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Abstract—This paper proposes a general framework to design
a sparse sensing matrix A 2 R

m⇥n, in a linear measurement
system y = Ax\ + w, where y 2 R

n, x\ 2 R
n, and w

denote the measurements, the signal with certain structures,
and the measurement noise, respectively. By viewing the signal
reconstruction from the measurements as a message passing
algorithm over a graphical model, we leverage tools from coding
theory in the design of low density parity check codes, namely
the density evolution, and provide a framework for the design of
matrix A. Particularly, compared to the previous methods, our
proposed framework enjoys the following desirable properties:
(i) Universality: the design supports both regular sensing and
preferential sensing, and incorporates them in a single frame-
work; (ii) Flexibility: the framework can easily adapt the design
of A to a signal x\ with different underlying structures. As an
illustration, we consider the `1 regularizer, which correspond
to Lasso, for both the regular sensing and preferential sensing
scheme. Noteworthy, our framework can reproduce the classical
result of Lasso, i.e., m � c0k log(n/k) (the regular sensing)
with regular design after proper distribution approximation,
where c0 > 0 is some fixed constant. We also provide numerical
experiments to confirm the analytical results and demonstrate the
superiority of our framework whenever a preferential treatment
of a sub-block of vector x\ is required.

I. INTRODUCTION

This paper considers the linear sensing relation, which is

written as
y = Ax\ +w, (1)

where y 2 R
m denotes the measurements, A 2 R

m⇥n is the

sensing matrix, x\ 2 R
n is the signal to be reconstructed, and

w 2 R
n is the sensing noise with iid Gaussian distribution

N (0,�2). To reconstruct x\ from y, one widely used method

is the regularized M-estimator

bx = argmin
x2Rn

1

2�2
ky �Axk22 + f(x), (2)

where f(·) is the regularizer used to enforce a desired structure

for bx. To ensure reliable recovery of x\, sensing matrix A

needs to satisfy certain conditions, for example, the incoher-

ence in [1], RIP in [2], [3], the neighborhood stability in

[4], irrespresentable condition in [5], etc. However, the above

conditions all corresponds for sparse x\. For other types of

signals, the preferable conditions for A may not be the same.

In this work, we focus on the sparse sensing matrix A, which

arises frequently in practical applications where a limited

number of sensors are preferred. Leveraging tools from coding

theory, namely, density evolution (DE), we propose a heuristic

but general design framework of A to meet the requirements

of the signal reconstruction such as unequal preference on the

quality of signal components.

Related work. At the core of our work is the application

of DE in message passing (MP) algorithm. MP [6], [7] has a

broad spectrum of applications, ranging from physics to coding

theory. When narrowing down to the compressed sensing (CS),

it has been widely used for signal reconstruction [8]–[16]

and analyzing the performance under some specific sensing

matrices.

In the context of the sparse sensing matrix, the authors in

[17] first proposed a so-called sudocode construction technique

and later presented a decoding algorithm based on the MP in

[18]. In [19], the non-negative sparse signal x\ is considered

under the binary sensing matrix. The work in [20] linked the

channel encoding with the CS and presented a deterministic

way of constructing sensing matrix based on high-girth low-

density parity-check (LDPC) code. In [9], [11], [21], the au-

thors considered the verification-based decoding and analyzed

its performance with DE. In [10], the spatial coupling is first

introduced into CS and is evaluated with the decoding scheme

adapted from [21]. However, all the above mentioned works

focused on the noiseless setting, namely, w = 0. In [12]–[14],

the noisy measurement is considered. A sparse sensing matrix

based on spatial coupling is analyzed in the large system

limit with replica method and DE. They proved its recovery

performance to be optimal when m increases at the same rate

of n, i.e., m = O(n).

Moreover, in the context of a dense sensing matrix, the

analytical tool switches from DE to state evolution (SE),

which is first proposed in [15], [16]. Together with SE comes

the approximate message passing (AMP) decoding scheme.

The empirical experiments suggest AMP has better scalability

when compared with `1 construction scheme without much

scarifice in the performance. Additionally, an exact phase

transition formula can be obtained from SE, which predicts

the performance of AMP to a good extent. Later, [22] pro-

vided a rigorous proof for the phase transition property by

the conditioning technique from Erwin Bolthausen and [23]

extended AMP to general M-estimation.

Note that the above mentioned related works are not exhaus-

tive due to their large volume. For a better understanding of the

MP algorithm, the DE, and their application to the compressive

sensing, we refer the interested readers to [6], [14], [24].

