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Differential clock comparisons with a 
multiplexed optical lattice clock

Xin Zheng1, Jonathan Dolde1, Varun Lochab1, Brett N. Merriman1, Haoran Li1 & 
Shimon Kolkowitz1 ✉

Rapid progress in optical atomic clock performance has advanced the frontiers of 
timekeeping, metrology and quantum science1–3. Despite considerable efforts, the 
instabilities of most optical clocks remain limited by the local oscillator rather than 
the atoms themselves4,5. Here we implement a ‘multiplexed’ one-dimensional optical 
lattice clock, in which spatially resolved strontium atom ensembles are trapped in the 
same optical lattice, interrogated simultaneously by a shared clock laser and read-out 
in parallel. In synchronous Ramsey interrogations of ensemble pairs we observe 
atom–atom coherence times of 26 s, a 270-fold improvement over the measured 
atom–laser coherence time, demonstrate a relative instability of τ9.7(4) × 10 /−18  
(where τ is the averaging time) and reach a relative statistical uncertainty of 8.9 × 10−20 
after 3.3 h of averaging. These results demonstrate that applications involving optical 
clock comparisons need not be limited by the instability of the local oscillator. We 
further realize a miniaturized clock network consisting of 6 atomic ensembles and 15 
simultaneous pairwise comparisons with relative instabilities below τ3 × 10 /−17 , and 
prepare spatially resolved, heterogeneous ensemble pairs of all four stable strontium 
isotopes. These results pave the way for multiplexed precision isotope shift 
measurements, spatially resolved characterization of limiting clock systematics, the 
development of clock-based gravitational wave and dark matter detectors6–12 and new 
tests of relativity in the lab13–16.

Neutral atom optical lattice clocks (OLCs) have recently reached 
instability and inaccuracy at the 10−18 level2–5,17–21 largely due to the 
narrow linewidths of optical frequency forbidden clock transitions 
in alkaline-earth(-like) atoms. This performance enables new clock 
applications such as in relativistic geodesy, searches for dark matter, 
gravitational wave detection and tests of fundamental physics6–16.

Many emerging clock applications rely on differential comparisons 
between two or more optical clocks, rather than on the determina-
tion of the absolute frequencies of the clock transitions. For atoms in 
unentangled states, the instability of such clock comparisons is fun-
damentally limited by quantum projection noise (QPN)22. For Ramsey 
spectroscopy, the QPN limit for the fractional frequency uncertainty 
of a clock comparison is given by
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where ν is the transition frequency, T is the interrogation time, Td is the 
dead time between experiment cycles, τ is the averaging time, N is the 
atom number per clock per measurement, C is the contrast of Ramsey 
fringes and the factor of 2  assumes an equal contribution from each 
clock. Equation (1) implies that the instability can be reduced with 
greater atom numbers and longer coherence times. However, frequency 
noise in the clock lasers used to interrogate the atoms limits the 

atom–laser coherence times, and also prevents the clock instability 
from reaching the QPN limit for larger atom numbers due to the Dick 
effect18,23, which is an aliasing of frequency noise due to non-continuous 
laser interrogation. This motivates the use of synchronous differential 
comparisons4,24, also known as correlated noise spectroscopy25, for 
applications involving clock comparisons7,14. Common-mode rejection 
of Dick noise and 10-s-scale atom–atom coherence times have recently 
been demonstrated between two independent ion clocks26, between 
subensembles in a three-dimensional Fermi-degenerate OLC2,19 and 
between subensembles in a tweezer-array clock27. In each of these cases 
the atoms are individually and tightly confined, suggesting that strong 
confinement and a lack of atom–atom interactions may be necessary 
ingredients to achieve such long coherent interrogation times. Fur-
thermore, the best relative instabilities observed thus far, in the range 
of τ3 × 10 /−17  (refs. 2,19,27), have made use of an 8 mHz linewidth clock 
laser with an instability of 4 × 10−17 at 1 s (ref. 28), suggesting that, even 
in synchronous differential comparisons, clock laser coherence could 
still play a role in limiting the achievable instability.

Here we introduce and implement an alternative platform for dif-
ferential clock comparisons with a spatially ‘multiplexed’ OLC in a ver-
tical, shallow one-dimensional (1D) lattice. Synchronous differential 
comparisons between spatially separated ensembles reject 
common-mode noise, including local oscillator noise and environmen-
tal systematic effects such as black-body radiation (BBR) and a.c. Stark 
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shifts from the lattice. As a result, we demonstrate atom–atom coher-
ence times of 26 s, clock comparisons with relative instability below 

τ10 /−17  and a relative statistical uncertainty below the 10−19 level.
Our results demonstrate that decoherence due to atomic collisions2,29,30, 

coupling of motion between the axial and radial modes31 and tunneling32 
do not yet limit the perfomance of 1D OLCs, and show that differential 
clock comparisons enable good relative instability without requiring 
state-of-the-art millihertz-linewidth clock lasers. This has important 
implications for applications that require portable or space-based clocks, 
such as relativistic geodesy and gravitational wave detection7,14. We show 
that the same approach scales to the multiplexing of larger numbers of 
clock ensembles, with relative instabilities on a par with state-of-the-art 
clock comparisons, and can be used to load heterogeneous spatially 
resolved pairs of all four stable isotopes of strontium in the same lat-
tice. The multiplexed OLC therefore represents a new platform that can 
test the limits of achievable instability in differential clock comparisons, 
including those with entangled atomic states33, while enabling new tab-
letop tests of relativity13,16, precision searches for new physics beyond 
the Standard Model6, development and testing of new protocols for 
clock-network-based dark matter and gravitational wave detectors7–11, 
and spatially resolved characterization of limiting clock systematics34.

