
Prediction of Chlorine and Fluorine Crystal Structures at High Pressure Using Symmetry Driven

Structure Search with Geometric Constraints

Mark A. Olson,1, 2 Shefali Bhatia,3 Paul Larson,4 and Burkhard Militzer5, 6

1Corresponding author: contact at maolson97@berkeley.edu
2Department of Mathematics, University of California, Berkeley, CA 94720

3Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
4Department of Mathematics, Miami University, Oxford, OH 45056

5Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
6Department of Astronomy, University of California, Berkeley, CA 94720

Abstract

The high-pressure properties of fluorine and chlorine are not yet well understood because both are highly re-

active and volatile elements, which has made conducting diamond anvil cell and x-ray diffraction experiments

a challenge. Here we use ab initio methods to search for stable crystal structures of both elements at megabar

pressures. We demonstrate how symmetry and geometric constraints can be combined to efficiently generate

crystal structures that are composed of diatomic molecules. Our algorithm extends the symmetry driven struc-

ture search method [Phys. Rev. B 98 (2018) 174107] by adding constraints for the bond length and the number

of atoms in a molecule, while still maintaining generality. As a method of validation, we have tested our ap-

proach for dense hydrogen and reproduced the known molecular structures of Cmca-12 and Cmca-4. We apply

our algorithm to study chlorine and fluorine in the pressure range from 10–4000 GPa while considering crystal

structures with up to 40 atoms per unit cell. We predict chlorine to follow the same series of phase transfor-

mations as elemental iodine from Cmca to Immm to Fm3̄m, but at substantially higher pressures. We predict

fluorine to transition from a C2/c to an Cmca structure at 70 GPa, to a novel orthorhombic and metallic structure

with P42/mmc symmetry at 2500 GPa, and finally into its cubic analogue form with Pm3̄n symmetry at 3000

GPa.

PACS numbers:

INTRODUCTION

High pressure experimentation has made important con-

tributions to the fields of geophysics, mineralogy, and con-

ductivity [1–3]. It has led to an increased understanding of

graphene and 2D layered materials [4, 5], discoveries of new

stoichiometries for common materials [6], and new develop-

ments with respect to the flow of solid state materials in the

Earth’s mantle, resulting in an improved quantitative evalu-

ation of geodynamics [1]. Similarly, high pressure experi-

mentation has led to the synthesis of new materials, such as

synthetic diamonds and cubic boron nitride, both of which

are super-hard abrasives [2]. One important goal of high-

pressure experimentation is the investigation of crystal struc-

tures and phase diagrams [7]. Such investigations have re-

sulted in a better understanding of the chemical properties of

compounds under high pressures; for example, in 1978, Shi-

nomura et al. [3] demonstrated that insights into iodine’s crys-

tallographic properties illuminated other properties, including

density and conductivity.

One challenge related to experimentation at extreme con-

ditions is working with highly reactive, corrosive, or volatile

elements and compounds. For such reasons, chlorine and flu-

orine are two elements which have been historically challeng-

ing to work with [8]. The crystalline structure of solid chlorine

has been studied since 1936 when Keesom and Thomas dis-

covered that, at 185◦C, chlorine assumed a crystal structure

with Cmca symmetry. This finding was reproduced in 1952

at −165◦C in a vacuum by Collin [9]. Still, high pressure

experimental results with chlorine appears to be quite rare.

The most recent effort to investigate chlorine at high pressures

dates back to 1983 when Johannsen et al. [10] studied the Ra-

man spectra of solid chlorine up to pressures of 45 GPa. This

pressure was not sufficiently high to observe the phase change

to a Immm structure at 133 GPa that we predict in this article.

Diamond anvil cell experiments have also been attempted on

fluorine, but obtaining reliable results has been difficult [8].

When reaching high pressures and temperatures is chal-

lenging with laboratory experiments or when conducting mea-

surements under such extreme conditions is difficult, ab initio

computer simulations have become the preferred approach.

