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Abstract—Wireless federated learning (WFL) trains machine
learning (ML) models on wireless edge devices in a distributed
manner without the need of collecting data from users. In WFL,
the quality of a local model update depends on the variance
of the local stochastic gradient, determined by the mini-batch
data size used to compute the update. In this paper, we study
quality-aware distributed computation for WFL with non-convex
problems and asynchronous algorithms, using mini-batch size
as a “knob” to control the quality of users’ local updates. We
first characterize performance bounds on the training loss as a
function of local updates’ quality over the training process, for
both non-convex and asynchronous settings. Our findings reveal
that the impact of a local update’s quality on the training loss
1) increases with the stepsize used for that local update for non-
convex learning, and 2) increases when there are more other users’
local updates which are coupled with that local update (depending
on the update delays) for asynchronous learning. Based on these
useful insights, we design channel-aware adaptive algorithms that
determine users’ mini-batch sizes over the training process, based
on the impacts of local updates’ quality on the training loss as well
as users’ wireless channel conditions (which determine the update
delays) and computation costs. We evaluate the proposed quality-
aware adaptive algorithms using simulations, which demonstrate
improved learning accuracy and learning cost.

Index Terms—Quality-aware distributed computation, wireless
federated learning.

I. INTRODUCTION

Federated learning (FL) [1] is an emerging and promising
ML framework, which performs training of ML models in a
distributed manner. Instead of collecting data from a potentially
large number of users to a central server in the cloud for
training, FL allows the data to remain at users’ end devices
(such as smartphone), and trains a global ML model on the
server by collecting and aggregating model updates locally
computed on each user’s device based on her local data. One
significant advantage of using FL is to preserve the privacy of
individual users’ data. Moreover, since only the local ML model
parameters, instead of the local data, are sent to the server, the
communication costs can be greatly reduced. Furthermore, FL
can exploit ubiquitous smart devices with substantial computing
capabilities, which are often under-utilized. In particular, when
FL is used in a wireless edge network, the data samples
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generated at individual wireless devices can be exploited via
local computation and global aggregation based on distributed
ML. As a result, wireless federated learning (WFL) can achieve
collaborative intelligence in wireless edge networks. A general
consensus is that WFL can support intelligent control and
management of wireless communications and networks (such
as in [2]–[4]), and can enable many AI applications based on
wireless networked systems.

As is standard, learning accuracy is a key performance
metric for FL. The accuracy of the trained machine learning
model in FL depends heavily on which users participate in the
learning process and the quality of their local model updates.
Specifically, when distributed stochastic gradient descent (SGD)
is used for FL, the quality of a local stochastic gradient in each
iteration can be measured by the variance of the gradient, which
depends on the mini-batch size used to compute the gradient. It
is important to observe that the quality of local updates can be
treated as a design parameter and used as a control “knob” (via
the mini-batch size) to be adapted across users and over time.
Such quality-aware distributed computation can substantially
improve the learning accuracy of WFL.

In this paper, we study quality-aware distributed computation
for WFL, with the focuses on non-convex problems and asyn-
chronous algorithms. The training problem of many practical
ML models (e.g., deep neural networks) involves a non-convex
loss function. Such a non-convex optimization problem is more
difficult to solve than the convex version, due to suboptimal
local minima. In addition, asynchronous learning algorithms
are usually more efficient than their synchronous counterparts
in utilizing users’ computing capabilities, as it allows devices
to keep computing without waiting for the global update
received from the server as in the synchronous algorithms.
This benefit of asynchronous learning is more so in a wireless
setting, as there can be strong communication stragglers due to
heterogeneous and time-varying wireless channels.

In this paper, our goal is to minimize the training loss while
taking into account costs and constraints of computation and
communication resources. In particular, we investigate how to
adaptively determine participating users’ mini-batch sizes over
the learning process. To this end, several significant challenges
need to be addressed: 1) The quality (determined by the mini-
batch size) of local stochastic gradient updates can be hetero-
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geneous across users and time-varying, and it is non-trivial to
quantify the impacts of local updates’ quality on the accuracy
of the final learnt model over the learning process. 2) The non-
convex and asynchronous settings of FL require new analysis
different from their convex and synchronous counterparts. 3)
The unique features of wireless edge networks, including time-
varying wireless channels, should be taken into account. To
achieve a desired tradeoff between the training loss and the
training cost, local updates’ quality should be determined based
on the impacts of local updates on the training loss as well as
users’ wireless channel conditions and computation costs.

The main contributions are summarized as follows:
• We propose quality-aware distribute computation for FL

in wireless edge networks, which controls the quality of
users’ local model updates via the mini-batch sizes used to
compute the updates, for non-convex problems and asyn-
chronous algorithms. Our goal is to minimize the training
loss as well as users’ computation and communication
costs in the training process.