The basic concept of the ‘multiplexed’ OLC is illustrated in Fig. 1a, in 
which a movable 1D optical lattice is used to deterministically prepare 
multiple spatially resolved ensembles. The experimental procedure for 
preparing two ensembles separated by 1 cm in the ẑ direction is shown 
in Fig. 1b, where five representative images are shown for loading and 
moving the lattice such that two ensembles with a tuneable separation 
centred about the lattice beam waist are prepared. In our apparatus, a 
few thousand atoms can be loaded in each ensemble with spatial separa-
tions ranging from lower than 1 mm to more than 1 cm in under 100 ms.

We interrogate the 1S0 ↔ 3P0 clock transition with a 698 nm clock laser 
that is referenced to a rack-mounted ultra-low-expansion (ULE) cavity.  
Limited by this cavity, we expect an instantaneous local oscillator 
linewidth of approximately 1 Hz and a linear drift rate of approximately 
1 Hz s–1 before drift cancellation. This is orders of magnitude worse 
than state-of-the-art cavities such as cryogenic ultra-stable silicon 
cavities28,35, with measured linewidths of 8 mHz and linear drift rates 
smaller than 1 mHz s–1 (ref. 36), which have been used to demonstrate 
relative instabilities at the low 10−19 level2,19,27.

To characterize the limitations placed on the coherent interrogation 
time by the clock laser linewidth, we first study each ensemble inde-
pendently. A representative Rabi spectrum with a 10 Hz linewidth is 
shown in Fig. 2a, in which a π pulse of 90 ms duration is used to drive 
the S m P m, = 9/2 ↔ , = 9/2F F

1
0

3
0 clock transition (denoted as 

g e, 9/2 ↔ , 9/2   below). Further increasing the pulse duration results 
in a reduction of the excitation fraction but does not reduce the 
linewidth, primarily due to laser frequency noise. The atom–laser coher-
ence is measured using Ramsey spectroscopy (Fig. 2b) by varying the 
relative phase between the two π/2 pulses. Even though the fringe 
contrast decays with a Gaussian time constant of 96(24) ms, where the 
value in brackets represents 1\σ standard deviation, the variance of the 
excitation fractions remains large at 100 ms (Fig. 2b, inset (ii)), imply-
ing that the atoms within the ensemble remain phase coherent with 
each other for that interrogation time27. The loss of atom–laser coher-
ence is due to the finite coherence time of the clock laser and manifests 
itself as a randomized phase of the second π/2 pulse. However, when 
the two atomic ensembles are probed simultaneously, the relative 
atomic phase is preserved and is reflected in correlations between the 
excitation fractions of the two ensembles (Fig. 2c, inset). This can be 
further clarified in a parametric plot of the excitation fractions for 
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Fig. 1 | Multiplexed OLC configuration and procedure for loading two 
ensembles. a, Schematic diagram illustrating the multiplexed OLC concept. 
Two ensembles of strontium atoms separated by Δz in height are prepared for 
synchronous clock interrogation using a shared clock laser. A movable lattice is 
formed by detuning the lattice retro-frequency (νL + δνL) from the incoming 
lattice frequency (νL) (see Methods for details). A bias magnetic field (Bx, about 
2 G) in the x̂ direction defines the quantization axis. b, Top, camera images 

taken during loading stages (I)–(V). (I) Loading ensemble 1 into the lattice;  
(II) separating ensemble 1 from the original atomic cloud by accelerating the 
lattice along z+ˆ; (III) loading ensemble 2 into the lattice; (IV) simultaneously 
moving both ensembles along z−ˆ; (V) two stationary ensembles with a height 
difference of 1 cm are prepared for spin-polarization, in-lattice cooling and 
clock interrogation. Bottom, timing sequence diagram for the 689 nm MOT 
and lattice retro-detuning, corresponding to the camera images shown above.
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ensembles 1 and 2, which fall on an ellipse with an opening angle deter-
mined by the differential Ramsey phase found between the two ensem-
bles (Fig. 2c). By fitting an ellipse to the data, we extract the total 
accumulated phase difference modulo π (ref. 19).

The differential phase extracted from a fitted ellipse is a measure of 
the detuning between the two atomic ensembles. It contains informa-
tion about all of the differential frequency shifts experienced by the 
spatially separated ensembles, including differential BBR shifts due 
to temperature gradients across the apparatus, differential linear and 
quadratic Zeeman shifts due to magnetic field gradients, differential 
d.c. Stark shifts due to electric field gradients, differential a.c. Stark 
shifts from the lattice and probe light due to differing field intensities 
at the two ensembles and the gravitational redshift due to general 
relativity. In our apparatus we find that the dominant shifts are the 
linear and quadratic Zeeman shifts due to the residual magnetic field 
gradient of Bx in the ẑ direction, which has an amplitude of about 
15 mG cm–1. At 1 cm this corresponds to a detuning between the 
g e, 9/2 ↔ , 9/2  clock transitions of the two ensembles of 7.5 Hz, due 
to the differential linear Zeeman shift, and a differential quadratic 
Zeeman shift of 14 mHz at a bias field of 2 G.

To investigate the atom–atom coherence times, we perform syn-
chronous Ramsey interrogation between the two ensembles. As pointed 

out in previous work27,32,37, a shallow lattice trap depth is required for 
second-scale coherent interrogation to minimize Raman scattering 
out of the 3P0 state38. We operate at a lattice depth of 20Erec (where  
Erec ≈ h × 3.5 kHz is the lattice photon recoil energy, with h being Planck’s 
constant) with a measured 3P0 state lifetime of 13(2) s (Supplementary 
Information). However, when probing the g e, 9/2 ↔ , 9/2  transition, 
we find that the contrast decays with a Gaussian time constant of 6(1) s, 
which is consistent with the expected inhomogeneous broadening due 
to the magnetic field gradient along ẑ, corresponding to a frequency 
detuning of 150(10) mHz from the top to the bottom of the 200 μm spa-
tial extent of each ensemble.

