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Abstract—This paper proposes a general framework to design
a sparse sensing matrix A € R™*", in a linear measurement
system y = Ax' + w, where y € R", x* € R”, and w
denote the measurements, the signal with certain structures,
and the measurement noise, respectively. By viewing the signal
reconstruction from the measurements as a message passing
algorithm over a graphical model, we leverage tools from coding
theory in the design of low density parity check codes, namely
the density evolution, and provide a framework for the design of
matrix A. Particularly, compared to the previous methods, our
proposed framework enjoys the following desirable properties:
() Universality: the design supports both regular sensing and
preferential sensing, and incorporates them in a single frame-
work; (i) Flexibility: the framework can easily adapt the design
of A to a signal x" with different underlying structures. As an
illustration, we consider the /; regularizer, which correspond
to Lasso, for both the regular sensing and preferential sensing
scheme. Noteworthy, our framework can reproduce the classical
result of Lasso, i.e., m > coklog(n/k) (the regular sensing)
with regular design after proper distribution approximation,
where ¢y > 0 is some fixed constant. We also provide numerical
experiments to confirm the analytical results and demonstrate the
superiority of our framework whenever a preferential treatment
of a sub-block of vector x" is required.

I. INTRODUCTION

This paper considers the linear sensing relation, which is

written as
y = Ax' +w, (1)

where y € R™ denotes the measurements, A € R™*" is the
sensing matrix, x € R” is the signal to be reconstructed, and
w € R" is the sensing noise with iid Gaussian distribution
A (0,0?%). To reconstruct x* from y, one widely used method
is the regularized M-estimator

1
EHY*AXHE + f(x), ©)

X = argmin, g,
where f(-) is the regularizer used to enforce a desired structure
for X. To ensure reliable recovery of x’, sensing matrix A
needs to satisfy certain conditions, for example, the incoher-
ence in [1], RIP in [2], |3], the neighborhood stability in
[4], irrespresentable condition in |5], etc. However, the above
conditions all corresponds for sparse x?. For other types of
signals, the preferable conditions for A may not be the same.
In this work, we focus on the sparse sensing matrix A, which
arises frequently in practical applications where a limited
number of sensors are preferred. Leveraging tools from coding
theory, namely, density evolution (DE), we propose a heuristic
but general design framework of A to meet the requirements
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of the signal reconstruction such as unequal preference on the
quality of signal components.

Related work. At the core of our work is the application
of DE in message passing (MP) algorithm. MP [6], [7] has a
broad spectrum of applications, ranging from physics to coding
theory. When narrowing down to the compressed sensing (CS),
it has been widely used for signal reconstruction [8]—|16]
and analyzing the performance under some specific sensing
matrices.

In the context of the sparse sensing matrix, the authors in
[17] first proposed a so-called sudocode construction technique
and later presented a decoding algorithm based on the MP in
[18]. In [19], the non-negative sparse signal x is considered
under the binary sensing matrix. The work in [20] linked the
channel encoding with the CS and presented a deterministic
way of constructing sensing matrix based on high-girth low-
density parity-check (LDPC) code. In [9], [11]], [21], the au-
thors considered the verification-based decoding and analyzed
its performance with DE. In [10], the spatial coupling is first
introduced into CS and is evaluated with the decoding scheme
adapted from [21]. However, all the above mentioned works
focused on the noiseless setting, namely, w = 0. In [12]-[14],
the noisy measurement is considered. A sparse sensing matrix
based on spatial coupling is analyzed in the large system
limit with replica method and DE. They proved its recovery
performance to be optimal when m increases at the same rate
of n, i.e., m = O(n).

Moreover, in the context of a dense sensing matrix, the
analytical tool switches from DE to state evolution (SE),
which is first proposed in [15], [16]. Together with SE comes
the approximate message passing (AMP) decoding scheme.
The empirical experiments suggest AMP has better scalability
when compared with ¢; construction scheme without much
scarifice in the performance. Additionally, an exact phase
transition formula can be obtained from SE, which predicts
the performance of AMP to a good extent. Later, |22] pro-
vided a rigorous proof for the phase transition property by
the conditioning technique from Erwin Bolthausen and [23|
extended AMP to general M-estimation.