In addition to the work based on MP, there are other works

based on LDPC codes or graphical models. Since they are not
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closely related to ours, we only mention their names without

further discussion [25]–[31].

Contributions. Compared to the previous work exploiting

MP [9]–[16], [21], our focus is on the sensing matrix design

rather than the decoding scheme, which is based on the

M-estimator with regularizers. Additionally, our framework

enjoys the following benefits:

• Universibility. Exploiting the DE, we give a universal

framework which supports both the regular sensing and

the preferential sensing in recovering the components of

the signal. Specifically, the preferential sensing design of

sensing matrix equips the compressive sensing method for

more accurate (or exact) recovery of the high-priority sub-

block of the signal relative to the low-priority sub-block. We

emphasize that although we focused on two levels of priority

in signal components in this work, one can easily extend

the framework to the scenario where multiple levels of

preferential treatment on the signal components are needed,

by simply incorporating associated equations into the DE.

• Flexibility. Generally speaking, previous methods of the

sensing matrix design are limited to some specific signal

structures. Hence, the analysis and design will not hold

accurate for some other signals with special underlying

structures. In contrast, our framework can adapt for differ-

ent signal-structure constraints by simply adjusting degree

distributions in DE.

Additionally, as a byproduct of our framework, we give an

example of sparse recovery with `1 regularizers and obtain a

closed-form formula for the sensing matrix design. Then, we

show that by a proper distribution approximation the classical

results, i.e., m � c0k log n, under the regular sensing matrix

design can be reproduced.

II. PROBLEM DESCRIPTION

We begin this section with a formal statement of our

problem. Given the linear measurement system

y = Ax\ +w,

where y 2 R
m, A 2 R

m⇥n, x\ 2 R
n, and w 2 R

m,

respectively, denote the observations, the sensing matrix, the

signal, and the additive sensing noise with its ith entry wi
i.i.d⇠

N (0,�2). We would like to recover x with the regularized

M-estimator

bx = argminx

1

2�2
ky �Axk22 + f(x),

where f(x) is the regularizer used to enforce certain underly-

ing structure for signal s. Our goal is to design a sparse sensing

matrix A which provides preferential treatment for a sub-block

of the signal x\, for example, this sub-block can be recovered

with lower probability of error when comparing with the rest

parts of x\. Before we proceed, we list our assumptions as

• Measurement system A is assumed to be sparse. Further,

A is assumed to have entries with with EAij = 0, and

Aij 2 {0,±A�1/2}, where an entry Aij = A�1/2 (�A1/2)

implies a positive (negative) relation between the ith sensor

and the jth signal component. Having zero as entry implies

no relation.

• The regularizer f(x) is assumed to be separable such that

f(x) =
Pn

i=1 f(xi).

First we transform (1) to a factor graph [32]. Adopting

the viewpoint of Bayesian reasoning, we can reinterpret M-

estimator in (2) as the MAP estimator and rewrite it as

bx = argmaxx exp

 

�ky �Axk22
2�2

!

⇥ exp (�f(x)) .

The first term exp
⇣
�ky�Axk2

2

2�2

⌘
is viewed as the probability

P(y|x) while the second term exp(�f(x)) is regarded as

the prior imposed on x. Notice the term e�f(·) may not be

necessarily be the true prior on x\.

As in [24], we associate (2) with a factor graph G = (V ,E ),
where V denotes the node set and E is the edge set. First

we discuss set V , which consists of two types of nodes:

variable nodes and check nodes. We represent each entry xi

as a variable node vi and each entry ya as a check node ca.

Additionally, we construct a check node corresponds to each

prior e�f(xi). Then we construct the edge set E : 1) by placing

an edge between the check node of the prior e�f(xi) and the

variable node vi, and 2) the inclusion of an edge between the

variable node vi and cj iff Aij is non-zero. Thus, the design

of A transforms to the problem of graph connectivity in E .

