Computational Geometry: Theory and Applications 105-106 (2022) 101883

Contents lists available at ScienceDirect 22 o
Geometry
Computational Geometry: Theory and | ™
. .]
Applications
www.elsevier.com/locate/comgeo “mms
Algorithms for the line-constrained disk coverage n
hxg eck for
and related problems ™ e
Logan Pedersen, Haitao Wang *
Department of Computer Science, Utah State University, Logan, UT 84322, USA
ARTICLE INFO ABSTRACT
Affif{e history: Given a set P of n points and a set S of m weighted disks in the plane, the disk coverage
Received 14 July 2021 problem asks for a subset of disks of minimum total weight that cover all points of P.

Received in revised form 4 February 2022
Accepted 18 April 2022
Available online 22 April 2022

The problem is NP-hard. In this paper, we consider a line-constrained version in which
all disks are centered on a line L (while points of P can be anywhere in the plane). We
present an O ((m + n)log(m + n) + k logm) time algorithm for the problem, where « is

Keywords: the number of pairs of disks whose boundaries intersect. Alternatively, we can also solve
Disk coverage the problem in O (nmlog(m + n)) time. For the unit-disk case where all disks have the
Line-constrained same radius, the running time can be reduced to O((n + m)log(m + n)). In addition, we
Half-plane coverage solve in O ((m + n)log(m + n)) time the Lo, and L cases of the problem, in which the
Geometric coverage disks are squares and diamonds, respectively. We further demonstrate that our techniques

can also be used to solve other geometric coverage problems. For example, given in the
plane a set P of n points and a set S of n weighted half-planes, we solve in O (n*logn)
time the problem of finding a subset of half-planes to cover P so that their total weight
is minimized. This improves the previous best algorithm of O (n”) time by almost a linear
factor. If all half-planes are lower ones, then our algorithm runs in 0 (n? logn) time, which
improves the previous best algorithm of 0 (n*) time by almost a quadratic factor.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Given a set P of n points and a set S of m disks in the plane such that each disk has a weight, the disk coverage problem
asks for a subset of disks of minimum total weight that cover all points of P. We assume that the union of all disks covers
all points of P. It is known that the problem is NP-hard [15] and many approximation algorithms have been proposed,
e.g., [21,25].

In this paper, we consider a line-constrained version of the problem in which all disks (possibly with different radii) have
their centers on a line L, say, the x-axis. To the best of our knowledge, this line-constrained problem was not particularly
studied before. We present an O ((m + n)log(m + n) + « logm) time algorithm, where « is the number of pairs of disks
whose boundaries intersect (and thus «k <m(m — 1)/2; e.g,, if the disks are disjoint, then x =0 and the algorithm runs in
O((m + n)log(m + n)) time). Alternatively, we can also solve the problem in O (nmlog(m + n)) time. For the unit-disk case

™ This research was supported in part by NSF under Grant CCF-2005323. A preliminary version of this paper appeared in Proceedings of the 17th Algorithms
and Data Structures Symposium (WADS 2021).
* Corresponding author.
E-mail addresses: logan.pedersen@aggiemail.usu.edu (L. Pedersen), haitao.wang@usu.edu (H. Wang).

https://doi.org/10.1016/j.comge0.2022.101883
0925-7721/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2022.101883
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101883&domain=pdf
mailto:logan.pedersen@aggiemail.usu.edu
mailto:haitao.wang@usu.edu
https://doi.org/10.1016/j.comgeo.2022.101883

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

where all disks have the same radius, the running time can be reduced to O ((n + m)log(m + n)). In addition, we solve in
O ((m+n)log(m+n)) time the Lo, and L; cases of the problem, in which the disks are squares and diamonds, respectively.
As a by-product, we present an O ((m + n)log(m + n)) time algorithm for the 1D version of the problem where all points of
P are on L and the disks are line segments of L. In addition, we show that the problem has an Q(nlogn) time lower bound
in the algebraic decision tree model even for the 1D case. This implies that our algorithms for the 1D, L, L1, and unit-disk
cases are all optimal when m = O (n).

Our algorithms potentially have applications, e.g., in facility locations. For example, suppose we want to build some
facilities along a railway which is represented by L (although an entire railway may not be a straight line, it may be
considered straight in a local region) to provide service for some customers that are represented by the points of P. The
center of a disk represents a candidate location for building a facility that can serve the customers covered by the disk and
the cost for building the facility is the weight of the disk. The problem is to determine the best locations to build facilities
so that all customers can be served and the total cost is minimized. This is exactly an instance of our problem.

