achieve tangible performance gains over classical computers.
While this goal is promising, there remains the engineering
challenge of accounting for erroneous quantum operations
on noisy hardware [3]. Compared to classical bits, quantum
bits (qubits) are much more fragile and error-prone. The the-
ory of Quantum Error Correction (QEC) [9, 16, 34, 41, 42] en-
ables fault tolerant computation [7, 16, 40] using redundant
qubits, but full fault tolerance is still prohibitively expensive
for modern noisy devices—some 10% to 10* physical qubits
are required to encode a single logical qubit [13, 28].

To reconcile quantum computation with NISQ computers,
quantum compilers perform transformations for error miti-
gation [58] and noise-adaptive optimization [33]. To evaluate
these compiler transformations, we must compare the error
bounds of the source and compiled quantum programs.

Analyzing the error of quantum programs, however, is
practically challenging. Although one can naively calculate
the “distance” (i.e., error) between the ideal and noisy out-
puts using their matrix representations [34], this approach is
impractical for real-world quantum programs, whose matrix
representations can be exponentially large—for example, a
20-qubit quantum circuit is represented by a 22° x 22° matrix—
too large to feasibly compute.
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Rather than directly calculating the output error using
matrix representations, an alternative approach employs
error metrics, which can be computed more efficiently. A
common error metric for quantum programs is the uncon-
strained diamond norm [1]. However, this metric merely
gives a worst-case error analysis: it is calculated only using
quantum gates’ noise models, without taking into account
any information about the quantum state. In extreme cases,
it overestimates errors by up to two orders of magnitude [59].
A more realistic metric must take the input quantum state
into account, since this also affects the output error.

The logic of quantum robustness (LQR) [24] incorporates
quantum states in the error metrics to compute tighter er-
ror bounds. This work introduces the (Q, A)-diamond norm,
which analyzes the output error given that the input quan-
tum state satisfies some quantum predicate Q to degree A.
LOR extends the Quantum Hoare Logic [64] with the (Q, A)-
diamond norm to produce logical judgments of the form
(Q, M)+ P < €, which deduces the error bound € for a noisy
program P. While theoretically promising, this work raises
open questions in practice. Consider the following sequence
rule in LQR:

QL) FP < e {01}P1{Q:} QM) Py <6
(Qu.A) F (1;1}3;) <€ te .

It is unclear how to obtain a quantum predicate Q, that is
a valid postcondition after executing P; while being strong
enough to produce useful error bounds for P;.

This paper presents Gleipnir, an adaptive error analysis
methodology for quantum programs that addresses the above
practical challenges and answers the following three open
questions: (1) How to compute suitable constraints for the
input quantum state used by the error metrics? (2) How to
reason about error bounds without manually verifying quan-
tum programs with respect to pre- and postconditions? (3)
How practical is it to compute verified error bounds for quan-
tum programs and evaluate the error mitigation performance
of quantum compiler transformations?

First, in prior work, seaching for a non-trivial postcon-
dition (Q, ) for a given quantum program is prohibitively
costly: existing methods either compute postconditions by
fully simulating quantum programs using matrix representa-
tions [64], or reduce this problem to an SDP (Semi-Definite
Programming) problem whose size is exponential to the num-
ber of qubits used in the quantum program [65]. In practice,
for large quantum programs (> 20 qubits), these methods
cannot produce any postconditions other than (I, 0) (i.e., the
identity matrix I to degree 0, analogous to a “true” predicate),
reducing the (Q, A)-diamond norm to the unconstrained dia-
mond norm and failing to yield non-trivial error bounds.

To overcome this limitation, Gleipnir introduces the (p, §)-
diamond norm, a new error metric for input quantum states
whose distance from some approximated quantum state p
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is bounded by 8. Given a quantum program and a predicate
(p, 9), Gleipnir computes its diamond norm by reducing it
to a constant size SDP problem.

To obtain the predicate (p, §), Gleipnir uses Matrix Prod-
uct State (MPS) tensor networks [37] to represent and ap-
proximate quantum states. Rather than fully simulating the
quantum program or producing an exponentially complex
SDP problem, our MPS-based approach computes a tensor
network TN (py, P) that approximates (p, 6) for some input
state po and program P. By dropping insignificant singular
values when exceeding the given MPS size during the approx-
imation, TN (py, P) can be computed in polynomial time with
respect to the size of the MPS tensor network, the number of
qubits, and the number of quantum gates. In contrast with
prior work, our MPS-based approach is adaptive—one may
adjust the approximation precision by varying the size of
the MPS such that tighter error bounds can be computed us-
ing greater computational resources. Gleipnir provides more
flexibility between the tight but inefficient full simulation
and the efficient but unrealistic worst-case analysis.

Second, instead of verifying a predicate using Quantum
Hoare Logic, Gleipnir develops a lightweight logic based on
(p, 8)-diamond norms for reasoning about quantum program
error, using judgments of the form:

(p,8) F P, <e.

This judgement states that the error of the noisy program P,
under the noise model w is upper-bounded by € when the
input state is constrained by (4, ). As shown in the sequence
rule of our quantum error logic:

(p,8) FPiy <1 TN(p,P1)=(p".8") (p.6+8)rPoy < e

($,8) F Pro;Pay < €146

the approximated state p’ and its distance 8" are computed
using the MPS tensor network TN.

our sequence rule eliminates the cost of searching for and
validating non-trivial postconditions by directly computing
(p, 8). We prove the correctness of TN, which ensures that
the resulting state of executing P; satisfies the predicate
(p',6+6).

Third, we enable the practical error analysis of quantum
programs and transformations, which was previously only
theoretically possible but infeasible due to the limitations of
prior work. To understand the scalability and limitation of
our error analysis methodology, we conducted case studies
using two classes of quantum programs that are expected to
be most useful in the near-term—the Quantum Approximate
Optimization Algorithm [12] and the Ising model [44]—with
qubits ranging from 10 to 100. Our measurements show that,
with 128-wide MPS networks, Gleipnir can always generate
error bounds within 6 minutes. For small programs (< 10
qubits), Gleipnir’s error bounds are as precise as the ones
generated using full simulation. For large programs (> 20
qubits), Gleipnir’s error bounds are 15% to 30% tighter than

>
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those calculated using unconstrained diamond norms, while
full simulation invariably times out after 24 hours.

We explored Gleipnir’s effectiveness in evaluating the er-
ror mitigation performance of quantum compiler transforma-
tions. We conducted a case study evaluating qubit mapping
protocols [33] and showed that the ranking for different
transformations using the error bounds generated by our
methodology is consistent with the ranking using errors
measured from the real-world experimental data.

Throughout this paper, we address the key practical limi-
tations of error analysis for quantum programs. In summary,
our main contributions are:

e The (p,)-diamond norm, a new error metric con-
strained by the input quantum state that can be ef-
ficiently computed using constant-size SDPs.

e An MPS tensor network approach to adaptively com-
pute the quatum predicate (p, §).

o A lightweight logic for reasoning about quantum error
bounds without the need to verify quantum predicates.

e Case studies using quantum programs and transfor-
mations on real quantum devices, demonstrating the
feasability of adaptive quantum error analysis for com-
puting verified error bounds for quantum programs
and evaluating the error mitigation performance of
quantum compilation.