Ab initio simulations have been combined with a number of

different crystal structure search techniques to identify the

most stable structure at high pressures. Evolutionary algo-

rithms [11], random structure search techniques [12], min-

ima hopping [13], simulated annealing [14], and metadynam-

ics [15] have all been designed to increase search efficiency.

However, these probabilistic methods do not consider major

aspects of the existing data for the materials that they are being

employed to study, such as the structural symmetry of certain

compounds. [16].

Symmetries are a key component of studying large clusters

[17–19] and crystal structures [5, 11, 12, 20]. The addition

of symmetry constraints has been shown to improve the algo-

rithmic efficiency for systems with many atoms [16]. In 2011,

Pickard and Needs [12] presented an algorithm in which Nop
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symmetry operations are chosen randomly, an atom is placed,

and its images are generated according to symmetry. In the

case of a mirror plane, half of the atoms are placed randomly;

the other half are placed as corresponding mirror images. Dur-

ing the following structural relaxation, it is possible for a more

symmetric structure to arise, as the final structure may belong

to a supergroup of the original group with Nop symmetry op-

erations.

In 2010 and 2012, Wang et al. [5, 20] introduced an evo-

lutionary algorithm, CALYPSO, based on a particle swarm

optimization method. In CALYPSO, a penalty is introduced

to prevent the generation of structures from the same space

group repeatedly. In the case of TiO2, with classical poten-

tials, it was directly shown that the use of symmetry con-

straints in this algorithm allowed for more low energy struc-

tures to be generated so that approximately half as many gen-

erations were necessary to find the optimal structure [5]. Sim-

ilarly, in 2013, Lyakhov et al. [11] showed that implement-

ing symmetry constraints in their evolutionary algorithm, US-

PEX, improved efficiency for determining the ground-state

structures of MgAl2O4 using classical potentials; USPEX em-

ploys symmetry constraints by placing atoms in the most gen-

eral Wyckoff positions and merging atoms onto higher sym-

metry positions if they fall within a certain cutoff. This led to

the discovery of the ground state for Mg24Al16Si24O96, a 160

atom unit cell structure which had not been found previously

without symmetry constraints. In 2017 and 2018, similar ap-

proaches which rely upon the sampling of space groups and

Wyckoff positions were independently developed [16, 21].

The XtalOpt algorithm first selects a set of space groups, then

creates a list of all possible combinations of Wyckoff posi-

tions consistent with the given structure composition for each

space group [21]. Since this list can become extremely large,

the size of the list is reduced by placing similar Wyckoff posi-

tions into groups. In the case of TiO2 with classical potentials

and 10 chosen space groups, this work demonstrated that the

symmetry constraints increased the probability of generating

both low energy structures and high energy structures, with an

increased average energy overall.

Domingos et al.’s symmetry driven structure search

(SYDSS) algorithm [16] samples from all 1,506 Wyckoff po-

sitions associated with the 230 space groups without generat-

ing a list at all. Since there is no need for size restriction, there

is no change in the probability for how often certain combi-

nations of Wyckoff positions are chosen. This method effec-

tively predicts a novel NaCl-H2O structure at 3.4 Mbar as well

as novel carbon-oxygen compounds at 20 and 44 Mbar.

Up to a certain pressure, hydrogen, chlorine, fluorine, and

iodine, form molecular crystal structures [3, 22–24], in which

the atoms are arranged in diatomic molecules. This suggests

that one could generate potentially viable structures with im-

proved efficiency by developing an algorithm that places en-

tire molecules of individual atoms. The known low-pressure

molecular structures could serve as initial geometries.

In existing structure search algorithms that employ symme-

try constraints, molecular structures are generated routinely.