Although the problems are line-constrained, our techniques can actually be used to solve other geometric coverage
problems. If all disks of S have the same radius and the set of disk centers is separated from P by a line ¢, the problem is
called line-separable unit-disk coverage. The unweighted case of the problem where the weights of all disks are 1 has been
studied in the literature [2,10,11]. In particular, the fastest algorithm was given by Claude et al. [10] and the runtime is
O (nlogn + nm). The algorithm, however, does not work for the weighted case. Our algorithm for the line-constrained L,
case can be used to solve the weighted case in O (nmlog(m + n)) time or in O((m + n)log(m + n) + k logm) time, where
K is the number of pairs of disks whose boundaries intersect on the side of ¢ that contains P. More interestingly, we can
use the algorithm to solve the following half-plane coverage problem. Given in the plane a set P of n points and a set S of
m weighted half-planes, find a subset of the half-planes to cover all points of P so that their total weight is minimized.
For the lower-only case where all half-planes are lower ones, Chan and Grant [8] gave an O (mn?(m + n)) time algorithm. In
light of the observation that a half-plane is a special disk of infinite radius, our line-separable unit-disk coverage algorithm
can be applied to solve the problem in O (nmlog(m + n)) time or in O (nlogn + m?logm) time. This improves the result
of [8] by almost a quadratic factor (note that the techniques of [8] are applicable to more general problem settings such
as downward shadows of x-monotone curves). For the general case where both upper and lower half-planes are present,
Har-Peled and Lee [17] proposed an algorithm of O (n°) time when m = n. By using our lower-only case algorithm, we solve
the problem in O (n®mlog(m + n)) time or in O (3 logn + n*m?logm) time. Hence, our result improves the one in [17] by
almost a linear factor. We believe that our techniques may have other applications that remain to be discovered.

1.1. Related work

Our problem is a new type of set cover problem. The general set cover problem, which is fundamental and has been
studied extensively, is hard to solve, even approximately [16,18,23]. Many set cover problems in geometric settings, often
called geometric coverage problems, are also NP-hard, e.g., [8,17]. As mentioned above, if the line-constrained condition
is dropped, then the disk coverage problem becomes NP-hard, even if all disks are unit disks with the same weight [15].
Polynomial time approximation schemes (PTAS) exist for the unweighted problem [25] as well as the weighted unit-disk
case [21]. For the weighted general disk case, a quasi-polynomial time approximation scheme (QPTAS) is known [24], but
whether a PTAS exits remains an interesting open problem.

Alt et al. [1] studied a problem closely related to ours, with the same input, consisting of P, S, and L, and the objective is
also to find a subset of disks of minimum total weight that cover all points of P. But the difference is that S is comprised of
all possible disks centered at L and the weight of each disk is defined as r® with r being the radius of the disk and o being
a given constant at least 1. Alt et al. [1] gave an O (n*logn) time algorithm for any L, metric and any o > 1, an 0 (n?logn)
time algorithm for any L, metric and o =1, and an 0(n3logn) time algorithm for the Lo, metric and any « > 1. Recently,
Pedersen and Wang [26] improved all these results by providing an O (n?) time algorithm for any L, metric and any o > 1.
A 1D variation of the problem was studied in the literature where points of P are all on L and another set Q of m points
is given on L as the only candidate centers for disks. Bilo et al. [5] first showed that the problem is solvable in polynomial
time. Lev-Tov and Peleg [20] gave an algorithm of O((n+ m)3) time for any « > 1. Biniaz et al. [6] recently proposed an
0 ((n+m)?) time algorithm for the case o = 1. Pedersen and Wang [26] solved the problem in O (n(n +m) 4+ mlogm) time
for any o > 1.

Our problem may also be somehow related to mobile sensor barrier coverage, e.g., see [9,12,14,22], where the sensors
are required to move to cover all barriers and the objectives are usually to minimize the movements of all sensors. Other
line-constrained problems have also been studied in the literature, e.g., [19,28].

1.2. Our approach

We first solve the 1D version of the line-constrained problem by a simple dynamic programming algorithm. Then, for
the general “1.5D” problem (i.e., points of P are in the plane), a key observation is that if the points of P are sorted by their
x-coordinates, then the sorted list can be partitioned into sublists such that there exists an optimal solution in which each
disk covers a sublist. Based on the observation, we reduce the 1.5D problem to an instance of the 1D problem with a set P’
of n points and a set S’ of segments. Two challenges arise in our approach.

