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Abstract—Quantum computing promises speedup of classical
algorithms in the long term. Current hardware is unable to
support this goal and programs must be efficiently compiled to
use of the devices through reduction of qubits used, gate count
and circuit duration.

Many quantum systems have access to higher levels, expanding
the computational space for a device. We develop higher level
qudit communication circuits, compilation pipelines, and circuits
that take advantage of this extra space by temporarily pushing
qudits into these higher levels. We show how these methods
are able to more efficiently use the device, and where they see
diminishing returns.
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I. INTRODUCTION

Quantum computing in the long-term promises speedup over

classical algorithms for important algorithms like unordered

search and integer factorization [1] [2]. Unfortunately, we

are many years away from a large-scale implementation of

either of these algorithms because current quantum computers

have limited number available hardware qubits [3]–[6], but

large numbers are required to produce high quality error-

correct logical qubits. In the near-term, however, there are

many promising applications, like variational algorithms such

as VQE and QAOA [7] [8], which aim to solve classical

optimization problems using the quantum computer as a sort of

accelerator in a classical-quantum optimization loop. For these

types of algorithms, the size of the optimization problem we

can effectively execute is bounded by device error rates, qubit

coherence times, and ultimately by the number of physically

available devices [9].

In order to extend the boundary of what is currently com-

putable, optimizations aim to minimize gate counts, circuit

duration, or physical requirements. One such optimization has

been the use of multivalued quantum logic. Many quantum

systems naturally have access to infinitely many discreet

levels beyond the usual binary qubit levels [10]. At face
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value, rewriting quantum algorithms in a higher radix confers

the same constant advantage in terms of gate requirements

and expected circuit duration as it would classically, where

advantage is due strictly due to space compression. In the

long term, this approach may not be enormously advantageous

as the space savings may not outweigh the increase in error,

especially when the number of available devices increases

significantly. In the near-term, space savings are critical.

Alternative approaches, such as the use of intermediate
qudits [11], rely on a mixed radix strategy where a smaller

number of qudits are used, or they are used only for a short

amount of time. While specialized in its use, the expected

advantages are strong, for example in the generalized Toffoli

decomposition (also the subject of this work) using qutrits

(3 level quantum systems) temporarily enables a logarithmic

depth (approximately circuit duration) decomposition with

linear number of two-qudit gates and requires no additional

ancilla space, scratch bits. The best known qubit-only circuits

can obtain logarithmic depth with linear gate counts [12].

These circuits require linear amounts of additional space which

makes efficient implementations infeasible on error-limited

devices and bounding the program size on available hardware.

While the advantage conferred from clever circuit design

is clear, these prior works omit two critical considerations

from their constructions. First, these circuits are not com-

piled to any real device. While some devices promise all-

to-all connectivity, most devices have limited connections

between devices meaning programs must have movement

operations inserted during compilation. This introduces large

amounts of communication overhead, on average, which must

be minimized [13]. Furthermore, swapping states different

dimensional qudits requires tailored communication operations

which get more expensive as the dimension of the inputs

increases. Second, qubit gates and qudit gates are not created

equal. From a circuit point of view, they take up one unit of

time each, but when implemented on device this may not be

the case. To execute gates on hardware, analog pulse sequences

must be generated, for example via a process called optimal

control. The duration of these pulse sequences determines the

length of a given gates. In some cases, converging to a high

quality pulse sequence of minimal length is difficult [14], [15].

In this work, we consider a straight-forward compilation of

intermediate qudit circuits to connectivity-limited supercon-
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Qudit Levels Interaction Time (ns) Swap Time (ns)

1 30 -
2 50 -
3 50 -
4 50 -
0, 1* 150 600
0, 2 500 1200
0, 3 500 1500
0, 4 600 1800
1, 1 500 900
1, 2 500 1200
1, 3 500 1500
1, 4∗ 600 1800
2, 2∗ 675 2950
2, 3 850 5000
2, 4∗ 1025 7050
3, 3 850 5000
3, 4∗ 1025 7050
4, 4∗ 1200 7500

TABLE I: Times used for various gates across different levels

of qudits. An asterisk indicates an interpolated value.

ducting devices. To do so, we introduce swap gates designed

explicitly to communicate qudits of different dimensions, for

example qubits with ququarts (4 level systems). Second, we

consider realistic gate times obtained via optimal control for

superconducting based quantum architectures to better study

expected circuit durations beyond circuit depth. Together,

we use these compilation tools to study one representative

implementation of the generalized Toffoli using different levels

of intermediate qudits.