• We characterize performance bounds on the training loss
as a function of users’ local updates’ quality (and thus the
mini-batch sizes) over the training process, for both non-
convex and asynchronous settings. Our findings reveal that
the impact of a user’s local update’s quality on the training
loss 1) increases with the stepsize used that local update
for non-convex learning, and 2) increases when there are
more other users’ local updates which are coupled with
that local update for asynchronous learning, depending on
the update delays.

• Based on the obtained insights above, we develop channel-
aware adaptive algorithms that determine users mini-batch
sizes over the training process for both non-convex and
asynchronous learning, based on the impacts of local
updates’ quality on the training loss as well as users’
wireless channel conditions (which determine the update
delays) and computation costs. We characterize the optimal
mini-batch sizes, which shows that it is optimal to use
larger mini-batch sizes when the local updates’ impacts
are larger. For the non-convex setting, we also develop
a greedy algorithm that selects participating users, which
achieve an approximation ratio by exploiting the non-
monotone submodular property of the problem.

• We evaluate the proposed quality-aware adaptive algo-
rithms using simulations. The results demonstrate that
these algorithms outperform existing schemes in terms of
the training loss.

The remainder of this paper is organized as follows. Section
II reviews related work. In Section III, we describe quality-
aware distributed computation for federated learning. In Section
IV and Section V, we study learning accuracy bounds, and
dynamic user selection and mini-batch size design based on
the training loss bounds, respectively. Simulation results are
provided in Section VI.

II. RELATED WORK
Wireless Federated Learning. FL has emerged as a disruptive
computing paradigm for ML by democratizing the learning

process to potentially many individual users using their end
devices. For WFL, the computing and networking environ-
ments have salient features, including heterogeneous and time-
varying computing and communication resources that need to
be accounted for. Recent studies on FL have made effort to
take into account these issues [5]–[12]. For example, Tran
et al [5] studied FL in wireless networks for devices with
different computing and communication capabilities. In [13], Tu
et al studied computation offloading based distributed learning
where devices have different computing and communication re-
sources. However, all these works have not exploited mini-batch
sizes to control the quality of users’ local model updates, and
have not considered the impacts of diverse and dynamic local
updates’ quality on learning accuracy. A very recent work [14]
has studied quality-aware distributed computation for WFL
with convex problems and synchronous algorithms. However,
it has not considered the non-convex and asynchronous settings
which are very different and is the focus of this paper.
Non-Convex and Asynchronous Distributed Learning. With
rapid recent advances in ML/AI, distributed ML has also
seen substantial research activities in the past decade [15]–
[17]. Many prior works have studied various settings of dis-
tributed ML [18]–[23], including for non-convex problems and
asynchronous algorithms. As many ML optimization problems
are non-convex, the convergence of non-convex distributed
learning has been studied [19]–[21]. Along a different avenue,
asynchronous distributed learning [22]–[26] has received more
attention due to its high efficiency for large-scale distributed
learning. However, most existing works on non-convex and
asynchronous distributed learning have focused on the impacts
of learning rate and delay on the convergence of the learning
algorithm. In this paper, we theoretically study the impacts of
local updates’ quality (quantified by the variance and deter-
mined by the mini-batch size) on learning accuracy, and the
mini-batch size design, which is very different from the prior
works.

III. QUALITY-AWARE DISTRIBUTED COMPUTATION FOR
WIRELESS FEDERATED LEARNING

In this section, we present the system model of quality-aware
distributed computation for FL in a wireless edge network.

Quality-Aware Distributed Computation for FL. Consider
the setting where the distributed learning process of FL is
carried out by a set of wireless users. The server of FL can
reside in the cloud or at the edge (e.g., access point or base
station of a wireless network), and the users are connected to
the FL server via wireless links.

We consider the following FL problem:

min
w

�(w) ,
#∑
8=1

�8

�
�8(w), (1)

where �8(w) is the prediction loss of the model parameter w
based on user 8’s local dataset, # is the number of users, D8 =
{b81, b

8
2, . . . , b

8
�8
} is user 8’s local dataset for updating the model

parameter, and � ,
∑#
8=1 �8 . User 8’s local loss function �8(w)

is defined by
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�8(w) ,
1
�8

�8∑
<=1

58(w; b8<),

where 5 (·) is the per-sample loss function. In each round of
FL,  out of # users are selected from the user set N to
compute local updates, communicate their local updates to the
server, and receive the updated global model from the server.
At round C, a selected user 8 computes the average gradient 68