2

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

The first challenge is to give a small bound on the size of S’. A straightforward method shows that |S’| <n-m. In the
unit-disk case and the L; case, we prove that |S’| can be reduced to m by similar methods. In the L., case, with a different
technique, we show that |S’| can be bounded by 2(n + m). The most challenging case is the L, case. By a number of
observations, we prove that |S'| <2(n+m) +«.

The second challenge of our approach is to compute the set S’ (the set P/, which actually consists of all projections of
the points of P onto L, can be easily obtained in O (n) time). Our algorithms for computing S’ for all cases use the sweeping
technique. The algorithms for the unit-disk case and the L; case are relatively easy, while those for the L., and L, cases
require much more effort. Although the two algorithms for L, and L, are similar in spirit, the boundary intersections of the
disks in the L, case bring more difficulties and make the algorithm more involved and less efficient. In summary, computing
S’ can be done in O ((n + m)log(n 4+ m)) time for all cases except the L, case which takes O((n + m)log(n +m) + x logm)
time.

Outline. The rest of the paper is organized as follows. We define some notation in Section 2 and we present our algorithm
for the 1D problem in Section 3. The unit-disk case and the Li case are discussed in Section 4 and Section 5, respectively.
The algorithms for the Lo, and L, cases are given in Section 6. Using the algorithm for the L, case, we solve the line-
separable disk coverage problem and the half-plane coverage problem in Section 7. Section 8 concludes the paper with a
lower bound proof.

2. Preliminaries

We assume that L is the x-axis. We also assume that all points of P are above or on L since otherwise if a point p; is
below L, then we could obtain the same optimal solution by replacing p; with its symmetric point with respect to L. For
ease of exposition, we make a general position assumption that no two points of P have the same x-coordinate and no point
of P lies on the boundary of a disk of S; degenerated cases can be easily handled by standard techniques of perturbation,
e.g., [13].

For any point p in the plane, we use x(p) and y(p) to refer to its x-coordinate and y-coordinate, respectively.

We sort all points of P by their x-coordinates, and let p1, py, ..., pn be the sorted list from left to right on L. For any

1<i<j<n,let P[i, j] denote the subset {p;, pi+1,...,pj}. Sometimes we use indices to refer to points of P. For example,
point i refers to p;.
We sort all disks of S by the x-coordinates of their centers from left to right, and let s1, s2, ..., S, be the sorted list. We

assume that each disk of S is a closed region including its boundary. For each disk s;, we use c¢; to denote its center and
use w; to denote its weight. We assume that each w; is positive (otherwise one could always include s; in the solution).
For each disk s;, let [; and r; refer to its leftmost and rightmost points, respectively.

We often talk about the relative positions of two geometric objects 01 and O, (e.g., two points, or a point and a line).
We say that O is to the left of O, if x(p) < x(p") holds for every point p € O and every point p’ € O, and strictly left
means x(p) < x(p’). Similarly, we can define right, above, below, etc.

For convenience, we use pg (resp., pn+1) to denote a point on L strictly to the left (resp. right) of all points of P and all
disks of S.

We use the term optimal solution subset to refer to a subset of S used in an optimal solution, and the optimal objective
value refers to the total sum of the weights of the disks in an optimal solution subset.

3. The 1D problem

In the 1D problem, each disk s; € S is a line segment on L, and thus /; and r; are the left and right endpoints of s;,
respectively. We present a simple dynamic programming algorithm for the problem. We first introduce some notation.

For each segment s; € S, let f(j) refer to the index of the rightmost point of P U {po} strictly to the left of I;, i.e., f(j) =
arg maxo<i<n{pi : X(pi) < x(1;)}. Due to the definition of po, f(j) is well defined. The indices f(j) for all j=1,2,...,m
can be obtained in O(n + m) time after we sort all points of P along with the left endpoints of all segments of S. More
specifically, we sweep a point p from left to right on L using the above sorted list. During the sweep, we maintain the
number i of points of P to the left of p. When p meets a point of P, we increment i by one. When p meets the left
endpoint of a segment s; € S, we set f(j)=1i.

For each i € [1,n], let W (i) denote the minimum total weight of a subset of disks of S covering all points of P[1,i].
Our goal is to compute W (n). For convenience, we set W (0) = 0. For each segment s; € S, we define its cost as cost(j) =
wj+ W(f(j)). One can verify that W (i) is equal to the minimum cost(j) among all segments s; € S that cover p;. This is
the recursive relation of our dynamic programming algorithm.