To confirm that the magnetic field gradient limits the atom–atom 
coherence time, we perform a ‘spin-echo’ measurement, and observe 
an exponential decay with a time constant of 24(5) s. To take full advan-
tage of the availability of this longer coherence time, we therefore 
switch to interrogating the g e, 5/2 ↔ , 3/2 transition, with a mag-
netic field sensitivity of about 22.4 Hz G–1, which is 22 times smaller 
than that of the g e, 9/2 ↔ , 9/2  transition5,39. For this transition, the 
magnetic field gradient across each ensemble can be expected to 
contribute a detuning of only 7(1) mHz, and therefore the gradient 
no longer contributes dephasing on time scales limited by the Raman 
scattering.
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Fig. 2 | Characterization of atom–atom coherence time by synchronous 
clock comparisons. a, Rabi spectroscopy of a single ensemble with 90 ms π 
pulse duration (pink points) taken with one measurement without averaging. 
The fit gives a linewidth of 10.2(4) Hz (pink line). b, Decay of Ramsey contrast 
taken with one ensemble. This is fitted to a Gaussian envelope, which gives an 
atom–laser coherence time of 96(24) ms. Insets: Ramsey fringes at 10 (i) and 
100 ms (ii) interrogation times. c, Parametric plot of excitation fractions in 
ensembles 1 (P1) and 2 (P2). Least-squares ellipse fitting (solid line) does not 
perform well at the phase near 0 or π due to QPN and the fit bias 
(Supplementary Information). Inset, correlations in P1 (red) and P2 (blue).  
d, Measurement of atom–atom coherence times for differential comparisons 
between two ensembles. Synchronous Ramsey interrogation of the 

S m P m, = 9/2 ↔ , = 9/2F F
1

0
3

0  transition gives a 1/e coherence time of 6(1) s by 

fitting to a Gaussian envelope (red line), whereas ‘spin-echo’ measurement 
using the same transition results in a 1/e decay time constant of 24(5) s (green 
line). Synchronous Ramsey interrogation of the magnetically less sensitive 

S m P m, = 5/2 ↔ , = 3/2F F
1

0
3

0  transition results in a 26(2) s atom–atom 
coherence time (dark blue line). The decay of atom–laser coherence measured 
in b is shown for comparison (light blue line), but is barely visible on this scale. 
Insets: representative parametric plots illustrating relative contrast. e, The 
operational lattice magic wavelength for the S m P m, = 5/2 ↔ , = 3/2F F

1
0

3
0  

transition is found by measuring the contrast of synchronous Ramsey 
interrogations as a function of the lattice frequency detuning from 
368,554.810(30) GHz. This is taken with a 10 s interrogation time and 20Erec 
lattice trap depth. The solid line is a Gaussian fit to the data.
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Due to the tensor a.c. Stark shift, the g e, 5/2 ↔ , 3/2  transition will 
have a different operational magic wavelength, in which the scalar and 
tensor a.c. Stark shifts sum to zero, from the g e, 9/2 ↔ , 9/2  transition 
(Supplementary Information). By scanning the lattice laser frequency 
over a range of ±800 MHz, we find a lattice frequency that maximizes 
the contrast for the g e, 5/2 ↔ , 3/2  transition at 368,554.810(30) GHz 
(Fig. 2e), where the uncertainty comes from both the error in the Gauss-
ian fitting and the accuracy of our wavemeter (10 MHz). We observe a 
1/e atom–atom coherence time of 26(2) s for the g e, 5/2 ↔ , 3/2  tran-
sition (Fig. 2d), which is consistent with the ‘spin-echo’ measurement 
for the g e, 9/2 ↔ , 9/2  transition, and is roughly twice the measured 
clock state lifetime, implying that our results are primarily limited by 
Raman scattering. We note that here the atom–atom coherence time 
refers only to the lifetime of the synchronous Ramsey contrast for 
atoms remaining in the lattice at the end of the experiment, and there-
fore that time does not include atom loss due to heating and back-
ground gas collisions.

To characterize the relative instability of the multiplexed OLC, we 
perform a synchronous clock comparison between two ensembles 
separated by 0.6 cm with the g e, 5/2 ↔ , 3/2  transition. Due to com-
petition between the decay of contrast from Raman scattering out of 
the clock state and T1/  scaling of QPN, the optimal interrogation time 
can be found by comparing the fractional frequency uncertainties at 
different interrogation times (Fig. 3a, blue points), which are chosen 
such that the differential phase ϕd is close to an odd multiple of π/2 to 
minimize biased error from ellipse fitting19,27. The measurement agrees 
with the QPN limit at a fixed differential phase of π/2 (Fig. 3a, blue 
dashed line), which suggests an optimal interrogation time T at 7.5 s. 
However, due to the phase evolution of ϕ δf T= 2πd 21  at a comparable 
time scale to the interrogation times, where δf21 is the frequency  
difference between two ensembles, an additional differential 
-phase-dependent scale factor must be included in the expected QPN 
limit when the contrast is below 1 (Supplementary Information). As a 
result, the QPN is maximized when the ellipse phase is at π/2 and is 
minimized at 0 or π. This implies that one can benefit in sensitivity by 
trading off reduced QPN for increased bias in the ellipse fitting (Fig. 3a, 
red line). Therefore, we choose T = 8.205 s so that the phase of the ellipse 
is at about 0.44 rad, at which level the biased error is bounded to below 
3% and can be easily compensated for (Supplementary Information). 
Figure 3b shows a measurement taken with 1,193 experiment runs 
recorded over 3.3 h and the corresponding fitted ellipse. The fit yields 

a net phase shift of about 12.130(2) rad or a frequency difference of 
235.29(4) mHz between the two ensembles. The overlapping Allan 
deviation is computed and plotted in Fig. 3c, with a relative instability 
of τ9.7(4) × 10 /−18 , which is in agreement with the QPN limit (red 
dashed line), and a relative statistical uncertainty of 8.9 × 10−20 at the 
full 3.3 h of averaging time. This demonstration of relative precision 
below the 10−19 level with a rack-mounted, commercially available local 
oscillator with an instability of 1 × 10−15 at 1 s is encouraging for future 
applications that require portable or spaced-based clocks, such as 
relativistic geodesy and gravitational wave detection7,14–16.