C−1
of the loss function using a set of �8C data samples randomly
drawn from her local dataset D8 , based on the global model
wC−1 received from the previous round C − 1, and update her
local model as

w8C = wC−1 − [68C ,

where

68C ,
1
�8C

�8
C∑

9=1
∇ 5 (w, b8, 9C ),

[ is the stepsize, and b8, 9C is the 9 th data sample randomly drawn
from user 8’s local dataset D8 . At the end of round C, the server
aggregates  users’ local models and updates the global model
as

wC =
 ∑
8=1

�8C

�C
w8C , (2)

where �C ,
∑ 
8=1 �

8
C .

The quality of a user’s local update is captured by the
variance of the local stochastic gradient, given by

@8 , �
î

68C − 6̄C

2ó

, (3)

where 6̄C , �[68C ]. Assume that the loss function 5 satisfies
�



∇ 58 (wC , b8<) − �[∇ 58 (wC )]


2 ≤ f2, ∀C. It can be shown that

[27]
�
î

68C − 6̄C

2ó ≤ f2

�8C
.

Note that a user’s quality is determined by the mini-batch
size �8C used to update her local model. Thus, a local update
computed with a larger mini-batch size has higher quality.

In this paper, we assume that users’ local data are IID. Our
results in the following sections (including the training loss
bounds, adaptive mini-batch size design and user selection) can
be extended to the case of non-IID data, and will be studied in
our future work.

Asynchronous FL. The Fl algorithm can be carried out in
an asynchronous manner described as follows. In this case, the
learning process consists of rounds, each lasting for a time
period of the same length. At the beginning of each round, the
server broadcasts the global model. At the end of each round,
the server updates the global model using the local models
received in the round as (2) (as illustrated in Fig. 1). Note
that a user’s local update can be received by the server in a
round different from the round when the user receives the global
model from the server for computing that local update. The
update delay g8 quantifies the difference between the round
when user 8 receives the global model from the server and the
round when user 8’s local update computed from that global
model is received by the server. Note that g8 is an integer,
where g8 = 1 means there is no update delay, and g8 > 1 means

C1

C2

C3

C4

Server

User 1

User 2

User 3

User 4

Round t Round t+1 Round t+2

update𝐰𝑡 update𝐰𝑡+1 update𝐰𝑡+2update𝐰𝑡−1

… …

𝜏1 = 1

𝜏2 = 2

𝜏3 = 3

𝜏4 = 2

M1

M3

M4

M2

Fig. 1. Schedule of the server’s updates and users’ computations (C) and
communications (M) in asynchronous FL. The server updates and broadcasts
the global model at the end of each round and the beginning of the next round,
respectively. g8 is the update delay of user 8. We ignore the server’s computation
and communication times for simplicity.

there is an update delay. The computation time (�8) is the time
it takes for user 8 to compute (update) her local model, and
the communication time ("8) is the time it takes for user 8 to
communicate (upload) her updated local model to the server.
For example, in Fig. 1, user 2 receives the global model and
starts to update her local model at the beginning of round C.
After computing the local model, user 2 starts to uploads her
local model to the server. Then the server receives user 2’s
local model w2

C+1 in round C + 1 and updates the global model
as wC+1 = w2

C+1 at the end of round C + 1.
FL in Wireless Edge Network. A user incurs a computation

cost (measured by the computation delay, energy consumption,
etc) for computing a local update, which depends on the
computation capability of the user’s device and the mini-batch
size used to compute the update. Let 28?,C be user 8’s cost of
computing her local update using one data sample in round C.
Besides the computation cost, a user also incurs communication
cost for communicating local updates to the server (measured
by the communication delay, energy consumption, etc), which
depends on the user’s wireless channel condition. Let 28<,C
be user 8’s communication cost in round C. Note that the
computation cost 28?,C and the computation cost 28<,C generally
vary across users and over rounds of the FL algorithm.

IV. TRAINING LOSS BOUND ANALYSIS

In this section, under the quality-aware FL framework of the
previous section, we study the training loss bounds for three
settings: 1) non-convex problems; 2) asynchronous algorithms;
3) non-convex problems and asynchronous algorithms. We
will first characterize the performance bounds as functions of
users’ mini-batch sizes over the training process. Based on the
obtained results, we then discuss the impacts of mini-batch sizes
and other system parameters (including stepsize) on the training
loss.
A. Case of Non-Convex Learning

We first analyze the training loss bound for non-convex prob-
lems with synchronous algorithms. For non-convex optimiza-
tion, the metrics for convex optimization (e.g., �(w) )−�(w∗))
are not suitable, since it is hard to find the global optimum
for non-convex optimization problems. Thus, we analyze the
ergodic convergence [20], where we randomly select an index
C̃ from {1, 2, . . . , )} with probability {[C/

∑)
C=1 [C }, and use wC̃
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as the final model of the training process. The expected squared
gradient norm ‖6̄C̃ ‖2 of wC̃ can be upper bounded as follows.