2 Quantum Programming Background

This section introduces basic notations and terminologies
for quantum programming that will be used throughout the
paper. Please refer to Mueller et al. [32] for more detailed
background knowledge.

Notation. In this paper, we use Dirac notation, or “bra-ket”
notation, to represent quantum states. The “ket” notation
|) denotes a column vector, which corresponds to a pure
quantum state. The “bra” notation (i/| denotes its conjugate
transpose, a row vector. (¢|/) represents the inner product
of two vectors, and |/) (#| the outer product. We use p to
denote a density matrix (defined in Section 2.1), a matrix
that represents a mixed quantum state. U usually denotes
a unitary matrix which represents quantum gates, while
U' denotes its conjugate transpose. Curly letters such as
U denote noisy or ideal quantum operations, represented
by maps between density matrices (superoperators). Upper
case Greek letters such as ® represent quantum noise as
superoperators.

2.1 Quantum Computing Basics

Quantum states. The simplest quantum state is a quan-
tum bit—a qubit. Unlike a classical bit, a qubit’s state can
be the superposition of two logical states, |0) and |1), that
correspond to classical logical states 0 and 1. In general, a
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Figure 1. Matrix representations of common quantum gates. X
denotes a bit flip, Z denotes a phase flip, H denotes a Hadamard
gate, and CNOT denotes a controlled NOT gate.

qubit is a unit vector in the 2-dimensional Hilbert space C?,
with [0) := [1,0] and [1) := [0, 1]7. In Dirac’s notation, we
represent a qubit as |/) = a |0) + B|1), where |a|? + |B]? = 1.

Generally speaking, the state of a quantum program may
comprise many qubits. An n-qubit state can be represented
by a unit vector in 2"-dimensional Hilbert space C2". For
example, a 3-qubit state can be described by an 8-dimensional
complex vector, which captures a superposition of 8 basis
states, |000), |001), |010), ..., |111).

Besides the pure quantum states described above, there
are also classically mixed quantum states, i.e., noisy states.
An n-qubit mixed state can be represented by a 2" x 2"
density matrix p = Y; pi |$i) (¢i|, which states that the state
has p; probability to be |¢;). For example, a mixed state
with half probability of |0) and |1) can be represented by
w = I/2, where I is the identity matrix.

Quantum gates. Quantum states are manipulated by the
application of quantum gates, described by unitary matrix
representations [34]. Figure 1 shows the matrix representa-
tions of some common gates. Applying an operator U to a
quantum state |¢) results in the state U |$), and applying
it to a density matrix p = X; p; |¢;) (¢| gives UpUT. For
example, the bit flip gate X maps |0) to |1) and |1) to |0),
while the Hadamard gate H maps |0) to %. There are also
multi-qubit gates, such as CNOT, which does not change
[00) and |01) but maps |10) and |11) to each other. Applying
a gate on a subset of qubits will not change other qubits. For
example, applying the X gate to the first qubit of %

will result in %. This can be seen as an extension X ® I

of the matrix to a larger space using a tensor product.

Quantum measurements. Measurements extract classical
information from quantum states and collapse the quantum
state according to projection matrices My and M;. When we
measure some state p, we will obtain the result 0 with col-
lapsed state M, ng /po and probability py = tr(M, ng ), or
the result 1 with collapsed state M; pr /p1 and probability
p1 = tr(MypM]).

Both quantum gates and quantum measurements act lin-
early on density matrices and can be expressed as superoper-
ators, which are completely positive trace-preserving maps
E e L(H) : H, — H,, where H, is the density matrix
space of dimension n and L is the space of linear operators.
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Figure 2. Two quantum circuits, producing the 2-qubit (left) and
3-qubit (right) GHZ states.

2.2 Quantum Programs

Quantum programs comprise a configuration of quantum
gates and measurements, called a quantum circuit. Graph-
ically, qubits are represented as wires, and gates as boxes
joining the wires; CNOT gates are represented by a dot on
the control qubit linked with an & on the other qubit.

Example 2.1 (GHZ circuit). The Greenberger-Horne—

Zeilinger (GHZ) state [17] is a class of entangled quantum
states used in many quantum communication protocols [22].
The simplest GHZ state is the 2-qubit GHZ state, which is

w in Dirac notation. Figure 2 shows a typical graphical

representation of a quantum circuit that produces the 2-qubit
GHZ state.

Syntax. The syntax of quantum programs is as follows:

P = skip | PP | U(qy,...,qx)
| if g =0)then Py, else P;.

Each component behaves similarly to its classical counter-
part: skip denotes the empty program; P;; P, sequences pro-
grams; U(qy, . . ., qx) applies the k-qubit gate U to the qubits
q1,--->qk;if g=10) then P, else P; measures the qubit
g, executes P if the result is 0, and executes P; otherwise.
The difference between classical and quantum programs is
that the measurement in the if statement will collapse the
state, and the branch is executed on the collapsed state. Us-
ing this syntax, the 2-qubit GHZ state circuit in Figure 2 is
written as:

H(qo); CNOT(qo, q1)-

Note that this work currently does not consider advanced
quantum program constructs such as quantum loops, as
these are not likely to be supported on near-term quantum
machines.

Denotational semantics. The denotational semantics of
quantum programs are defined as superoperators acting on
density matrices p, shown in Figure 3. An empty program
keeps the state unchanged; a sequence of operations are
applied to the state one by one; a single quantum gate is
directly applied as a superoperator'; a measurement branch
statement maps the state into a classical mix of the two
results from executing the two branches.

!The matrix U in Figure 3 denotes the gate matrix (like in Figure 1) extended
with identity operator on unaffected qubits.
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([skip]l(p) =p
[[Ps; P11 (p) =[[PTI ([P 1] (p))
[U(gs. -, a1l (p) =UpU"
[if q=10)then Py else Pi[|(p) =[[Poll(MopMy) +

[P ]l (MipM])

Figure 3. Denotational semantics of quantum programs.

2.3 Quantum Errors

Quantum programs are always noisy, and that noise may
(undesirably) perturb the quantum state. For example, the
bit flip noise flips the state of a qubit with probability p. This
noise can be represented by a superoperator ® such that:

®(p) = (1-p)p +pXpX,

i.e., the state remains the same with probability 1 — p and
changes to XpX with probability p, where X is the matrix
representation of the bit flip gate (see Figure 1). Generally,
all effects from quantum noise can be represented by super-
operators.

Noisy quantum programs. The noise model w specifies
the noisy version U, of each gate U on the target noisy
device, used to specify noisy quantum programs P,. The
noisy semantics [[P]],, of program P can be defined as the
semantics [[P,,]] of the noisy program P,,, whose semantics
are similar to that of a noiseless program. The rules of skip,
sequence, and measurement statements remain the same,
while for gate application, the noisy version of each gate is
applied as follows:

U (g1 3]0 (p) = [[Ta(qs, -, g 11 (p) = U (p),

where U,, is the superoperator representation of U,.