However, the correct geometries are either sampled by chance

or emerge during the structural relaxation. The novel H2O-

NaCl structure [16] is an example of the latter case. The struc-

ture has Pnma symmetry and the typical geometry of a H2O

molecule is well preserved. However, this geometry was only

recovered during relaxation when the Pnma structure was ob-

tained from, e.g., an initial structure with P212121 symmetry.

Initially the atoms were placed according on the Wyckoff po-

sitions in that space group. By observing known molecular

geometries, it should be possible to more efficiently predict

viable structures. Since molecular geometries may undergo

small alterations with increasing pressures, one would want

to design a structure search algorithm that accepts some vari-

ations for low-pressure geometries. This ensures that no po-

tentially viable structure is excluded.

METHODS

Our original SYDSS algorithm [16] generates symmetric

crystal structures by sampling from the 230 space groups

and placing atoms at the 1,506 associated Wyckoff positions.

The probability of generating symmetric structures is conse-

quently very high, but no structure is in principle excluded;

structures with P1 symmetry are generated as well. The chal-

lenge that we address in this paper is how to combine symme-

try and geometric constraints. It would be preferable to have

a general-purpose algorithm that generates symmetric crystal

structures entirely composed of, e.g., of H2 or H2O molecules,

NH3 tetrahedra or even entire benzene rings (C6H6). As we

will illustrate below, it is extremely difficult to construct a

general-purpose algorithm that places these molecules given

the multitude of the 230 space groups, without excluding any

particular configurations.

Let us consider the simplest case: crystal structures com-

posed of diatomic homonuclear molecules like H2, F2, Cl2,

Br2, or I2. Additionally, let us assume that the bond length has

been fixed to a specific value like the gas-phase bond distance.

(One could consider a range of bond lengths but the sampling

challenge remains the same.) Furthermore, we require that

any nonbonded atom be at least a certain distance, such as 1.3

bond lengths, away from any other atom in the molecule. The

goal of our algorithm is to place atoms so that they simulta-

neously satisfy the bond length constraint and the symmetry

operations of the chosen space group. (We require the indi-

vidual atoms to be on Wyckoff positions, not just the molec-

ular center of mass. The latter would be appropriate to gen-

erate quantum solids of freely rotating molecules like the Pa3
structure of the hydrogen but this is not our goal.) Sampling

configurations with only geometric constraints is straightfor-

ward [25]. For diatomic molecules, one could place a single

atom first and then sample the position of its molecular part-

ner from the sphere surrounding it. If periodic boundary con-

ditions are applied, positions from multiple spheres may need

to be considered.

If there is a mirror plane in the system, three cases need
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to be considered: a) the molecule lies in the plane, b) the

molecule straddles it, or c) the molecule is located off the

plane and has a mirror image. Sampling configurations from

these three cases poses no difficulties.

If there is an n-fold rotation axis in the system, again three

cases emerge: a) the molecule lies on the axis, b) it straddles

it (unlikely for n > 2), or c) it lies off the axis, in which case

there are n images (The alternative of having a ring with n
atoms would violate the distance criteria for the non bonded

atoms.)

While handling individual symmetry operations is not dif-

ficult, we were not able to construct an algorithm that di-

rectly samples the atomic positions for all 230 space group

while satisfying our bond length constraints, without exclud-

ing any configurations in the process. Some space groups in-

clude many symmetry operations. In some cases, the bond

length constraint may only be satisfied for specific unit cell

parameters. While one may still be able to place molecules

by selecting one Wyckoff position after the other, such an ap-

proach can be considered impractical since the two partners

in a molecule may not necessarily come from the same Wyck-

off position. If one wanted to generate such a structure step

by step, one would need to keep a list of all dangling bonds,

with the goal of satisfying them with atoms to be placed later.

Because of this complexity, we designed the following alter-

native approach that circumvents these issues while retaining

generality.