III. SENSING MATRIX WITH REGULAR SENSING

With the aforementioned graphical model, we can view

recovering x\ as an inference problem, which can be solved

via the message-passing algorithm [32]. Adopting the same

notations as in [24] as shown in Fig. 1, we denote m
(t)
i!a

(bm(t)
a!i) as the message from the variable node vi to check

node ca (check node ca to variable node vi) in the tth round

of iteration. Then message-passing algorithm is written as

m
(t+1)
i!a (xi) ⇠= e�f(xi)

Y

b2@i\a

bm(t)
b!i(xi); (3)

bm(t+1)
a!i (xi) ⇠=

Z Y

j2@a\i

m
(t+1)
j!a (xi) · e

�
(ya�

Pn
j=1 Aajxj)

2

2σ2 dxj ,

(4)

where @i, @a denotes the neighbors connecting with vi and

ca, respectively, and the symbol ⇠= refers to equality up to

the normalization. In the tth iteration, we recover xi by

maximizing the posterior probability, which reads

bxi = argmaxxi
P(xi|y) ⇡ argmaxxi

e�f(xi)
Y

a2@i

bm(t)
a!i(xi).

In the design of matrix A, there are some general desirable

properties that we wish to hold (specific requirements will be

discussed later): 1) a correct signal reconstruction under the

noiseless setting; and 2) minimum number of measurements,

or equivalently minimum m. Before proceeding, we first

introduce the generating functions �(↵) =
P

i �i↵
i�1 and

⇢(↵) =
P

i ⇢i↵
i�1, which correspond to the distributions of
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Fig. 1. Illustration of the message-passing algorithm, where the square icon
represents the check node while the circle icon represents the variable node.

Fig. 2. Illustration of the generating function: �(↵) = 1
3
+ 2↵

3
and ⇢(↵) =

↵
2
+ ↵2

2
. The square icon represents check nodes while the circle denotes

variable nodes.

degrees for variable nodes and check nodes, respectively. We

denote the coefficient �i as the fraction of variable nodes with

degree i, and similarly we define ⇢i for the check nodes. An

illustration of the generating functions �(↵) and ⇢(↵) is shown

in Fig. 2.
A. Density evolution

We study the reconstruction of x\ from y via the conver-

gence analysis of the message-passing over the factor graph.

Due to the parsimonious setting of A, we have E to be sparse

and propose to borrow a tool known as density evolution

(DE) [32]–[34] that is already proven to be very powerful

in analyzing the convergence in sparse graphs resulting from

LDPC.

Basically, DE views m
(t)
i!a, bm

(t)
a!i as RVs and tracks the

changes of their probability distribution. When the message-

passing algorithm converges, we would expect their distri-

butions become more concentrated. However, different from

discrete RVs, continuous RVs m
(t)
i!a and bm(t)

a!i in our case

require infinite bits for their precise representation in general,

leading to complex formulas for DE. To handle such an

issue, we approximate m
(t)
i!a and bm(t)

a!i as Gaussian RVs,

i.e., mi!a ⇠ N (µi!a, vi!a) and bma!i ⇠ N (bµa!i, bva!i),
respectively. Since the Gaussian distribution is uniquely de-

termined by its mean and variance, we will be able to reduce

the DE to finite dimensions. A similar idea has also been used

previously in [12], [13], [34].

In our work, the DE tracks two quantities E(t) and V (t),

which denote the deviation from the mean and average of the

variance, respectively, and are defined as

E(t) =
1

m · n

nX

i=1

mX

a=1

⇣
µ
(t)
i!a � x\

i

⌘2
;

V (t) =
1

m · n

nX

i=1

mX

a=1

v
(t)
i!a.

Then we can show that the DE analysis results in

E(t+1) = Eprior(s)Ez


hmean

✓
s+

X

i,j

⇢i�jz

s
i

j
E(t) +

A�2

j
;

X

i,j

⇢i�j

A�2 + iV (t)

j

◆
� s]2; (5)

V (t+1) = Eprior(s)Ezhvar

✓
s+

X

i,j

⇢i�jz

s
i

j
E(t) +

A�2

j
;

X

i,j

⇢i�j

A�2 + iV (t)

j

◆
, (6)

where prior(·) denotes the true prior on the entries of x\, z
is a standard normal RV N (0, 1). The functions hmean(·) and

hvar(·) are to approximate the mean µi!a and variance vi!a,

given by

hmean(µ; v)= lim
�!1

R
xie

��f(xi)e�
γ(xi�µ)2

2v dxi

R
e��f(xi)e�

γ(xi�µ)2

2v dxi

; (7)

hvar(µ; v)= lim
�!1

�
R
x2
i e

��f(xi)e�
γ(xi�µ)2

2v dxi

R
e��f(xi)e�

γ(xi�µ)2

2v dxi

� (hmean(µ; v))
2 .