We demonstrate the scalability of the multiplexed OLC technique 
by moving from pairs to larger numbers of ensembles. This is achieved 
by modifying the sequence shown in Fig. 1b and repeating the lattice 
loading–moving cycle several times. A representative image is shown 
in Fig. 4a, in which six ensembles are equally distributed with 0.2 cm 
spacing. Each ensemble has about 500 atoms and the total lattice load-
ing time is less than 100 ms. Synchronous interrogation and read-out 
result in 15 unique pairwise clock comparisons from a miniature net-
work consisting of 6 ‘clocks’ (Fig. 4b). Each comparison averages down 
with a slope below τ3 × 10 /−17 , and reaches a relative statistical uncer-
tainty of roughly 5 × 10−19 after 1 h of averaging. A ‘closed-loop’ analysis 
is performed to verify the self-consistency of the resulting differential 
frequencies. Good agreement of the scaled uncertainties for the 197 
unique ‘closed-loops’ validate the precision of excitation–correlation 
comparisons using ellipse fitting (Fig. 4c).

The measured detunings between the ensemble pairs contain infor-
mation about the spatial profiles of the thermal gradient, magnetic 
field gradient, electric field gradient and lattice beam, as well as the 
residual differential shifts due to differences in the atomic density 
and temperature between the ensembles. As an example, we evaluate 
the differential density shifts between ensemble pairs by varying the 
relative atom numbers, and thus the differential density (Methods).  
At a typical lattice trap depth of 20Erec and a conservative 100(25) atom 
number difference, the differential density shift is −8(2) × 10−19. This 
example highlights the effectiveness of the multiplexed technique 
for mapping out and evaluating systematic effects19,34. A thorough 
evaluation of all of the contributing differential systematic shifts in 
our apparatus is currently underway.

Finally, precision isotope shift measurements have recently been 
proposed as an effective method to search for new physics beyond 
the Standard Model40–44. Neutral strontium, with four stable isotopes  
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Fig. 3 | Low relative instability with multiplexed Ramsey interrogation. 
 a, Measured fractional frequency uncertainties after 10 min of averaging (blue 
points) by choosing interrogation times T such that the differential phase ϕd is 
close to an odd multiple of π/2. The blue dashed line represents the expected 
QPN limit at a fixed offset phase π/2. The red solid line represents the QPN 
accounting for ϕ δf T= 2πd 21 , where δf21 is the frequency detuning between two 
ensembles. The oscillation arises because QPN is maximized at a differential 
phase of π/2 and minimized at 0 or π (Supplementary Information).  
b, Parametric plots of P2 versus P1 (black points) with 1,193 experimental runs 

for a total measurement time of 11,800 s. This is taken at T = 8.205 s (the red 
point in a) at a lattice trap depth of 20Erec. A least-squares method 
(Supplementary Information) is used to fit an ellipse to the data (red line).  
c, The corresponding Allan deviation (blue points) is extracted via jackknifing19,27. 
The differential clock comparison averages down with an instability of 

τ9.7(4) × 10 /−18  (blue solid line), which matches the QPN limit (red dashed line) 
for the independently measured number of atoms in each ensemble (N ≈ 2400), 
and reaches a relative statistical uncertainty of 8.9 × 10−20 after 3.3 h of 
averaging.
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(88Sr, 87Sr, 86Sr and 84Sr) and narrow-line clock transitions, is a good can-
didate for these studies, particularly when combined with measure-
ments of the clock transitions in the Sr+ ion41. We therefore demonstrate 
the ability to sequentially load different spatially resolved strontium 
isotopes into the lattice with pairs comprising all four stable isotopes 
of strontium (Fig.4d). Due to the lack of hyperfine states for bosonic 
isotopes, a greater magnetic field (around 20 G) is required to mix a small 
component of the 3P1 state in with the 3P0 state27,37,45,46 and allow the doubly 
forbidden 1S0 ↔ 3P0 clock transition. In addition, each isotope will have 
its own magic wavelength, requiring new techniques for evaluating or 
reducing differential lattice light shifts and broadening42. We therefore 
leave multiplexed comparisons between Sr isotopes for future work.

In conclusion, in this work we demonstrate a new platform for dif-
ferential clock comparisons using spatially resolved atomic ensembles 
trapped in a single 1D optical lattice. We demonstrate long atomic 
coherence times (26 s) with large atom numbers (2,400 atoms per 
ensemble) in a shallow (20Erec) vertical optical lattice using a 
hertz-linewidth clock laser. In a comparison between two ensembles, 
we achieve a relative instability of τ9.7(4) × 10 /−18 , which is consistent 
with the QPN limit, and a relative statistical uncertainty of 8.9 × 10−20 
after 3.3 h of averaging. We take advantage of the multiplexed nature 

of our apparatus to demonstrate a miniaturized clock network consist-
ing of 6 atomic ensembles, resulting in 15 unique pairwise clock com-
parisons with relative instabilities below τ3 × 10 /−17 . We also 
demonstrate the ability to simultaneously load heterogeneous pairs 
of all four stable isotopes of strontium into spatially resolved ensembles 
in the lattice. Common-mode rejection of dephasing from the local 
oscillator noise and environmental fluctuations mean that the multi-
plexed OLC platform is well-suited for exploring the use of 
spin-squeezing to push the relative instability below the QPN limit33,47,48. 
Full characterization of systematic effects such as differential BBR and 
Zeeman and Stark shifts will enable measurements of the gravitational 
redshift at the subcentimetre scale and other new tabletop tests of 
relativity. We anticipate that this technique can be straightforwardly 
applied to other existing OLCs, providing a new tool for the evaluation 
of limiting systematics, including the spatial mapping of thermal, mag-
netic and electric gradients, in some of the world’s most accurate clocks.