Note that the above mentioned related works are not exhaus-
tive due to their large volume. For a better understanding of the
MP algorithm, the DE, and their application to the compressive
sensing, we refer the interested readers to [6], |14, [24].

In addition to the work based on MP, there are other works
based on LDPC codes or graphical models. Since they are not
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closely related to ours, we only mention their names without

further discussion |25]—[31].

Contributions. Compared to the previous work exploiting

MP [9]-[16], [21], our focus is on the sensing matrix design

rather than the decoding scheme, which is based on the

M-estimator with regularizers. Additionally, our framework

enjoys the following benefits:

« Universibility. Exploiting the DE, we give a universal
framework which supports both the regular sensing and
the preferential sensing in recovering the components of
the signal. Specifically, the preferential sensing design of
sensing matrix equips the compressive sensing method for
more accurate (or exact) recovery of the high-priority sub-
block of the signal relative to the low-priority sub-block. We
emphasize that although we focused on two levels of priority
in signal components in this work, one can easily extend
the framework to the scenario where multiple levels of
preferential treatment on the signal components are needed,
by simply incorporating associated equations into the DE.

o Flexibility. Generally speaking, previous methods of the
sensing matrix design are limited to some specific signal
structures. Hence, the analysis and design will not hold
accurate for some other signals with special underlying
structures. In contrast, our framework can adapt for differ-
ent signal-structure constraints by simply adjusting degree
distributions in DE.

Additionally, as a byproduct of our framework, we give an
example of sparse recovery with ¢; regularizers and obtain a
closed-form formula for the sensing matrix design. Then, we
show that by a proper distribution approximation the classical
results, i.e., m > coklogn, under the regular sensing matrix
design can be reproduced.

II. PROBLEM DESCRIPTION

We begin this section with a formal statement of our
problem. Given the linear measurement system

y = Ax" +w,

where y € R™, A € R™*", x! € R", and w € R™,
respectively, denote the observations, the sensing matrix, phe
signal, and the additive sensing noise with its ¢th entry w; i
A (0,0%). We would like to recover x with the regularized
M-estimator

% = argmin, 5 ly — Ax]3 + f(x),

where f(x) is the regularizer used to enforce certain underly-
ing structure for signal s. Our goal is to design a sparse sensing
matrix A which provides preferential treatment for a sub-block
of the signal xH, for example, this sub-block can be recovered
with lower probability of error when comparing with the rest
parts of x". Before we proceed, we list our assumptions as
o Measurement system A is assumed to be sparse. Further,
A is assumed to have entries with with EA;; = 0, and
A;j € {0,£A71/2}, where an entry A;; = A~1/2 (—A/?)
implies a positive (negative) relation between the i sensor

and the jt"

no relation.
o The regularizer f(x) is assumed to be separable such that

Fx) =320 flwa):

First we transform to a factor graph [32]. Adopting
the viewpoint of Bayesian reasoning, we can reinterpret M-
estimator in (2) as the MAP estimator and rewrite it as

signal component. Having zero as entry implies

. ly — Ax|3
= argmax, exp | ——— x exp (—f(x)) .

ly—Ax|3
202

The first term exp (— ) is viewed as the probability

P(y|x) while the second term exp(—f(x)) is regarded as
the prior imposed on x. Notice the term e~/() may not be
necessarily be the true prior on xP.

As in [24], we associate (2)) with a factor graph 4 = (¥, &),
where ¥ denotes the node set and & is the edge set. First
we discuss set ¥, which consists of two types of nodes:
variable nodes and check nodes. We represent each entry x;
as a variable node v; and each entry y, as a check node c,.
Additionally, we construct a check node corresponds to each
prior e~7(#i) Then we construct the edge set &: 1) by placing
an edge between the check node of the prior e~/(#9) and the
variable node v;, and 2) the inclusion of an edge between the
variable node v; and c; iff A;; is non-zero. Thus, the design
of A transforms to the problem of graph connectivity in &.