Theorem 1: Suppose � is !-smooth, and
�



∇ 58 (wC , b8<) − �[∇ 58 (wC )]


2 ≤ f2, ∀8, C, take the stepsize

[C ≤ 1
!

, ∀C, the ergodic convergence is given by

1∑)
C=1 [C

)∑
C=1

[C ‖6̄C ‖2 ≤
2�(�(w0) − �(w∗)) +∑)

C=1 ![
2
C
f2

�C∑)
C=1 [C

,

(4)
where �C ,

∑
8∈(C �

8
C , and �8C is the mini-batch size of user 8

in round C.
Due to space limitation, all the proofs of results in this paper

are provided in our online technical report [28].
Remark 1: In (4), f

2

�C
is the upper bound of the variance of the

global model update wC , which is determined by the variances
of participating users’ local model updates. Thus the weight
![2

C /
∑)
C=1 [C of the variance f2

�C
of the global update captures

the impact of the quality of local updates on the training loss.
We also know that a larger stepsize results in a larger change
of the model. Thus, given the total number of rounds ) and the
sum of stepsizes

∑)
C=1 [C , the larger the stepsize of the round,

the larger the impact of local updates’ quality on the training
loss. Also observe that with any sequence of {[C } such that∑)
C=1 [C diverge and

∑)
C=1 [

2
C converge (e.g., [C = 1/C), and with

any non-decreasing mini-batch size, the bound converges to 0
as ) →∞.

Taking a closer look at Theorem 1, we can properly choose
the stepsize and total mini-batch size in each round and obtain
the following convergence rate:

Proposition 1: Suppose � is !-smooth,
�



∇ 58 (wC , b8<) − �[∇ 58 (wC )]


2 ≤ f2, and � ‖∇�8 (wC )‖2 ≤

�2, ∀8, C, take any mini-batch size {�C } and a constant stepsize
[ =

√
�min
!
√
)
, where �min , min{�C }, the ergodic convergence

is given by
1
)

)∑
C=1
‖6̄C ‖2 ≤

2!�(�(w0) − �(w∗)) + f2
√
�min)

. (5)

Proposition 1 shows that when the stepsize is small enough,
the convergence rate achieves O(1/

√
�min)), which is consis-

tent with the result obtained in [19], Corollary 1.

B. Case of Asynchronous Learning

We then analyze the training loss bound when asynchronous
algorithms are used for convex problems. In this subsection,
for ease of exposition, we focus on using a constant stepsize.
Our results can be extended to using a time-varying stepsize.

Theorem 2: Suppose � is !-smooth and `-strongly convex,
�



∇ 58 (wC , b8<) − �[∇ 58 (wC )]


2 ≤ f2, and � ‖∇�8 (wC )‖2 ≤

�2, ∀8, C, take the stepsize [ ≤ 1
!

, then the training loss is
bounded by

�[�(w) ) − �(w∗)] ≤ (1 − `[)) (�(w0) − �(w∗))

+
)∑
C=1

[
(1 − `[)) −C

(
!2[3

∑
8∈"C

�8C

�C
(

C−1∑
C′=C−g8+1

f2

�C′

+Γ(g8 − 1)�2) + [
2
f2

�C

åô
,

(6)

where "C is the set of users who update at time C, Γ is the
maximum update delay.

Remark 2: Theorem 2 shows that the training loss bound
consists of two terms. The first term decreases geometrically
with the number of rounds ) , and is due to that SGD in
expectation makes progress towards the optimal solution. The
second term of the bound is caused by the randomness of data
sampling for computing the update in SGD. Compared to the
training loss in the case of synchronous learning [14], each
term in the second term not only depends on the total mini-
batch size �C of users who finish uploading their local models
in the current round C, but also the total mini-batch size �C′ of
each past round C ′ such that C ′ ∈ {C − g8 + 1, . . . , C − 1}, where
8 ∈ "C . For example, in Fig. 1, the training loss in round C + 1
not only depends on user 2’s mini-batch size, but also on user
1’s mini-batch size. This implies that in each round, the larger
update delays of users, the worse the training loss.

Remark 3: According to (6), the training loss due to users’
update delays in each round is

∑
8∈"C

�8
C

�C
(
∑C−1
C′=C−g8+1

f2

�C′
+Γ(g8−

1)�2). When there is no update delay, i.e., g8 = 1,∀8 ∈ "C , this
term is 0, and the training loss bound degenerates to the case of
synchronous learning in [14]. When update delays exist, this
term decreases as the mini-batch sizes of users who upload
their local models in the past rounds increase.