Metrics for quantum errors. To quantitatively evaluate
the effect of noise, we need to measure some notion of “dis-
tance” between quantum states. The trace distance || pp, — p1al1
measures the distance between the noisy state p, and the
ideal, noiseless state piq:

lpn — pudlls = max tr(P(pn — prda))s

where P is a positive semidefinite matrix with trace 1 and tr
denotes the trace of a matrix. The trace distance can be seen
as a special case of the Schatten-p norm || - ||, defined as:

1-llp = (1%

The trace distance measures the maximum statistical dis-
tance over all possible measurements of two quantum states.
Note that trace distance cannot be directly calculated without
complete information of the two quantum states.
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The diamond norm metric is typically used to obtain a
worst case error bound. The diamond norm between two
superoperators U and & is defined as:

lU-&ll. =

max

1
SlUI(p)-E®I (Pl
p:tr(p)=1 2

where 7 is the identity superoperator over some auxiliary
space. Intuitively, this formula calculates the maximum trace
distance between the output state after applying the erro-
neous operation versus applying the noiseless operation, for
any arbitrary input state. Diamond norms can be efficiently
computed by simple Semi-Definite Programs (SDP) [61].
Please refer to Freund [14] for more background on SDP.
However, as shown by the Wallman-Flammia bound [59],
diamond norms may overestimate errors by up to two orders
of magnitude, precluding its application in more precise
analyses of noisy quantum programs. The diamond norm
metric fails to incorporate information about the quantum
state of the circuit that may help tighten the error bound.
For example, a bit flip error (X gate) does nothing to the

state ‘/75( |0y + |1) ) (the state is unchanged after flipping
|0) and |1)), but flips the |1) state to |0). However, both
trace distance and diamond norm are agnostic to the input
state, and thus limit our ability to tightly bound the errors
of quantum circuits.

(Q, A)—diamond norm [24] is a more fine-grained metric:

Nuerp) -selplh.

U-& =
. oM = ) 0021 2

Unlike the unconstrained diamond norm, the (Q, A)—diamond
norm constrains the input state to satisfy the predicate Q, a
positive semidefinite and trace-1 matrix, to degree A; specifi-
cally, the input state p must satisfy tr(Qp) > A. The (Q, A)—
diamond norm may produce tighter error bounds than the
unconstrained diamond norm by utilizing quantum state
information, but leaves open the problem of practically com-
puting a non-trivial predicate Q.

3 Gleipnir Workflow

To use the input quantum state to tighten the computed
error bound, Gleipnir introduces a new constrained diamond
norm, (p, §)-diamond norm, and a judgment (4, §) + ﬁw <e€
to reason about the error of quantum circuits. Gleipnir uses
Matrix Product State (MPS) tensor networks to approximate
the quantum state and compute the predicate (4, 9).

Figure 4 illustrates Gleipnir’s workflow for reasoning about
the error bound of some quantum program P with input state
po and noise model w of quantum gates on the target device:

(1) Gleipnir first approximates the quantum state p and a
sound overapproximation of its distance § to the ideal
state p using MPS tensor networks TN (po, P) = (p, 5)
(see Section 5).
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[ Input State pg ] [ Quantum Program P ] [ Noise Model w

Y Y
MPS Apprixmiator (§ 5)

TN(po, P) Step (1

Y
(p,9) | (5, 6)—Diamond Norm
“l  sDP Solver (§ 6)
Step (2)
Y Y

Quantum Error Logic (§ 4)

Sep (3 (5,0) Py <e

Y
[ Verified Error Bound € ]

Figure 4. Gleipnir workflow.

(2) Gleipnir then uses the constrained (9, §)-diamond norm
metric to bound errors of noisy quantum gates given
a noise model w of the target device. Gleipnir con-
verts the problem of efficiently computing the (4, §)-
diamond norm to solving a polynomial-size SDP prob-
lem, given (p, §) computed in Step (1) (see Section 6).

(3) Gleipnir employs a lightweight quantum error logic
to compute the error bound of P, using the predicate
(p, 8) computed in Step (1) and the error bounds for
all used quantum gates generated by the SDP solver
in Step (2) (see Section 4).

Throughout this paper, we will return to the GHZ state
circuit (Example 2.1) as our running example. This exam-
ple uses the program H(q); CNOT(qo, q1), the input state
[00) (00|, and the noise model w, describing the noisy gates
ﬁw and CNOT,,. Following the steps described above, we
will use Gleipnir to obtain the final judgment of:

(100) (001, 0) + (H(qo) ; CNOT, (90.41)) < &,

where € is the total error bound of the noisy program.

4 Quantum Error Logic

We first introduce our lightweight logic for reasoning about
the error bounds of quantum programs. In this section, we
treat MPS tensor networks and the algorithm to compute
the (4, §)-diamond norm as black boxes, deferring their dis-
cussion to Sections 5 and 6, respectively.

The (p, §)-diamond norm is defined as follows:

%Hfu e I(p)-8a(p).

|U - Ell(p5) == max
»9) ptr(p) = 1,
lp=plli<6
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(p.0) F Py et TN(pPy) = (§.8) (p',6+8)r P < &

——  SKIP —
(p,6)rP, <0 (P, 0) F Uy(qr,...) <€

(p.6)VFP, <€  €<e

—— SEQ
(ﬁ,5)" le;PZ(u <€ t+e

(P, 8) F Py <€ (PO F Py <€

MEAS

(p,8) FP, <€

(5,5) + (if g = |0) then Py, else Flw) <(1-8)e+6

Figure 5. Inference rules of the quantum error logic.

That is a diamond norm with the additional constraint that
the ideal input density matrix of p needs to be within distance
dof p,ie,T(p,p) <8.

We use the judgment (4, 5) + P, <eto convey that when
running the noisy program P, onan input state whose trace
distance is at most é from p, the trace distance between the
noisy and noiseless outputs of program P is at most € under
the noise model w of the underlying device.

Figure 5 presents the five inference rules for our quantum
error logic. The Sxip rule states that an empty program does
not produce any noise. The GATE rule states that we can
bound the error of a gate step by calculating the gate’s (4, §)-
diamond norm under the noise model w. The WEAKEN rule
states that the same error bound holds when we strengthen
the precondition with a smaller approximation bound §’.
The SEQ rule states that the errors of a sequence can be
summed together with the help of the tensor network ap-
proximator TN. The MEAs rule bounds the error in an if
statement, with § probability that the result of measuring
the noisy input differs from measuring state p, causing the
wrong branch to be executed. Otherwise, the probability that
the correct branch is executed is 1 — §. Given that in both
branches, the error is bounded by a uniform value €, we
multiply this probability by the error incurred in the branch,
and add it to the probability of taking the incorrect branch,
to obtain the error incurred by executing a quantum condi-
tional statement. The precondition in each branch is defined
as po = MopM; [tr(MopM)) and p; = My pM; /te(M; pM]).

