
Computational Geometry: Theory and Applications 105–106 (2022) 101883
Contents lists available at ScienceDirect

Computational Geometry: Theory and

Applications
www.elsevier.com/locate/comgeo

Algorithms for the line-constrained disk coverage
and related problems ✩

Logan Pedersen, Haitao Wang ∗

Department of Computer Science, Utah State University, Logan, UT 84322, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2021
Received in revised form 4 February 2022
Accepted 18 April 2022
Available online 22 April 2022

Keywords:
Disk coverage
Line-constrained
Half-plane coverage
Geometric coverage

Given a set P of n points and a set S of m weighted disks in the plane, the disk coverage
problem asks for a subset of disks of minimum total weight that cover all points of P .
The problem is NP-hard. In this paper, we consider a line-constrained version in which
all disks are centered on a line L (while points of P can be anywhere in the plane). We
present an O ((m + n) log(m + n) + κ log m) time algorithm for the problem, where κ is
the number of pairs of disks whose boundaries intersect. Alternatively, we can also solve
the problem in O (nm log(m + n)) time. For the unit-disk case where all disks have the
same radius, the running time can be reduced to O ((n + m) log(m + n)). In addition, we
solve in O ((m + n) log(m + n)) time the L∞ and L1 cases of the problem, in which the
disks are squares and diamonds, respectively. We further demonstrate that our techniques
can also be used to solve other geometric coverage problems. For example, given in the
plane a set P of n points and a set S of n weighted half-planes, we solve in O (n4 log n)

time the problem of finding a subset of half-planes to cover P so that their total weight
is minimized. This improves the previous best algorithm of O (n5) time by almost a linear
factor. If all half-planes are lower ones, then our algorithm runs in O (n2 log n) time, which
improves the previous best algorithm of O (n4) time by almost a quadratic factor.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Given a set P of n points and a set S of m disks in the plane such that each disk has a weight, the disk coverage problem
asks for a subset of disks of minimum total weight that cover all points of P . We assume that the union of all disks covers
all points of P . It is known that the problem is NP-hard [15] and many approximation algorithms have been proposed,
e.g., [21,25].

In this paper, we consider a line-constrained version of the problem in which all disks (possibly with different radii) have
their centers on a line L, say, the x-axis. To the best of our knowledge, this line-constrained problem was not particularly
studied before. We present an O ((m + n) log(m + n) + κ log m) time algorithm, where κ is the number of pairs of disks
whose boundaries intersect (and thus κ ≤ m(m − 1)/2; e.g., if the disks are disjoint, then κ = 0 and the algorithm runs in
O ((m + n) log(m + n)) time). Alternatively, we can also solve the problem in O (nm log(m + n)) time. For the unit-disk case

✩ This research was supported in part by NSF under Grant CCF-2005323. A preliminary version of this paper appeared in Proceedings of the 17th Algorithms
and Data Structures Symposium (WADS 2021).

* Corresponding author.
E-mail addresses: logan.pedersen@aggiemail.usu.edu (L. Pedersen), haitao.wang@usu.edu (H. Wang).
https://doi.org/10.1016/j.comgeo.2022.101883
0925-7721/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2022.101883
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101883&domain=pdf
mailto:logan.pedersen@aggiemail.usu.edu
mailto:haitao.wang@usu.edu
https://doi.org/10.1016/j.comgeo.2022.101883

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
where all disks have the same radius, the running time can be reduced to O ((n + m) log(m + n)). In addition, we solve in
O ((m + n) log(m + n)) time the L∞ and L1 cases of the problem, in which the disks are squares and diamonds, respectively.
As a by-product, we present an O ((m + n) log(m + n)) time algorithm for the 1D version of the problem where all points of
P are on L and the disks are line segments of L. In addition, we show that the problem has an �(n log n) time lower bound
in the algebraic decision tree model even for the 1D case. This implies that our algorithms for the 1D, L∞ , L1, and unit-disk
cases are all optimal when m = O (n).

Our algorithms potentially have applications, e.g., in facility locations. For example, suppose we want to build some
facilities along a railway which is represented by L (although an entire railway may not be a straight line, it may be
considered straight in a local region) to provide service for some customers that are represented by the points of P . The
center of a disk represents a candidate location for building a facility that can serve the customers covered by the disk and
the cost for building the facility is the weight of the disk. The problem is to determine the best locations to build facilities
so that all customers can be served and the total cost is minimized. This is exactly an instance of our problem.

Although the problems are line-constrained, our techniques can actually be used to solve other geometric coverage
problems. If all disks of S have the same radius and the set of disk centers is separated from P by a line �, the problem is
called line-separable unit-disk coverage. The unweighted case of the problem where the weights of all disks are 1 has been
studied in the literature [2,10,11]. In particular, the fastest algorithm was given by Claude et al. [10] and the runtime is
O (n log n + nm). The algorithm, however, does not work for the weighted case. Our algorithm for the line-constrained L2
case can be used to solve the weighted case in O (nm log(m + n)) time or in O ((m + n) log(m + n) + κ log m) time, where
κ is the number of pairs of disks whose boundaries intersect on the side of � that contains P . More interestingly, we can
use the algorithm to solve the following half-plane coverage problem. Given in the plane a set P of n points and a set S of
m weighted half-planes, find a subset of the half-planes to cover all points of P so that their total weight is minimized.
For the lower-only case where all half-planes are lower ones, Chan and Grant [8] gave an O (mn2(m + n)) time algorithm. In
light of the observation that a half-plane is a special disk of infinite radius, our line-separable unit-disk coverage algorithm
can be applied to solve the problem in O (nm log(m + n)) time or in O (n logn + m2 log m) time. This improves the result
of [8] by almost a quadratic factor (note that the techniques of [8] are applicable to more general problem settings such
as downward shadows of x-monotone curves). For the general case where both upper and lower half-planes are present,
Har-Peled and Lee [17] proposed an algorithm of O (n5) time when m = n. By using our lower-only case algorithm, we solve
the problem in O (n3m log(m + n)) time or in O (n3 logn + n2m2 log m) time. Hence, our result improves the one in [17] by
almost a linear factor. We believe that our techniques may have other applications that remain to be discovered.

1.1. Related work

Our problem is a new type of set cover problem. The general set cover problem, which is fundamental and has been
studied extensively, is hard to solve, even approximately [16,18,23]. Many set cover problems in geometric settings, often
called geometric coverage problems, are also NP-hard, e.g., [8,17]. As mentioned above, if the line-constrained condition
is dropped, then the disk coverage problem becomes NP-hard, even if all disks are unit disks with the same weight [15].
Polynomial time approximation schemes (PTAS) exist for the unweighted problem [25] as well as the weighted unit-disk
case [21]. For the weighted general disk case, a quasi-polynomial time approximation scheme (QPTAS) is known [24], but
whether a PTAS exits remains an interesting open problem.

Alt et al. [1] studied a problem closely related to ours, with the same input, consisting of P , S , and L, and the objective is
also to find a subset of disks of minimum total weight that cover all points of P . But the difference is that S is comprised of
all possible disks centered at L and the weight of each disk is defined as rα with r being the radius of the disk and α being
a given constant at least 1. Alt et al. [1] gave an O (n4 log n) time algorithm for any Lp metric and any α ≥ 1, an O (n2 log n)

time algorithm for any Lp metric and α = 1, and an O (n3 log n) time algorithm for the L∞ metric and any α ≥ 1. Recently,
Pedersen and Wang [26] improved all these results by providing an O (n2) time algorithm for any Lp metric and any α ≥ 1.
A 1D variation of the problem was studied in the literature where points of P are all on L and another set Q of m points
is given on L as the only candidate centers for disks. Bilò et al. [5] first showed that the problem is solvable in polynomial
time. Lev-Tov and Peleg [20] gave an algorithm of O ((n + m)3) time for any α ≥ 1. Biniaz et al. [6] recently proposed an
O ((n + m)2) time algorithm for the case α = 1. Pedersen and Wang [26] solved the problem in O (n(n + m) + m logm) time
for any α ≥ 1.

Our problem may also be somehow related to mobile sensor barrier coverage, e.g., see [9,12,14,22], where the sensors
are required to move to cover all barriers and the objectives are usually to minimize the movements of all sensors. Other
line-constrained problems have also been studied in the literature, e.g., [19,28].

1.2. Our approach

We first solve the 1D version of the line-constrained problem by a simple dynamic programming algorithm. Then, for
the general “1.5D” problem (i.e., points of P are in the plane), a key observation is that if the points of P are sorted by their
x-coordinates, then the sorted list can be partitioned into sublists such that there exists an optimal solution in which each
disk covers a sublist. Based on the observation, we reduce the 1.5D problem to an instance of the 1D problem with a set P ′
of n points and a set S ′ of segments. Two challenges arise in our approach.
2

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
The first challenge is to give a small bound on the size of S ′ . A straightforward method shows that |S ′| ≤ n · m. In the
unit-disk case and the L1 case, we prove that |S ′| can be reduced to m by similar methods. In the L∞ case, with a different
technique, we show that |S ′| can be bounded by 2(n + m). The most challenging case is the L2 case. By a number of
observations, we prove that |S ′| ≤ 2(n + m) + κ .

The second challenge of our approach is to compute the set S ′ (the set P ′ , which actually consists of all projections of
the points of P onto L, can be easily obtained in O (n) time). Our algorithms for computing S ′ for all cases use the sweeping
technique. The algorithms for the unit-disk case and the L1 case are relatively easy, while those for the L∞ and L2 cases
require much more effort. Although the two algorithms for L∞ and L2 are similar in spirit, the boundary intersections of the
disks in the L2 case bring more difficulties and make the algorithm more involved and less efficient. In summary, computing
S ′ can be done in O ((n + m) log(n + m)) time for all cases except the L2 case which takes O ((n + m) log(n + m) + κ logm)

time.

Outline. The rest of the paper is organized as follows. We define some notation in Section 2 and we present our algorithm
for the 1D problem in Section 3. The unit-disk case and the L1 case are discussed in Section 4 and Section 5, respectively.
The algorithms for the L∞ and L2 cases are given in Section 6. Using the algorithm for the L2 case, we solve the line-
separable disk coverage problem and the half-plane coverage problem in Section 7. Section 8 concludes the paper with a
lower bound proof.

2. Preliminaries

We assume that L is the x-axis. We also assume that all points of P are above or on L since otherwise if a point pi is
below L, then we could obtain the same optimal solution by replacing pi with its symmetric point with respect to L. For
ease of exposition, we make a general position assumption that no two points of P have the same x-coordinate and no point
of P lies on the boundary of a disk of S; degenerated cases can be easily handled by standard techniques of perturbation,
e.g., [13].