We use our original SYDSS algorithm to place all atoms

on Wyckoff positions while keeping a list of all free parame-

ters that were sampled, which may include coordinates, lattice

parameters and angles. At this point, no bond length crite-

ria have been considered. To determine which atoms form

pairs, we apply the Hungarian algorithm [26] to solve a linear

sum assignment problem. In cases where this algorithm yields

trimers or chains, we discard the entire structure and start the

process from the beginning. Once the atoms have been paired,

we perform a preliminary structural relaxation using the sim-

plex algorithm [27] which precedes the later DFT optimiza-

tion. In this preliminary relaxation, we minimize a penalty

function which consists of the sum of the following three

terms:

(a) We add penalization term for molecules that are too

close together, using Q1 = (rij − rn.b. min)
2 for

all pairs of nonbonded atoms that are closer than

rn.b. min = 1.3× rbond.

(b) We add a penalization term for bonds that are too short

within a molecule, using term Q2 = (rij −rbond min.)
2

if rij < rbond min. = 0.8 × rbond. Similarly, we add

a penalization term for bonds that are too long, using

Q2 = (rij − rbond max.)
2 if rij > rbond max. = 1.2 ×

rbond.

(c) We add a term Q3 = ((V − VT )/VT )
2 that compares

the cell volume, V , with its target value, VT .
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FIG. 1: The space group sampled for fluorine by the SYDSS

algorithm is plotted against the space group that each

structure attained after DFT relaxation. The red symbols

show a path for each of the novel structures we found. The

colors of the other symbols represent the number of atoms in

the unit cell, as specified by the color bar on the right.

Then, only if the preliminary optimization succeeds in reduc-

ing the penalty function to a very small value like 10−5, we

pass the structure on to the DFT optimization, a process which

is 105 times more computationally expensive than our prelimi-

nary stage. The goal of the preliminary optimization is to only

relax configurations that are already molecular with DFT. The

penalty function was chosen so that no configuration that is

composed of reasonably well-defined molecules is excluded.

Since we only optimize the free parameters on our list, the

existing crystal symmetries are preserved. We have thus put

forth a general algorithm that satisfies the symmetry and geo-

metric constraints of diatomic molecules.

There are still a small number of parameters that need to be

be adjusted manually so that the resulting structures are well

suited for DFT calculations. These parameters include unit

cell volume, acceptable bond length range, acceptable dis-

tances for non-bonded atoms, and number of atoms per cell.

We chose unit cell volumes at each pressure based on a ref-

erence structure which we relax with DFT calculations. For

chlorine specifically, we used the α-structure [9].

We also used widely available information about the bond

lengths of H2, F2, and Cl2 in order to optimize the bond

lengths in the SYDSS algorithm. For fluorine, for example,

this distance was 1.42 Å [28].

Using these parameters, we generated a large number of
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candidate structures for each element, containing between two

to forty atoms per cell in order to include a wide range of po-

tential complexity. Only even numbers of atoms were consid-

ered because we were interested in structures composed of di-

atomic molecules. Throughout the process of adjusting these

parameters, we frequently checked the variety of the struc-

tures that the SYDSS algorithm was generating in order to en-

sure that we were not systematically excluding any structure

classes.

All of the structures that we generated were relaxed with

DFT calculations using the Vienna Ab Initio Simulation Pack-

age (VASP) [29]. We used PerdewBurke-Ernzerhof (PBE)

functionals with the projector augmented wave (PAW) method

[30]. A conservative value of 1100 eV was chosen for the

plane wave energy cutoff. The Brillioun zone was sampled

with Monkhorst-Pack k-point grids that were adapted to the

differing cell dimensions with the VASP k-spacing parameter,

sk. The number of k-points is obtained by rounding up the

ratio |bi|/sk to the next integer [31, 32]. bi is the reciprocal

lattice vector. In very heterogeneous unit cells, this ensures

that a denser k-point grid is used along the short directions.