Our error logic contains two external components: (1)
TN(p,P) = (p, ), the tensor network approximator used
to approximate [[P]](p), obtaining p and an approximation
error bound &; and (2) || - [|(5,5), the (4, §)-diamond norm
that characterizes the error bound generated by a single gate
under the noise model w. The algorithms used to compute
these components are explained in Sections 5 and 6, while the
soundness proof of our inference rules is given in Appendix
A of the extended version of this paper [51].

We demonstrate how these rules can be applied to the
2-qubit GHZ state circuit from Example 2.1 as follows. The
program is H, (q0); CNOT,, (qo0, q1) and the input state in the
density matrix form is p = |00) (00|. We first compute the
constrained diamond norm €; = ||'7-(w — H]l(p,0) and apply
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the GATE rule to obtain:

(p,0) F ﬁw(%) < €.

Then, we use the tensor network approximator to compute
TN(p,H(qo)), whose result is (4, §). Using such a predicate,

we compute the (p,d)-diamond norm €; = ||CNOT ,, —
CNOT ||(p,5)- Applying the GATE rule again, we obtain:

(/3, 5) F CNOTw(qO, q1) < 6.
Finally, we apply the SEQ rule:

(p,0) + (ﬁw(QO);CNOTw(QO, Ch)) <€ +e

which gives the error bound of the noisy program, €; + €.

5 OQuantum State Approximation

Gleipnir uses tensor networks to adaptively compute the
constraints of the input quantum state using an approximate
state p and its distance § from the ideal state p. We provide
the background on tensor networks in Section 5.1, present
how we use tensor networks to approximate quantum states
in Section 5.2, and give examples in Section 5.3.

5.1 Tensor Network

Tensors. Tensors describe the multilinear relationship be-
tween sets of objects in vector spaces, and can be represented
by multi-dimensional arrays. The rank of a tensor indicates
the dimensionality of its array representation: vectors have
rank 1, matrices rank 2, and superoperators rank 4 (since
they operate over rank 2 density matrices).

Contraction. Tensor contraction generalizes vector inner
products and matrix multiplication. A contraction between
two tensors specifies an index for each tensor, sums over
these indices, and produces a new tensor. The two indices
used to perform contraction must have the same range to
be contracted together. The contraction of two tensors with
ranks a and b will have rank a + b — 2; for example, if we
contract the first index in 3-tensor A and the second index
in 2-tensor B, the output will be a 3-tensor:

(Axip B)[jkI] = > Altjk]B[1t].
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—» '\ A&

a) Vector b) Matrix c) Superoperator
perop
(rank 1) (rank 2) (rank 4)

Figure 6. Tensor network representation of various tensors.

{45 - <4

(a) Matrix multiplication AB (b) Outer product [¢/) (|

Figure 7. Tensor network representation for two matrix operations.
In general, tensor contractions are represented by linking edges,
and tensor products by juxtaposition.

Tensor product. The tensor product is calculated like an
outer product; if two tensors have ranks a and b respectively,
their tensor product is a rank a + b tensor. For example, the
tensor product of 2-tensor A and 2-tensor B is a 4-tensor:

(A ® B)[ijkl] = A[ij]1B[kI].

Tensor networks. Tensor network (TN) representation is
a graphical calculus for reasoning about tensors, with an
intuitive representation of various quantum objects. Intro-
duced in the 1970s by Penrose [36], this notation is used in
quantum information theory [11, 46, 55-57, 63], as well as
in other fields such as machine learning [10, 48].

As depicted in Figure 6, tensor networks consist of nodes
and edges’. Each node represents a tensor, and each edge
out of the node represents an index of the tensor. As illus-
trated in Figure 7, the resulting network will itself constitute
a whole tensor, with each open-ended edge representing one
index for the final tensor. The graphical representation of a
quantum program can be directly interpreted as a tensor net-
work. For example, the 2-qubit GHZ state circuit in Figure 2
can be represented by a tensor network in Figure 8.

Transforming tensor networks. To speed up the evalua-
tion of a large tensor network, we can apply reduction rules
to transform and simplify the network structure. In Table 1,
we summarize some common reduction rules we use. The
GATE CONTRACTION rule transforms a vector i and a matrix
U connected to it into a new vector ¢ that is the product of U
and 1. The SUPEROPERATOR APPLICATION rule transforms a
superoperator & and a matrix p connected to it into a matrix
p that represents the application of the superoperator & to
p. The SINGULAR VALUE DEcOMPOSITION (SVD) rule trans-
forms a matrix M into the product of three matrices: U, %,
and V', where ¥ is a diagonal matrix whose diagonal entries
are the singular values o7, . . ., o, of M. This special matrix
% = 2;0;jlj) (jl is graphically represented by a diamond.
By dropping small singular values in the diagonal matrix

ZNote that the shape of the nodes does not have any mathematical meaning;
they are merely used to distinguish different types of tensors.
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(a) Quantum circuit.

0 [H] —

:Oi - CNOT|

(b) Tensor network.

Figure 8. The GHZ state, represented as a quantum circuit (a) and
a tensor network (b). When we evaluate the output of the circuit,
we can see that the input state |00) (enclosed in the dashed blue
box), the H gate H ® I (enclosed in the dashed red box), and the
CNOT gate (enclosed in the dashed brown box). When evaluating
the tensor network in (b), the output is the same as the program

output, (]00) + |11) )/\/§

3, we can obtain a simpler tensor network which closely
approximates the original one.

5.2 Approximate Quantum States

In this section, we describe our tensor network approxima-
tor algorithm computing TN(p, P) = (p, ), such that the
trace distance between our approximation p and the perfect
output [[P]](p) satisfies T(p, [[P]l(p)) < 8. At each stage
of the algorithm, we use Matrix Product State (MPS) tensor
networks [37] to approximate quantum states. This class
of tensor networks uses 2n matrices to represent 2”-length
vectors, greatly reducing the computational cost. MPS tensor
networks take a size w as an argument, which determines the
space of representable states. When w is not large enough to
represent all possible quantum states, the MPS is an approxi-
mate quantum state whose approximation bound depends
on w. The MPS representation with size w of a quantum
state i/ (represented as a vector) is:

1Y) mps == Z Aiil)AéiZ) AT iy - i),

i15e0nin

where Aiil) is a row vector of dimension w, Aém, . ,Ar(li_"l‘l)
are w X w matrices, and A,(f") is a column vector of dimension
w. We use i; to represent the value of a basis |ijiy - - - i,) at
position j, which can be 0 or 1. For example, to represent the
3-qubit state (|000) +[010) +|001) ) /3 in MPS, we must find
matrices Ago),Agl),Ago),Agl),Ago),Agl) such that
1
3’
while A% A A = 0 for all (iy, iy, is) # (0,0,0), (0, 1,0),
or (0,0,1).