Finally, we note that, while performing the work described here, we 
became aware of complementary work in which differential clock com-
parisons with record relative instability and precision were performed 
between subregions within a single millimetre-scale atomic ensemble in 
a vertical 1D lattice. An ultra-narrow linewidth local oscillator stabilized 
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uncertainty windows of 5 × 10−19 scaled by 6, 5, 4  and 3 , respectively. 
 d, Demonstration of simultaneous loading of spatially resolved heterogeneous 
pairs of isotopes in a single experiment run (three separate representative 
experiments are shown covering all four stable isotopes of Sr). Each isotope in a 
pair is imaged individually by shifting the 461 nm probe beam onto resonance 
sequentially. The colour map is kept on the same scale for all three images, with 
the atom numbers for the bosonic isotopes consistent with their relative 
isotopic abundance (88Sr, 82.6%; 87Sr, 6.9%; 86Sr, 9.9%; 84Sr, 0.6%).
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to a cryogenic single-crystal silicon cavity was used, enabling observa-
tion of the gravitational redshift across the ensemble49. Combined with 
the multiplexed clock technique demonstrated here, these results are 
promising for future precision tests of relativity at the millimetre to 
centimetre scale.
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Methods

Initial loading and trapping
The experiment begins by capturing atoms from a thermal atomic 
beam in a three-dimensional magneto-optical trap (MOT) operating 
on the 1S0 → 1P1 transition at 461 nm, which has a linewidth of 32 MHz. 
The atom number in the 461 nm MOT is typically 2 × 106 for 87Sr, with a 
temperature of approximately 1 mK. The sample is further cooled by 
transfer from the 461 nm MOT into a 689 nm MOT through the 7.5 kHz 
wide 1S0 ↔ 3P1 transition. After broad-band and single-frequency (SF) 
689 nm MOT stages, about 2 × 105 atoms are left with a temperature of 
around 2 μK. The optical lattice is kept on during the entire experiment, 
and about 1 × 105 spin-mixed atoms are transferred into the optical 
lattice by switching off the SF 689 nm MOT.

Movable lattice
A 1D ‘magic wavelength’ lattice (λL = 813.4 nm) is formed using an incom-
ing beam (1.5 W) focused to a 100 μm beam waist and a retro-reflected 
beam with a matching waist. The lattice is orientated in the ẑ direction 
to suppress tunnelling with the help of gravity, which lifts the degen-
eracy between adjacent lattice sites50. The optical lattice light is gener-
ated by a Ti:Sapphire laser (Msquared SolsTiS), diffracted by an 
acousto-optic modulator (AOM) operating at 80 MHz, and the negative 
first diffraction order is delivered to the experiment table through a 
polarization-maintaining fibre. The lattice laser intensity is actively 
stabilized by monitoring the intensity of the lattice beam using a 
pick-off after the beam has initially passed through the science cham-
ber and feeding back on the AOM before the fiber. The lattice laser 
frequency is digitally locked to a wavemeter (High-Finesse, WS-70) 
that is calibrated using the 1S0 ↔ 3P0 clock transition of 87Sr, which is 
known to an accuracy below 1 Hz (ref. 51).

To realize the movable lattice52, the incoming lattice beam is reshaped 
with a pair of telescope lenses after the science chamber, and is then 
subsequently sent through two AOMs (lattice AOM 1 and lattice AOM 2) 
operating at ∓110 MHz (Extended Data Fig. 1). A ‘cat’s eye’ retro-reflector 
consisting of a 100 mm lens and a high-reflection mirror is used to 
retro-reflect the lattice beam and double-pass the AOMs. The power of 
the retro-reflection beam is about 50% compared to the incoming beam 
and is mainly limited by the AOM diffraction efficiencies (approximately 
90% per single pass) and the optical losses in the path.

In this configuration, the lattice retro-frequency (νL + δνL) can 
be detuned from the incoming frequency (νL) by varying the 
radio-frequency drive of the second AOM. At zero detuning (δνL = 0), 
the lattice is a standing wave and the clock can be operated in the tra-
ditional fashion. A constant detuning δνL results in a moving lattice 
with a velocity ν

v λ δν=
1
2

. (2)L L

If δνL is changed with time, the lattice will accelerate at

a λ δν t=
1
2

(∂ /∂ ), (3)L L

which in our apparatus can exceed 100g, and is mainly limited by the 
atomic temperature and lattice trap depth, where g ≈ 9.80 m s–2 is the 
acceleration due to gravity.

Two phase-synchronized direct digital synthesizers (Moglabs 
XRF421) are used to drive the lattice AOMs. To perform the lattice 
movement procedure, the direct digital synthesizer driving the lat-
tice AOM 2 is programmed to step over 4,000 values for a 2 ms ramp 
with an update interval of 500 ns on receiving an external trigger signal. 
About 80% of the total atoms survive after the lattice acceleration and 
deceleration stages. We note that the ‘cat’s eye’ configuration is critical 

for ramping the lattice frequency while preserving the alignment of 
the retro-lattice, which is monitored through the rejection port of an 
optical isolator placed before the fibre. We observe negligible power 
loss when detuning the retro-lattice frequency by as much as ±10 MHz, 
which is more than sufficient to prepare ensembles separated by 1 cm 
in the experiment in tens of milliseconds.