B. Sensing matrix design with regular sensing

Once the values of polynomial coefficients {�i}i and {⇢i}i
are determined, we can construct a random graph G = (V ,E ),
or equivalently the sensing matrix A, by setting Aij as

P(Aij = A�1/2) = P(Aij = �A�1/2) = 1
2 , if there is an

edge (vi, cj) 2 E ; otherwise we set Aij to be zero. Hence the

sensing matrix construction reduces to obtaining the feasible

values of {�i}i and {⇢i}i while satisfying certain properties

for the signal reconstruction as discussed in the following.

First, we would like a perfect signal reconstruction under

the noiseless scenario (�2 = 0), which requires:

• the algorithm converges, i.e., limt!1 V (t) = 0;

• the average error shrinks to zero, i.e., limt!1 E(t) = 0.

Second, we want to minimize the number of measure-

ments. Using the fact that n (
P

i i�i) = m (
P

i i⇢i) =P
i,j ((vi, cj) 2 E ), we formulate the design criteria as the

following optimization problem,

min
�2∆dv�1;
⇢2∆dc�1

m

n
=

P
i�2 i�iP
i�2 i⇢i

, (8)

s.t. lim
t!1

⇣
E(t), V (t)

⌘
= (0, 0); (9)

�1 = ⇢1 = 0,

where ∆d�1 denotes the d-dimensional simplex, namely,

∆d�1 =
�
z 2 R

d |
P

i zi = 1, zi � 0
 

, and the constraint in

(9) is to avoid one-way message passing.

Generally speaking, we need to run DE numerically to

check the requirement (9) for every possible values of {�i}i
and {⇢i}i. However, for certain choices of regularizers f(·),
we can reduce the requirement (9) to a closed-form equation.

As an illustration, we set the prior in (3) to be the Laplacian
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distribution, i.e., e��|x|. In this case, the regularizer f(·) in

(2) becomes �k·k1 and the M-estimator in (2) transforms to

Lasso [35].

C. Illustrative example: Laplacian prior

Assuming the signal x\ is k-sparse, i.e.,
��x\

��
0
 k, we

would like to recover x\ with the regularizers �k·k1. Following

the approaches in [15], we can show that

E(t+1) = Eprior(s)Ez⇠N (0,1)

h
prox

⇣
s+ a1z

p
E(t);�a2V

(t)
⌘
� s
i2

;

V (t+1) = Eprior(s)Ez⇠N (0,1)

·
h
�a2V

(t)
prox

0
⇣
s+ a1z

p
E(t);�a2V

(t)
⌘i

, (10)

for the noiseless case, where a1 is defined as
P

i,j ⇢i�j

p
i/j,

and a2 is defined as
P

i,� ⇢i�j (i/j). Further, prox(a; b) is the

soft-thresholding estimator defined as sign(a)max(|a|� b, 0),
and prox

0

(a; b) is the derivative w.r.t the first argument.

Remark 1. Compared with SE in [15], our DE tracks both

the average variance V (t) and the deviation from mean E(t)

while SE only tracks E(t). Assuming V (t) /
p
E(t), our DE

equation w.r.t. E(t) in (10) is of similar form of SE.

Having discussed its relation with SE, we now show that

our DE can reproduce the classical results in compressive

sensing, namely, m � c0k log(n/k) = O(k log n) (cf. [36])

under the regular sensing matrix design, i.e., when all variable

nodes have the same degree dv and the check nodes have the

same degree dc. Before we proceed, we first approximate the

ground-truth distribution with the Laplacian prior. Assuming

that the entries of x\ are iid, then each entry is zero with

probability (1� k/n) since x\ 2 R
n is k-sparse. Hence we

set � such that the probability mass within the region [�c0, c0]
(where c0 is some small positive constant) with the Laplacian

prior is equal to 1� k/n. That is

�

2

Z

|↵|c0

e��|↵|d↵ = 1� k

n
.

Simple calculations suggest � = n/(c0n log(n/k)). Then we

conclude the following results

Theorem 2. Let x\ be a k-sparse signal and assume that

� is set to n/(c0 log (n/k)). Then, the necessary conditions

for limt!1

�
E(t), V (t)

�
= (0, 0) in (10) results in a21  n/k

and a2  n/ (c0k log(n/k)), where a1 and a2 are defined asP
i,j ⇢i�j

p
i/j and

P
i,� ⇢i�j (i/j), respectively.

When turning to the regular design, we have �dv
= 1, ⇢dc

=
1. Hence, a1 and a2 can be written as

p
n/m and n/m,

respectively. Invoking Thm. 2, we can obtain the classical

result of the lower bound on the number of measurements

m � c0k log(n/k).