To obtain some useful insights, we next focus on the special
case where only one user uploads her local model in a round.
Let user C be the user who uploads her local model in round C.
Then, using Theorem 2, the training loss bound is given by
�[�(w) ) − �(w∗)] ≤ (1 − `[)) (�(w0) − �(w∗))+
)∑
C=1

[
(1 − `[)) −C

(
!2[3(

C−1∑
C′=C−gC+1

f2

�C′
+ Γ(gC − 1)�2) + [

2
f2

�C

)]
.

(7)
To analyze the impact of user C on the training loss, we find
the terms determined by �C and gC in (7) as follows.

�C =(1 − `[)) −C
(
!2[3(

C−1∑
C′=C−gC+1

f2

�C′
+ Γ(gC − 1)�2)

+f
2

�C

(
[

2
+ !2[3

Γ∑
g′=1

1gC+g′ ≥g′(1 − `[)−g
′

))
,

(8)

where 1 is an indicator function such that 1 = 1 when the user
who uploads her local model in round C +g′ receives the global
model from the server before round C, and 1 = 0 otherwise.

Remark 4: From (8), we can see that when user C’s update
delay gC is independent of her mini-batch size �C , �C decreases
as �C increases and/or gC decreases. This implies that in a given
round, a user with a larger mini-batch size or a smaller update
delay reduces the training loss. Also observe that user C’s mini-
batch size affects some later rounds such that users who uploads
their local models in those rounds receive the global models
before round C.

Remark 5: In (8), the weight of user C’s impact on the training
loss is (1 − `[)) −C . Note that this weight increases with the
round number C as 1 − `[ < 1. Therefore, the update delay
and mini-batch size in a later round have larger impacts on
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the training loss than in an earlier round. This observation has
important implications: it is better for a user to have a larger
mini-batch size or a smaller update delay in a later round rather
than an earlier round to reduce the training loss.

C. Case of Non-Convex and Asynchronous Learning

Next, we analyze the training loss bound for non-convex
problems and asynchronous algorithms.

Theorem 3: Suppose � is !-smooth and
�



∇ 58 (wC , b8<) − �[∇ 58 (wC )]


2 ≤ f2, ∀8, C, take the stepsize

[C ≤ 1
!

, ∀C, the ergodic convergence is given by

1∑)
C=1 [C

)∑
C=1

[C ‖6̄C ‖2 ≤
2�(�(w0) − �(w∗))∑)

C=1 [C

+
∑)
C=1(![2

C
f2

�C
+ 2!2[C

∑
8∈"C

�8
C

�C

∑C−1
C′=C−g8+1 [

2
C′
f2

�C′
)∑)

C=1 [C
,

(9)

where the stepsize satisfies ![C + !2Γ[C
∑Γ−1
C′=1 [C+C′ ≤ 1, ∀C.

Remark 6: From (9), we can see that the convergence rate
for the combined non-convex and asynchronous setting shows
similar properties as that for each of the two settings. First, the
convergence rate not only depends on the total mini-batch size
�C used in the current round C, but also on the mini-batch sizes
used in several past rounds. Second, given the total number
of rounds ) and the sum of stepsizes

∑)
C=1 [C , the larger the

stepsize of the round, the larger the impact of local updates’
quality on the training loss. Also observe that the impact of
the quality f2

�C
of the local updates in round C is captured not

only by the stepsize [C in round C but also by the stepsizes in
several later rounds.

V. CHANNEL-AWARE ADAPTIVE USER SELECTION AND
MINI-BATCH SIZE DESIGN

In this section, we study how to design users’ mini-batch
sizes over the training process to minimize the training loss
bound for non-convex and asynchronous FL, respectively. For
the non-convex setting, we also investigate how to select
participating users. In the meanwhile, we take into account
users’ computation and communication costs. Note that we con-
sider continuous-valued mini-batch size �C in our theoretical
analysis, which can be converted back to the nearest integer
values when used in practice.
A. Case of Non-Convex Learning

First we study the optimal user selection and mini-batch size
design for non-convex problems with synchronous algorithms.
We aim to minimize the sum of the training loss and users’
total communication and computation cost. The optimization
problem can be formulated as

min
{(C }, {�C }

W
1∑)
C=1 [C

)∑
C=1

[C ‖6̄C ‖2 + (1 − W)
)∑
C=1

∑
8∈(C

(28?,C�8C + 28<,C ),

B.C. �8C ≤ �8�,∀8, C,
where {(C } is the set of selected users in all rounds, {�C } is
the set of assigned mini-batch sizes of users in all rounds, �C is
the mini-batch size of the user who updates her local model in
round C, W ∈ (0, 1] is the weight that balances the training loss

and the cost, which can be determined according to the server’s
concern, and �8

�
is user 8’s maximum possible mini-batch size.