We sweep a point g on L from left to right. Initially, g is at pg. During the sweeping, we maintain a subset S(q) of
segments that cover ¢q, and the cost of each segment of S(q) is already known. Also, the values W (i) for all points p; € P
to the left of ¢ have been computed. An event happens when q encounters an endpoint of a segment of S or a point of P.
To guide the sweeping, we sort all endpoints of the segments of S along with the points of P.

If g encounters a point p; € P, then we find the segment of S(q) with the minimum cost and assign the cost to W (i). If
q encounters the left endpoint of a segment s;, we set cost(j) = w;+ W (f(j)) and then insert s; into S(q). If ¢ encounters

3

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 1. Illustrating the two points a,(i) and a;(i). The black points are points of P. The vertical line is the one through the center of s;. Only the upper half
disk of s; is shown.

Fig. 2. lllustrating the proof of Lemma 1. The red dashed half-circle is s; and the black solid half-circle is s;. The two squares on L are the centers of the
two disks. Left: x(c;) < x(ar(i)). Middle: x(ar(i)) < x(cj) < x(r;). Right: x(r;) < x(cj).

the right endpoint of a segment, we remove the segment from S(q). If we maintain the segments of S(q) by a balanced
binary search tree with their costs as keys, then processing each event takes O (logm) time as |S(q)| <m.

Therefore, the sweeping takes O ((n + m)logm) time, after sorting the points of P and all segment endpoints in O ((n +
m) log(n +m)) time. After the sweeping, W (n) is the optimal objective value, and an optimal solution subset of S can be
obtained by the standard back-tracking technique, and we omit the details.

Theorem 1. The 1D disk coverage problem is solvable in O ((n + m) log(n + m)) time.

4. The L, unit-disk case

In this case, all disks of S have the same radius. We will reduce the problem to an instance of the 1D problem and then
apply Theorem 1. To this end, we will need to present several observations.

For each disk s;, among all points of P U {pg, pn+1} to the right of its center c;, define a,(i) as the index of the leftmost
point outside s; (e.g., see Fig. 1). Similarly, among all points of P U {po, pn+1} to the left of c;, define g;(i) as the index of
the rightmost point outside s;. Note that a;(i) and q;(i) are well defined due to pp and pp+1. If a;(i) + 1 < a,(i), then we
say that s; is a useful disk.

Let P(s;) denote the subset of points of P that are covered by s;. We further partition P(s;) into three subsets as follows.
Let P;(s;) consist of the points of P(s;) strictly to the left of point a;(i). Let P,(s;) consist of the points of P(s;) strictly to
the right of point a;(i). Let P (s;) = P(sj) \ {Pi(si) U P;(si)}. Observe that Py, (s;) # @ if and only if s; is a useful disk, and if
s is a useful disk, then Pp,(si) = P[a;(i) + 1, a,(i) — 1].

The following lemma is due to the fact that all disks of S have the same radius and are centered at L.

Lemma 1. Consider a disk s;. If another disk s; covers the point ar(i), then s; covers all points of P;(s;); similarly, if another disk s
covers the point a;(i), then s covers all points of P(s;).

Proof. We only prove the case for a,(i), since the other case is similar. Let k = a,(i). Assume that a disk s; covers the
point pg. Our goal is to prove that s; covers all points of Pr(s;). This is obviously true if P;(s;) =#. In the following, we
assume that P(s;) # @. This implies that x(py) < x(r;), where r; is the rightmost point of s;. Also, by definition, we have
x(ci) < x(py), where c; is the center of s;.

Let D be the region of s; to the right of the vertical line through py. By definition, P;(s;) = D N P. Since s; and s; have
the same radius and s; covers p, while s; does not, we claim that D must be contained in the disk s; (e.g., see Fig. 2). The
claim immediately leads to the lemma. We prove the claim below.

First of all, since x(c;) < x(px) by definition of py, and s; covers p, while s; does not, it must hold that x(c;) < x(cj).
There are three cases depending on the location of cj: x(c;) < x(pk), x(pr) < x(cj) < x(r;), and x(r;) < x(cj); e.g., see Fig. 2.

1. If x(cj) < x(pr), then consider a unit-disk s with center c at ¢;. Imagine that we move the center ¢ on L from c; to x(py).
During the movement, D must be contained in the disk s all the time. Since x(c;) < x(cj) < X(px), ¢ must be at c; at
some moment during the above movement. This implies that s; contains D.