For any point p in the plane, we use x(p) and y(p) to refer to its x-coordinate and y-coordinate, respectively.
We sort all points of P by their x-coordinates, and let p1, p2, . . . , pn be the sorted list from left to right on L. For any

1 ≤ i ≤ j ≤ n, let P [i, j] denote the subset {pi, pi+1, . . . , p j}. Sometimes we use indices to refer to points of P . For example,
point i refers to pi .

We sort all disks of S by the x-coordinates of their centers from left to right, and let s1, s2, . . . , sm be the sorted list. We
assume that each disk of S is a closed region including its boundary. For each disk si , we use ci to denote its center and
use wi to denote its weight. We assume that each wi is positive (otherwise one could always include si in the solution).
For each disk si , let li and ri refer to its leftmost and rightmost points, respectively.

We often talk about the relative positions of two geometric objects O 1 and O 2 (e.g., two points, or a point and a line).
We say that O 1 is to the left of O 2 if x(p) ≤ x(p′) holds for every point p ∈ O 1 and every point p′ ∈ O 2, and strictly left
means x(p) < x(p′). Similarly, we can define right, above, below, etc.

For convenience, we use p0 (resp., pn+1) to denote a point on L strictly to the left (resp. right) of all points of P and all
disks of S .

We use the term optimal solution subset to refer to a subset of S used in an optimal solution, and the optimal objective
value refers to the total sum of the weights of the disks in an optimal solution subset.

3. The 1D problem

In the 1D problem, each disk si ∈ S is a line segment on L, and thus li and ri are the left and right endpoints of si ,
respectively. We present a simple dynamic programming algorithm for the problem. We first introduce some notation.

For each segment s j ∈ S , let f (j) refer to the index of the rightmost point of P ∪ {p0} strictly to the left of l j , i.e., f (j) =
arg max0≤i≤n{pi : x(pi) < x(l j)}. Due to the definition of p0, f (j) is well defined. The indices f (j) for all j = 1, 2, . . . , m
can be obtained in O (n + m) time after we sort all points of P along with the left endpoints of all segments of S . More
specifically, we sweep a point p from left to right on L using the above sorted list. During the sweep, we maintain the
number i of points of P to the left of p. When p meets a point of P , we increment i by one. When p meets the left
endpoint of a segment s j ∈ S , we set f (j) = i.

For each i ∈ [1, n], let W (i) denote the minimum total weight of a subset of disks of S covering all points of P [1, i].
Our goal is to compute W (n). For convenience, we set W (0) = 0. For each segment s j ∈ S , we define its cost as cost(j) =
w j + W (f (j)). One can verify that W (i) is equal to the minimum cost(j) among all segments s j ∈ S that cover pi . This is
the recursive relation of our dynamic programming algorithm.

We sweep a point q on L from left to right. Initially, q is at p0. During the sweeping, we maintain a subset S(q) of
segments that cover q, and the cost of each segment of S(q) is already known. Also, the values W (i) for all points pi ∈ P
to the left of q have been computed. An event happens when q encounters an endpoint of a segment of S or a point of P .
To guide the sweeping, we sort all endpoints of the segments of S along with the points of P .

If q encounters a point pi ∈ P , then we find the segment of S(q) with the minimum cost and assign the cost to W (i). If
q encounters the left endpoint of a segment s j , we set cost(j) = w j + W (f (j)) and then insert s j into S(q). If q encounters
3

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 1. Illustrating the two points ar(i) and al(i). The black points are points of P . The vertical line is the one through the center of si . Only the upper half
disk of si is shown.

Fig. 2. Illustrating the proof of Lemma 1. The red dashed half-circle is s j and the black solid half-circle is si . The two squares on L are the centers of the
two disks. Left: x(c j) ≤ x(ar (i)). Middle: x(ar(i)) < x(c j) < x(ri). Right: x(ri) ≤ x(c j).

the right endpoint of a segment, we remove the segment from S(q). If we maintain the segments of S(q) by a balanced
binary search tree with their costs as keys, then processing each event takes O (log m) time as |S(q)| ≤ m.

Therefore, the sweeping takes O ((n + m) log m) time, after sorting the points of P and all segment endpoints in O ((n +
m) log(n + m)) time. After the sweeping, W (n) is the optimal objective value, and an optimal solution subset of S can be
obtained by the standard back-tracking technique, and we omit the details.

Theorem 1. The 1D disk coverage problem is solvable in O ((n + m) log(n + m)) time.

4. The L2 unit-disk case

In this case, all disks of S have the same radius. We will reduce the problem to an instance of the 1D problem and then
apply Theorem 1. To this end, we will need to present several observations.

For each disk si , among all points of P ∪ {p0, pn+1} to the right of its center ci , define ar(i) as the index of the leftmost
point outside si (e.g., see Fig. 1). Similarly, among all points of P ∪ {p0, pn+1} to the left of ci , define al(i) as the index of
the rightmost point outside si . Note that ar(i) and al(i) are well defined due to p0 and pn+1. If al(i) + 1 < ar(i), then we
say that si is a useful disk.

Let P (si) denote the subset of points of P that are covered by si . We further partition P (si) into three subsets as follows.
Let Pl(si) consist of the points of P (si) strictly to the left of point al(i). Let Pr(si) consist of the points of P (si) strictly to
the right of point ar(i). Let Pm(si) = P (si) \ {Pl(si) ∪ Pr(si)}. Observe that Pm(si) 	= ∅ if and only if si is a useful disk, and if
si is a useful disk, then Pm(si) = P [al(i) + 1, ar(i) − 1].

The following lemma is due to the fact that all disks of S have the same radius and are centered at L.

Lemma 1. Consider a disk si . If another disk s j covers the point ar(i), then s j covers all points of Pr(si); similarly, if another disk s j
covers the point al(i), then s j covers all points of Pl(si).

Proof. We only prove the case for ar(i), since the other case is similar. Let k = ar(i). Assume that a disk s j covers the
point pk . Our goal is to prove that s j covers all points of Pr(si). This is obviously true if Pr(si) = ∅. In the following, we
assume that Pr(si) 	= ∅. This implies that x(pk) < x(ri), where ri is the rightmost point of si . Also, by definition, we have
x(ci) ≤ x(pk), where ci is the center of si .

Let D be the region of si to the right of the vertical line through pk . By definition, Pr(si) = D ∩ P . Since si and s j have
the same radius and s j covers pk while si does not, we claim that D must be contained in the disk s j (e.g., see Fig. 2). The
claim immediately leads to the lemma. We prove the claim below.

First of all, since x(ci) ≤ x(pk) by definition of pk , and s j covers pk while si does not, it must hold that x(ci) < x(c j).
There are three cases depending on the location of c j : x(c j) ≤ x(pk), x(pk) < x(c j) < x(ri), and x(ri) ≤ x(c j); e.g., see Fig. 2.

1. If x(c j) ≤ x(pk), then consider a unit-disk s with center c at ci . Imagine that we move the center c on L from ci to x(pk).
During the movement, D must be contained in the disk s all the time. Since x(ci) < x(c j) ≤ x(pk), c must be at c j at
some moment during the above movement. This implies that s j contains D .

2. If x(ri) ≤ x(c j), then since pk is inside s j , the rectangle R with ri pk as a diagonal must be contained in s j . On the other
hand, since pk is above si and x(ci) ≤ x(pk), the region D is contained in the rectangle R . Hence, s j contains D .

3. If x(pk) < x(c j) < x(ri), then the vertical line � through c j partitions D into two parts D1 and D2 on the left and right
of �, respectively. Using the above unit-disk movement argument (i.e., if we move the center c of a unit-disk s from ci
4

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
to c j , then s always contains D2), one can easily see that D2 is contained in s j . For D1, observe that it is contained in
the rectangle R ′ with c j pk as a diagonal. Since pk is inside s j and c j is the center of s j , R ′ must be contained in s j .
Therefore, D1 is contained in s j . Hence, D , which is the union of D1 and D2, is contained in s j .

This proves the claim and thus the lemma. �
The following lemma will help us to reduce the problem to the 1D problem.

Lemma 2. Suppose Sopt is an optimal solution subset and si is a disk in Sopt . Then, the following hold.

1. si must be a useful disk.
2. Pm(si) has at least one point not covered by any disk of Sopt \ {si}.
3. All points of Pl(si) ∪ Pr(si) are covered by the disks of Sopt \ {si}.

Proof. First of all, since si is in Sopt and wi > 0, si must cover a point p∗ ∈ P that is not covered by any other disk of Sopt .
Depending on whether al(i) = 0 and whether ar(i) = n + 1, there are several cases.

– If al(i) = 0 and ar(i) = n + 1, then all points of P are covered by si . Therefore, Sopt has only one disk, which is si .
Further, al(i) = 0 and ar(i) = n + 1 imply that Pl(si) = Pr(si) = ∅. Hence, the lemma follows.

– If al(i) 	= 0 and ar(i) = n + 1, then some disk s j of Sopt \ {si} must cover the point al(i). Then, by Lemma 1, s j must
cover all points of Pl(si). Hence, p∗ /∈ Pl(si). Since ar(i) = n + 1, we have Pr(si) = ∅. Thus, p∗ is in Pm(si). Therefore,
the lemma follows.

– If al(i) = 0 and ar(i) 	= n + 1, then the proof is analogous to the above second case and we omit it.
– If al(i) 	= 0 and ar(i) 	= n + 1, then by a similar proof as the above second case, we know that all points of Pl(si) are

covered by a disk of Sopt \ {si}. Similarly, since ar(i) 	= n + 1, we can show that all points of Pr(si) are covered by a disk
of Sopt \ {si}. This implies that p∗ is in Pm(si). Therefore, the lemma follows. �

By Lemma 2, to find an optimal solution, it is sufficient to consider only useful disks, and further, for each useful disk
si , it is sufficient to assume that it only covers the points of Pm(si) = P [al(i) + 1, ar(i) − 1]. This observation leads to the
following approach to reduce our problem to an instance of the 1D problem.

We assume that the indices al(i) and ar(i) for all i ∈ [1, m] are known. For each point pi , we project it vertically on L,
and let P ′ be the set of all projected points. For each useful disk si , we create a segment on L whose left endpoint has x-
coordinate equal to x(pk+1) with k = al(i) and whose right endpoint has x-coordinate equal to x(pk′−1) with k′ = ar(i), and
the weight of the segment is equal to wi . Let S ′ be the set of all segments thus defined. According to the above discussion,
an optimal solution to the 1D problem on P ′ and S ′ corresponds to an optimal solution to our original problem on P and
S . By Theorem 1, the 1D problem can be solved in O ((n + m) log(n + m)) time because |P ′| = n and |S ′| ≤ m.

It remains to compute the indices al(i) and ar(i) for all i ∈ [1, m], which is done in the following lemma.