State preparation, cooling and read-out
For 87Sr, a 689 nm laser beam propagating perpendicular to the lattice 
is applied to spin-polarize atoms into a S m, = ± 9/2F

1
0  (denoted as 

g, ± 9/2 ) hyperfine state manifold through the 689 nm S P F↔ ( = 9/2)1
0

3
1  

transition. We then perform in-lattice cooling both axially and radially 
on the same transition to remove phonons after lattice acceleration, 
and adiabatically ramp down the lattice trap depth from 60Erec to below 
20Erec, where Erec ≈ h × 3.5 kHz is the lattice photon recoil energy.

To prepare ensembles into P m, = ± 3/2F
3

0  (denoted as e, ± 3/2 ) 
states, we coherently transfer the populations through three π pulses 
on resonance with the g e, ± 9/2 ↔ , ± 7/2 , e g, ± 7/2 ↔ , ± 5/2 , and 
g e, ± 5/2 ↔ , ± 3/2  transitions (Extended Data Fig. 2). About 70% of 
atoms are transferred to the e, ± 3/2  state, and this figure is primarily 
limited by the π pulse fidelity.

To detect the excitation fraction of each ensemble in parallel, we 
first read out the 1S0 ground-state populations with a 1 ms imaging pulse 
from a 461 nm laser beam co-propagating along the lattice, and then 
collect the atomic fluorescence using an electron multiplying charge-
coupled device (Andor iXon-888). The imaging beam also removes the 
population in the ground state. The remaining populations in the 3P0 
excited state are simultaneously transferred back to the ground state 
by repump pulses tuned to the 679 nm 3P0 ↔ 3S1 and 707 nm 3P2 ↔ 3S1 
transitions. A second imaging pulse is then applied to measure the 
populations. A reference image is taken with a final imaging pulse  
without any atoms for background subtraction. Excitation fractions 
of each ensemble can be extracted by post-selecting regions of interest 
in the images, and the normalized excitation fraction is given by 
P N N N N N= ( − )/( + − 2 )n e n n e n g n n, bg, , , bg, , where n refers to the nth ensem-
ble, Ng/e is the atom number in g e/  after calibration and Nbg is the 
background.

Clock laser beam path
The rack-mounted clock laser (Menlo Systems, Optical Reference 
System) is referenced by Pound–Drever–Hall locking to a 12 cm ULE 
cavity, which is temperature controlled at the zero-crossing point at 
15.77 °C. A double-passed AOM before fibre coupling into the ULE cavity 
is used for linear drift cancellation. A typical linear drift rate from  
0.2 to 1 Hz s–1 is observed for the ULE cavity, and a residual drift of about 
0.01 Hz s–1 can be achieved on calibration based on the clock transition 
resonance. The clock laser beam is delivered to the experiment table 
through a 5 m polarization-maintaining fibre, with an output power 
of approximately 2 mW. The clock beam is then diffracted by an AOM 
(clock AOM) operating at +110 MHz to steer the laser frequency to be 
on resonance with the 1S0 ↔ 3P0 clock transition. The clock beam is 
focused down to a beam waist of about 500 μm centred on the lattice, 
which is about 5 times the value of the lattice beam waist to both ensure 
homogeneity for atoms populated radially and multiple ensembles 
distributed axially along the lattice.

To cancel fibre phase noise and residual Doppler noise induced 
by vibrations of the fibre and the optical lattice, the zeroth diffrac-
tion order of the clock AOM is referenced on the lattice retro-reflection 
mirror53,54. To excite the g e, 9/2 ↔ , 9/2 π  transition, the first dif-
fraction order is overlapped with the lattice beam by first using a 
long-pass dichroic beam splitter and subsequently transmitting 
through the polarized beam splitter. To excite the g e σ, 5/2 ↔ , 3/2  
transition, the clock beam is overlapped with the lattice beam 
through the reflection port of the polarized beam splitter. This 
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difference in lattice and clock beam polarization is adopted due to 
the orthogonal polarizations needed to excite the π and σ transitions 
using a linearly polarized clock beam (see the inset of Extended Data 
Fig. 1 for details). Even though this configuration leaves an uncom-
pensated lattice path of about 75 cm, we observe no significant effect 
on the measured instabilities as inferred from the synchronous Ram-
sey interrogations.

Clock interrogations
The clock transition is interrogated under a bias magnetic field of 
approximately 2 G. The first diffraction order of the clock AOM is used 
to address the clock resonance. To circumvent thermal effects in the 
AOM crystal, the clock pulses are generated by jumping the AOM fre-
quency from 10 MHz off-resonant to on-resonant, instead of switching 
the clock AOM on and off. Shifting the clock AOM frequency by 10 MHz 
induces a differential Bragg diffraction angle that gives a deflection 
of more than 0.5 cm at the ensembles. This transverse spatial offset, 
in addition to an optical shutter that blocks any residual clock light, 
ensures the clock beam is not incident on the atoms during clock inter-
rogation.

The Rabi spectroscopy image shown in Fig.  2a is taken of the 
g e, 9/2 ↔ , 9/2  transition at a lattice trap depth of 20Erec, and with a 
π pulse duration of about 90 ms, which corresponds to Rabi frequency 
of 2π × 5.6 Hz. A neutral-density filter (3.5 optical density) is used to 
attenuate the clock beam power and ensure the resulting Rabi linewidth 
remains Fourier limited. The data are taken in a total measurement 
time of less than a minute without averaging.