Initial relaxations were performed with a k-spacing param-

eter of 0.65, followed by a subsequent relaxation with a k-

spacing of 0.4. After these two relaxations, a final set of cal-

culations with sk = 0.25 was performed on a selection of the

structures with the lowest enthalpies, representing structures

from 8 different space groups. This final sk value was chosen

based on convergence tests which indicated that a decrease of

0.05 in the k-spacing parameter would result in an enthalpy

change of 0.0019%.

During DFT relaxation, existing symmetries (as established

by the SYDSS algorithm) are preserved, but since atoms may

shift to more symmetric positions, the overall symmetry and

space group may still change. By comparing the enthalpies

of the relaxed structures to each other, we can find the most

stable structure of the material at the specified conditions [31].

RESULTS

Comparing the distribution of the structures generated us-

ing the prior version of the SYDSS algorithm - which did not

exclude any potential atom configurations - to that of our new

version, we can see that the new algorithm results in a less

uniform distribution of initial space groups generated. Up to

26% of generated structures had P1 symmetry - as compared

to 10% in the original algorithm [16]. We did not find, how-

ever, that this prevented the potential sampling of structures

from all space groups - as was the case for fluorine, shown in

Fig 1.

In order to test whether our algorithm could generate struc-

tures that led to reliable results, we studied dense hydrogen,

which is known to form several molecular crystal structures at

megabar pressures [33, 34]. Using DFT, we generated and re-

laxed approximately 65,000 hydrogen structures with 2 to 40

atoms per unit cell within the pressure range of 10 to 1000
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FIG. 2: Enthalpy difference of hydrogen with respect to the

C2/c structure. Consistent with results from Refs. [33, 34],

we predict hydrogen to transition to two structures with

Cmca symmetry and 12 and 4 atoms per unit cell at pressures

of 225 and 345 GPa, respectively.
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FIG. 3: Difference in enthalpy between eight of our

energetically competitive chlorine structures and the function

H(P ) = 1.07P 0.65 − 6.45 (in units of GPa and eV/FU) that

was obtained by regression. The shaded regions show the

pressure intervals where we predict the Cmca , Immm , and

Fm3̄mstructures to be stable.

GPa. As illustrated in Fig. 2, we reproduced the findings

by Pickard and Needs [33] and Johnson and Ashcroft [34] -

who predicted hydrogen to transition from a structure of C2/c
symmetry with 12 atoms per unit cell to a structure of Cmca

symmetry with 12 atoms per unit cell at 225 GPa, and then to

another structure of Cmca symmetry but with 4 atoms per unit

cell at 345 GPa. Even though we did not find any new hydro-

gen structures, our ability to reproduce these results demon-

strates that our method is effective in generating physical and

energetically competitive molecular structures.

We generated more than 75,000 chlorine structures. Af-

ter the preliminary molecular optimization was complete, we

generated structures in all but two of the 230 space groups

(Pmmm and P222 structures were not generated by the algo-
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FIG. 4: Enthalpy differences between two chlorine structures

specified in the caption. At 133 GPa, chlorine transitions

from the Cmca α-structure to a body centered orthorhombic

structure with Immm symmetry. At 330 GPa, we predict

another transformation to a FCC structures with

Fm3̄m symmetry. Both transition are accessible with

diamond anvil cell experiments. The Fmm2 structure from

Li et al. [35] is shown in purple.

rithm). This is a more complete set than was generated using

the original SYDSSS algorithm on NaCl-H2O, where many

space groups were never produced [16]. After DFT relax-

ations were performed, the distribution of the structures be-

came more highly concentrated around certain space groups.

More than 13% of structural relaxation resulted in structures

with I4/mmm symmetry. A further 8% were found to relax to

structures with Pm3̄m symmetry, 7% each to structures with

P6/mmm and Im3̄m symmetry, and 6% with Fm3̄m symmetry.

79 space groups were not represented among the set of relaxed

structures.