Lemma 3. Computing al(j) and ar(j) for all j ∈ [1, m] can be done in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute ar(j) for all j ∈ [1, m], and the algorithm for al(j) is similar.
We sweep the plane with a vertical line l from left to right, and an event happens if l encounters a point of P or a disk

center. For this, we first sort all points of P and all disk centers, in O ((n + m) log(n + m)) time. During the sweeping, we
maintain a list Q of disks si whose centers have been swept and whose indices ar(i) have not been computed yet. Q is
just a first-in-first-out queue storing the disks ordered by their centers from left to right. Initially, Q = ∅.

During the sweeping, if l encounters the center of a disk s j , we add s j to the rear of Q . If l encounters a point pi , then
we process it as follows. Starting from the front disk s j of Q , we check whether s j covers pi . If yes, then one can verify
that every disk in Q covers pi , and thus in this case we finish processing pi . Otherwise, we remove s j from Q and set
ar(j) = i, after which we proceed on the next disk in Q (if Q becomes ∅, then we finish processing pi). If Q is not empty
after pn is processed, then we set ar(j) = n + 1 for all s j ∈ Q .

The running time of the sweeping algorithm after sorting is O (n + m). The lemma thus follows. �
With the preceding lemma, we have the following theorem.

Theorem 2. The line-constrained disk coverage problem for unit disks is solvable in O ((n + m) log(n + m)) time.

5. The L1 case

In this case, each disk of S is a diamond, whose boundary is comprised of four edges of slopes 1 and −1, but the
diamonds of S may have different radii. We show that the problem can be solved in O ((n + m) log(n + m)) time by similar
techniques to the unit-disk case in Section 4.
5

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 3. Illustrating the proof of Lemma 1 for the L1 case, as a counterpart of Fig. 2. Now both si and s j are diamonds (only the upper halves are shown).
Left: c j is to the right of point ar(i). Right: c j is to the left of point ar(i). In both cases, s j contains the region D .

Fig. 4. Illustrating an event when l encounters a point pi ∈ P . Four diamonds (only their upper right edges are shown) are in Q . To process the event, the
two red dashed diamonds will be removed from Q , and their indices ar(j) will be set to i.

For each diamond si ∈ S , we still define the two indices al(i) and ar(i) as well as the three subsets Pl(si), Pr(si), and
Pm(si) in exactly the same way as in Section 4. We still call si a useful disk if al(i) + 1 < ar(i).

Although the disks may have different radii, the geometric properties of the L1 metric guarantee that Lemma 1 still
applies. The proof is literally the same as before (indeed, one can verify that the region D must be contained in the
diamond s j ; e.g., see Fig. 3 as a counterpart of Fig. 2), so we omit it. As Lemma 2 mainly relies on Lemma 1, it also applies
here. Consequently, once the indices ar(j) and al(j) for all j ∈ [1, m] are known, we can use the same algorithm as before
to find an optimal solution in O ((n +m) log(n +m)) time. The algorithm for computing the indices ar(j) and al(j), however,
is not the same as before in Lemma 3. We provide a new algorithm in the following lemma.

Lemma 4. Computing al(j) and ar(j) for all j ∈ [1, m] can be done in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute ar(j) for all i ∈ [1, m], and the algorithm for al(i) is similar.
We sweep the plane with a vertical line l from left to right, and an event happens if l encounters a point of P or the

center of a diamond s j . For this, we first sort all points of P and the centers of all diamonds in O ((n + m) log(n + m)) time.
During the sweeping, we maintain a list Q of diamonds si whose centers have been swept and whose indices ar(i) have not
been computed yet. We store the diamonds of Q by a balanced binary search tree with the x-coordinates of the rightmost
points of the diamonds as the keys. Initially, Q = ∅.

During to the sweeping, if l encounters the center of a diamond s j , then we insert s j into Q . If l encounters a point pi ,
then we process it as follows. Find the diamond s j in Q with the smallest key (i.e., the diamond of Q whose rightmost
point is the leftmost). If s j covers pi , then one can verify that every diamond in Q covers pi ,1 and thus in this case we
finish processing pi . Otherwise (e.g., see Fig. 4), we delete s j from Q and set ar(j) = i, after which we proceed on the
next diamond in Q with the smallest key (if Q becomes ∅, then we finish processing pi). If Q is not empty after pn is
processed, then we set ar(j) = n + 1 for all s j ∈ Q .

The running time of the sweeping algorithm after sorting is O ((n + m) log m). The lemma thus follows. �
Theorem 3. The line-constrained disk coverage problem in the L1 metric is solvable in O ((n + m) log(n + m)) time.

6. The L∞ and L2 cases

In this section, we give our algorithms for the L∞ and L2 cases. The algorithms are similar in the high level. However,
the nature of the L2 metric makes the L2 case more involved in the low level computations. In Section 6.1, we present
a high-level algorithmic scheme that works for both metrics. Then, we complete the algorithms for L∞ and L2 cases in
Sections 6.2 and 6.3, respectively.

6.1. An algorithmic scheme for L∞ and L2 metrics

In this subsection, unless otherwise stated, all statements are applicable to both metrics. Note that a disk in the L∞
metric is a square.

1 To see this, notice that all diamonds in Q have their upper right edges intersecting l, which currently contains pi , and further, the diamond in Q with
the smallest key has the lowest such edge.
6

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 5. Illustrating the proof of Lemma 5. The red dashed half-circle shows disk st , which covers pi−1, and x(ct) ≤ x(ck)). The disk st must also cover the
point ph .

For a disk sk ∈ S , we say that a subsequence P [i, j] of P with 1 ≤ i ≤ j ≤ n is a maximal subsequence covered by sk if all
points of P [i, j] are covered by sk but neither pi−1 nor p j+1 is covered by sk (it is well defined due to p0 and pn+1). Let
F (sk) be the set of all maximal subsequences covered by sk . Note that the subsequences of F (sk) are pairwise disjoint.

Lemma 5. Suppose Sopt is an optimal solution subset and sk is a disk of Sopt . Then, there is a subsequence P [i, j] in F (sk) such that
the following hold.

1. P [i, j] has a point that is not covered by any disk in Sopt \ {sk}.
2. For any point p ∈ P that is covered by sk but is not in P [i, j], p is covered by a disk in Sopt \ {sk}.

Proof. First of all, sk must cover a point p∗ that is not covered by any disk in Sopt \ {sk}. Since the subsequences of F (sk)

are pairwise disjoint, p∗ is in a unique subsequence P [i, j] of F (sk). In the following, we show that P [i, j] has the property
as stated in the lemma.

Consider any point ph ∈ P that is covered by sk but is not in P [i, j]. By the definition of maximal sequences, either
h ≤ i − 1 or h ≥ j + 1. We only discuss the case h ≤ i − 1 since the other case is similar. In the following, we show that ph
must be covered by a disk in Sopt \ {sk}, which will prove the lemma.

By the definition of maximal sequences, neither pi−1 nor p j+1 is covered by sk . Since Sopt is an optimal solution,
Sopt \ {sk} must have a disk st that covers pi−1. According to the above discussion, st does not cover p∗ . Since p∗ is to the
right of pi−1, the center ct of st cannot be to the right of the center ck of sk , since otherwise st would cover p∗ as well
because sk covers p∗ . Let D be the region of sk to the left of the vertical line through pi−1. Since h ≤ i − 1 and ph is inside
sk , ph must be contained in D (e.g., see Fig. 5). Since x(ct) ≤ x(ck) and pi−1 is in st but not in sk , one can verify that D is
contained in st . Thus, ph must be covered by st . �

In light of Lemma 5, we reduce the problem to an instance of the 1D problem with a point set P ′ and a line segment
set S ′ , as follows.

For each point of P , we vertically project it on L, and the set P ′ is comprised of all such projected points. Thus P ′ has
exactly n points. For any 1 ≤ i ≤ j ≤ n, we use P ′[i, j] to denote the projections of the points of P [i, j]. For each point
pi ∈ P , we use p′

i to denote its projection point in P ′ .
The set S ′ is defined as follows. For each disk sk ∈ S and each subsequence P [i, j] ∈ F (sk), we create a segment for S ′ ,

denoted by s[i, j], with left endpoint at p′
i and right endpoint at p′

j . Thus, s[i, j] covers exactly the points of P ′[i, j]. We
set the weight of s[i, j] to wk . Note that if s[i, j] is already in S ′ , which is defined by another disk sh , then we only need
to update its weight to wk in case wk < wh (so each segment appears only once in S ′). We say that s[i, j] is defined by sk
(resp., sh) if its weight is equal to wk (resp., wh).

According to Lemma 5, we intend to say that an optimal solution O P T ′ to the 1D problem on P ′ and S ′ corresponds to
an optimal solution O P T to the original problem on P and S in the following sense: if a segment s[i, j] ∈ S ′ is included in
O P T ′ , then we include the disk that defines s[i, j] in O P T . However, since a disk of S may define multiple segments of S ′ ,
to guarantee the correctness of the above correspondence, we need to show that O P T ′ is a valid solution: no two segments
in O P T ′ are defined by the same disk of S . For this, we have the following lemma.

Lemma 6. Any optimal solution on P ′ and S ′ is a valid solution.

Proof. Let O P T ′ be any optimal solution. Let s[i, j] be a segment in O P T ′ . So s[i, j] is defined by a disk sk for the maximal
subsequence P [i, j]. In the following we show that no other segments defined by sk are in O P T ′ , which will prove the
lemma.

Assume to the contrary that O P T ′ has another segment s[i′, j′] defined by sk . Then, since the maximal subsequences
covered by sk are pairwise disjoint, either j′ < i or j < i′ holds. In the following, we only discuss the case j′ < i since the
other case is similar.

By the definition of maximal subsequences, neither p j′+1 nor pi−1 is covered by sk . Note that j′ + 1 = i − 1 is possible.
Hence, O P T ′ must have a segment s′ defined by another disk sh covering pi−1 such that s′ covers the projection point p′

i−1
of pi−1. Since s[i, j] is in O P T ′ , P ′[i, j] has at least one point p∗ that is not covered by any segment in O P T ′ other than
s[i, j]. Thus, p∗ is not covered by s′ .
7

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
We claim that the center ch of sh is strictly to the left of the center ck of sk . Indeed, assume to the contrary that
x(ch) ≥ x(ck). Then, let D be the region of sk to the right of the vertical line through pi−1. Notice that all points of P [i, j]
are in D . Also, since sh covers pi−1 while sk does not and x(ch) ≥ x(ck), D is contained in sh . This means that all points of
P [i, j] are covered by sh , and thus all points of P [i − 1, j] are covered by sh since sh covers pi−1. Hence, the segment s′
covers all points of P ′[i − 1, j], and thus, s′ covers the points p∗ , which contradicts with the fact that s′ does not cover p∗ .
This proves the claim that x(ch) < x(ck).