2. If x(r;) <x(cj), then since py is inside sj, the rectangle R with 7;p, as a diagonal must be contained in s;. On the other
hand, since py is above s; and x(c;) < x(px), the region D is contained in the rectangle R. Hence, s; contains D.

3. If x(pr) < x(cj) < x(rj), then the vertical line £ through c; partitions D into two parts Dq and D3 on the left and right
of ¢, respectively. Using the above unit-disk movement argument (i.e., if we move the center ¢ of a unit-disk s from c;

4

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

to c;, then s always contains D), one can easily see that Dy is contained in s;. For D1, observe that it is contained in
the rectangle R’ with Cjpy as a diagonal. Since py is inside s; and c; is the center of s;, R’ must be contained in sj;.
Therefore, D1 is contained in s;. Hence, D, which is the union of Dy and D5, is contained in s;.

This proves the claim and thus the lemma. O
The following lemma will help us to reduce the problem to the 1D problem.
Lemma 2. Suppose Sy is an optimal solution subset and s; is a disk in Sop¢. Then, the following hold.

1. s; must be a useful disk.
2. P (si) has at least one point not covered by any disk of Sopt \ {si}.
3. All points of Pi(s;) U P;(s;) are covered by the disks of Sopt \ {si}-

Proof. First of all, since s; is in Sopr and w; > 0, s; must cover a point p* € P that is not covered by any other disk of Sqp.
Depending on whether a;(i) = 0 and whether a,(i) =n + 1, there are several cases.

- If (i) =0 and a,(i) =n + 1, then all points of P are covered by s;. Therefore, Sop; has only one disk, which is s;.
Further, a;(i) =0 and a,(i) =n + 1 imply that P;(s;) = P,(s;) = @. Hence, the lemma follows.

- If @(i) # 0 and a,(i) =n + 1, then some disk s; of Sop¢ \ {s;} must cover the point a;(i). Then, by Lemma 1, s; must
cover all points of P;(s;). Hence, p* ¢ Pi(s;). Since a,(i) =n + 1, we have P,(s;j) = @. Thus, p* is in Py (s;). Therefore,
the lemma follows.

- If q;(i) =0 and a,(i) #n+ 1, then the proof is analogous to the above second case and we omit it.

- If q;(i) # 0 and a,(i) #n+ 1, then by a similar proof as the above second case, we know that all points of P;(s;) are
covered by a disk of Sop \ {s;}. Similarly, since a;(i) #n+ 1, we can show that all points of P;(s;) are covered by a disk
of Sope \ {si}. This implies that p* is in Py, (s;). Therefore, the lemma follows. O

By Lemma 2, to find an optimal solution, it is sufficient to consider only useful disks, and further, for each useful disk
sj, it is sufficient to assume that it only covers the points of Pp(s;) = P[a;(i) + 1, a;(i) — 1]. This observation leads to the
following approach to reduce our problem to an instance of the 1D problem.

We assume that the indices a;(i) and a,(i) for all i € [1, m] are known. For each point p;, we project it vertically on L,
and let P’ be the set of all projected points. For each useful disk s;, we create a segment on L whose left endpoint has x-
coordinate equal to x(pyy1) with k = a;(i) and whose right endpoint has x-coordinate equal to x(py_1) with k' = a,(i), and
the weight of the segment is equal to w;. Let S’ be the set of all segments thus defined. According to the above discussion,
an optimal solution to the 1D problem on P’ and S’ corresponds to an optimal solution to our original problem on P and
S. By Theorem 1, the 1D problem can be solved in O ((n + m)log(n + m)) time because |P’| =n and |S’| <m.

It remains to compute the indices a;(i) and a,(i) for all i € [1, m], which is done in the following lemma.

Lemma 3. Computing a;(j) and a,(j) for all j € [1, m] can be done in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute a,(j) for all j € [1, m], and the algorithm for a;(j) is similar.

We sweep the plane with a vertical line [from left to right, and an event happens if | encounters a point of P or a disk
center. For this, we first sort all points of P and all disk centers, in O((n 4+ m)log(n + m)) time. During the sweeping, we
maintain a list Q of disks s; whose centers have been swept and whose indices a,(i) have not been computed yet. Q is
just a first-in-first-out queue storing the disks ordered by their centers from left to right. Initially, Q = @.