From (4), we rewrite the problem as follows:

min
{(C }, {�C }

)∑
C=1
J1((C , �C ) = W

)∑
C=1

![2
C
f2

�C∑)
C=1 [C

+ (1 − W)
)∑
C=1

∑
8∈(C

(28?,C�8C + 28<,C ),

B.C. �8C ≤ �8�,∀8, C,

Since
∑)
C=1 [C is given, we can see that the problem above

can be decomposed into ) independent problems, each for one
of the ) rounds. Thus, we focus on finding the optimal (C and
�C for a single round C. Moreover, we decompose the problem
in round C into two subproblems: 1) we first study the optimal
mini-batch size design given any user selection; 2) then we
study the optimal user selection given the optimal mini-batch
size design.

1) Optimal Mini-Batch Size Design: Given any set of se-
lected users, since the total communication cost is fixed, a user
with a lower computation cost is preferred over one with a
higher computation cost. Hence, the optimal mini-batch sizes
are determined in the ascending order of users’ computation
costs until the minimum value of J1 is reached. It can be shown
that J1 is a convex function of �8C when other users’ mini-
batch sizes are given. The following result characterizes users’
optimal mini-batch sizes.

Theorem 4: Let users in (C be ordered as 21
?,C ≤ 22

?,C ≤ · · · ≤
2
|(C |
?,C . Then the users’ optimal mini-batch sizes are determined

iteratively in this order, where the 8th user’s optimal mini-batch
size is given by

�8C
∗((C ) = min{�8�,max{

Ã
!W[2

Cf
2

(1 − W)28?,C
∑)
C−1 [C

−
8−1∑
9=1

�
9
C
∗, 0}}.

2) User Selection Algorithm: With the optimal mini-batch
size design, the user selection problem in round C can be
rewritten as

min
(C
J1((C , �∗C ((C )) = W

Ç
![2

Cf
2∑

8∈(C �
8
C
∗((C )

∑)
C=1 [C

å
+ (1 − W)

∑
8∈(C

(28?,C�8C ∗((C ) + 28<,C ).
(10)

First note that problem (10) can be cast as the maximization
problem of −J1((C , �∗C ((C )). Then we have the following prop-
erty of the problem.

Lemma 1: −J1((C , �∗C ((C )) is a negative non-monotone sub-
modular function.

Note that it is difficult to solve a negative non-monotone
submodular maximization problem with performance guarantee
(e.g., with an approximation ratio). To overcome this challenge,
we transform the above problem into a non-negative non-
monotone submodular maximization problem.

First, we find the maximum value of J1((C , �∗C ((C )). From
the optimal mini-batch size design, we can see that there
exists some user 9 , such that for any user 9 ′ ∈ (C that has
2
9′

?,C ≥ 2
9
?,C , we have �

9′∗
C ((C ) = 0. The objective function
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J1 decreases as users’ optimal mini-batch sizes are determined
iteratively according to Proposition 4 until user 9 , and does
not change when the optimal mini-batch sizes of users after 9
are determined. Therefore, given a selected user set (C , J1 is
maximized when only one user’s mini-batch size is non-zero.
Thus, for any ( ⊆ N , the maximum value of J1 is given by

J1,max =
W![2

maxf
2∑)

C=1 [C
+ (1 − W)(2?,max��,max + #2<,max),

where [max = max{[C |∀C}, 2?,max = max{28?,C |∀8, C}, ��,max =

max{�8
�
|∀8}, and 2<,max = max{28<,C |∀8, C}.

Based on the maximum value of J1((C , �∗C ((C )), we define a
new function G((C ) and rewrite the user selection problem in
round C as

max
(C
G((C ) ,

ß
−J1((C , �∗C ((C )) + J1,max, if (C ≠ ∅
0, if (C = ∅

Note that in each round C of the FL algorithm, at least one
user is selected (i.e., |(C | > 0) with a positive mini-batch size
(i.e., �C > 0). This is because when (C = ∅, the global model is
not updated so that round C should not be counted as a round of
the FL algorithm. Thus, we can define that G(∅) , 0. We can
see that the above two problems are equivalent since J1,max is a
constant. Next, we focus on finding the solution that maximizes
G((C ). From Lemma 1, it follows directly that G((C ) is a non-
negative non-monotone submodular function.

Next, we can apply the DeterministicUSM Algorithm [29] to
solve the user selection problem, which is given in Algorithm
1. The approximation ratio of DeterministicUSM is given by
the following lemma.

Lemma 2: [29] Algorithm DeterministicUSM is a 1
3 -

approximation algorithm for maximizing function G((C ).
Given the result above, we then show the approximation ratio

of Algorithm 1 for our problem, under the optimal mini-batch
size design given in Proposition 4. The proof of the following
result is given in the appendix.