Ago) and Al.(l) can be taken together as a 3-tensor A; (A;
and A, are 2-tensors) where the superscript is taken as the
third index besides the two indices of the matrix. Overall,

(0) 4(0) 4(0) _ 4(0) 4(1) 4(0) _ 4(0) 4(0) (1) _
Al AZ A3 _AI AZ A3 _Al AZ A3 -
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Table 1. Examples of tensor network transformations for basic quantum operations.

GATE SUPEROPERATOR SINGULAR VALUE
CONTRACTION APPLICATION DECOMPOSITION
Tensor network w - - -
Dirac notation Uly) =|¢) Elp)=p M =3 0;U|j) Gl vt
Rank 1 2 2
i1 iy i3 i is ig |

Figure 9. The MPS representation of six qubits.

the MPS representation can be seen as a tensor network, as
shown in Figure 9. Ay, ..., A, are linked together in a line,
while iy, ..., i, are open wires.

Our approximation algorithm starts by initializing the
MPS to the input state in vector form. Then, for each gate
of the quantum program, we apply it to the MPS to get the
intermediate state at this step and compute the distance
between MPS and the ideal state. Since MPS only needs to
maintain 2n tensors, i.e., Aio), Ail), A;o), Agl), cee Aflo), Aill),
this procedure can be performed efficiently with polynomial
running time. After applying all quantum gates, we obtain
an MPS that approximates the output state of the quantum
program, as well as an approximation bound by summing
together all accumulated approximation errors incurred by
the approximation process. Our approximation algorithm
consists of the following stages.

Initialization. Let |s;s; - - -s,) be the input state for an n-
qubit quantum circuit. For all k € [1, n], we initialize A](:" ) =

E and A/(Cl_sk) = 0, where E is the matrix that E;; = 1 and
Eij=0foralli# 1lorj#+ 1.

Applying 1-qubit gates. Applying a 1-qubit gate on an
MPS always results in an MPS and thus does not incur any
approximation error. For a single-qubit gate G on qubit i, we
update the tensor A; to A; as follows:

() _ )
AP = 3 Gl
s’e{0,1}

fors=0or1.

In the tensor network representation, such application amounts
to contracting the tensor for the gate with A; (see Figure 10).

Applying 2-qubit gates. If we are applying a 2-qubit gate
G on two adjacent qubits i and i + 1, we only need to modify
A; and A;11. We first contract A; and A;4; to get a 2w X 2w
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Figure 10. Applying a 1-qubit gate to an MPS. We contract the
MPS node for the qubit and the gate (in the dashed box), resulting
in another 3-tensor MPS node.

matrix M:

My,
My

© 4] = [Moo
[Ai+1 Ai+1] - [Mm
Then, we apply the 2-qubit gate to it:

M;; = Z GijkiMg.
]

|-

We then need to decompose this new matrix M’ back into two
tensors. We first apply the SINGULAR VALUE DECOMPOSITION
rule on the contracted matrix:

M =UzVT.

When w is not big enough to represent all possible quan-
tum states, M’ introduces approximation errors and may
not be a contraction of two tensors. Thus, we truncate the
lower half of the singular values in ¥, enabling the tensor
decomposition while reducing the error:

>0
<[
Therefore, we arrive at a new MPS whose new tensors Al’.
and A;,, are calculated as follows:

k

AW

13

(0 (1
=U, [Am Ay

|-,

where * denotes the part that we truncate. After truncation,
we renormalize the state to a norm-1 vector.

Figure 11 shows the above procedure in tensor network
form by (1) first applying GATE CONTRACTING rule for A;,
Aj+1 and G, (2) using SINGULAR VALUE DECOMPOSITION rule
to decompose the contracted tensor, (3) truncating the inter-
nal edge to width w, and finally (4) calculating the updated A;

and A], . If we want to apply a 2-qubit gate to non-adjacent
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iy O @®-O
—

Figure 11. Applying a 2-qubit gate on two adjacent qubits to the MPS, via (i) node contraction, (ii) singular value decomposition, and (iii)

singular value truncation with re-normalization.

A — Aty
B)— BBy —(By—(By)—B)

Figure 12. Tensor network representation of the inner product of
two MPSs. An open wire of one MPS is linked with an open wire

of another, which denotes the summation over iy, ..., i,.

qubits, we add swap gates to move the two qubits together
before applying the gate to the now adjacent pair of qubits.

Bounding approximation errors. When applying 2-qubit
gates, we compute an MPS to approximate the gate applica-
tion. Each time we do so, we must bound the error due to
this approximation. Since the truncated values themselves
comprise an MPS state, we may determine the error by sim-
ply calculating the trace distance between the states before
and after truncation.

The trace distance of two MPS states can be calculated
from the inner product of these two MPS:

§ =19 (¢l = 1) W, = 2v1 = 1(gly) I2.

The inner product of two states |/) and |¢) (represented
using A and B in their MPS forms) is defined as follows:

Wip)= 3 (A Al B B ).
itymin
Figure 12 shows its tensor network graphical representation.
In our approximation algorithm, we can iteratively calcu-
late from qubit 1 to qubit n the distance by first determining:

Dy = A”BOT 4 AW BT,
Then, we repeatedly apply tensors to the rest of qubits:
D; =A"D,B"" + A"D, BT,

leading us to the final result of D, = (|¢). In the tensor
network graphical representation, this algorithm is a left-to-
right contraction, as shown in Figure 13.

Given the calculated distance of each step, we must com-
bine them to obtain the overall approximation error. For some
arbitrary quantum program with ¢ 2-qubit gates, let the trun-
cation errors be 8y, 9, . . ., §; when applying the 2-qubit gates
g1, 9a» - s, the final approximation error is § = 3!, ;.

To see why, we consider the approximation of one 2-qubit
gate. Let |i/) denote some quantum state and |i}) its approxi-
mation with bounded error §y. After applying a 2-qubit gate
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G to the approximate MPS state, we obtain the truncated
result |¢) with bounded error §;. We now have:

IG1Y) = 19 1| < IIG 1) = GIY I + [IG [§) = [¢) |l

=) = 1) I + IG1) — 1) |

= 50 + 01, (1)

where [[[}) =) | = [[ 1) (¢] = $) (4] [l1- The inequality

holds because of the triangular inequality of quantum state
distance and the fact that G is unitary, thus preserving the
trace norm. Repeating this for each step, we know that the
total approximation error is bounded by the sum of all ap-
proximation errors.

Supporting branches. Due to the deferred measurement
principle [34], measurements can always be delayed to the
end of the program. Thus, in-program measurements are not
required for quantum program error analysis. Our approach
can also directly support if statements by calculating an
MPS for each branch. When we apply the measurement on
the i-th qubit, we obtain the collapsed states by simply set-
ting A;O) or A;l) to the zero matrix, obtaining MPS tensor
networks corresponding to measurements of 0 and 1. Using
these states, we continue to evaluate the subsequent MPS
in each branch separately. We cannot merge the measured
states once they have diverged, so we must duplicate any
code sequenced after the branch and compute the approx-
imated state separately; the number of intermediate MPS
representations we must compute is thus the number of
branches. The overall approximation error is taken to be
the sum of approximation errors incurred on all branches.
Note that the number of branches may be exponential to the
number of if statements.