Our contributions are the following:

• Detail efficient decompositions of SWAP gates between

qudits of different dimensions

• A simple compilation pipeline transforming intermediate

qudit circuits into ones which obey connectivity-limited

hardware constraints

• Introduce intermediate ququart and ququint (5 level sys-

tem) implementations of the generalized Toffoli, a critical

circuit component for many larger algorithms

• Evaluation of the near-term benefits conferred by using

intermediate qudits using realistic gate times for super-

conducting devices.

II. BACKGROUND

Classically, the basic computation unit is the bit which

takes the value of either 0 or 1. In the quantum setting,

we often consider the quantum bit (qubit) the most funda-

mental unit. For many quantum technologies, such as su-

perconducting qubits and trapped ions, the implementation

naturally has access to infinitely many discrete levels which

can be truncated to any dimension d giving qudits which

exist as linear superpositions superpositions of d levels as

|ψ〉 = α0 |0〉+α1 |1〉+ ...+αd−1 |d− 1〉 where if we choose

d = 2 we recover the qubit.

For a variety of reasons, such as increasing number of error

channels which become harder to control, using large numbers

of states is often impractical and instead we should carefully

choose the computing radix based on our target applications

and available hardware. For example, measurement (the pro-

cess of collapsing a quantum state to a classical value) of

high level systems is often challenging for trapped ions and if

possible we should try to measure only qubits.

To manipulate quantum states we apply gates, can be

represented as unitary matrices. For the most part, hardware

supports at most gates on 1 or 2 inputs and all larger gates

must be synthesized directly from smaller ones. To obtain an

answer from the device, the quantum state must be measured,

a non-unitary gate which collapses the state to any of the basis

elements. For this work, we consider a basis set which consists

of the generalized versions of the X+k gates and the Xi,j

gates which are classical permutations of the basis elements.

The first behaves by shifting every basis element’s coefficient

+k modulo the dimension of the system. The second behaves

by swapping the coefficients of the i-th and j-th states and

leaving all other coefficients the same [10]. We also consider

the controlled versions of these gates. In some decompositions

we will use Toffoli-like gates on higher dimensions, which

have constant depth decompositions into 1 and 2 qudit gates.

Current quantum hardware also only supports interactions

between some pairs of devices, usually indicated by the

hardware connectivity graph which for many technologies is

usually sparse. Qudit states can be moved around the device

with special communication operations, often SWAP gates, in

order to manipulate arbitrary pairs of qudits. The number of

communication operations depends both on the connectivity

of the input program and the connectivity of the underlying

hardware.

In order to execute programs on a given hardware target,

input programs must be compiled. This usually amounts to

several key steps: circuit optimization and decomposition,

mapping [16], routing [13], and scheduling [17]. All input

circuits must be decomposed into the hardware’s basis gate

set which is usually kept small in order to reduce calibration

overheads. Efficient decompositions are important to keep gate

counts, depth, and space low. Some decompositions require the

use of additional qudits called ancilla to be efficient which are

scratch bits which begin and end in a known state.

Quantum hardware is error-prone. Gates can fail and qudit

states decay over time, so each of these steps is critical to

program success - we must minimize total operations and total

execution time. Prior work in quantum multivalued logic has

focused primarily on gains obtained from the first of these

steps: circuit optimization. Significant gate count and depth

advantages can be obtained using intermediate qudits which

means that inputs and outputs of an input quantum program are

binary, but are allowed to temporarily access higher level states

during computation. The key observation for the advantage is

localizing the additional space which would normally take the

form of ancilla [11]. For the near- to intermediate- term, space

is severely restricted meaning ancilla counts should be kept

low to maximize the amount of computational space.