Depending on whether sh covers all points of P [j′ + 1, i − 1], there are two cases.

– If sh covers all points of P [j′ + 1, i − 1], then since x(ch) < x(ck) and sk does not cover p j′+1 (but covers all points of
P [i′, j′]), by the similar analysis as above, we can show that sh also covers all points of P [i′, j′] and thus all points of
P [i′, i − 1]. Further, since s′ is a segment defined by sh and s′ covers the projection point p′

i−1 of pi−1, s′ must cover
all projection points of P ′[i′, i − 1]. Therefore, if we remove s[i′, j′] from O P T ′ , the remaining segments of O P T ′ still
cover all points of P ′ , which contradicts with that O P T ′ is an optimal solution.

– If sh does not cover all points of P [j′ + 1, i − 1], then let h1 be the largest index in [j′ + 1, i − 2] such that ph1 is not
covered by sh . Then, p′

h1
is not covered by the segment s′ . Hence, O P T ′ must have a segment defined by another disk

s j1 covering ph1 such that the segment covers p′
h1

. By the same analysis as above, we can show that x(c j1) < x(ch), and
thus x(c j1) < x(ck).
If s j1 covers all points of P [j′ + 1, h1 − 1], then we can use the same analysis as the above case to show that s[i′, j′] is
a redundant segment of O P T ′ , which incurs contradiction. Otherwise, we let h2 be the largest index in [j′ + 1, h1 − 1]
such that ph2 is not covered by s j1 . Then, we can follow the same analysis above to either obtain contradiction or
consider the next index in [j′ + 1, h2 − 1]. Note that this procedure is finite as the number of indices of [j′ + 1, h1 − 1]
is finite. Therefore, eventually we will obtain contradiction.

The lemma thus follows. �
With the above lemma, combining with our algorithm for the 1D problem, we have the following result.

Lemma 7. If the set S ′ is computed, then an optimal solution can be found in O ((n + |S ′|) log(n + |S ′|)) time.

It remains to determine the size of S ′ and compute S ′ . An obvious answer is that |S ′| is bounded by m · �n/2
 because
each disk can have at most �n/2
 maximal sequences of P , and a trivial algorithm can compute S ′ in O (nm log(m +n)) time
by scanning the sorted list P for each disk. Therefore, by Lemma 7, we can solve the problem in both L∞ and L2 metrics in
O (nm log(m + n)) time.

With more geometric observations, the following two subsections will prove the two following lemmas, respectively.

Lemma 8. In the L∞ metric, |S ′| ≤ 2(n + m) and S ′ can be computed in O ((n + m) log(n + m)) time.

Lemma 9. In the L2 metric, |S ′| ≤ 2(n + m) + κ and S ′ can be computed in O ((n + m) log(n + m) + κ log m) time.

With Lemma 7, we have the following results.

Theorem 4. The line-constrained disk coverage problem in the L∞ metric is solvable in O ((n + m) log(n + m)) time.

Theorem 5. The line-constrained disk coverage problem in the L2 metric is solvable in O (nm log(m +n)) time or in O ((n +m) log(n +
m) + κ log m) time, where κ is the number of pairs of disks of S whose boundaries intersect each other.

Bounding couples Before moving on, we introduce a new concept bounding couples, which will be used to prove Lemmas 8
and 9 in Sections 6.2 and 6.3.

Consider a disk sk ∈ S . Let pl(sk) denote the rightmost point of P ∪ {p0, pn+1} strictly to the left of lk; similarly, let
pr(sk) denote the leftmost point of P ∪ {p0, pn+1} strictly to the right of rk . Let P (sk) denote the subset of points of P
between pl(sk) and pr(sk) inclusively that are outside sk . We sort the points of P (sk) by their x-coordinates, and we call
each adjacent pair of points (or their indices) in the sorted list a bounding couple (e.g., see Fig. 6). Let C(sk) denote the set of
all bounding couples of sk , and for each bounding couple of C(sk), we assign wk to it as the weight. Let C = ⋃

1≤k≤m C(sk),
and if the same bounding couple is defined by multiple disks, then we only keep the copy in C with the minimum weight.
Also, we consider a bounding couple (i, j) as an ordered pair such that i < j, and i is considered as the left end of the
couple while j is the right end.

The reason why we define bounding couples is that if P [i, j] is a maximal subsequence of P covered by sk then (i −
1, j + 1) is a bounding couple. On the other hand, if (i, j) is a bounding couple of C(sk), then P [i + 1, j − 1] is a maximal
subsequence of P covered by sk unless j = i + 1. Hence, each bounding couple (i, j) of C with j 	= i + 1 corresponds to a
8

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 6. Illustrating the definition of bounding couples: the numbers are the indices of the points of P . In this example, pl(sk) is point 2 and pr(sk) is point
11, and the bounding couples are: (2, 3), (3, 5), (5, 7), (7, 10), (10, 11).

segment in the set S ′ , and |S ′| ≤ |C|. Observe that C has at most n − 1 couples (i, j) with j = i + 1, and given C , we can
obtain S ′ in additional O (|C|) time.

According to our above discussion, to prove Lemmas 8 and 9, it suffices to prove the following two lemmas.

Lemma 10. In the L∞ metric, |C| ≤ 2(n + m) and C can be computed in O ((n + m) log(n + m)) time.

Lemma 11. In the L2 metric, |C| ≤ 2(n + m) + κ and C can be computed in O ((n + m) log(n + m) + κ log m) time.

Consider a bounding couple (i, j) of C , defined by a disk sk . We call it a left bounding couple if pi = pl(sk), a right bounding
couple if p j = pr(sk), and a middle bounding couple otherwise (e.g., in Fig. 6, (2, 3) is the left bounding couple, (10, 11) is the
right bounding couple, and the rest are middle bounding couples). It is easy to see that a disk can define at most one left
bounding couple and at most one right bounding couple. Therefore, the number of left and right bounding couples in C is
at most 2m. It remains to bound the number of middle bounding couples of C .

In the following, we will prove Lemmas 10 and 11 in Sections 6.2 and 6.3, respectively.

6.2. The L∞ metric

In this section, our goal is to prove Lemma 10.
In the L∞ metric, every disk is a square that has four axis-parallel edges. We use lk and rk to particularly refer to the

left and right endpoints of the upper edge of sk , respectively.
For a point pi and a square sk , we say that pi is vertically above (resp., below) the upper edge of sk if pi is above (resp.,

below) the upper edge of sk and x(lk) ≤ x(pi) ≤ x(rk). Due to our general position assumption, pi is not on the boundary of
sk , and thus pi above/below the upper edge of sk implies that pi is strictly above/below the edge. Also, since no point of
P is below L, a point pi ∈ P is in sk if and only if pi is vertically below the upper edge of sk . If pi is vertically above the
upper edge of sk , we also say that pi is vertically above sk or sk is vertically below pi .

The following lemma proves an upper bound for |C|.

Lemma 12. |C| ≤ 2(n + m).

Proof. Recall that the total number of left and right bounding couples of C is at most 2m. In the following, we show that
the number of middle bounding couples of C is at most 2n.

We first prove an observation: For each point p j of P , among all points of P to the northwest of p j , there is at most one
point that can form a middle bounding couple with p j ; similarly, among all points of P to the northeast of p j , there is at
most one point that can form a middle bounding couple with p j .

We only prove the northwest case since the other case is analogous. Suppose there is a point pi ∈ P to the northwest of
p j and (pi, p j) is a middle bounding couple. Assume to the contrary that there is another point ph ∈ P to the northwest of
p j and (ph, p j) is a middle bounding couple defined by a disk sk . Without loss of generality, we assume h < i.

Since (ph, p j) is a middle bounding couple, both ph and p j are vertically above sk . Since pi is to the northwest of p j
and h < i < j, pi is also vertically above sk . But then pi would prevent (h, j) from being a middle bounding couple defined
by sk , incurring contradiction. This proves the observation.

We proceed to show that the number of middle bounding couples is at most 2n. Indeed, for any middle bounding couple
(i, j) of C , we charge it to the lower point of pi and p j . In light of the observation, each point of P will be charged at most
twice. As such, the total number of middle bounding couples is at most 2n. The lemma thus follows. �

We proceed to compute the set C . The following lemma gives an algorithm to compute all left and right bounding
couples of C .

Lemma 13. All left and right bounding couples of C can be computed in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute all left bounding couples, and the algorithm for computing the right bounding
couples is similar.
9

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 7. Illustrating the information maintained by our sweeping algorithm. P (l) = {pi1 , pi2 , pi3 , pi4 }. Each horizontal segment represents the upper edge of
a disk. The sets H(i j)’s are shown with different colors, e.g., H(i1) consists of two blue disks, H(i4) consists of two red disks, and Hi0 consists of the four
black disks.

First of all, we compute the points pl(sk) and pr(sk) for all k = 1, 2, . . . , m. Each such point can be computed in O (log n)

time by binary search on the sorted sequence of P . Hence, computing all such points takes O (m logn) time. To compute
all left bounding couples, it is sufficient to compute the points p(sk) for all disks sk ∈ S , where p(sk) is the leftmost point
of P outside sk and between lk and rk if it exists and p(sk) is pr(sk) otherwise, because (pl(sk), p(sk)) is the left bounding
couple defined by sk . To this end, we propose the following algorithm.

We sweep a vertical line l from left to right, and an event happens if l encounters a point of P ∪ {lk, rk| 1 ≤ k ≤ m}.
For this, we first sort all points of P ∪ {lk, rk| 1 ≤ k ≤ m}. During the sweeping, we use a balanced binary search tree T to
maintain those disks sk intersecting l whose points p(sk) have not been computed yet. The disks in T are ordered by the
y-coordinates of their upper edges.

During the sweeping, if l encounters the left endpoint lk of a disk sk , we insert sk into T . If l encounters the right
endpoint rk of sk , we remove sk from T and set p(sk) = pr(sk). If l encounters a point pi of P , then for each disk sk of T
whose upper edge is below pi , we set p(sk) = pi and remove sk from T .

It is not difficult to see that the algorithm correctly computes all points p(sk) for all sk ∈ S in O ((n +m) log(m +n)) time.
The lemma thus follows. �

In the following, we focus on computing all middle bounding couples of C .

6.2.1. Computing the middle bounding couples
We sweep a vertical line l from left to right, and an event happens if l encounters a point in P ∪ {lk, rk| 1 ≤ k ≤ m}. Let

H be the set of disks that intersect l. During the sweeping, we maintain the following information and invariants (e.g., see
Fig. 7).

1. A sequence P (l) = {pi1 , pi2 , . . . , pit } of t points of P , which are to the left of l and ordered from northwest to southeast.
P (l) is stored in a balanced binary search tree T (P (l)).