Complexity analysis. The running time of all the opera-
tions above scales polynomially with respect to the MPS size
w, number of qubits n, number of branches b, and number
of gates m in the program. To be precise, applying a 1-qubit
gate only requires one matrix addition with a O(w?) time
complexity. Applying a 2-qubit gate requires matrix multipli-
cation and SVD with a O(w?) time complexity. Computing
inner product of two MPS (e.g. for contraction) requires O(n)
of matrix multiplications, incurring an overall running time
of O(nw?). Since the algorithm scans all m gates in the pro-
gram, the overall time complexity is O(bmnw?).
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RS oS

Figure 13. Contraction of the inner product of two MPS. We first contract A; and By to get Dy. Then contract D1, Az and By to Dy. And
then D5, A3 and B3 to Ds. Repeating this process will result in a single tensor node Dy, i.e., the final answer.

Although a perfect approximation (i.e., a full simulation)
requires an MPS size that scales exponentially with respect to
the number of qubits (i.e., 2" size when there are n qubits), our
approximation algorithm allows Gleipnir to be configured
with smaller MPS sizes, sacrificing some precision in favor
of efficiency and enabling its practical use for real-world
quantum programs.

Correctness. From the quantum program semantics de-
fined in Figure 3, we know that we can compute the output
state by applying all the program’s gates in sequence. Fol-
lowing Equation (1), we know that the total error bound for
our approximation algorithm is bounded by the sum of each
step’s bound. Thus, we can conclude that our algorithm cor-
rectly approximates the output state and correctly bounds
the approximation error in doing so.

Theorem 5.1. Let the output of our approximation algorithm
be (p,8) = TN(p, P). The trace distance between the approxi-
mation and perfect output is bound by §:

|tPno) - wPnco)|, < 6.

5.3 Example: GHZ Circuit

We revisit the GHZ circuit in Figure 2 to walk through how
we approximate quantum states with MPS tensor networks.
The same technique can be applied to larger and more com-
plex quantum circuits, discussed in Section 7.

Approximation using 2-wide MPS. Since the program
only contains two qubits, an MPS with size w = 2 can already
perfectly represent all possible quantum states such that no
approximation error will be introduced. Assume the input
state is |00). First, we initialize all the tensors based on the
input state |00):

A9 = [1,0], AY = [0,0], AL = [1,0]7, A" = [0,0]".
Then, we apply the first H gate to qubit 1, changing only

Aio) and A(l):

[1,01/v2, AW =[1,0]/V2.

To apply the CNOT gate on qubit 1 and 2, we first compute
matrix M and M":

1/V2 0]
1/v2 o]’

A -

el e

0 12|
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We then decompose M’ using SVD,

N ]

Because there are just 2 non-zero singular values, we do
not need to drop singular values with 2-wide MPS networks
and can compute the new MPS as follows:

A =[1,0], AWM = 1o, 1],
ALY = [1/v2,017, A =10,1/v2]".
[00)+]11)

We can see that the output will be p = and § =0,

since A(O)A(O) Ail)Agl) = 1/\/5 and other values of i; and

i result 0.

Approximation using 1-wide MPS. To show how we cal-
culate the approximation error, we use the simplest form of

MPS with size w = 1, while each Aij ) becomes a number.
We first initialize the MPS to represent |00):

© _1 AW Z g A© 1 AW =
AV =1, a0 =0, A" =1, 40" =0

Then, we apply the H gate to qubit 1:
=1/V2, AL = 1/V2, A" =1, AP =0
After that, we apply the CNOT gate and compute M and M”:

_[1/\/5 0] M,_’l/w/i 0
“l1/v2 o’ YA

We decompose M’ using SVD:

U:sz[l 0}, 3 =

(0)
Al

1/V2 o
0 1/ \/5 '
Since there are 2 non-zero singular values, we have to drop

the lower half with 1-wide MPS tensor networks. Finally, we
obtain A} and A:

0 1

AP =1, a0 =0, AY =1/v2, A = 0.

We renormalize the MPS:

AV =1, AW =0, A” =1, A} = 0.

Thus, the output approximate state is |00).
To calculate the approximation error bound, we represent
the part we drop as an MPS B:

B =0, BY =1, B =0, BY = V2.
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Let the unnormalized final state be |A) and the dropped state
be |B). Then, the final output is V2 |A) and the ideal output
is |A) + |B). The trace distance between the state is

5= 2\/1 —1(V2AlA+BY | = V2.
Therefore, the final output will be p = |00) (00| and § = V2.

6 Computing the (p, §)-Diamond Norm

Section 4 introduces our quantum error logic using the (, §)-
diamond norm, while treating its computation algorithm as
a black box. In this section, we describe how to efficiently
calculate the (4, §)-diamond norm given (p, 5, U, E), where
U and & are the perfect and the noisy superoperators re-
spectively.

Constrained diamond norm. In (p, §)-diamond norm, the
input state pj, is constrained by

15 = pinll < 6.

We first compute the local density matrix (defined later in
this section) p’ of p. Then, to compute the (p, §)-diamond
norm, we extend the result of Watrous [61] by adding the
following constraint:

tr(p’p) = llp"llr (llp’llr = ),

where p denotes the local density matrix of py,. Thus, (4, d)-
diamond norm can be computed by the following semi-
definite program(SDP):

Theorem 6.1. The (p, 5)-diamond norm ||®||(5) can be solved
by the semi-definite program(SDP) in Equation (2).
tr(J(@)W)
I®p>W

tr(p’p) = |lp’lle(llp’llF = &)
W >0 p>0 tr(p) =1,

maximize
subject to

)

where ] is the Choi-Jamiolkowski isomorphism [8] and ® =
Uu-_&.

Proof. Given (p, ), we know that ||p — pi|l1 < J, where
Pin is the real input state. Let p’ and p be the local density
operator of p and pj,. Because partial trace can only decrease
the trace norm, we know that

llp” = plli < 1Ip = pinll < 6.

For a matrix p, let ||p||r be the Frobenius norm which is
the square root of the sum of the squares of all elements
in a matrix. Because ||p|lr < ||p|: for all p, we know that
llp” = pllr < 8. Then, we have

tr(p’p) = tr(p?) +tr((p’ — p)p)
= llp’llz +tx((p" = p)p)
= "7 = 1P’ lIEllp” - plir
> 1o’ le(llp’llF = 9),

58

PLDI ’21, June 20-25, 2021, Virtual, Canada

where the third step holds because of the Cauchy-Schwarz
inequality.

Because the (Q, A)-diamond norm can be solved by the
following SDP by adding a constraint tr(Qp) > A [24]:

maximize tr(J(®)W)
subjectto I®p>W
tr(Qp) > 1

W20, p>0 tr(p) =1.