While gate counts and circuit depth (the length of the

circuit’s critical path) are often good indicators of a circuit’s

execution time, it is important to consider the physical realiza-
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1 X01 1 2 X02 2 2 X12 2

X01 1 X01 X02 2 X02 X12 2 X12

Fig. 1: The decomposition of a qutrit based SWAP gate.

tion of such gates on hardware. Via a process called optimal
control analog pulse sequences can be produced for a given

unitary. Typically, durations are chosen before hand and the

goal is to produce a high fidelity (quality) implementation of

the gate. Finding optimal pulse durations is challenging, and is

expected to scale quadratically with the dimension of the input

unitary. We consider gate times obtained via optimal control

to accurately account for communication time costs and total

circuit duration. While hardware supports a limited gate set,

optimal control procedures can permit us to synthesize any

unitary. But, we limit this to a small gate set on bounded

numbers of qudits to limit classical overhead. Instead, we can

interpolate to predict other gate durations or produce pulses for

gates in the decomposition. For space reasons we have omitted

a full discussion of optimal control, see [14], [15] for more

information. Gate times for this work are listed in Table I. The

times for qubit-qubit interactions and swaps, and single qubit

interactions are known from gate times from devices such as

IBM’s hardware. Times for qubit-quqart, quqart-ququart, and

single ququart interactions and swaps were found via optimal

control. Gate durations for qutrits and ququints were found via

a linear interpolation between these points. The exact times

for any gate also depends on the exact Hamiltonian used to

model the underlying device or other physical restrictions. The

numbers obtained here are from a standard superconducting

Hamiltonian, as would be found for IBM’s hardware [4].

As seen in table I, as the radix increases, so does the

time required to perform an operation on each qudit. As

the highest energy level increases, the pulses required to

achieved the desired result becomes more complex as it needs

to satisfy more constraints and transitions, elongating the

necessary pulse duration. There are several examples of how

this could be achieved physically [18]. These increased radix

devices also have higher rates of decoherence, but if the circuit

depth and communication this will be balanced by a shorter

circuit duration. While this work does not focus on other

architectures, the presented circuits would be valid, but would

a new set of control experiments [19]. However, we would

expect similar scaling.

III. COMMUNICATION CIRCUITS

Current hardware has limited connectivity and only qudits

which are adjacent on hardware may interact. Communication

operations, called SWAPs, are required to move qudit states

around the device. Here, we present a generalized decompo-

sition of the SWAP gate taking in qudits of any dimension.

The decomposition of the qudit SWAP gate is straightfor-

ward and follows from the qubit-qubit swap. The key idea is

to consider size 2 subsets of the basis elements. For qubits,

this amounts to the subset {0, 1} for which the decomposition

is three 1 controlled X01 flips. For qutrit SWAPs we now

• •
• •

• •
• •
• •

• •
•
•

Fig. 2: A logarithmic

depth Generalized Toffoli

circuit using qubits with

5 controls and 4 ancilla.

1 1

+1 2 2 −1

1 1

+1 2 −1

1 1

+1 2 2 −1

1 1

Fig. 3: A logarithmic

depth Generalized Toffoli

Circuit using qutrits with

7 controls.

have three possible subsets {0, 1}, {0, 2} and {1, 2} and then

perform partial SWAPs as if the qudits exist only in the

subspace spanned by the elements of the subset. Here, we

would do three 1 controlled X01 flips followed by three 2

controlled X02 flips and then three 2 controlled X12 flips.

The control value can be either of the elements of the subset.

From a permutation point of view, a SWAP is decomposed

into O(n2) 2-cycles where n is the dimension of both qudits.

For communication between qudits of different dimensions

the same strategy applies but the scaling is O(nm) where

n,m are the dimensions of the two input qudits. There have

been other approaches for generalized SWAP gates by using

more contrived basis elements [20], [21], but we find these

to be intuitive and match the expected asymptotic scaling that

optimal control predicts for gate durations. Additionally, this

version of the SWAP gate will handle mixed radix inputs. That

is, if one device is in a different radix from the other, the same

set of gates for the higher radix SWAP can be used as would

be used if they were both higher radix devices. In Figure 1

we show a swap gate decomposition for two qutrits.