For Ramsey spectroscopy and ‘spin-echo’ measurement of the 
g e, 9/2 ↔ , 9/2  transition, the π/2 pulse duration is about 0.75 ms  
(a Rabi frequency of 2π × 333 Hz). For Ramsey spectroscopy of the 
g e, 5/2 ↔ , 3/2  transition, initial state preparation is achieved 
using three consecutive π pulses of about 4.5, 3.5 and 3.0 ms (Rabi 
frequencies of 2π × 111 Hz, 2π × 142 Hz and 2π × 167 Hz) to address the 
g e, 9/2 ↔ , 7/2 , e g, 7/2 ↔ , 5/2  and g e, 5/2 ↔ , 3/2  transitions, 
respectively. The difference in pulse durations is a result of the differ-
ent matrix elements for the three transitions. Each π pulse is followed 
by a ‘clean-up’ pulse on resonance with the 1S0 ↔ 1P1 transition (3P0 ↔ 3S1 
and 3P2 ↔ 3S1 repump transitions) to remove any remaining population 
from the ground (clock) state due to imperfect spin-polarization and 
π pulses. The nearby clock resonances from the final e, 3/2  state, for 
example, the e g, 3/2 ↔ , 3/2  and e g, 3/2 ↔ , 1/2  transitions, can be 
eliminated by applying both a large bias magnetic field to induce larger 
separation between the σ+ and σ− transitions, and fine alignment of the 
bias field orientation to suppress the unwanted π transition. After 
preparing atoms in the e, 3/2  state, Ramsey spectroscopy images are 
taken with π/2 pulses of 1.5 ms duration and interrogation times of up 
to 20 s.

Experimental procedure
The procedure and timing diagram for loading, lattice acceleration, 
cooling, clock interrogation and imaging is shown in Extended Data 
Fig. 3. It takes 400 ms to load thermal atoms into the 461 nm MOT, 
450 ms to cool the atoms in the broad-band 689 nm MOT and 50 ms to 
further cool them down to around 2 μK by holding them in the SF 
689 nm MOT. In the SF 689 nm MOT stage, the lattice is accelerated by 
linearly ramping the lattice AOM 2 frequency to load multiple ensem-
bles in less than 100 ms. This is then followed by spin-polarization, 
in-lattice cooling and adiabatic ramping down of the lattice trap depth 
in less than 200 ms. An extra 100 ms is spent on coherent transfer from 
the g, 9/2  to the e, 3/2  state when interrogating the g e, 5/2 ↔ , 3/2  
transition. The imaging subsequence usually takes about 150 ms. The 
above sample trapping, loading, cooling, state preparation and 
read-out times contribute to a typical dead time of 1.6 s per experimen-
tal cycle. This yields an 84% duty cycle for an 8.205 s synchronous 
Ramsey interrogation.

Coherence times
Ramsey spectroscopy with a single ensemble is performed to measure 
the atom–laser coherence time. The averaged excitation fraction is 
fitted to a sinusoidal function (Fig. 2b, insets (i) and (ii)) and the cor-
responding amplitude is extracted as the contrast at each interrogation 
time. The contrast is then fitted to a Gaussian envelope to extract the 
coherence time37. To measure the atom–atom coherence times, syn-
chronous Ramsey interrogations and ‘spin-echo’ measurements are 
performed between two ensembles. The contrasts extracted from the 
resulting ellipses (Supplementary Information) are used to determine 
the coherence times.

Specifically, a fit to a Gaussian envelope is chosen for Ramsey spec-
troscopy with one ensemble due to decoherence from the local oscil-
lator noise. The same fit applies for synchronous Ramsey interrogation 
with two ensembles of the g e, 9/2 ↔ , 9/2  transition as inhomogene-
ous broadening from a residual magnetic field gradient across each 
ensemble limits the coherence time. Exponential fittings are used for 
the ‘spin-echo’ measurement on the g e, 9/2 ↔ , 9/2  transition and 
synchronous Ramsey interrogation of the g e, 5/2 ↔ , 3/2  transition, 
as these methods are primarily limited by the finite lifetime of the clock 
state due to Raman scattering38.

A summary of the measured coherence times is shown in Extended 
Data Table 1.

Ellipse fitting bias correction
To determine the differential phase ϕd between ensemble pairs accumu-
lated during the clock interrogation, a least-squares method is applied 
for ellipse fitting (see Supplementary Information for details). Even 
though this approach is numerically stable, non-iterative and guar-
antees an ellipse-specific solution, it does not perform well at ϕd close 
to 0 or π (ref. 27). Moreover, the effective probability distribution that 
the data is sampled from is the convolution of an ellipse and a bino-
mial distribution associated with the QPN. Therefore, the bias error 
needs to be accounted for to extract the correct differential frequen-
cies between the ensemble pairs. To do this, we perform Monte-Carlo 
simulations that generate artificial data that capture QPN by using 
specific contrast, and atom number and differential phases as input 
parameters. The simulated data enable us to calculate a bias-corrected 
phase with a statistical standard deviation (s.d.) as the error bar in the 
bias correction.

To illustrate the validity and importance of bias correction, a com-
parison of the ‘closed-loop’ analysis in Fig. 4c with and without bias 
correction is shown in Extended Data Fig. 4. The sum frequencies of 
each unique ‘closed-loop’ agree in a 1 × 10−18 window with bias correc-
tion, whereas the deviations from zero are as large as 1 × 10−17 without 
bias correction. The corresponding extracted differential frequencies 
after bias correction are listed in Extended Data Table 2. We note that 
whereas this bias can be avoided through a judicious choice of phase 
for two clocks, it is unavoidable in differential clock comparisons with 
three or more clocks. For example, consider the extreme case in which 
two pairs of clocks are operating at differential phases of odd multiples 
of π/2 and the bias error is minimized, that is, ϕ m= (2 + 1)π/212  and 
ϕ n= (2 + 1)π/223 , where m and n are integers. The outcome of the third 
pair would be ϕ ϕ ϕ m n= + = (( + ) + 1)π,13 12 23  which is a multiple of π 
when the bias error is maximized.

Differential density shift
The differential density shift is evaluated by varying the atom num-
ber difference between symmetrically trapped ensemble pairs. This 
is accomplished by first balancing the lattice trap depths and radial 
profiles at each ensemble by optimizing the lattice alignment, which 
is verified through motional sideband spectroscopy. The loading times 
for each ensemble are then varied from 0.5 ms to 20 ms to introduce 
atom number differences between the ensembles (typically within the 



range of ±2,000 atoms), yielding shifts at the 10−18 level. The motional 
sideband spectroscopy is performed again to ensure the temperatures 
of the two ensembles remain balanced after in-lattice cooling. The spa-
tial gradient of the fluorescence collected on the electron multiplying 
charge-coupled device is also calibrated using a movable ensemble 
(Supplementary Information).