III. SENSING MATRIX WITH REGULAR SENSING

With the aforementioned graphical model, we can view
recovering x as an inference problem, which can be solved
via the message-passing algorithm [32]._Adopting the same
notations as in [24] as shown in Fig. |I| we denote mgza
(m ((ltln) as the message from the variable node v; to check
node ¢, (check node ¢, to variable node v;) in the ¢ round

of iteration. Then message-passing algorithm is written as

w0 ) = e TT gl (o), (3)
bedi\a
(ya*Z}‘zl Aaﬂ.j)z
gt @) 2= [ [T miZ @) e day,
j€da\i
4

where Ji, Oa denotes the neighbors connecting with v; and
cq, respectively, and the symbol =2 refers to equality up to
the normalization. In the tth iteration, we recover x; by
maximizing the posterior probability, which reads

i = argmax,, P(z;|y) ~ argmax,_ e —f(xs) H A(t) ().
acoi

In the design of matrix A, there are some general desirable
properties that we wish to hold (specific requirements will be
discussed later): 1) a correct signal reconstruction under the
noiseless setting; and 2) minimum number of measurements,
or equivalently minimum m. Before proceeding, we first
introduce the generating functions A(a) = >, A;ja'~! and
pla) = 3, pia’~1, which correspond to the distributions of
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e~

Fig. 1. Illustration of the message-passing algorithm, where the square icon
represents the check node while the circle icon represents the variable node.

Fig 2. Illustration of the generating function: A(a) = + 2 and p(a) =

S + S-. The square icon represents check nodes Whlle the circle denotes
varlable nodes

degrees for variable nodes and check nodes, respectively. We
denote the coefficient \; as the fraction of variable nodes with
degree i, and similarly we define p; for the check nodes. An
illustration of the generating functions A(«) and p(«) is shown
in Fig.

A. Density evolution

We study the reconstruction of x? from y via the conver-
gence analysis of the message-passing over the factor graph.
Due to the parsimonious setting of A, we have & to be sparse
and propose to borrow a tool known as density evolution
(DE) [32]-[34] that is already proven to be very powerful
in analyzing the convergence in sparse graphs resulting from
LDPC.

Basically, DE views mgza,ﬁl,(fl)i as RVs and tracks the
changes of their probability distribution. When the message-
passing algorithm converges, we would expect their distri-
butions become more concentrated. However, different from
discrete RVs, continuous RVs mgia and ﬁz((ltl” in our case
require infinite bits for their precise representation in general,
leading to complex formulas for DE. To handle such an
issue, we approximate mgla and mfjll as Gaussian RVs,
ie., Mi—q ™~ </V(,UJ1—>a7 Uz—m) and ma—)i ~ /V(ﬁa—ﬂyi]\a—n'),
respectively. Since the Gaussian distribution is uniquely de-
termined by its mean and variance, we will be able to reduce
the DE to finite dimensions. A similar idea has also been used
previously in [12], [13], [34].

In our work, the DE tracks two quantities £(*) and V),
which denote the deviation from the mean and average of the
variance, respectively, and are defined as

® _ N (0 AR
Et m;;(uzﬂa_ ) )
W _ N ()
v = m;;UHa

Then we can show that the DE analysis results in

Ac2
E(t+1) Epnor(s)E |:hme"m (3 + Z pl)\ z 7E(t) + ]
%)

Ao® + 'V“)
me%)—s]% s)

)

A 2
V(f+l) Epnor(s)]E hva.r (5 + Z pz)\ ZW / *E(t) =+ JU
i,j

Ao? + iV(t)
sz')\j %) (6)

2%

where prior(-) denotes the true prior on the entries of x!, z

is a standard normal RV .47(0,1). The functions Amean(-) and

hyar(+) are to approximate the mean p;_,, and variance v;_,,

iven b

£ y _ N (@i—w)?