IV. COMPILATION

Since many qudits will be in an higher level state, we

must use qudit SWAP gates to effectively route the circuit

on a device. Determining a favorable mapping and efficient

routing scheme is important to effectively utilizing a quantum

architecture when executing a quantum circuit [16] [17].

Placing or moving qudits that interact often far apart from

one another on an architecture will require extra swap gates to

move qudits within range of one another. We adapt previously

developed methods used for traditional qubit mapping and

routing to effectively schedule qudit operations on a high

radix device. The methods described here are very similar to

previously developed methods [22]–[25], but have the extra

constraint of attempting to reduce time by utilizing as few

high-radix communication operations as possible rather than

reducing communication overall. An implementation of this

compiler can be found here [26].

We first decompose any gates that are not native to the qudit
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1 1

+1 +1 3 3 −1 −1

1 1

+1 +1 3 −1 −1

1 1

+1 +1 3 3 −1 −1

1 1

Fig. 4: A logarithmic depth Generalized Toffoli Circuit

using ququarts with 7 controls.

1 1

+1 +1 +1 3 3 −1 −1 −1

1 1

1 1

+1 +1 +1 3 −1 −1 −1

1 1

+1 +1 +1 3 3 −1 −1 −1

1 1

1 1

1 1

+1 +1 +1 3 3 −1 −1 −1

1 1

1 1

Fig. 5: A logarithmic depth Generalized Toffoli Circuit

using ququints with 10 controls.
architecture. For example, the Toffoli gate is a three qubit

gate that can not be executed natively, and is decomposed

to 6 CNOT gates, and 14 one qubit gates. Similarly, we

decompose the qudit Toffoli gate as well according to [27].

Then, we attempt to place the qudits that need to interact often

in clusters to prevent extra communication costs based on the

decomposed circuit. Similar to other mapping methods, we

first find the interaction weights between each qudit w(u, v)
interaction using:

w(u, v) =
∑

o∈ops

�(u, v ∈ o.qubits)

The most used qudit is placed in the center qudit of the

quantum architecture. From this point, we select the qudit that

maximizes the sum of weights to the already placed qubits.

The selected qudit is placed in an adjacent qudit to already

placed qudits according to which qudit minimizes the sum

of the products of time to interaction with a qudit from the

location by the interaction weight to the qudit:

m(u) =
∑

v∈P

w(u, v)× d(ϕ(u), ϕ(v))

where ϕ is the mapping from virtual to physical qudits and

P is the already placed qudits. This keeps qudits that interact

often close to one another, giving the scheduling a well placed

starting point to begin routing the operations in the circuit.

To route the qudit operations, we attempt to disrupt the

placement of the qudits will that interact frequently as little

as possible. By minimizing disruption, rather than naively

moving qudits along the shortest path, we can potentially

avoid extra swaps required bring these qudits back within

range of one another. We have the following scoring function

representing the state of the mapped qudits at a given time in

circuit execution and select the best potential qudit to swap

with:

s(Q,w, d) =
∑

u,v∈Q×Q

w(u, v)× d(ϕ(u), ϕ(v))

Where Q represents the qudits in the circuit, w is the

interaction weights of the remaining operations to execute,

and d is the time, including swaps for two physical qudits

to interact. We find the difference between the current score,

and the new mapping resulting from a SWAP. We perform

whichever SWAP minimizes the difference between the current

score and the new score. Once an operation is completed, we

remove 1 from the weight of the interacting pair as it is no

longer relevant to the placement of the current qudits.

V. BENCHMARKS

We focus on the Generalized Toffoli, or N-Controlled X gate

as our benchmark. This circuit is easily generalized to higher

level quantum systems with similar constructions at each level.

At the qubit level, this gate can be implemented with any

number of ancilla qubits [12]. But, to achieve this circuit in

logarithmic depth we need to use n− 2 ancilla for n number

of controls, significantly reducing the amount of usable space

available to execute a quantum circuit. An example of this

circuit for 5 controls with 3 ancilla qubits is in Figure 2.