Having discussed the regular sensing scheme, next we

present how to design a compressive sensing matrix that would

give different levels of preference in the reconstruction of

different parts of the signal x\.

IV. SENSING MATRIX WITH PREFERENTIAL SENSING

In certain applications, entries of x\ may have unequal

importance from the recovery perspective. One practical ap-

plication is the case where x\ corresponds to the Fourier

coefficients of an image. To better reconstruct the image from

its compressive sensing of x\, it is desirable to give a higher

priority to the components of x\ that are correspond to low-

frequency part in the image than the high-frequency part (cf.

the principle of JPEG compression). 1 This section explains as

to how we apply our density evolution framework to design the

sensing matrix A such that we can provide unequal preference

for different entries of x\. As a result, in recovering the

signal, those high priority components will be recovered more

accurately than the others.

A. Density evolution

Dividing the entire x\ into the low-priority part x
\
L and

high-priority part x
\
H , we separately introduce the generating

function �L(↵) =
P

�
(L)
i ↵i�1 and �H(↵) =

P
�
(H)
i ↵i�1

for x
\
L and x

\
H , respectively, where �

(L)
i (�

(H)
i ) denotes the

fraction of nodes with degree i. Similarly, we introduce the

generating functions ⇢L(↵) =
P

i ⇢
(L)
i ↵i�1 and ⇢H(↵) =P

i ⇢
(H)
i ↵i�1 for the check nodes connecting the low-priority

part x
\
L and high-priority part x

\
H , respectively.

Generalizing the analysis of the regular reconstruction,

we separately track the average error and variance for

x
\
H and x

\
H . For the low-priority part x

\
L, we define

EL as
P

m

P
i2L

⇣
µi!a � x\

i

⌘2

/(m · |L|) and VL asP
m

P
i2L vi!a/(m · |L|), where |L| denotes the length of

x
\
L. Analogously we define EH and VH and write the corre-

sponding DE as

E
(t+1)
L = Eprior(s)Ez⇠N (0,1)


hmean

✓
s+ z · b

(t)
1 ; b

(t)
2

◆
� s

�2
;

V
(t+1)
L = Eprior(s)Ez⇠N (0,1)


hvar

✓
s+ z · b

(t)
1 ; b

(t)
2

◆�
, (11)

where b1(·, ·) and b2(·, ·) are written as

b
(t)
1 =

X

`,i,j

�
(L)
` ⇢

L
i ⇢

(H)
j

s
A�2 + iE

(t)
L + jE

(t)
H

`
;

b
(t)
2 =

X

`,i,j

�
(L)
` ⇢

L
i ⇢

(H)
j

A�2 + iV
(t)
L + jV

(t)
H

`
.

And the definitions of hmean and hvar can be found in (7).

Switching the index L and H yields the DE w.r.t the pair⇣
E

(t+1)
H , V

(t+1)
H

⌘
. Notice we can also put different regulariz-

ers fL(·) and fH(·) for x
\
L and x

\
H . In this case, we need

to modify the regularizers f(·) in (7) to fL(·) and fH(·),
respectively.

Considering the noiseless setting (� = 0), we require VL

and VH diminish to zero to ensure the convergence of the

message-passing algorithm. However, we do not need the

limit of E
(t)
L to be zero since we have higher preference for

1An introduction can be found in https://jpeg.org/jpeg/documentation.html.
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recovering the high-priority part x
\
H rather than the whole

signal x\, which leads to the requirement

lim
t!1

⇣
E

(t)
H , V

(t)
H , V

(t)
L

⌘
= (0, 0, 0) . (12)

As an illustration, we revisit the example of `1 regularizer and

show how (12) can be relaxed to be in some closed forms.

Remark 3. Generally speaking, we need to numerically run

the DE update equation in (11) to check the condition (12).
B. Illustrative example: Laplacian prior

We consider the sparse signal x\ such that the high-priority

parts x
\
H 2 R

nH and the low-priority parts x
\
L 2 R

nL are kH -

sparse and kL-sparse respectively. Additionally, we assume
kH

nH
� kL

nL
, which implies that the high-priority part x

\
H

contains more information than the low-priority part x
\
L. First

we require the variance converge to zero, which yields the

condition
" 

�HkH
nH

X

`

�
(H)
`

`

!2

+

 
�LkL
nL

X

`

�
(L)
`

`

!2#

⇥
" 
X

i

i⇢
(H)
i

!2

+

 
X

i

i⇢
(L)
i

!2#

 1. (13)