During the sweeping, if [encounters the center of a disk s;, we add s; to the rear of Q. If | encounters a point p;, then
we process it as follows. Starting from the front disk s; of Q, we check whether s; covers p;. If yes, then one can verify
that every disk in Q covers p;, and thus in this case we finish processing p;. Otherwise, we remove s; from Q and set
ar(j) =1, after which we proceed on the next disk in Q (if Q becomes @, then we finish processing p;). If Q is not empty
after pp is processed, then we set a;(j)=n+1 for all s; € Q.

The running time of the sweeping algorithm after sorting is O (n 4+ m). The lemma thus follows. O

With the preceding lemma, we have the following theorem.
Theorem 2. The line-constrained disk coverage problem for unit disks is solvable in O ((n +m) log(n + m)) time.
5. The Lq case
In this case, each disk of S is a diamond, whose boundary is comprised of four edges of slopes 1 and —1, but the

diamonds of S may have different radii. We show that the problem can be solved in O ((n + m)log(n 4+ m)) time by similar
techniques to the unit-disk case in Section 4.

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

C; Cj C; Cj

Fig. 3. lllustrating the proof of Lemma 1 for the Ly case, as a counterpart of Fig. 2. Now both s; and s; are diamonds (only the upper halves are shown).
Left: c; is to the right of point a;(i). Right: c; is to the left of point a,(i). In both cases, s; contains the region D.

> [

Fig. 4. lllustrating an event when [encounters a point p; € P. Four diamonds (only their upper right edges are shown) are in Q. To process the event, the
two red dashed diamonds will be removed from Q, and their indices a,(j) will be set to i.

For each diamond s; € S, we still define the two indices a;(i) and a,(i) as well as the three subsets P;(s;), P;(s;), and
P (si) in exactly the same way as in Section 4. We still call s; a useful disk if a;(i) + 1 < a,(i).

Although the disks may have different radii, the geometric properties of the L1 metric guarantee that Lemma 1 still
applies. The proof is literally the same as before (indeed, one can verify that the region D must be contained in the
diamond s;; e.g., see Fig. 3 as a counterpart of Fig. 2), so we omit it. As Lemma 2 mainly relies on Lemma 1, it also applies
here. Consequently, once the indices a-(j) and q;(j) for all j € [1,m] are known, we can use the same algorithm as before
to find an optimal solution in O ((n+ m)log(n+m)) time. The algorithm for computing the indices a-(j) and q;(j), however,
is not the same as before in Lemma 3. We provide a new algorithm in the following lemma.

Lemma 4. Computing a;(j) and a,(j) for all j € [1, m] can be done in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute a,(j) for all i € [1,m], and the algorithm for a;(i) is similar.

We sweep the plane with a vertical line | from left to right, and an event happens if [encounters a point of P or the
center of a diamond s;. For this, we first sort all points of P and the centers of all diamonds in O ((n+ m)log(n+m)) time.
During the sweeping, we maintain a list Q of diamonds s; whose centers have been swept and whose indices a, (i) have not
been computed yet. We store the diamonds of Q by a balanced binary search tree with the x-coordinates of the rightmost
points of the diamonds as the keys. Initially, Q =@.

During to the sweeping, if [encounters the center of a diamond s;, then we insert s; into Q. If I encounters a point p;,
then we process it as follows. Find the diamond s; in Q with the smallest key (i.e., the diamond of Q whose rightmost
point is the leftmost). If s; covers p;, then one can verify that every diamond in Q covers pi,! and thus in this case we
finish processing p;. Otherwise (e.g., see Fig. 4), we delete s; from Q and set a;(j) =1, after which we proceed on the
next diamond in Q with the smallest key (if Q becomes @, then we finish processing p;). If Q is not empty after p, is
processed, then we set a,(j) =n+1 for all s; € Q.

The running time of the sweeping algorithm after sorting is O ((n 4+ m)logm). The lemma thus follows. O

Theorem 3. The line-constrained disk coverage problem in the L1 metric is solvable in O ((n +m) log(n + m)) time.

6. The L, and L; cases

In this section, we give our algorithms for the Ly, and L, cases. The algorithms are similar in the high level. However,
the nature of the L, metric makes the L, case more involved in the low level computations. In Section 6.1, we present
a high-level algorithmic scheme that works for both metrics. Then, we complete the algorithms for Lo, and Ly cases in
Sections 6.2 and 6.3, respectively.

6.1. An algorithmic scheme for Lo, and L, metrics

In this subsection, unless otherwise stated, all statements are applicable to both metrics. Note that a disk in the Ly
metric is a square.