2. A collection H of t + 1 subsets of H : H(i j) for j = 0, 1, . . . , t , which form a partition of H , defined as follows.
H(it) is the subset of disks of H that are vertically below pit . For each j = t − 1, t − 2, . . . , 1, H(i j) is the subset of

disks of H \⋃t
k= j+1 H(ik) that are vertically below pi j . H(i0) = H \⋃t

j=1 H(i j). While H(i0) may be empty, none of H(i j)

for 1 ≤ j ≤ t is empty.
Each set H(i j) is maintained by a balanced binary search tree T (H(i j)) ordered by the y-coordinates of the upper

edges of the disks. We have all disks stored in leaves of T (H(i j)), and each internal node v of the tree also stores a
weight equal to the minimum weight of all disks in the leaves of the subtree rooted at v .

3. For each point pi j ∈ P (l), among all points of P strictly between pi j and l, no point is vertically above any disk of H(i j).
4. Among all points of P strictly to the left of l, no point is vertically above any disk of H(i0).

In summary, our algorithm maintains the following trees: T (P (l)), T (H(i j)) for all j ∈ [0, t].
Initially when l is to the left of all disks and points of P , we have H = ∅ and P (l) = ∅. We next describe how to process

events.
If l encounters the left endpoint lk of a disk sk , we insert sk to H(i0). The time for processing this event is O (logm)

since |H(i0)| ≤ m.
If l encounters the right endpoint rk of a disk sk , we need to determine which set H(i j) of H contains sk . For this, we

associate each right endpoint with its disk in the preprocessing so that it can keep track of which set of H contains the
disk. Using this mechanism, we can determine the set H(i j) that contains sk in constant time. We then remove sk from
T (H(i j)). If H(i j) becomes empty and j 	= 0, then we remove pi j from P (l). One can verify that all algorithm invariants still
hold. The time for processing this event is O (log(m + n)).

If l encounters a point ph of P , which is a major event we need to handle, we process it as follows. We search T (P (l))
to find the first point pi j of P (l) below ph (e.g., j = 3 in Fig. 8). We remove the points pik for all k ∈ [j, t] from P (l). We
have the following lemma.
10

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 8. Illustrating the processing of an event at ph ∈ P . The sets H(i j)’s are shown with different colors. In this example, i2, i3, and i4 will be removed
from P (l) and ph will be inserted to P (l), so after the event P (l) = {pi1 , ph}. Also, (i2, h), (i3, h), (i4, h) will be reported as middle bounding couples.

Lemma 14. For each point pik with k ∈ [j, t], (ik, h) is a middle bounding couple defined by and only by the disks of H(ik) (i.e., H(ik)

consists of all disks of S that define (ik, h) as a middle bounding couple).

Proof. By the definition of H(ik), pik is vertically above each disk of H(ik). By the definition of j and also because all disks
of H(ik) intersect l, ph is vertically above each disk of H(ik). With the third algorithm invariant, (ik, h) is a middle bounding
couple defined by every disk of H(ik).

On the other hand, suppose a disk s defines (ik, h) as a middle bounding couple. Then, both pik and ph must be vertically
above s. This implies that s intersects l, and thus s is in H . By algorithm invariant (4), s cannot be in H(i0). Because pik is
vertically above s, s must be in

⋃t
b=k H(ib). Further, since (ik, h) is a middle bounding couple, among all points of P strictly

between pik and ph , no point is vertically above s. This implies that s cannot be in H(ib) for any b > k. Therefore, s must
be in H(ik). The lemma thus follows. �

In light of Lemma 14, for each k ∈ [j, t], we report (ik, h) as a middle bounding couple with weight equal to the minimum
weight of all disks of H(ik), which is stored at the root of T (H(ik)).

Next, we process the point pi j−1 , for which we have the following lemma. The proof technique is similar to that for
Lemma 14, so we omit it.

Lemma 15. If ph is vertically below the lowest disk of H(i j−1), then (i j−1, h) is not a middle bounding couple; otherwise, (i j−1, h) is
a middle bounding couple defined by and only by disks of H j−1 that are vertically below ph.

By the above lemma, we first check whether ph is vertically below the lowest disk of H(i j−1). If yes, we do nothing.
Otherwise, we report (i j−1, h) as a middle bounding couple with weight equal to the minimum weight of all disks of
H(i j−1) vertically below ph , which can be computed in O (log m) time by using weights at the internal nodes of T (H(i j−1)).
We further have the following lemma.

Lemma 16. If all disks of H(i j−1) are vertically below ph, then there does not exist a middle bounding couple (i j−1, b) with b > h.

Proof. Assume to the contrary that (i j−1, b) is such a middle bounding couple with b > h, say, defined by a disk s. Then,
since x(pi j−1) < x(ph) = x(l) < x(pb), s intersects l, and thus s is in H . Also, since s defines the couple, pi j−1 is vertically
above s. Note that all disks of H vertically below pi j−1 must be in

⋃t
k= j−1 H(ik), and thus s is in

⋃t
k= j−1 H(ik). Recall that

all disks of
⋃t

k= j H(ik) are vertically below ph . Since all disks of H(i j−1) are vertically below ph , all disks of
⋃t

k= j−1 H(ik)

are vertically below ph . Hence, s is also vertically below ph . Because all three points pi j−1 , ph , and pb are vertically above
s, and x(pi j−1) < x(ph) < x(pb), (i j−1, b) cannot be a bounding couple defined by s. The lemma thus follows. �

We check whether ph is above the highest disk of H(i j−1) using the tree T (H(i j−1)). If yes, then the above lemma tells
that there will be no more middle bounding couples involving i j−1 any more, and thus we remove pi j−1 from P (l).

The following lemma implies that all middle bounding couples with ph as the right end have been computed.

Lemma 17. For any middle bounding couple (b, h), b must be in {i j−1, i j, . . . , it}.

Proof. Assume to the contrary that (b, h) is a middle bounding couple with b not in the set {i j−1, i j, . . . , it}, say, defined
by a disk s. Then, s must intersect l, and thus is in H . Also, s is vertically below both pb and ph .

First of all, since pb is strictly to the left of l and pb is vertically above s, by our algorithm invariant (4), s cannot be in
H(i0). Thus, s is in H(i j) for some j ∈ [1, t]. Depending on whether i j < b, there are two cases.

If i j > b, then since s ∈ H(i j), pi j is vertically above s. Because x(pb) < x(pi j) < x(ph) and all these three points are
vertically above s, (b, h) cannot be a middle bounding couple defined by s, incurring contradiction.
11

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 9. Illustrating the conflicting intervals: Each arc represents an interval.

If i j < b, then since s ∈ H(i j) and pb is vertically above s, we obtain contradiction with our algorithm invariant (3) as pb
is strictly between pi j and l. �

Next, we add ph to the end of the current sequence P (l) (note that the points pik for all k ∈ [j, t] and possibly pi j−1 have
been removed from P (l); e.g., see Fig. 8). Finally, we need to compute the tree T (H(h)) for the set H(h), which is comprised
of all disks of H vertically below ph since ph is the lowest point of P (l). We compute T (H(h)) as follows.

First, starting from an empty tree, for each k = t, t − 1, . . . , j in this order, we merge T (H(h)) with the tree T (H(ik)).
Notice that the upper edge of each disk in T (H(ik)) is higher than the upper edges of all disks of T (H(h)). Therefore,
each such merge operation can be done in O (log m) time. Second, for the tree T (H(i j−1)), we perform a split operation to
split the disks into those with upper edges above ph and those below ph , and then merge those below ph with T (H(h))

while keeping those above ph in T (H(i j−1)). The above split and merge operations can be done in O (log m) time. Third, we
remove those disks below ph from H(i0) and insert them to T (H(h)). This is done by repeatedly removing the lowest disk
s from H(i0) and inserting it to T (H(h)) until the upper edge of s is higher than ph . This completes our construction of the
tree T (H(h)).

The above describes our algorithm for processing the event at ph . One can verify that all algorithm invariants still hold.
The running time of this step is O ((1 + k1 + k2) log m) time, where k1 is the number of points removed from P (l) (the
number of merge operations is at most k1) and k2 is the number of disks of H(i0) got removed for constructing T (H(h)). As
we sweep the line l from left to right, once a point is removed from P (l), it will not be inserted again, and thus the total sum
of k1 in the entire algorithm is at most n. Also, once a disk is removed from H(i0), it will never be inserted again, and thus
the total sum of k2 in the entire algorithm is at most m. Hence, the overall time of the algorithm is O ((n + m) log(n + m)).
This proves Lemma 10.

6.3. The L2 metric

In this section, our goal is to prove Lemma 11.
Recall our general position assumption that no point of P is on the boundary of a disk of S . Also recall that all points

of P are above L. In the L2 metric, the two extreme points lk and rk of a disk sk are unique. For a point pi ∈ P and a disk
sk ∈ S , we say that pi is vertically above sk if pi is outside sk and x(lk) ≤ x(pi) ≤ x(rk), and pi is vertically below sk if pi is
inside sk . We also say that sk is vertically below pi if pi is vertically above sk .

The following lemma gives an upper bound for |C|.

Lemma 18. |C| ≤ 2(n + m) + κ .

Proof. Recall that the left and right bounding couples of C is at most 2m. Let Cm denote the set of all middle bounding
couples of C . In the following, we argue that |Cm| ≤ 2n + κ .

For convenience, we consider a middle bounding couple (i, j) as a bounding interval [i, j] defined on indices of P . We
call the indices larger than i and smaller than j as the interior of the interval. Those indices smaller than i and larger than
j are considered outside the interval.

We say that two bounding intervals [a, b] and [a′, b′] conflict if either a < a′ < b < b′ or a′ < a < b′ < b. Hence, those two
intervals do not conflict if either they are interior-disjoint or one interval contains the other. Since two bounding intervals
defined by the same disk are interior-disjoint, they never conflict.

We first prove an observation: For any two disks, there is at most one pair of conflicting bounding intervals defined by the two
disks.

Assume to the contrary there are two pairs of conflicting bounding intervals defined by two disks s and s′ . Let the first
pair be [a, b] and [a′, b′] and the second pair be [c, d] and [c′, d′]. Without loss of generality, we assume that [a, b] and
[c, d] are defined by s, and [a′, b′] and [c′, d′] are defined by s′ . Note that [a, b] and [c, d] may be the same and [a′, b′] and
[c′, d′] may also be the same. However, as they are different pairs, either [a, b] and [c, d] are distinct, or [a′, b′] and [c′, d′]
are distinct. Without loss of generality, we assume that [a, b] and [c, d] are distinct and b ≤ c. Depending on whether [a′, b′]
and [c′, d′] are the same, there are two cases.