Then we turn to the behavior of E
(t)
H . Assuming E

(t)
L

converges to a fixed non-negative constant E
(1)
L , we would

like E
(t)
H converge to zero and obtain the condition

kH
nH

 
X

`

�
(H)
`p
`

!2 ✓X

i

p
i⇢

(H)
i

◆2

+

✓X

i

p
i⇢

(L)
i

◆2�
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Ultimately, the design of the sensing matrix A reduces to the

following optimization problem

min
�(L),�(H),⇢(L),⇢(H)

m

n
=

|L|
P

i
i�

(L)
i + |H|

P
i
i�

(H)
i

P
i
i
⇣
⇢
(L)
i + ⇢

(H)
i

⌘ ; (15)

s.t.

P
i
�
(L)
i i

P
i
�
(H)
i i

⇥
P

i
⇢
(H)
i i

P
i
⇢
(L)
i i

=
|H|

|L|
; (16)

Condition (13), (14);

�
(L)
1 = �

(H)
1 = ⇢

(L)
1 = ⇢

(H)
1 = 0.

The requirement (16) comes from the degree consistency,

namely,
P

i2H
((vi, ca) 2 E ) = m

P
i
⇢
(H)
i i = |H|

P
i
�
(H)
i i

and
P

i2L
((vi, ca) 2 E ) = m

P
i
⇢
(L)
i i = |L|

P
i
�
(L)
i i.

V. NUMERICAL EXPERIMENTS

This section considers the sparse signal and compares the

design of preferential sensing with that of regular sensing.

Due to the non-convexity nature of (15), we fix the degrees

{⇢
(H)
i }, {⇢

(L)
i } of the check node to be ⇢

(H)

dH
c

= 1, ⇢
(L)

dL
c

= 1, re-

spectively, which means each check node has the same degree.

Then we can find the global optimum of {�
(H)
` }, {�

(L)
` } by

solving (15), which becomes a convex optimization problem.

Experiment set-up. We fix the check node degrees dHc , dLc to

be 5 and let the maximum variable node degree to be 50. Then

we study various setting in which the length nH of the high-

priority part x
\
H to be {150, 300} and the corresponding length

nL of the low-priority part x
\
L to be {600, 1200}. The magni-

tude of the non-zero entries are fixed to be 1. Then we study

the recovery performance with varying SNR =
��x\

��2
2
/�2.

Sensing matrix construction. We design the sensing matrix

Apreferential for preferential sensing via the optimization prob-

lem (15). Then we design the sensing matrix Aregular in (8)

which provides regular sensing. (An additional constraint that

forces two matrices to have the same number of edges is added

in (8) for a fair comparison of performance.) The simulation

results are plotted in Fig. 3.
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Fig. 3. Comparison of preferential sensing vs regular sensing in terms of

� bxH − x
\
H

� 2. (Left panel) We evaluate the reconstruction performance w.r.t

the high-priority part � bxH − x
\
H

� 2/ � x\
H

� 2. (Right panel) We evaluate the

reconstruction performance w.r.t the whole signal � bx − x
\ � 2/ � x\ � 2.

Discussion. Compared with regular sensing, our scheme for

preferential sensing reduces the error w.r.t the high-priority

part x\ significantly. For example, when SNR = 100 the

preferential design reduces the ratio kbxH � x
\
Hk2/kx\

Hk2 by

approximately 35% compared to the regular reconstruction

design while the total loss kbx�x\k2 remains almost the same.

VI. CONCLUSIONS

This paper presents a general framework for the sensing

matrix design for a linear measurement system. Focusing on a

sparse sensing matrix A, we first associated it with a graphical

model G = (V ,E ) and transformed the design of A to the

connectivity problem in G . Then we analyzed the impact of

the connectivity of the graph on the recovery performance by

using the density evolution technique, which is a popular tool

in coding theory. Two design strategies are analyzed, namely,

regular sensing and preferential sensing. Numerical experi-

ments showed our preferential sensing scheme can greatly

reduce the reconstruction error w.r.t the high-priority part with

little sacrifice of the total accuracy, which corroborated our

theoretical claims.
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“Statistical-physics-based reconstruction in compressed sensing,” Phys-

ical Review X, vol. 2, no. 2, p. 021005, 2012.

[13] ——, “Probabilistic reconstruction in compressed sensing: algorithms,
phase diagrams, and threshold achieving matrices,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2012, no. 08, p. P08009, 2012.
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