Comparing our relaxed structures with the chlorine α-

structure, we determine that two structures emerge at higher

pressures than have been investigated with laboratory experi-

ments [9]. At 133 GPa, we found the α-structure to transition

to a highly symmetric body centered orthorhombic structure

with Immm symmetry. The unit cell dimensions are a = 2.12
Å, b = 2.26 Å, and c = 4.01 Å. The atoms are placed on

Wyckoff position a. This structure is no longer diatomic but

is comprised of chains of atoms, where each atom is equidis-

tant to its two neighbors. At 330 GPa, we found chlorine to

undergo a transition to a face centered cubic (FCC) structure

with Fm3̄m symmetry. The cell vector is 2.85 Å at this pres-

sure.

This sequence of transitions is not unexpected because

the same sequence was determined for iodine through x-ray

diffraction in diamond anvil cells [36]. However, we pre-

dict these phase changes to occur at much higher pressures

for chlorine than for iodine, as our summary in Tab. I shows.

Two energetically competitive structures with P4/mnm and

Pa3̄ symmetry were frequently generated. Both are composed

of diatomic molecules. As figure 4 shows, they never become

energetically competitive at T = 0 K but it may be worth-

(a)

(b)

FIG. 5: The fluorine Pm3̄n structure at 3100 GPa. (b) shows

the primitive unit cell while, in (a), a super cell with vectors

ass = a+ b, bss = a− b, css = 2c has been constructed to

better show the chains that contain 3/4 of the atoms. A lighter

color has been used for the remaining atoms reside in the

voids in between the chains. In (b), we show surfaces of

constant charge density to demonstrate that the chains are

separated from each other and that remaining atoms are not

bonded.

while to investigate whether they become entropy-stabilized

at higher temperatures.

Our results are in contrast to those of Li et al. [35], who pre-

dicted the chlorine Cmca structure to transition to a Fmm2
structure at 142 GPa, an Immm structure at 157 GPa, and fi-

nally to a Fm3̄m structure at 372 GPa. Our results, however,

did not indicate that the Fmm2 structure was energetically

competitive. In addition, the transition pressures that Li et al.

presents for Immm and Fm3̄m are notably higher than those

we predict. Since we predict the Cmca -toImmm transition to

occur already at 133 GPa, we do not find any pressure interval

where the Fm2m structure became stable.
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Structure
Pressure ranges (GPa) for different elements

Fluorine Chlorine Iodine

α - C2/c 0− 70 × ×

α - Cmca 70− 2500 0− 133 0− 45

Immm × 133− 330 45− 55

FCC - Fm3̄m × > 330 > 55

P42/mmc 2500− 3000 × ×

Pm3̄n > 3000 × ×

TABLE I: Pressure ranges where various fluorine, chlorine

and iodine crystal structures are predicted to be stable at

T = 0 K. Chlorine and iodine undergo the same sequences of

transformations from Cmca to a body-centered orthorhombic

(Immm) structure, and then to the face-centered cubic

(Fm3̄m) structure but at different pressures. Fluorine behaves

differently but still forms the Cmca structure at intermediate

pressures.
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FIG. 6: We compare the electronic band structure of two

fluorine phases. (a) shows the insulating Cmca structure. The

2s and 2p bands are well separated and system has a band

gap of 1.88 eV. The (b) and (c) show the band structure of the

metallic P42/mmc structure. Its 2s and 2p bands have all

hyperdized and the band gap has closed.

We find that fluorine behaves differently from chlorine and

iodine. First, we note that the low pressure monoclinic α-

phase of solid fluorine does not have Cmca but rather C2/c
symmetry [8]. At 70 GPa, we predict fluorine transitions to