] fmie v (@i) g o

Pumean (115 V)= le (zg—p)?
T fevt@de T day

(i —p)?

2, —vf(xi) ,—
zie e v
Pvar (145 ’U)* lim 7/

A
e f@*’Yf(i’?i)e*%

d{Ei

; @)

T
= (hmean(p150))” .
dIi

B. Sensing matrix design with regular sensing

Once the values of polynomial coefficients {\;}, and {p;},
are determined, we can construct a random graph ¢ = (¥, &),
or equivalently the sensing matrix A, by setting A;; as
P(A;; = A™Y?) = P(4;; = —A7Y2) = L if there is an
edge (vs,¢;) € &; otherwise we set A;; to be zero. Hence the
sensing matrix construction reduces to obtaining the feasible
values of {);}, and {p;}, while satisfying certain properties
for the signal reconstruction as discussed in the following.

First, we would like a perfect signal reconstruction under
the noiseless scenario (02 = 0), which requires:

o the algorithm converges, i.e., lim;_,o, V(*) = 0;
« the average error shrinks to zero, i.e., lim; o E® =q.

Second, we want to minimize the number of measure-
ments. Using the fact that n (3 ;i\) = m (>, ip) =
> W(vis¢j) € &), we formulate the design criteria as the
following optimization problem,

. m Zi>2 iAi
min — ==, 3)
A€Ag, 15 M Y, ipi
PEAG, 1 -
st lim (E“),V(“) = (0,0); )
t—o0
)\1 = p1 = 0,

where A, 1 denotes the d-dimensional simplex, namely,
Ag-1={z€R?| ¥,z =1,z >0}, and the constraint in
(9) is to avoid one-way message passing.

Generally speaking, we need to run DE numerically to
check the requirement (9) for every possible values of {\;};
and {p;},. However, for certain choices of regularizers f(-),
we can reduce the requirement (9) to a closed-form equation.
As an illustration, we set the prior in to be the Laplacian
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distribution, i.e., e ?%! In this case, the regularizer f(-) in
becomes f3|-||; and the M-estimator in (2) transforms to
Lasso [35].

C. Illustrative example: Laplacian prior

Assuming the signal x7 is k-sparse, i.e., |xh||0 < k, we
would like to recover x? with the regularizers 3||-|,. Following
the approaches in [15], we can show that

2
B = ]EPrior(S)]Eer,/V(O,l) [pTOX (5 +a1zVE®; ﬁaQV(t)) - 5:|

YD Eprior(s)Eznon (0,1

. [ﬁan(t)prox, (s + alz@; Bagv(t))] , (10)

for the poiseless case, where a; is defined as Z” PiNj ‘./ i/j,
and ay is defined as ) _; 5 p;A; (i/7). Further, prox(a; b) is the
soft-thresholding estimator defined as sign(a) max(|a| — b,0),
and prox (a;b) is the derivative w.r.t the first argument.

Remark 1. Compared with SE in [15|, our DE tracks both
the average variance V") and the deviation from mean E®)
while SE only tracks E®. Assuming V® < VE®), our DE
equation w.rt. E® in is of similar form of SE.

Having discussed its relation with SE, we now show that
our DE can reproduce the classical results in compressive
sensing, namely, m > coklog(n/k) = O(klogn) (cf. [36])
under the regular sensing matrix design, i.e., when all variable
nodes have the same degree d, and the check nodes have the
same degree d.. Before we proceed, we first approximate the
ground-truth distribution with the Laplacian prior. Assuming
that the entries of x% are iid, then each entry is zero with
probability (1 — k/n) since x? € R™ is k-sparse. Hence we
set 3 such that the probability mass within the region [—cg, co]
(where ¢ is some small positive constant) with the Laplacian
prior is equal to 1 — k/n. That is

B e_Bla‘dazle.
2 n

lal<co

Simple calculations suggest 8 = n/(conlog(n/k)). Then we
conclude the following results

Theorem 2. Let x' be a k-sparse signal and assume that
B is set to n/(colog(n/k)). Then, the necessary conditions
Sfor limy_ o (E(t), V(t)) = (0,0) in results in a? < n/k
and az < n/ (coklog(n/k)), where ay and as are defined as
D i PiNii/G and 32, 5 pij (i/]), respectively.