– If [a′, b′] and [c′, d′] are the same, then since b ≤ c, we have a < a′ < b ≤ c < b′ < d (see Fig. 9). By the definition of
bounding intervals, pb and pc are in the disk s′ while pa′ and pb′ are vertically above s′ , and similarly, pa′ and pb′ are
in the disk s while pa, pb, pc, pd are vertically above s.
12

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 10. Illustrating the disk s′ and points a′ , b′ , b, qa′b , and qbb′ .

Fig. 11. Illustrating the conflicting intervals: Each arc represents an interval. The intervals of solid (resp., dotted) arcs are defined by s (resp., s′).

Since pb is contained in s′ while pa′ and pb′ are vertically above s′ (e.g., see Fig. 10), we claim that any disk centered
at L and containing both pa′ and pb′ must contain the point pb . Indeed, let qa′b be the point on L that has the same
distance with pa′ and pb , and let qbb′ be the point on L that has the same distance with pb and pb′ (e.g., see Fig. 10).
Since x(pa′) < x(pb) and pb is in s′ while pa′ is not, we can obtain that x(qa′b) < x(c′), where c′ is the center of s′ . For
the same reason, x(qbb′) > x(c′). Therefore, qa′b is strictly to the left of qbb′ . Now consider any disk s′′ with center c′′ at
L such that s′′ contains both pa′ and pb′ . If x(c′′) ≤ x(qa′b), then x(c′′) < x(qbb′) and thus c′′ is closer to pb than to pb′ .
Since s′′ contains pb′ , s′′ also contains pb . On the other hand, if x(c′′) > x(qa′b), then c′′ is closer to pb than to pa′ . Since
s′′ contains pa′ , s′′ also contains pb . This proves the claim.
Recall that the disk s contains pa′ and pb′ . By the above claim, s contains pb , but this contradicts with that pb is strictly
above s.

– If [a′, b′] and [c′, d′] are not the same, then without loss of generality, we assume that b′ ≤ c′ . Since [a, b] conflicts
with [a′, b′], either a < a′ < b < b′ or a′ < a < b′ < b. Similarly, since [c, d] conflicts with [c′, d′], either c < c′ < d < d′
or c′ < c < d′ < d. In the following, we assume that a < a′ < b < b′ and c < c′ < d < d′ (e.g., see Fig. 11), and the other
cases can be proved in a similar way.
Since c < c′ < d and b′ ≤ c′ , we obtain that a′ < b < c′ . Since [a′, b′] and [c′, d′] are bounding intervals defined by the
disk s′ while b is in the interior of [a′, b′], s′ contains pb but is vertically below pa′ and pc′ . Then, by the claim proved
in the first case, any disk centered at L and containing both pa′ and pc′ must contain pb as well.
On the other hand, since [a, b] and [c, d] are bounding intervals defined by s while a′ is in the interior of [a, b] and c′
is in the interior of [c, d], s contains both pa′ and pc′ but is vertically below pb . However, since s contains both pa′ and
pc′ and s is centered at L, according to the above claim, s contains pb . Therefore, we obtain contradiction.

This proves the observation.

We then prove another observation: If a bounding interval defined by a disk conflicts with a bounding interval defined by another
disk, then the boundaries of the two disks must intersect.

Indeed, suppose two bounding intervals [a, b] and [a′, b′] conflict. Let s be the disk defining [a, b] and s′ be the disk
defining [a′, b′]. Without loss of generality, we assume that a < a′ < b < b′ . By the definition of bounding intervals, pa′ must
be inside s but outside s′ while pb must be inside s′ but outside s. Therefore, the boundaries of s and s′ must intersect.

The above two observations imply that the total number of pairs of conflicting intervals of Cm is at most κ . Now, for each
pair of conflicting intervals, we remove one interval from Cm , so we remove at most κ intervals from Cm . For differentiation,
let C′

m denote the new set of Cm after the removal, and Cm still refers to the original set. Observe that |Cm| ≤ |C′
m| + κ and

no two intervals of C′
m conflict. In the following we show |C′

m| ≤ 2n, which will lead to |Cm| ≤ κ + 2n.
Our proof mainly relies on the property that no two bounding intervals of C′

m conflict. For any two intervals of C′
m , either

they are interior-disjoint or one contains the other. We will form all intervals of C′
m as a tree structure T . To this end, for

each i with 1 ≤ i ≤ n − 1, if [i, i + 1] is not in C′
m , then we add it to C′

m . The tree T is defined as follows. Each interval of
C′

m defines a node of T . The n − 1 intervals [i, i + 1] for all i = 1, 2, . . . , n − 1 are the leaves of T . For every two intervals I1
and I2 of C′

m , I1 is the parent of I2 if and only if I1 contains I2 and there is no other interval I in Cm such that I2 ⊆ I ⊆ I1.
Notice that every internal node of T has at least two children. Since T has n − 1 leaves, the number of internal nodes is no
more than n − 2. Therefore, T has no more than 2n nodes, implying that |C′

m| ≤ 2n. �
We next describe our algorithm for computing the set C . For each disk sk , we refer to the half-circle of the boundary of

sk above L as the arc of sk . Note that every two arcs of S intersect at most once. In the following, depending on the context,
sk may also refer to its arc.

We begin with computing the left and right bounding couples.

Lemma 19. All left and right bounding couples of C can be computed in O ((n + m) log(n + m) + κ log m) time.
13

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 12. Illustrating the information maintained by our sweeping algorithm. P (l) = {pi1 , pi2 , pi3 , pi4 }. H(i1) consists of the two blue arcs and H(i4) consists
of the two red arcs. H(i0) consists of the black arc.

Proof. We only describe how to compute all left bounding couples, because the algorithm for computing the right bounding
couples is similar.

First of all, we compute the points pl(sk) and pr(sk) for all 1 ≤ k ≤ m. Each such point can be computed in O (log n)

time by binary search on the sorted sequence of P . Hence, computing all such points takes O (m log n) time. To compute all
left bounding couples, it is sufficient to compute the points p(sk) for all disks sk ∈ S , where p(sk) is the leftmost point of
P outside sk and between lk and rk if it exists, and p(sk) is pr(sk) otherwise, because (pl(sk), p(sk)) is the left bounding
couple defined by sk . To this end, we propose a sweeping algorithm similar to that for the L∞ case. The difference is that
the arcs of S may intersect each other and thus the sweeping needs to handle the events at intersections.

We sweep a vertical line l from left to right, and an event happens if l encounters a point of P ∪ {lk, rk| 1 ≤ k ≤ m} or an
intersection of two arcs of S . For this, we first sort all points of P ∪ {lk, rk| 1 ≤ k ≤ m}. We determine the intersections and
handle the intersection events in a similar way as the sweeping algorithm for computing line segment intersections [3,7,4];
note that we are able to do so because every two arcs of S intersect at most once. During the sweeping, we maintain the
arcs sk of S intersecting l whose points p(sk) have not been computed yet. Those arcs are stored in a balanced binary search
tree T , ordered by the y-coordinates of their intersections with l.

During the sweeping, if l encounters the left endpoint lk of an arc sk , then we insert sk into T . If l encounters the right
endpoint rk of an arc sk , then we remove sk from T and set p(sk) = pr(sk). If l encounters a point pi of P , then for each
arc sk of T that is below pi , we set p(sk) = pi and remove sk from T . If l encounters an intersection of two arcs, then we
process it in the same way as the line segment intersection algorithm, and we omit the discussion here (we also need to
detect intersections in other events above, which is similar to the line segment intersection algorithm and is omitted)

The running time of the algorithm is O ((n + m) log(n + m) + κ log m). In particular, the O (κ log m) factor in the time
complexity is for handling the intersections of the arcs. �

It remains to compute the middle bounding pairs of C . The algorithm is similar in spirit to that for the L∞ case. However,
it is more involved and requires new techniques due to the nature of the L2 metric as well as the boundary intersections of
the disks of S .

We sweep a vertical line l from left to right, and an event happens if l encounters a point in P ∪ {lk, rk| 1 ≤ k ≤ m} or
an intersection of two disk arcs. Let H be the set of arcs that intersect l. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 12).

1. A sequence P (l) = {pi1 , pi2 , . . . , pit } of t points to the left of l that are sorted from left to right. P (l) is maintained by a
balanced binary search tree T (P (l)).

2. A collection H of t + 1 subsets of H : H(i j) for j = 0, 1, . . . , t , which form a partition of H , defined as follows.
H(it) is the set of disks of H vertically below pit . For each j = t − 1, t − 2, . . . , 1, H(i j) is the set of disks of H \

⋃t
k= j+1 H(ik) vertically below pi j . H(i0) = H \ ⋃t

j=1 H(i j). While H(i0) may be empty, none of H(i j) for 1 ≤ j ≤ t is
empty.

Each set H(i j) for j ∈ [0, t] is maintained by a balanced binary search tree T (H(i j)) ordered by the y-coordinates of
the intersections of l with the arcs of the disks. We have all disks stored in the leaves of the tree, and each internal node
v of the tree stores a weight that is equal to the minimum weight of all disks in the leaves of the subtree rooted at v .

For each subset H ′ ⊆ H , the arc of H ′ whose intersection with l is the lowest is called the lowest arc of H ′ . We
maintain a set H∗ consisting of the lowest arcs of all sets H(ik) for 1 ≤ k ≤ t . So |H∗| = t . We use a binary search tree
T (H∗) to store disks of H∗ , ordered by the y-coordinates of their intersections with l.

3. For each point pi j ∈ P (l), among all points of P strictly between pi j and l, no point is vertically above any disk of H(i j).
4. Among all points of P strictly to the left of l, no point is vertically above any disk of H(i0).

Remark. Our algorithm invariants are essentially the same as those in the L∞ case. One difference is that the points of P (l)
are not sorted simultaneously by y-coordinates, which is due to that the arcs of S may cross each other (in contrast, in the
L∞ case the upper edges of the squares are parallel). For the same reason, for two sets H(ik) and H(i j) with 1 ≤ k < j ≤ t ,
it may not be the case that all arcs of H(ik) are above all arcs of H(i j) at l. Therefore, we need an additional set H∗ to
guide our algorithm, as will be clear later.
14

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 13. Illustrating the processing of an event at ph ∈ P : (i2, h) and (i4, h) will be reported as middle bounding couples, point i2 will be removed from
P (l) and ph will be inserted to P (l).

In our sweeping algorithm, we use similar techniques as the line segment intersection algorithm [3,7,4] to determine
and handle arc intersections of S (we are able to do so because every two arcs of S intersect at most once), and the time
on handling them is O ((m + κ) log m). Below we will not explicitly explain how to handle arc intersections. Initially H = ∅
and l is to the left of all arcs of S and all points of P .