the same Cmca structure that we had encountered with chlo-

rine and iodine. After this transition, fluorine does not fol-

low the pattern established by chlorine and iodine. Instead

we predict fluorine to remain in the Cmca structure until a

pressure of 2500 GPa, at which it transforms to a novel tetrag-

onal structure with P42/mmc symmetry that has not been

seen for other materials. At 3000 GPa, this structure becomes

more symmetric and changes into its cubic analogue form

with Pm3̄n symmetry. In both structures, 3/4 of the atoms are

arranged in chains that run parallel to the lattice vectors, while

the remaining atoms reside in the voids between the chains. In

both structures, the atoms occupy the same Wyckoff positions

a and d. At 2750 GPa, the P42/mmc structure has unit vec-

tors a = 2.69 Å, b = c = 2.60 Å. The cubic Pm3̄n structure

has a cell vector length of a = 2.59Å at 3150 GPa. We also

find that the P42/mmc and Pm3̄n structures are metallic as

figure 6 shows. In the Cmca structure, the two 2s bands are

separated by ∼ 15 eV from and the six 2p bands. The two

highest 2p bands are separated by a gap of 1.88 eV. In the

P42/mmc structure, all 2s and 2p bands have hyperdized and

the band gap has disappeared rendering the structure metallic.

This result goes beyond that found by Lv et al. in 2017 [37],

where they performed simulations on fluorine at pressures up

to 100 GPa, and predicted a curve where fluorine transitions to

the Cmca structure at 8 GPa. A key area where our results dif-

fer is that we predict that the Cmca transition occurs at much

higher pressure, at 70 GPa.

CONCLUSION

We studied the behavior of halogens at megabar pressures

with ab initio computer simulations. We predict chlorine to

follow the same sequence of structural transformation as io-

dine: from an α structure with Cmca symmetry, to a body-

centered orthorhombic structure, and then to a face-centered

cubic structure. While these transitions occur at 45 and 55

GPa for iodine, we predict the same transitions to occur at 133

and 330 GPa respectively for chlorine, which renders them ac-

cessible to diamond anvil cell experiments.

Furthermore, we found that fluorine exhibits different be-

havior from that of iodine or chlorine. We predict fluorine to

transform from a C2/c structure at ambient pressure into a

C face-centered orthorhombic structure at 70 GPa, and then

to two novel metallic structures with P42/mmc and Pm3̄n
symmetry at 2500 and 3000 GPa, respectively. The chemical

bonding in these structures is unusual. Three in four atoms

are aligned in an orthogonal set of chains that span all three

dimensions, while the remaining atoms are locked into the re-

maining voids.

We obtained these results using a novel algorithm to gen-

erate symmetric crystal structures composed of homonuclear

diatomic molecules. A generalization to heterogeneous di-

atomic molecules is straightforward. The algorithm can also

be generalized to sample crystal structures of high symme-

try that are composed of triatomic molecules like H2O. After

placing the H and O atoms on various Wyckoff positions in the

crystal, one would perform a preliminary relation to satisfy

O-H and H-H bond length constraints - as we have done for

diatomic molecules in this article - before the resulting candi-

date structures are optimized further with DFT. Our approach

may in principle also be applicable to sample configurations

that are composed of larger molecules like NH3. However,

the efficiency remains be tested because our current algorithm
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does not enhance to the sampling of configurations where 3

H atoms are placed in the vicinity of every N atom. So, fur-

ther work will be needed to derive crystal structure prediction

algorithms that combine crystal symmetries and arbitrary ge-

ometric constrains of large molecules and clusters.

Through comparison to the observed structures in iodine,

the novel structures that we have discovered for chlorine and

fluorine serve to demonstrate the existence of a relationship

regarding the behavior of halogen molecules subjected to ex-

treme pressures. Since we predict that fluorine will undergo

further phase changes at very high pressures, it is possible that

other halogens may experience similar phase changes as well;

this is a research path that may be valuable to continue upon.
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Appendix