An ancilla-free log depth version of the generalized Toffoli

has also been developed for qutrit capable quantum systems

[11]. By using intermediate qutrits, this circuit uses 1 and 2

controlled +1 gates to reduce the number of qubits used and

number of gates used. The set of controls are treated as nodes

in a tree, recursively stepping down the child nodes in the tree

to create the circuit. The child nodes target their parent node

with a controlled qudit Toffoli gate which could increment

or decrease the state of a qubit rather than performing an X

gate. In the case of the leaf nodes, we use a 1 controlled qudit

Toffoli gates. Then, any internal nodes use a 2 control since

their states will have been increased from 1 to 2 if the leaf
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Fig. 6: The depth of the Generalized Toffoli gates at

different levels of qudits before communication gates are

added to the circuit.
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Fig. 7: The depth of the Generalized Toffoli gates at

different levels of qudits after communication gates are

added to the circuit.

qubits were in the 1 state. Finally, the qubit representing the

root of the tree performs a 2 controlled X gate on the target

qubit. We then reverse the controlled qudit Toffoli gates to

return the input qutrit to their original, non-elevated state. An

example of this circuit with 7 controls is seen in Figure 3.

We expand on this idea by constructing generalized Toffoli

circuits that take advantage of even higher level quantum

systems. We use the same tree-like framework developed for

qutrit circuits, but can use the additional computational space

afforded to us by these systems. Specifically, we use this extra

space to remove the use of the gates involving three qudits,

replacing them with two gates that use only two qudits each.

While this may seem like an increase in gate count, the three

count qudit gates is decomposed into many more one and two

qudit gates. For qudit Toffoli gates, 6 two qudit gates and 8

single qudit gates, which is significantly higher. In the ququart

case, we use each leaf control to target its parent qudit with a

+1 gate. If the controls are in the 1 state, the target will end

in the 3 state after being targeted by two controlled +1 gates.

Then the internal controls are 3 controlled +1 gates. Similarly,

the final controlled X gate becomes a 3 controlled X gate. An

example of this can be seen in Figure 4.

A similar strategy can be used for any n level system. We

split create the control tree into a tree with n − 2 children

rather than the original 2 children in the qutrit and ququart

case. An example of this expansion into a generalized Toffoli

gate for 5 level qudits (ququints) can be seen in Figure 5.

VI. RESULTS AND DISCUSSION

In this work we observe the changes in gate count, depth,

duration, and space time product of a given circuit as we adjust

our benchmark to utilize the higher radix levels of a quantum

system, up to ququint level devices for the generalized Toffoli

gate. Both gate count and depth of a circuit on their own

are helpful metrics to compare the runtime of two different

quantum circuits. However, as mentioned, different gates have

different lengths, and may use more qubits through ancilla. So,

it is necessary to examine the duration of the circuit as well.

The product of the duration and number of qubits is also used

as the space-time product. Minimizing this metric indicates an

increase efficiency of the compiled circuit on a given device.

When measuring the time from these circuits, we construct

a directed graph with nodes representing the operations, and

edges representing dependencies based on qudits used. We

are able to label these edges with the time it will take based

on the current levels of the qudits at that time. This allows

us to find the longest path through the graph, giving us the

duration of the critical path, and the duration of the overall

circuit. We examine each circuit on a 12 qudit by 12 qudit

grid architecture. This provides a middle ground between

the structure current quantum architectures, and devices with

higher connectivity. It also is a large enough architecture to

examine the scalability of a circuit as they grow in size.

A. Benefits of Qutrits

Previous examinations of the intermediate qutrit generalized

Toffoli gate did not examine how it may be affected by routing

the circuit on an limited connectivity architecture. In Figure

6, we see that the depth of the log-depth qutrit generalized

Toffoli gate is greater than the depth of the qubit generalized

Toffoli gate, despite the fact that it requires more Toffoli

gates to implement the qubit gate. Once SWAP gates are

integrated into the circuit via the qudit compilation framework,

in Figure 7, the depth of the qutrit generalized Toffoli gate

is significantly lower than the qubit generalized Toffoli gate.

However, referring to Table I, the higher the level of the

operations, the longer the times. Upon measuring the duration

of a circuit after inserting SWAPs, seen in Figure 8 we see

that at smaller numbers of controls, qutrit circuit duration is

much lower than qubit circuit duration, but as the number

of controls increases, these values reverse. Where the qutrit

circuit was half the duration of the qubit circuit from 5 to

15 controls, they are 1.5 times the duration from 35 controls

onwards. The extra time required by the SWAP gates exceeds

the benefits gained from using fewer gates.