When turning to the regular design, we have \;, =1, pg, =
1. Hence, a1 and ao can be written as y/n/m and n/m,
respectively. Invoking Thm. we can obtain the classical
result of the lower bound on the number of measurements
m > coklog(n/k).

Having discussed the regular sensing scheme, next we
present how to design a compressive sensing matrix that would
give different levels of preference in the reconstruction of
different parts of the signal x".

IV. SENSING MATRIX WITH PREFERENTIAL SENSING

In certain applications, entries of x? may have unequal
importance from the recovery perspective. One practical ap-
plication is the case where x? corresponds to the Fourier
coefficients of an image. To better reconstruct the image from
its compressive sensing of x, it is desirable to give a higher
priority to the components of x? that are correspond to low-
frequency part in the image than the high-frequency part (cf.
the principle of JPEG compression).|'| This section explains as
to how we apply our density evolution framework to design the

; sensing matrix A such that we can provide unequal preference

for different entries of x. As a result, in recovering the
signal, those high priority components will be recovered more
accurately than the others.

A. Density evolution

Dividing the entire x? into the low-priority part th

and
high-priority part th, we separately introduce the generating
function Az(a) = A ai~1 and Ag(a) = STAH i1
for th and th, respectively, where )\Z(-L) (/\EH)) denotes the
fraction of nodes with degree ¢. Similarly, we introduce the
generating functions pr(a) = >, pEL)ai’l and pg(a) =
> pEH)oﬁ_1 for the check nodes connecting the low-priority
part XHL and high-priority part qu, respectively.
Generalizing the analysis of the regular reconstruction,
we separately track the average error and variance for

qu and qu. For the low-priority part XuL, we define
2

Ep as Y > cr (uiﬁafx'j) /(m - |L|) and Vi as

Y m Doicr Visa/(m - |L]), where |L| denotes the length of

x7 . Analogously we define E'y and Vy and write the corre-
sponding DE as

2
Eéﬂrl) _ Eprior(s)EZNW(o’l) [hmeun (8 +z- bgt); bét)) — 5:| ;
V£t+1) — Eprior(s)EZN'/V(Ovl) [hvar (S +z- b(lt)7 bét)>:| s (11)

where by (-,-) and ba(-,-) are written as

-
o _ () o ), |Ac? HiEL + By
by’ = E AP P \/ 7 )

4,3,

Ac? +ivD + v
(t) _ (L) L (H) L VAS:]
by _;/\Z Pi P; Y .
SV}
And the definitions of hpean and hy, can be found in .
Switching the index L and H yields the DE w.r.t the pair

(Egﬂ), Véf H)). Notice we can also put different regulariz-

ers f1(-) and fg(-) for x% and x%. In this case, we need
to modify the regularizers f(-) in to fr(-) and fu(-),
respectively.

Considering the noiseless setting (¢ = 0), we require V7,
and Vg diminish to zero to ensure the convergence of the
message-passing algorithm. However, we do not need the
limit of E(Lt to be zero since we have higher preference for

! An introduction can be found in https://jpeg.org/jpeg/documentation.html.
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recovering the high-priority part XL rather than the whole

signal x", which leads to the requirement

Jim (E;?, v, VL(”) = (0,0,0). (12)

As an illustration, we revisit the example of /; regularizer and
show how (12) can be relaxed to be in some closed forms.