! To see this, notice that all diamonds in Q have their upper right edges intersecting I, which currently contains p;, and further, the diamond in Q with
the smallest key has the lowest such edge.

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 5. Illustrating the proof of Lemma 5. The red dashed half-circle shows disk s¢, which covers p;_1, and x(c¢) < x(cx)). The disk s; must also cover the
point pp.

For a disk si € S, we say that a subsequence P[i, j] of P with 1 <i < j <n is a maximal subsequence covered by s if all
points of P[i, j] are covered by s; but neither p;_; nor p;i1 is covered by sy (it is well defined due to po and p;41). Let
F(si) be the set of all maximal subsequences covered by s;. Note that the subsequences of F(s) are pairwise disjoint.

Lemma 5. Suppose Sop is an optimal solution subset and sy is a disk of Sqp¢. Then, there is a subsequence P[i, j] in F(sy) such that
the following hold.

1. P[i, j] has a point that is not covered by any disk in Sop¢ \ {sk}.
2. For any point p € P that is covered by sy but is not in P[i, j], p is covered by a disk in Sopt \ {Sk}.

Proof. First of all, sy must cover a point p* that is not covered by any disk in Sop: \ {sk}. Since the subsequences of F(si)
are pairwise disjoint, p* is in a unique subsequence P[i, j] of F(sk). In the following, we show that P[i, j] has the property
as stated in the lemma.

Consider any point p, € P that is covered by s, but is not in P[i, j]. By the definition of maximal sequences, either
h<i—1orh>j+ 1. We only discuss the case h <i — 1 since the other case is similar. In the following, we show that p,
must be covered by a disk in Sep¢ \ {s¢}, which will prove the lemma.

By the definition of maximal sequences, neither p;_1 nor pj;{ is covered by si. Since Sop¢ is an optimal solution,
Sopt \ {Sx} must have a disk s; that covers p;_;. According to the above discussion, s; does not cover p*. Since p* is to the
right of p;_1, the center ¢; of s; cannot be to the right of the center c, of sy, since otherwise s; would cover p* as well
because s covers p*. Let D be the region of s; to the left of the vertical line through p;_1. Since h <i—1 and py, is inside
Sk, pp must be contained in D (e.g., see Fig. 5). Since x(c;) < x(ck) and p;_q is in s; but not in si, one can verify that D is
contained in s;. Thus, p, must be covered by s;. O

In light of Lemma 5, we reduce the problem to an instance of the 1D problem with a point set P’ and a line segment
set S’, as follows.

For each point of P, we vertically project it on L, and the set P’ is comprised of all such projected points. Thus P’ has
exactly n points. For any 1 <i < j <n, we use P'[i, j] to denote the projections of the points of P[i, j]. For each point
pi € P, we use p; to denote its projection point in P’.

The set S’ is defined as follows. For each disk s, € S and each subsequence P[i, j] € F(sk), we create a segment for S’,
denoted by s[i, j], with left endpoint at p; and right endpoint at p;.. Thus, s[i, j] covers exactly the points of P’[i, j]. We
set the weight of s[i, j] to wy. Note that if s[i, j] is already in S’, which is defined by another disk sp, then we only need
to update its weight to wy in case wy < wy (so each segment appears only once in S’). We say that s[i, j] is defined by s
(resp., sp) if its weight is equal to wy (resp., wp).

According to Lemma 5, we intend to say that an optimal solution O PT’ to the 1D problem on P’ and S’ corresponds to
an optimal solution OPT to the original problem on P and S in the following sense: if a segment s[i, j] € S’ is included in
OPT’, then we include the disk that defines s[i, j] in O PT. However, since a disk of S may define multiple segments of S,
to guarantee the correctness of the above correspondence, we need to show that O PT’ is a valid solution: no two segments
in OPT’ are defined by the same disk of S. For this, we have the following lemma.

Lemma 6. Any optimal solution on P’ and S’ is a valid solution.

Proof. Let O PT’ be any optimal solution. Let s[i, j] be a segment in O PT’. So s[i, j] is defined by a disk s; for the maximal
subsequence P[i, j]. In the following we show that no other segments defined by s, are in OPT’, which will prove the
lemma.

Assume to the contrary that OPT’ has another segment s[i’, j'] defined by si. Then, since the maximal subsequences
covered by s, are pairwise disjoint, either j' <i or j < i’ holds. In the following, we only discuss the case j’ <i since the
other case is similar.