However, the construction of the qutrit circuit does not

require any ancilla. To take this into account, we examine

the change in space time product of the qutrit versus qubit
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Fig. 9: The space time product, or number of qudits used

by duration, at different controls for different qudit levels.

generalized Toffoli gates in Figure 9. As the qutrit circuit does

not require extra qubits, it can achieve a much lower space

time product. This is especially evident when the qutrit circuit

has a low duration, starting at a ratio of 3 to 1 from qubit to

qutrit space time ratio. As the number of controls increases,

this ratio converges to 1.7 to 1 space time ratio from qubits

to qutrits, which matches the expected constant increase in

computational space from qubits to qutrits, log2(3) = 1.58.

B. Benefits of Ququarts over Qutrits

Moving from the qutrit circuit to the ququart circuit does

not reduce the number of the qudits. However, since we do not

need to decompose any three qudit gates, the circuit requires

fewer gates overall. The difference in depth before and after

inserting SWAPs can be seen in Figure 6 and Figure 7. After

routing, the depth of the qutrit circuit is 5 to 6 times greater

than the ququart circuit, following from the ququart circuit

using two two qudit gates, with a depth of two, rather than a

Toffoli gate, which uses eight single qudit gates and six two

qudit gates and has a depth of 11.

Taking the duration of these ququart gates into account in

Figure 8, the reduction in gate count and depth generally out-

weighs the increase in time to perform the qudit interactions.

Generally, the ququart circuit time will approach the qutrit

duration when the number of controls approaches a power

of two. Certain numbers of controls are not conducive to

the tree-like structure, and will result in an excess number

of gates. When we examine the space time product, ququarts

more efficiently utilizes the architecture than both qubits and

qutrits. In fact, the qubit to ququart space time product ratio

is an average of 2.3 after the initial few increases in controls,

which is inline with the expected increase of computational

space from qubits to ququarts, log2(4) = 2. From qutrits to

ququarts the expected increase would be log3(4) = 1.9, and

we find the ratio in space time product from qutrits to ququarts

to be 1.43, an increase in the efficiency of the use of the device.

C. Diminishing Benefits of Higher Levels

When we move into higher level systems, specifically levels

5, 6 and 7, we do not see the benefits of using fewer qubits.

Since these generalized Toffoli gates have similar construc-

tions to the ququart gate, and do not have the benefits of gate

reduction, and do not see significant decreases in the number

of gates or depth of the circuit. As seen in Figure 6 and Figure

7, the ququint depth is the same as the ququart depth before

and after insertion SWAPs for routing. Interactions at the

ququint level take longer than at the ququart level. In Figure 8

we see that the time for a ququint circuit to execute is generally

greater than the time for a ququart circuit to execute. This

translates to an increased space time product when compared

to ququarts. The benefits afforded by the computation space

affording by this level of qudit do not outweigh the cost of

the complexity and operations required to reach this level over

ququart circuits.

VII. CONCLUSION

We describe a strategy for qudit communication through

efficient decomposition of SWAPs, and develop a straightfor-

ward compilation pipeline for qudit circuits, using realistic

gate times for derived from optimal control. Further, we

were able to introduce a generalized Toffoli gate that use

intermediate ququarts, ququints, following a structure that can

be generalized to any number of qudit levels built on strategies

developed for intermediate qutrits. Finally, we compiled these

circuits for potential architectures to evaluate the benefits at

each level of qudit through examination in the change in gate

count, depth, execution time, and space time product.

Increasing the highest possible level of a qudit offers op-

portunities to improve the utilization of the architecture. From

qubits to qutrits we see significant decreases in space time

product to due reduction in ancilla use, even with increases in

time of both interactions and SWAP gates. This trend continues

from qutrits to ququarts, where the extra computational space

allows us to use two two qudit gates rather than a three qudit

gate, reducing duration of the circuit, and the space time

product of the circuit as well and improving the use of the

architecture. These advantages show that there are gains to be

found by implementing these higher dimensional systems and

integrating qudit compilation strategies to improve the usage

of near term quantum devices.
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