(p, 8)-diamond norm can thus be calculated by the SDP (2).
O

Let the solved, optimal value of SDP in Equation (2) be €.
We conclude that the (p, §)-diamond norm must be bounded
by €, ie.,

1Pl (5,5) < €.

SDP size. The size of the SDP in Equation (2) is exponential
with respect to the maximum number of quantum gates’
input qubits. Since near-term (NISQ) quantum computers
are unlikely to support quantum gates with greater than
two input qubits, we can treat the size of the SDP problem
as a constant, for the purposes of discussing its running
time. Because the running time of solving an SDP scales
polynomially with the size of the SDP, the running time to
calculate (p, §)-diamond norm can be seen as a constant.

Computing local density matrix. The local density ma-
trix (also known as reduced density matrix [34]) represents
the local information of a quantum state. It is defined using
a partial trace on the (global) density for the part of the state
we want to observe. For example, the local density operator

£ |00>+2|11> : 1(1 1

on the first qubit o is 3(11), meaning that the first

qubit of the state is half |0) and half |1).

In Equation (2), we need to compute the local density
matrix p’ of p about the qubit(s) that the noise represented
by ® acts on. p is represented by an MPS. The calculation of
a local density operator of an MPS works similarly to how
we calculate inner products, except the wire iy where k is a
qubit that we want to observe.

7 Evaluation

This section evaluates Gleipnir on a set of realistic near-
term quantum programs. We compare the bounds given by
Gleipnir to the bounds given by other methods, as well as
the error we experimentally measured from an IBM’s real
quantum device. All approximations and full simulations are
performed on an Ubuntu 18.04 server with an Intel Xeon
W-2175 (28 cores @ 4.3 GHz), 62 GB memory, and a 512 GB
Intel SSD Pro 600p.

7.1 Evaluating the Computed Error Bounds

We evaluated Gleipnir on several important quantum pro-
grams, under a sample noise model containing the most
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Table 2. Experimental results of Gleipnir (w = 128) and the baseline on different quantum programs, showing the bounds given by Gleipnir’s
(p, §)-diamond norm, the (Q, A)-diamond norm with full simulation, and the worst case bound given by unconstrained diamond norm.
Experiments time out if they run for longer than 24 hours. Note that the worst case bound is directly proportional to the number of gates.

Qubit  Gate | Gleipnir bound Running LOR [24] with Running Worst-case
Benchmark | number count (x107%) time (s) | full simulator (x10™%)  time (s) | bound (x107%)
QAOA_line_10 10 27 0.05 2.77 0.05 215.2 27
Isingmodel1@ 10 480 335.6 31.6 335.6 4701.8 480
QAOARandom2@ 20 160 136.6 19.8 - (timed out) 160
QAOA4reg_20 20 160 138.8 12.5 - (timed out) 160
QAOA4reg_30 30 240 207.0 25.8 - (timed out) 240
Isingmodel45 45 2265 1739.4 338.0 - (timed out) 2265
QAOA50Q 50 399 344.1 58.7 - (timed out) 399
QAOA75 75 597 517.2 113.7 - (timed out) 597
QAOA100 100 677 576.7 191.9 - (timed out) 677
common type of quantum noises. We compared the bounds - 350 4
produced by Gleipnir with the LQR’s (Q, 1)-diamond norm 22001 300
with full simulation and the worse-case bounds given by the T 51001 s
unconstrained diamond norm. % -
= | 200y
Noise model. In our experiments, our quantum circuits are § 00 =
) ; o 3 150 8
configured such that each noisy 1-qubit gate has a bit flip 2 9001 2
(X) with probability p = 107*: g 100
®(p) = (1-p)p +pXpX. o 0
Each 2-qubit gate also has a bit flip on its first qubit. T3 i e 1o % e s
MPS size

Framework configuration. For the approximator, we can
adjust the size of the MPS network, depending on available
computational resources; the larger the size, the tighter error
bound. In all experiments, we use an MPS of size 128.

Baseline. To evaluate the error bounds given by Gleip-
nir, we first compared them with the worst-case bounds
calculated using the unconstrained diamond norm (see Sec-
tion 2.3). For each noisy quantum gate, we compute its un-
constrained diamond norm distance to the perfect gate and
obtain the worst-case bound by summing all unconstrained
diamond norms. The unconstrained diamond norm distance
of a bit-flipped gate and a perfect gate is given by:

[e-1Ill. = [[(pXoX+(1-p))—Il

pliX o X =Tl
= p’

where X o X denotes the function that maps p to X pX. There-
fore, the total noise is bounded by np, where n is the number
of noisy gates, due to additivity of diamond norms. Because
every gate has a noise, the worst case bound produced by
unconstrained diamond norm is simply proportional to the
number of gates in the program.

We also compare our error bound with what we obtain
from LQR [24] using a full quantum program simulator to
generate best quantum predicate. This approach’s running
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Figure 14. The error bounds and runtimes of Gleipnir on the pro-
gram Isingmodel45 with different MPS sizes.

time is exponential to the number of qubits and times out
(runs for longer than 24 hours) on programs with > 20 qubits.

Programs. We analyzed two classes of quantum programs
that are expected to be most useful in the near-term, namely:

e The Quantum Approximate Optimization Algorithm
(QAOA) [12] that can be used to solve combinatorial
optimization problems. We use it to find the max-cut
for various graphs with qubit sizes from 10 to 100.

o The Ising model [44]—a thermodynamic model for mag-
nets widely used in quantum mechanics. We run the
Ising model with sizes 10 and 45.

Evaluation. Table 2 presents the evaluation results. We can
see that Gleipnir’s bounds are 15% ~ 30% tighter than what
the unconstrained diamond norm gives, on large quantum
circuits with qubit sizes > 20. On small qubit-size circuits,
our bound is as strong as the exponential-time method based
on full simulation.

We also evaluated how MPS size impacts the performance
of Gleipnir. As we can see for the Isingmodel45 program
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Figure 15. The coupling map of the IBM Boeblingen (left) and Lima
(right) quantum computer, where each node represents a qubit.
Only qubit pairs with a connecting edge can be used to implement
a 2-qubit gate.

|0) 07 Ig;
0) 469—? Igi D
|0) S |0) S

Figure 16. The GHZ-3 circuit (left) and the GHZ-5 circuit (right).

(see Figure 14), larger MPS sizes result in tighter error bounds,
at the cost of longer running times, with marginal returns
beyond a certain size. We found that MPS networks with
a size of 128 performed best for our candidate programs,
though in general, this parameter can be adjusted according
to precision requirements and the availability of computa-
tional resources. As the MPS size grows, floating point errors
become more significant, so higher precision representations
are necessary for larger MPS sizes. Note that one cannot fea-
sibly compute the precise error bound of the Isingmodel45
program, since that requires computing the 2% x 2% matrix
representation of the program’s output.