Theorem 5: Under the optimal mini-batch size design, with
the user selection given by Algorithm 1, the system loss is
upper bounded by

)∑
C=1
J1((∗C , �∗C ((∗(C))) ≤

1
3
OPT + O()),

where OPT is the system loss of the optimal user and mini-
batch size selection.
B. Case of Asynchronous Learning

We next study the case of asynchronous algorithms for
convex problems. In this paper, we assume that the update
delays1 of users are fixed, regardless of the mini-batch sizes
used to compute the local updates. This is a reasonable as-
sumption when the communication times of local updates are
relatively large compared to their computation times. The case
where update delays depend on the mini-batch sizes is a very
challenging problem, and will be studied in our future work.
For ease of exposition, in this subsection, we also assume that
only one user uploads her local model in one round.

1Note that the update delay is an integer and is not the total computation
and communication time of the local update.

Algorithm 1: Approximate optimal user selection

1 -0 ← ∅, .0 ← N ;
2 for 8 = 1, 2, · · · , # do
3 08 ← G (-8−1 ∪ {8}) − G (-8−1);
4 18 ← G (.8−1 \ {8}) − G (.8−1);
5 if 08 ≥ 18 then
6 -8 ← -8−1 ∪ {8} , .8 ← .8−1;
7 else
8 -8 ← -8−1, .8 ← .8−1 \ {8};

9 (C ← -# ;
10 return (C .

As discussed earlier, the impact of each user C’s mini-batch
size on the training loss depends on the set of other users’
computation and communication periods during which user C
uploads her local model. We need to take into account this
coupling of users’ updates in terms of their impacts on the
training loss, based on the update delays over the training pro-
cess. Thus, we develop an adaptive algorithm that determines
the mini-batch size for each user’s each update, based on the
delay information of only Γ number of updates in the future.

When users’ update schedules are given2, the total commu-
nication cost is fixed. Thus it suffices to minimize the sum of
the training loss bound and users’ total computation cost:

min
{�C }

W�[�(w) ) − �(w∗)] + (1 − W)
)∑
C=1

2?,C�C ,

B.C. �C ≤ �C�,∀C,
(11)

where �C
�

is user C’s maximum possible mini-batch size. Since
the first term of the training loss bound given in (7) does not
depend on users’ mini-batch sizes {�C }, it suffices to minimize
the second term. Furthermore, we rewrite the second term of
(6) as the sum of terms that are determined by user C’s update
delay and mini-batch size. Thus, from (7), we rewrite (11) as

min
{�C }

)∑
C=1
J2(�C ) =

)∑
C=1

(
W(1 − `[)) −C

(
!2[3Γ(gC − 1)�2

+ [

2
f2

�C
+ !2[3f

2

�C

Γ∑
g′=1

1gC+g′ ≥g′(1 − `[)−g
′

)
+(1 − W)2?,C�C

)
,

B.C. �C ≤ �C�,∀C.
(12)

where gC+g′ , ∀g′ ∈ {1, . . . , Γ} are known. Thus, for user C who
uploads her local model in round C, the server can find the
value of

∑Γ
g′=1 1gC+g′ ≥g′(1 − `[)−g′ based on the update delays

of users who upload their local models in next Γ rounds.
Note that problem (12) can be decomposed into ) indepen-

dent problems, each for one of the ) users. Thus, we focus
on finding the optimal �C that minimizes J2(�C ) for a single

2Note that the training loss depends heavily on users’ update schedules. We
focus on the design of users’ mini-batch size given users’ update schedules
here and will study the joint design of user selection and mini-batch size in
future work.
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user C. It can be shown that J2(�C ) is a convex function of �C .
Thus the optimal mini-batch size �∗C can be found as the local
minimum of J2(�C ), given as below.

Theorem 6: Given users’ update schedules and their update
delays, the optimal mini-batch size for each user C who uploads
her local model in round C is given by

�∗C = min{
 

WECf
2

(1 − W)2?,C
, �C�},

where EC = (1 − `[)) −C ( [2 + !
2[3 ∑Γ

g′=1 1gC+g′ ≥g′(1 − `[)−g′).
Theorem 6 shows that the optimal mini-batch size �∗C is

larger in a later round. This is because the weight (1 − `[)) −C
of an update on the training loss bound increases with the round
number C, so that �∗C also increases with the round number. Also
note that �∗C increases as the number of users who receive the
global models before round C and finish uploading their local
models after round C increases. This is because the impact of
the mini-batch size of user C on the training loss increases when
there are more of those users.