If l encounters the left endpoint of an arc sk , we insert sk to H(i0).
If l encounters the right endpoint rk of an arc sk , then we need to determine which set of H contains sk . For this, as

in the L∞ case, we associate each right endpoint with the arc. Using this mechanism, we can find the set H(i j) of H that
contains sk in constant time. Then, we remove sk from H(i j). If j = 0, we are done for this event. Otherwise, if sk was the
lowest arc of H(i j) before the above remove operation, then sk is also in H∗ and we remove it from H∗ . If the new set
H(i j) becomes empty, then we remove pi j from P (l). Otherwise, we find the new lowest arc from H(i j) and insert it to
H∗ . Processing this event takes O (log(n + m)) time using the trees T (H∗), T (P (l)), and T (H(i j)).

If l encounters an intersection q of two arcs sa and sb , in addition to the processing work for computing the arc inter-
sections, we do the following. Using the right endpoints, we find the two sets of H that contain sa and sb , respectively. If
sa and sb are from the same set H(i j) ∈ H, then we switch their order in the tree T (H(i j)) and also update H∗ if needed
(i.e., if sa is the lowest arc in H(i j) and after the switch sb becomes the lowest arc in H(i j), then we remove sa from H∗
and insert sb into it). Otherwise, if sa is the lowest arc in its set and sb is also the lowest arc in its set, then both sa and sb
are in H∗ , so we switch their order in T (H∗). The time for processing this event is O (log m).

If l encounters a point ph of P , which is a major event we need to handle, we process it as follows. As in the L∞ case,
our goal is to determine the middle bounding couples (i, h) with pi ∈ P (l).

Using T (H∗), we find the lowest arc sk of H∗ . Let H(i j) for some j ∈ [1, t] be the set that contains sk , i.e., sk is the
lowest arc of H(i j). If ph is above sk , then we can show that (i j, h) is a middle bounding couple defined by and only by
the arcs of H(i j) below ph (e.g., see Fig. 13). The proof is similar to Lemma 14, so we omit the details. Hence, we report
(i j, h) as a middle bounding couple with weight equal to the minimum weight of all arcs of H(i j) below ph , which can be
found in O (log m) time using T (H(i j)). Then, we split T (H(i j)) into two trees by ph such that the arcs above ph are still
in T (H(i j)) and those below ph are stored in another tree (we will discuss later how to use this tree). Next we remove
sk from H∗ . If the new set H(i j) after the split operation is not empty, then we find its lowest arc and insert it into H∗;
otherwise, we remove pi j from P (l). We then continue the same algorithm on the next lowest arc of H∗ .

The above discusses the case where ph is above sk . If ph is not above sk , then we are done with processing the arcs of
H∗ . We can show that all middle bounding couples (b, h) with h as the right end have been computed. The proof is similar
to Lemma 17, and we omit the details.

Finally, we add ph to the rear of P (l). As in the L∞ case, we need to compute the tree T (H(h)) for the set H(h), which
is comprised of all arcs of H below ph , as follows.

Initially we have an empty tree T (H(h)). Let H ′ be the subset of the arcs of H∗ vertically below ph; here H∗ refers to the
original set at the beginning of the event for ph . The set H ′ has already been computed above. Let H′ be the subcollection
of H whose lowest arcs are in H ′ . We process the subsets H(i j) of H′ in the inverse order of their indices (for this, after
identifying H′ , we can sort the subsets H(i j) of H′ by their indices in O (|H ′| log m) time; note that |H ′| = |H′|), i.e., the
subset of H′ with the largest index is processed first.

Suppose we are processing a subset H(i j) of H′ . Let s be the lowest arc of H(i j). Recall that we have performed a split
operation on the tree T (H(i j)) to obtain another tree consisting of all arcs of H(i j) below ph , and we use H ′(i j) to denote
the set of those arcs and use T (H ′(i j)) to denote the tree. If T (H(h)) is empty, then we simply set T (H(h)) = T (H ′(i j)).
Otherwise, we find the highest arc s′ of T (H(h)) at l. If s is above s′ at l, then every arc of T (H ′(i j)) is above all arcs of
T (H(h)) at l and thus we simply perform a merge operation to merge T (H ′(i j)) with T (H(h)) (and we use T (H(h)) to refer
to the new merged tree). Otherwise, we call (s, s′) an order-violation pair. In this case, we do the following. We remove s
from T (H ′(i j)) and insert it to T (H(h)). If T (H ′(i j)) becomes empty, then we finish processing H(i j). Otherwise, we find
the new lowest arc of T (H ′(i j)), still denoted by s, and then process s in the same way as above.

The above describes our algorithm for processing a subset H(i j) of H′ . Once all subsets of H′ are processed, the tree
T (H(h)) for the set H(h) is obtained.

After processing the arcs of H∗ as above, we also need to consider the arcs of H(i0). For this, we simply scan the arcs
from low to high using the tree T (H(i0)), and for each arc s, if s is above ph , then we stop the procedure; otherwise, we
remove s from T (H(i0)) and insert it to T (H(h)).
15

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Fig. 14. Illustrating the proof of Lemma 20: the point ik is vertically below s but vertically above s′ .

This finishes our algorithm for processing the event at ph . The runtime of this step is O ((1 + k1 + k2 + k3) · log m) time,
where k1 is the number of middle bounding couples reported (the number of merge and split operations is at most k1 ; also,
|H ′| = k1), k2 is the number of arcs of H(i0) got removed for constructing T (H(h)), and k3 is the number of order-violation
pairs. By Lemma 18, the total sum of k1 is at most 2(n + m) + κ in the entire algorithm. As in the L∞ case, the total sum
of k2 is at most m in the entire algorithm. The following lemma proves that the total sum of k3 is at most κ . Therefore, the
overall time of the algorithm is O ((n + m) log(n + m) + κ log m).

Lemma 20. The total number of order-violation pairs in the entire algorithm is at most κ .

Proof. We follow the notation defined above. Consider an order-violation pair (s, s′), which appears when we process a
subset H ′(i j) of H′ for constructing T (H(h)) during an event at a point ph ∈ P , such that s ∈ H ′(i j) and s′ ∈ T (H(h)).
Without loss of generality, we assume that this is the first time that (s, s′)2 appears as an order-violation pair in our entire
algorithm. As we process the subsets of H′ by their inverse index order, s′ is from H(ik) for some k with j < k ≤ t . Since
(s, s′) is an order-violation pair, by definition, s′ is strictly above s at x(l) = x(ph); e.g., see Fig. 14. On the other hand, since
s′ ∈ H(ik), we know that pik is vertically above s′ . Since s ∈ H(i j) with j < k, pik must be vertically below s. Thus, s is
strictly above s′ at x(pik). This implies that the boundaries of s and s′ must have an intersection strictly between pik and
ph . We charge the pair (s, s′) to that intersection. Because s and s′ can have only one intersection, in the following we show
that (s, s′) will never appear as an order-violation pair again in the future algorithm.

First of all, according to our algorithm, (s, s′) will not appear as an order-violation pair again during processing the event
at ph . After the event, both s and s′ are in H(h). Consider a future event for processing another point ph′ ∈ P . By our
algorithm invariant (2), we have a collection H of sets Hi′j with j = 0, 1, . . . , t′ . Assume to the contrary that (s, s′) appears
as an order-violation pair again. Then, s and s′ must be from two different sets of H, e.g., Hi′j and Hi′k . Without loss of
generality, let j < k. By the same analysis as before, we can obtain that the boundaries of s and s′ have an intersection q
strictly between pi′j and ph′ . Since both s and s′ were in H(h) right after the event at ph , it must hold that x(ph) ≤ x(pi′j).
Hence, x(ph) < x(q). But this incurs contradiction because we have shown before that the only intersection between the
boundaries of s and s′ is strictly to the left of ph .

The above shows that (s, s′) will appear as an order-violation pair exactly once in the entire algorithm, which is charged
to their only intersection. Therefore, the total number of order-violation pairs in the entire algorithm is at most κ . �

In summary, all middle bounding couples of C can be computed in O ((n +m) log(n +m) +κ log m) time. Combining with
Lemmas 18 and 19, Lemma 11 is proved.

7. The line-separable unit-disk coverage and the half-plane coverage

In this section, we show that our techniques for the line-constrained disk coverage problems can also be used to solve
other geometric coverage problems.

Recall that the line-separable unit-disk coverage problem refers to the case in which P and centers of S are separated by
a line � and all disks of S have the same radius. Without loss of generality, we assume that � is the x-axis and all points of
P are above �. Hence, for each disk si of S , the portion of si above � is a subset of its upper half disk. Since disks of S have
the same radius, the boundaries of any two disks intersect at most once above �. We define κ as the number of pairs of
disks whose boundaries intersect above �. Due to the above properties, to solve the problem, we can simply use the same
algorithm in Section 6 for the line-constrained L2 case. Indeed, one can verify that the following critical lemmas that the
algorithm relies on still hold: Lemmas 5, 6, 18, 19, and 20. By Theorem 5, we obtain the following.

Theorem 6. Given in the plane a set P of n points and a set S of m weighted unit-disks such that P and centers of disks S are separated
by a line �, one can compute a minimum weight disk coverage for P in O (nm log(m + n)) time or in O ((n + m) log(n + m) + κ logm)

time, where κ is the number of pairs of disks of S whose boundaries intersect in the side of � containing P .

2 We consider (s, s′) as an unordered pair, so (s, s′) is the same as (s′, s).
16

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Remark. Note that although disks of S have the same radius, because their centers may not be on the same line, one can
verify that Lemma 1 does not hold any more. Hence, we can not use the same algorithm as in Section 4 for the line-
constrained unit-disk case. But if the centers of all disks of S lie on the same line parallel to � (and below �), then Lemma 1
will hold and thus we can use the same algorithm as in Section 4 to solve the problem in O ((n + m) log(n + m)) time.

We now consider the half-plane coverage problem. Given in the plane a set P of n points and a set S of weighted
half-planes, the goal is compute a minimum weight half-plane coverage for P , i.e., compute a subset of half-planes to cover
all points of P so that the total sum of the weights of the half-planes in the subset is minimized.

We start with the lower-only case where all half-planes of S are lower ones. The problem can be reduced to the line-
separable unit-disk coverage problem. Indeed, we first find a horizontal line � below all points of P . Then, since each
half-plane h of S is a lower one, h can be considered as a disk of infinite radius with center below �. In this way, S
becomes a set of unit-disks whose centers are below �. By Theorem 6, we have the following result.3

Theorem 7. Given in the plane a set P of n points and a set S of m weighted lower half-planes, one can compute a minimum weight
half-plane coverage for P in O (nm log(m + n)) time or in O (n logn + m2 log m) time.

For the general case where S may contain both lower and upper half-planes, we reduce it to a set of O (n2) instances of
the lower-only case, as follows.