Remark 3. Generally speaking, we need to numerically run
the DE update equation in to check the condition (12).
B. Illustrative example: Laplacian prior

We consider the sparse signal x? such that the high-priority
parts th € R™# and the low-priority parts th € R"L are kp-
sparse and kp-sparse respectively. Additionally, we assulr;e
k k c . 7.
>, which implies that the high-priority part x;
contains more information than the low-priority part th. First
we require the variance converge to zero, which yields the

condition
2 2
Brrkr x— A Brkr ﬁ
|:< ng ; f + nr, ; f

[l ()]

Then we turn to the behavior of Eg) . Assuming E(Lt)
converges to a fixed non-negative constant EEOO), we would
like Eg) converge to zero and obtain the condition

13)

A

() () (o) v o

nu

Ultimately, the design of the sensing matrix A reduces to the
following optimization problem

m LI A 4+ [H| D, i

— = SN &)
ALY AH) () p(H) I i (PEL) + p§H>)
L). H).
S (), @, L’
DA P i

Condition (13}, (T4);

AP = A = ol = pif) = 0.
The requirement (16) comes from the degree consistency,
namely, 3, 1((vi,ca) € 6) = mY, pi™i = |H| S, A
and ¥,.; 1 ((vi,ca) € &) =m Y, pti = |L| 3, AP,

V. NUMERICAL EXPERIMENTS

This section considers the sparse signal and compares the
design of preferential sensing with that of regular sensing.
Due to the non-convexity nature of , we fix the degrees
{pEH)}, {pEL)} of the check node to be pdg) =1, péﬁ) =1, re-
spectively, which means each check node has the same degree.
Then we can find the global optimum of {AﬁH)},{AﬁL)} by
solving (15), which becomes a convex optimization problem.
Experiment set-up. We fix the check node degrees dZ,dL to
be 5 and let the maximum variable node degree to be 50. Then
we study various setting in which the length ny of the high-
priority part xgq to be {150, 300} and the corresponding length

nz, of the low-priority part th to be {600, 1200}. The magni-
tude of the non-zero entries are fixed to be 1. Then we study
the recovery performance with varying SNR = Hxh H; /o2
Sensing matrix construction. We design the sensing matrix
A preterential for preferential sensing via the optimization prob-
lem (I3). Then we design the sensing matrix Areguiar it (8)
which provides regular sensing. (An additional constraint that
forces two matrices to have the same number of edges is added
in for a fair comparison of performance.) The simulation
results are plotted in Fig.

1.4

+Aregular 18 +Aregular
~125 — Apreferential L — Apreferential
- =
214 y
s ng = 150, ny, = 600
45095 ny = 150, nz = 600
' 08
=
—0.65
0.5
10 25 40 55 70 85 100 25 40 55 70 85 100
SNR SNR
1.7
W15
":m1 3
S ny = 300, ny = 1200
=11
"
' 09
&
—07
0.5 .
10 25 40 55 70 85 100 10 25 40 55 70 85 100
SNR SNR
Fig. 3. Comparison of preferential sensing vs regular sensing in terms of

XH - qu 2. (Left panel) We evaluate the reconstruction performance w.r.t
the high-priority part Xp - th 2/ th 2. (Right panel) We evaluate the
reconstruction performance w.r.t the whole signal X - x! / x o,
Discussion. Compared with regular sensing, our scheme for
preferential sensing reduces the error w.r.t the high-priority
part x% significantly. For example, when SNR = 100 the
preferential design reduces the ratio ||Xg — inHg / HXhH”Q by
approximately 35% compared to the regular reconstruction
design while the total loss ||X—x" || remains almost the same.

VI. CONCLUSIONS

This paper presents a general framework for the sensing
matrix design for a linear measurement system. Focusing on a
sparse sensing matrix A, we first associated it with a graphical
model ¢4 = (¥,&) and transformed the design of A to the
connectivity problem in ¢. Then we analyzed the impact of
the connectivity of the graph on the recovery performance by
using the density evolution technique, which is a popular tool
in coding theory. Two design strategies are analyzed, namely,
regular sensing and preferential sensing. Numerical experi-
ments showed our preferential sensing scheme can greatly
reduce the reconstruction error w.r.t the high-priority part with
little sacrifice of the total accuracy, which corroborated our
theoretical claims.
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