‘Lock-in’ type measurements are performed by varying the relative 
atom numbers, ΔN. The resulting relative phase shifts Δϕ are then 
used to extract the differential density shift. A linear function aΔN + b 
is used to fit the data, where a and b are fit parameters, and the slope 
a is extracted as the differential density shift per 100 atom number 
difference (Extended Data Fig. 5a).

To quantify the scaling of the differential density shift with lattice 
trap depth U, the ‘lock-in’ measurement is taken at different lattice trap 
depths and the fitted slopes are plotted as a function of U (Extended 
Data Fig. 5b). The data are then fitted to the model αU5/4 + β, where α 
and β are fit parameters. The good agreement between the data and 
U5/4 scaling implies that the axial and radial trap frequencies in the 1D 
lattice scale with trap depth, as is expected for a thermal gas20,55.

Units and errors
Unless otherwise stated, all errors and numerical uncertainties in this 
article and its Supplementary Information denote a 1σ s.d. confidence 
interval. When we quote a coherence time, we are typically referring 
to the 1/e decay time. When we explicitly refer to a Gaussian time con-
stant, we are referring to the time scale associated with 1 s.d. of the 
Gaussian envelope.

Data availability
The experimental data presented in this manuscript are available from 
the corresponding author upon reasonable request. Source data are 
provided with this paper.

Code availability
The code used for experimental control, data analysis and simula-
tion in this work are available from the corresponding author upon 
reasonable request.
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Extended Data Fig. 1 | Lattice and clock path. Schematic diagram  
showing the lattice and clock beam paths for the interrogation the 

S m P m σ, = ± 5/2 ↔ , = ± 3/2F F
1

0
3

0 -transition. To interrogate the 
S m P m, = ± 9/2 ↔ , = ± 9/2F F

1
0

3
0 -transition, the first order diffraction clock 

beam is overlapped with the lattice by first using a long-pass dichroic beam 
splitter and subsequently transmitting through the polarized beam splitter, 

shown in the dashed blue box. The inset shows the corresponding orientations 
of the bias magnetic field (B) and the lattice and clock polarizations (ε). 
Abbreviations: PBS, polarized beam-splitter; DBS, dichroic beam-splitter; 
AOM, acousto-optic-modulator; PD, photo-diode; HWP, half-waveplate; QWP, 
quarter-waveplate.
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Extended Data Fig. 2 | Energy levels diagram. a, Energy level diagram for 
strontium. The double-arrow lines correspond to the relevant transitions, 
including the 461-nm 1S0 ↔ 1P1 transition for the first-stage MOT and imaging, 
the 689-nm 1S0 ↔ 3P1 transition for narrow-linewidth MOT, spin-polarization 
and in-lattice-cooling, the 679-nm 3P0 ↔ 3S1 and 707-nm 3P2 ↔ 3S1 transitions 
for repumping, and the 698-nm 1S0 ↔ 3P0 transition for clock interrogation. 
The wavy lines correspond to spontaneous emission. b, Hyperfine clock 
states. Red double arrows represent clock interrogation of the 
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0  transition. Blue double arrows represent 
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dashed lines stand for transitions for coherent transfer of atoms from 
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Extended Data Fig. 3 | Timing diagram. a, Typical timing diagram for a 
Ramsey spectroscopy sequence, in which laser cooling, state preparation and 
camera imaging contribute to about 1.6 s dead time, with clock interrogation 

time ranging from 10 ms to 20 s. b, c, The corresponding lattice retro detuning, 
lattice velocity and lattice acceleration for loading two ensembles at 1 cm 
separation.



a b

Extended Data Fig. 4 | Comparison of bias correction. a, b, Comparison of ‘closed-loop’ analysis with (a) and without (b) bias correction. 197 unique 
‘closed-loop’ combinations are shown, with each datum corresponds to the sum frequency within each loop. Shaded area represents a window of 1 × 10−18.
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Extended Data Fig. 5 | Differential density shift. a, Measured differential 
density shift as a function of atom number difference between two 
symmetrically prepared ensembles at 1 cm separation. The data is taken at  
20 Erec lattice trap depth with 6 s interrogation time. Dashed line is the linear 

fitting, in which the slope is extracted as −8.5(6) × 10−19 shift per 100 atom 
number difference. b, Scaling of differential density shift per 100 atom number 
difference between ensemble pairs with lattice trap depth U. The dashed line is 
a fit to the expected αU5/4 + β scaling20, where α and β are fit parameters.



Extended Data Table 1 | Measured coherence times

Ramsey with one ensemble
Ramsey with two ensembles, 9/2 ↔ 9/2
“Spin-echo” with two ensembles, 9/2 ↔ 9/2
Ramsey with two ensembles, 5/2 ↔ 3/2

1/e decay time Fitting

96(24) ms
6(1) s

24(5) s
26(2) s

Gaussian
Gaussian

exponential
exponential

Uncertainties are quoted as 1σ standard deviation.
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Extended Data Table 2 | Differential frequencies from 6 ensemble measurement

1                   2                     3                    4                     5                  6ij

61.17(16)
125.74(19)
196.67(15)
274.83(15)
360.19(15)

64.67(17)
135.57(15)
213.69(22)
299.02(20)

2

70.65(18)
148.88(23)
233.96(23)

78.15(20)
163.66(16) 85.43(25)

1

3
4
5
6

Differential frequencies are defined as = − = −δf δf f fji ij j i, where i, j are indices of ensembles. All units are in mHz, with errors of 1σ standard deviation.
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