7.2 Evaluating the Quantum Compilation Error
Mitigation

To demonstrate that Gleipnir can be used to evaluate the
error mitigation performance of quantum compilers for real
quantum computers today, we designed an experiment based
on the noise-adaptive qubit mapping problem [5, 33]. When
executing a quantum program on a real quantum computer,
a quantum compiler must decide which physical qubit each
logical qubit should be mapped to, in accordance with the
quantum computer’s coupling map (e.g., Figure 15). Since
quantum devices do not have uniform noise across qubits, a
quantum compiler’s mapping protocol should aim to map
qubits such that the quantum program is executed with as
little noise as possible.

Experiment design. We compared three different qubit
mappings of the 3-qubit GHZ (GHZ-3) circuit and the 5-qubit
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Table 3. Error bounds generated by Gleipnir on different mappings
compared with the errors we measured experimentally using the
IBM Boeblingen 20-qubit device.

Circuit | Mapping | Gleipnir bound Measured error
GHZ-3 0-1-2 0.211 0.160
GHZ-3 1-2-3 0.128 0.073
GHZ-3 2-3-4 0.162 0.092
GHZ-5 | 0-1-2-3-4 0.471 0.176
GHZ-5 | 2-1-0-3-4 0.449 0.171

GHZ circuit (GHZ-5) (see Figure 16): g0 —q1 — g2, 91 — 92 — q3,
and g2 —q3—q4 for GHZ-3,and qo—q1—q2—q3—qs and g2 —q1 —
qo — q3 — q4 for GHZ-5, where g; represents the ith physical
qubit. As the baseline, we ran our circuit on a real quantum
computer with each qubit mapping and measured the output
to obtain a classical probability distribution. We computed
the measured error by taking the statistical distance of this
distribution from the distribution of the ideal output state
(1000Y+]111))/v2 and (]00000)+|11111))/V?2. We then used
Gleipnir to compute the noise bound for each mapping, based
on our quantum computer’s noise model. Because the trace
distance represents the maximum possible statistical distance
of any measurement on two quantum states (see Section 2.3),
the statistical distance we computed should be bounded by
the trace distance computed by Gleipnir.

Experiment setup. We conducted our experiment using
the IBM Quantum Experience[25] platform and ran our quan-
tum programs with the IBM Boeblingen 20-qubit device (see
Figure 15). Because Gleipnir needs a noise model to com-
pute its error bound, we constructed a model for the device
using publicly available data from IBM [25] in addition to
measurements from tests we ran on the device.

Results. Our experimental results are shown in Table 3. We
can see that Gleipnir’s bounds are consistent with the real
noise levels and successfully predict the ranking of noise
levels for different mappings. As for GHZ-3,the 1 — 2 — 3
mapping has the least noise, while 0—1—2 has the most. Gleip-
nir’s bounds are also consistent with the real noise levels
for GHZ-5. This illustrates how Gleipnir can be used to help
guide the design of noise-adaptive mapping protocols—users
can run Gleipnir with different mappings and choose the
best mapping according to error bounds given by Gleipnir. In
contrast, the worst case bounds given by the unconstrained
diamond norm are always 1 for all five different mappings,
which is not helpful for determining the best mapping.

8 Related Work

Error bounding quantum programs. Robust projective
quantum Hoare logic [66] is an extension of Quantum Hoare
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Logic that supports error bounding using the worst-case dia-
mond norm. In contrast, Gleipnir uses the more fine-grained
(p, 6)—diamond norm to provide tighter error bounding.

LOR [24] is a framework for formally reasoning about
quantum program errors, using the (Q, 1)-diamond norm as
its error metric. LQR supports the reasoning about quantum
programs with more advanced quantum computing features,
such as quantum loops. However, LQR does not specify any
practical method for obtaining non-trivial quantum predi-
cates. In contrast, Gleipnir, for the first time, introduces a
practical and adaptive method to compute quantum program
predicates, i.e., (9, 0) predicates, using the TN algorithm.

As we have shown in Section 6, our (p, §) predicates can
be reduced to LQR’s (Q, A) predicates. In other words, our
quantum error logic can be understood as a refined imple-
mentation of LQR. (p, ) predicates computed using Gleipnir
can be used to obtain non-trivial postconditions for the quan-
tum Hoare triples required by LQR’s sequence rule. By the
soundness of our TN algorithm, the computed predicates
are guaranteed to be valid postconditions.

Error simulation. Contemporary error simulation meth-
ods can be roughly divided into two classes: (1) direct simula-
tion methods based on solving Schrédinger’s equation or the
master equation [30]—neither of which scales beyond a few
qubits [35]—and (2) approximate methods, based on either
Clifford circuit approximation [6, 18, 19, 29] or classical sam-
pling methods with Monte-Carlo simulations [31, 45, 52, 54].
These methods are efficient but only work on specific classes
of quantum circuits such as circuits and noises represented
by positive Wigner functions or Clifford gates. In contrast,
Gleipnir can be applied to general quantum circuits and
scales well beyond 20 qubits.

Resource estimation beyond error. Quantum compilers
such as Qiskit Terra [2] and ScaffCC [26] perform entangle-
ment analysis for quantum programs. The QuRE [50] tool-
box provides coarse-grained resource estimation for fault-
tolerant implementations of quantum algorithms. On the
theoretical side, quantum resource theories also consider the
estimation of coherence [49, 62], entanglement [38, 39], and
magic state stability [23, 53, 60]. However, these frameworks
directly use the matrix representation of quantum states and
do not work for quantum programs with more than 20 qubits
that can be handled by Gleipnir.

Verification of quantum compilation. CertiQ [47] is an
automated framework to verify that the quantum compiler
passes and optimizations preseve the semantics of quan-
tum circuits. VOQC [21] is a formally verified optimizer
for quantum circuits. These works focus on quantum com-
pilation correctness and do not consider noise models or
error-mitigation performance. In contrast, Gleipnir focuses
on the error anaylysis of quantum programs and can be used
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to evaluate the error-mitigation performance in quantum
compilations.

Tensor network quantum approximation. MPS and gen-
eral tensor networks are mostly used in the exact evaluation
of quantum programs. The only application of MPS for ap-
proximating quantum systems is the density matrix renor-
malization group (DMRG) method in quantum chemistry
[20]. Although both DMRG and Gleipnir use MPS to repre-
sent approximate quantum states, the approximation meth-
ods are different. DMRG can only be used to simulate quan-
tum many-body systems, while Gleipnir’s approach works
for general programs and can provide the error bounds of
the approximate states, which are used in the quantum error
logic to compute the error bounds of quantum programs.

Multi-dimensional tensor networks such as PEPS [27] and
MERA [15] may model quantum states more precisely than
MPS. However, they are computationally impractical. Con-
tracting higher-dimensional tensor networks involves ten-
sors with orders greater than four, which are prohibitively
expensive to manipulate.

9 Conclusion

We have presented Gleipnir, a methodology for computing
verified error bounds of quantum programs and evaluat-
ing the error mitigation performance of quantum compiler
transformations. Our experimental results show that Gleip-
nir provides tighter error bounds for quantum circuits with
qubits ranging from 10 to 100, compared with the worst case
bound, and the generated error bounds are consistent with
the noise-levels measured using real quantum devices.
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