VI. PERFORMANCE EVALUATION

In this section, we conduct synthetic data simulations to
validate the theoretical findings. We implement a simulated
system consisting of a virtual server and a number of virtual
users. For convex optimization problem, we generate 10000
data samples according to the linear model, i.e., H = w) x, and
use the mean square error function as the loss function, i.e.,
5 (w, b) = 1

2 ‖H − w) x‖2, where b = (x, H) is a data sample.
Each data point consists of 10 features and 1 label. For non-
convex optimization problems, we generate 10000 data samples
for a binary linear classification model of which the data is
generated according to Pr(H = 1|x = x) = _(〈w, x〉) [30], where
_(〈w, x〉) = (1+ 4−_)−1. Each data point consists of 10 features
and 1 label. The stepsize [ is set as a constant for all settings.
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Fig. 6. Impact of mini-batch size on the training loss of synchronous FL for
non-convex optimization.

We first evaluate the performance of the case of non-convex
loss function with synchronous learning. We compare the
training loss using time-invariant, descending and ascending
mini-batch sizes to update the global model over rounds. The
average mini-batch size over all rounds are the same for above
three distributions to achieve fair comparison. Fig. 6 shows that
although the mini-batch sizes over time of three distributions
are different, they result in the same training loss at the end
of training. The case of ascending mini-batch size has the
worst learning accuracy in beginning rounds, and the case of
descending mini-batch size has the best learning accuracy in

beginning rounds. This is because, in beginning rounds, the
case of descending mini-batch size uses more data to update
the FL model. In our theoretical result, we have shown that
using larger mini-batch to update implies better quality and
leads to a lower training loss. Moreover, since the weight of
local updates’ quality (stepsize [) is the same in all rounds,
the impact of local updates’ quality on the training loss is
the same. In ending rounds, as the total mini-batch size over
rounds converges to the same for three cases, the training loss
converges to the same value.

We next evaluate the performance of the case of convex
loss function with asynchronous learning. We first compare the
training loss using time-invariant, descending and ascending
mini-batch sizes to update the global model. Different from the
case of non-convex loss function with synchronous learning,
Fig. 2 shows that although the average mini-batch sizes over
time of three distributions are the same, different distributions
of the mini-batch size result in different training loss at the
end of training. The case of ascending mini-batch size has the
worst learning accuracy in beginning rounds and results in the
best learning accuracy in ending rounds. This conforms the
result from Theorem 2 that the update in a later round has a
larger impact on the learning accuracy. We also compare the
training loss while users’ maximum update delays are different
(Γ ∈ {1, 4, 8}). We simulate for 50 local iterations in total, with
the mini-batch size in each local iteration set as 25. From Fig.
3, we can see that when users update without delay (Γ = 1),
the system suffers the lowest training loss. The training loss
increases as the maximum update delay Γ increases. we can
see that the simulation result is consistent with the result given
in Theorem 2. FL suffers a larger error caused by the delay of
users’ updates.

Lastly, we evaluate the training loss of the case of non-
convex loss function with asynchronous learning. Same as the
other two cases, we first compare the training loss using time-
invariant, descending and ascending mini-batch sizes to update
the global model when the maximum update delay Γ = 4. Fig.
4 shows that even with the update delay, the three distributions
result in the same training loss at the end of training which
is the same as the case of non-convex loss function with
synchronous learning. We then compare the training loss while
users’ maximum update delays are different (Γ ∈ {1, 4, 8}). In
Fig. 5, we can see that the result is similar to that of the case
of convex loss function with asynchronous learning.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied quality-aware distributed com-
putation for WFL with non-convex problems and asynchronous
algorithms. We have characterized the performance bounds
on the training loss as a function of users’ local updates’
quality over the training process, for both non-convex and
asynchronous settings. The results show that the impact of
a local update’s quality 1) increases with the stepsize used
in the round for non-convex learning, and 2) increases when
there are more other users’ local updates (depending on the
update delays) which are coupled with that local update for
asynchronous learning. We have also developed channel-aware
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Fig. 2. Impact of mini-batch size on
the training loss of asynchronous FL
for convex optimization.
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Fig. 3. Impact of maximum update
delay on the training loss of asyn-
chronous FL for convex optimization.
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Fig. 4. Impact of mini-batch size on
the training loss of asynchronous FL
for non-convex optimization.
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Fig. 5. Impact of maximum update
delay on the training loss of asyn-
chronous FL for non-convex optimiza-
tion.

adaptive algorithms that select participating users and determine
their mini-batch sizes. Simulations have been used to evaluate
the proposed algorithms.

For future work, one interesting direction is to consider non-
convex and asynchronous WFL where users have non-IID local
data. In this case, the optimal mini-batch size and user selection
design can be very different from in the IID data setting.
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