Let Sopt denote the subset of S in an optimal solution. Har-Peled and Lee [17] observed that if the half-planes of Sopt

together cover the entire plane then the size of Sopt is at most 3; in this case we can enumerate all subsets of S of
cardinalities at most 3 and thus obtain an optimal solution in O (n3) time.

In the following we consider the case where the union of the half-planes of Sopt does not cover the entire plane. In
this case, the complement of the union of the half-planes of Sopt is a (possibly unbounded) convex polygon R [17]. For the
ease of discussion, we assume that R is bounded since the algorithm for the other case is similar. Let a and b refer to the
leftmost and rightmost vertices of R , respectively. Let P1 denote the subset of points of P below the line through a and b,
and P2 = P \ P1. The two vertices a and b together partition the edges of R into two chains, a lower chain and an upper
chain. Observe that the half-planes that are bounded by the supporting lines of the edges in the lower chain are all lower
half-planes and they together cover P1; similarly, the half-planes that are bounded by the supporting lines of the edges
of the upper chain are all upper half-planes and they together cover P2. In light of the observation, finding a minimum
weight coverage for P is equivalent to solving the following two lower-only case sub-problems: finding a minimum weight
coverage for P1 using lower half-planes of S and finding a minimum weight coverage for P2 using upper half-planes of
S . Because we do not know P1 and P2, we enumerate all possible partitions of P by a line. Clearly, there are O (n2) such
partitions. Hence, solving the half-plane coverage problem for P and S is reduced to O (n2) instances of the lower-only case.
By Theorem 7, we can obtain the following result.

Theorem 8. Given in the plane a set P of n points and a set S of m weighted half-planes, one can compute a minimum weight half-plane
coverage for P in O (n3m log(m + n)) time or in O (n3 log n + n2m2 log m) time.

8. Concluding remarks

We show that our line-constrained disk coverage problem has an �(n log n) time lower bound in the algebraic decision
tree model even for the 1D case.

The reduction is from the element uniqueness problem. Let X = {x1, x2, . . . , xn} be a set of n numbers, as an instance of
the element uniqueness problem, which is to decide whether all elements of X are distinct. We create an instance of the
1D disk coverage problem with a point set P and a segment set S on the x-axis L as follows. For each xi ∈ X , we create a
point on L with x-coordinate equal to xi and create a segment on L which is the above point with weight equal to 1. Let P
be the set of all such points and let S be the set of all such segments. Then, |P | = |S| = n. It is not difficult to see that the
numbers of X are distinct if and only if the optimal objective value of the 1D disk coverage problem is equal to n. As the
element uniqueness problem has an �(n log n) time lower bound under the algebraic decision tree model [27], the same
lower bound also holds for our 1D disk coverage problem.

The lower bound implies that our algorithms for the 1D, unit-disk, L1, and L∞ cases are all optimal when m = O (n). An
interesting open problem is whether faster algorithms exist for the L2 case. Another direction is to investigate whether the
L2 case is 3SUM-hard; if yes, then it is quite likely that our algorithm is nearly optimal.

3 Another way to see this is the following. The main property our algorithm for Theorem 5 relies on is that the boundaries of any two disks intersect at
most once above �. This property certainly holds for half-planes of S and thus the algorithm is applicable.
17

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105–106 (2022) 101883
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] H. Alt, E.M. Arkin, H. Brönnimann, J. Erickson, S.P. Fekete, C. Knauer, J. Lenchner, J.S.B. Mitchell, K. Whittlesey, Minimum-cost coverage of point sets by
disks, in: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG), 2006, pp. 449–458.

[2] C. Ambühl, T. Erlebach, M. Mihalák, M. Nunkesser, Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs,
in: Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), and the 10th
International Conference on Randomization and Computation (RANDOM), 2006, pp. 3–14.

[3] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. 28 (9) (1979) 643–647.
[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry — Algorithms and Applications, 3rd edition, Springer-Verlag, Berlin,

2008.
[5] V. Bilò, I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, Geometric clustering to minimize the sum of cluster sizes, in: Proceedings of the 13th European

Symposium on Algorithms (ESA), 2005, pp. 460–471.
[6] A. Biniaz, P. Bose, P. Carmi, A. Maheshwari, I. Munro, M. Smid, Faster algorithms for some optimization problems on collinear points, in: Proceedings

of the 34th International Symposium on Computational Geometry (SoCG), 2018, 8.
[7] K.Q. Brown, Comments on “Algorithms for reporting and counting geometric intersections”, IEEE Trans. Comput. 30 (1981) 147–148.
[8] T.M. Chan, E. Grant, Exact algorithms and APX-hardness results for geometric packing and covering problems, Comput. Geom. Theory Appl. 47 (2014)

112–124.
[9] D.Z. Chen, Y. Gu, J. Li, H. Wang, Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain, Discrete Comput.

Geom. 50 (2013) 374–408.
[10] F. Claude, G.K. Das, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, B.G. Nickerson, A. Salinger, An improved line-separable algorithm for discrete unit

disk cover, Discrete Math. Algorithms Appl. 2 (2010) 77–88.
[11] F. Claude, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, A. Salinger, Practical discrete unit disk cover using an exact line-separable algorithm, in:

Proceedings of the 20th International Symposium on Algorithm and Computation (ISAAC), 2009, pp. 45–54.
[12] S. Dobrev, S. Durocher, M. Eftekhari, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, S. Shende, J. Urrutia, Complexity of barrier coverage

with relocatable sensors in the plane, Theor. Comput. Sci. 579 (2015) 64–73.
[13] H. Edelsbrunner, E.P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graph. 9 (1990)

66–104.
[14] M. Eftekhari, P. Flocchini, L. Narayanan, J. Opatrny, N. Santoro, On synchronization and orientation in distributed barrier coverage with relocatable

sensors, Theor. Comput. Sci. 887 (2021) 1–10.
[15] T. Feder, D.H. Greene, Optimal algorithms for approximate clustering, in: Proceedings of the 20th Annual ACM Symposium on Theory of Computing

(STOC), 1988, pp. 434–444.
[16] U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998) 634–652.
[17] S. Har-Peled, M. Lee, Weighted geometric set cover problems revisited, J. Comput. Geom. 3 (2012) 65–85.
[18] D.S. Hochbaum, W. Maass, Fast approximation algorithms for a nonconvex covering problem, J. Algorithms 3 (1987) 305–323.
[19] A. Karmakar, S. Das, S.C. Nandy, B.K. Bhattacharya, Some variations on constrained minimum enclosing circle problem, J. Comb. Optim. 25 (2) (2013)

176–190.
[20] N. Lev-Tov, D. Peleg, Polynomial time approximation schemes for base station coverage with minimum total radii, Comput. Netw. 47 (2005) 489–501.
[21] J. Li, Y. Jin, A PTAS for the weighted unit disk cover problem, in: Proceedings of the 42nd International Colloquium on Automata, Languages and

Programming (ICALP), 2015, pp. 898–909.
[22] S. Li, H. Wang, Algorithms for covering multiple barriers, Theor. Comput. Sci. 758 (2019) 61–72.
[23] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, J. ACM 41 (1994) 960–981.
[24] N.H. Mustafa, R. Raman, S. Ray, Settling the APX-hardness status for geometric set cover, in: Proceedings of the 55th IEEE Annual Symposium on

Foundations of Computer Science (FOCS), 2014, pp. 541–550.
[25] N.H. Mustafa, S. Ray, PTAS for geometric hitting set problems via local search, in: Proceedings of the 25th Annual Symposium on Computational

Geometry (SoCG), 2009, pp. 17–22.
[26] L. Pedersen, H. Wang, On the coverage of points in the plane by disks centered at a line, in: Proceedings of the 30th Canadian Conference on

Computational Geometry (CCCG), 2018, pp. 158–164.
[27] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.
[28] H. Wang, J. Zhang, Line-constrained k-median, k-means, and k-center problems in the plane, Int. J. Comput. Geom. Appl. 26 (2016) 185–210.
18

http://refhub.elsevier.com/S0925-7721(22)00026-8/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib32B4B35F417E345EB2769DFB352A1F3Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib9062C9C9053401C19C42A328A189D733s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib9062C9C9053401C19C42A328A189D733s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibADF2BECB9679CD699BB42311E7FFB77Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibADF2BECB9679CD699BB42311E7FFB77Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib15069E7E33C75A9CEA927853150E62C7s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibF9B423C713134B8CDBD2A0CE4DF0BE54s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibF9B423C713134B8CDBD2A0CE4DF0BE54s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6556F50885CE71B9C800E599580DC229s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6556F50885CE71B9C800E599580DC229s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib7DE6BCA5582CB6A4FF78E029229B2C8Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib7DE6BCA5582CB6A4FF78E029229B2C8Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6F1ACF2F86312EDE8F24E986B00F5BF0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6F1ACF2F86312EDE8F24E986B00F5BF0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibC812F439264E6AE727514DC97C583F3Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibC812F439264E6AE727514DC97C583F3Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib540EC08239195B46CDD86D6F0E83D4A0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib540EC08239195B46CDD86D6F0E83D4A0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibDCD12C07DC2FD25F1AE2CA5A5FCC1B08s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibDCD12C07DC2FD25F1AE2CA5A5FCC1B08s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibEC7CF9F7EB5288E491497378A890170Ds1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibEC7CF9F7EB5288E491497378A890170Ds1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibBBA0B29E1DED964A58965B98606D3F65s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib64F8CDBAD3FA9378017B8FC2AA99D044s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibD8CF0216AC304754A86267AE5EE7FA90s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibFA343F90A00CB2AF2CF3EDBD20C4F9DAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibFA343F90A00CB2AF2CF3EDBD20C4F9DAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA440366ED02AEF0EAA15410D60C9176Cs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib01FBE6CEE39DD6CE49863A5B78D6A601s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA8A90FA040F62A1B40978F89773223D8s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib020970FCAAAA9871567471C8CD5DB415s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib020970FCAAAA9871567471C8CD5DB415s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib48B7834182B8EA01E862775CC8DF6D29s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib48B7834182B8EA01E862775CC8DF6D29s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib55BAC94CF000BB1D468232F74271E65Fs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib55BAC94CF000BB1D468232F74271E65Fs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib30C30D6288C4F2C831B1C85012D6ED40s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA0206C97C083B282D1E52129EDC967FFs1

	and related problems
	1 Introduction
	1.1 Related work
	1.2 Our approach

	2 Preliminaries
	3 The 1D problem
	4 The L2 unit-disk case
	5 The L1 case
	6 The L∞ and L2 cases
	6.1 An algorithmic scheme for L∞ and L2 metrics
	6.2 The L∞ metric
	6.2.1 Computing the middle bounding couples

	6.3 The L2 metric

	7 The line-separable unit-disk coverage and the half-plane coverage
	8 Concluding remarks
	Declaration of competing interest
	References