In our crystal structures generation algorithm, we fre-

quently need to determine the minimum distance between

atom A and atom B or any of its periodic images, which is

an instance of a closest vector problem [38]. While this is

straightforward in nearly cubic cells, it is more challenging

in arbitrary unit cell geometries. Before we determine min-

imum distance between two atoms, we address the simpler

problem of finding the closest image of a given atom in peri-

odic boundary conditions. For this derivation we assume the

lattice vectors have been scaled and rotated to take the form

u = (1, 0, 0), v = (a, b, 0) and w = (c, d, e), with b and e
both nonzero. We want to find integers i∗, j∗ and k∗ (not all

0) to minimize

f(i, j, k) = ‖iu+ jv + kw‖ . (1)

Since f(i, j, k) = f(−i,−j,−k), we may assume that k∗ ≥
0. So we check each value k from 0 to b1/ec. Since

f(i, j, k) ≥ |ke| and f(1, 0, 0) = 1, |k∗e| ≤ 1, so k∗ ≤
b1/ec.

Let us write jk for the optimal value of j given k. Since

f(i, j, k) ≥ |kd+jb|, for each fixed value of k, |kd+jkb| ≤ 1,

so

d−(1 + kd)/be ≤ jk ≤ b(1− kd)/bc. (2)

For given k, this defines a range of j values to check. For

given values for k and j, the optimal value for i is always the

negative of the nearest integer to kc + ja, which means only

this one i value needs to be checked.

This condition for i combined with the ranges for k and jk
enable us to define an algorithm that finds the optimal triple

i∗, j∗ and k∗. The total number of triples to check according

to this algorithm is

b1/ec
∑

k=0

(b(1− kd)/bc − d−(1 + kd)/be+ 1). (3)

It may be that all of these triples give values greater than 1, in

which case (1, 0, 0) is the optimal triple.

At the cost of a more complex formula, one could im-

prove the number of j values that need to be checked for

each k value, since f(i, j, k) ≥
√

(kd+ jb)2 + (ke)2, so

|kd+ jkb| ≤
√

1− (ke)2.

After solving this simplified problem, we now determine

the minimum distance from atom A to atom B or any of its

periodic images. We again assume cell vectors u = (1, 0, 0),
v = (a, b, 0) and w = (c, d, e), with b and e nonzero, but

there is one additional vector t = (x, y, z) that represents the

direct difference between atom vectors A and B. We want to

find integers i∗, j∗ and k∗ (possibly all 0) to minimize

g(i, j, k) = ‖iu+ jv + kw − t‖ . (4)

As in the first part, we can find an upper bound for the min by

considering any one choice for i, j and k. Or we can let D be

min{g(i, j, k) : i, j, k ∈ {0, 1}}.

Since g(i, j, k) ≥ |ke− z|, |k∗e− z| ≤ D, so

d(z −D)/ee ≤ k∗ ≤ b(z +D)/ec. (5)

Again, let us write jk for the optimal value of j given k. Since

g(i, j, k) ≥
√

(jb+ kd− y)2 + (ke− z)2, (6)

√

(jkb+ kd− y)2 + (ke− z)2 ≤ D, (7)

which defines a range of j values to be checked for a given k:

d(y − kd− l)/be ≤ jk ≤ b(y − kd+ l)/bc. (8)

with l =
√

D2 − (ke− z)2. For each given pair of values

k, j, the optimal value for i is the negative of the closest inte-

ger to ja + kc − x. This condition for i combined with the

ranges for k∗ and jk again define an algorithm the finds min-

imum image distance between any images of atoms A and B

in arbitrary unit cells with periodic boundary conditions.
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We implemented this algorithm and compared the predic-

tions with the empirical algorithm in Ref. [39] that succes-

sively shortens the cell vectors before it compares the dis-

tance between atom A and only 33 images of atom B. For

these modified cell vectors, only i, j, and k ∈ {−1, 0,+1} are

considered. By using inversion symmetry, one can reduce the

number of images from 27 to 13. We have no formal proof

that the empirical algorithm in Ref. [39] is rigorous but we

compared its predictions with our exact algorithm, presented

above, for 109 randomly sampled cell geometries and atom

positions and did not find any deviations.
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