By the definition of maximal subsequences, neither p .1 nor p;_; is covered by si. Note that j'+1=1i—1 is possible.
Hence, O PT’ must have a segment s’ defined by another disk s; covering p;_1 such that s’ covers the projection point p;_,
of pi_1. Since s[i, j] is in OPT’, P'[i, j] has at least one point p* that is not covered by any segment in O PT’ other than
s[i, j]. Thus, p* is not covered by s’.

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

We claim that the center c, of s, is strictly to the left of the center ¢, of si. Indeed, assume to the contrary that
x(cy) > x(cg). Then, let D be the region of s, to the right of the vertical line through p;_1. Notice that all points of P[i, j]
are in D. Also, since s, covers p;—1 while s, does not and x(cy) > x(ck), D is contained in sj. This means that all points of
P[i, j] are covered by sp, and thus all points of P[i — 1, j] are covered by s, since s, covers p;_i. Hence, the segment s’
covers all points of P'[i — 1, j], and thus, s’ covers the points p*, which contradicts with the fact that s’ does not cover p*.
This proves the claim that x(cp) < x(cy).

Depending on whether s, covers all points of P[j’ + 1,i — 1], there are two cases.

- If s covers all points of P[j' +1,i — 1], then since x(cy) < x(cx) and s does not cover pjq (but covers all points of
P[i’, j'1), by the similar analysis as above, we can show that s, also covers all points of P[i’, j'] and thus all points of
P[i’,i — 1]. Further, since s’ is a segment defined by s, and s’ covers the projection point p;_; of p;_1, s’ must cover
all projection points of P’[i’,i — 1]. Therefore, if we remove s[i’, j'] from OPT’, the remaining segments of O PT’ still
cover all points of P’, which contradicts with that O PT’ is an optimal solution.

- If s, does not cover all points of P[j'+ 1,i — 1], then let hy be the largest index in [j' + 1,i — 2] such that pp, is not

covered by sp. Then, p;ll is not covered by the segment s’. Hence, O PT’ must have a segment defined by another disk
sj, covering pp, such that the segment covers p;”. By the same analysis as above, we can show that x(c;,) < x(cy), and
thus x(cj,) < x(c).
If s;, covers all points of P[j' +1,hy — 1], then we can use the same analysis as the above case to show that s[i’, j'] is
a redundant segment of O PT’, which incurs contradiction. Otherwise, we let h, be the largest index in [j' +1,hy — 1]
such that pp, is not covered by sj,. Then, we can follow the same analysis above to either obtain contradiction or
consider the next index in [j’ + 1, h; — 1]. Note that this procedure is finite as the number of indices of [j’ + 1, h; — 1]
is finite. Therefore, eventually we will obtain contradiction.

The lemma thus follows. O
With the above lemma, combining with our algorithm for the 1D problem, we have the following result.
Lemma 7. If the set S’ is computed, then an optimal solution can be found in O ((n + |S’|) log(n + |S’])) time.

It remains to determine the size of S’ and compute S’. An obvious answer is that |S’| is bounded by m - [n/2] because
each disk can have at most [n/2] maximal sequences of P, and a trivial algorithm can compute S’ in O (nmlog(m+n)) time
by scanning the sorted list P for each disk. Therefore, by Lemma 7, we can solve the problem in both L, and L, metrics in
O (nmlog(m + n)) time.

With more geometric observations, the following two subsections will prove the two following lemmas, respectively.

Lemma 8. In the L, metric, |S'| <2(n+m) and S’ can be computed in O ((n + m) log(n 4+ m)) time.

Lemma 9. In the L, metric, |S’| < 2(n+m) + k and S’ can be computed in O ((n + m) log(n + m) + k logm) time.
With Lemma 7, we have the following results.

Theorem 4. The line-constrained disk coverage problem in the Lo, metric is solvable in O ((n +m) log(n + m)) time.

Theorem 5. The line-constrained disk coverage problem in the L, metric is solvable in O (nmlog(m +n)) time orin O ((n +m) log(n +
m) + k logm) time, where « is the number of pairs of disks of S whose boundaries intersect each other.

Bounding couples Before moving on, we introduce a new concept bounding couples, which will be used to prove Lemmas 8
and 9 in Sections 6.2 and 6.3.

Consider a disk s; € S. Let p;(sx) denote the rightmost point of P U {pg, pn+1} strictly to the left of l; similarly, let
pr(sk) denote the leftmost point of P U {po, pn+1} strictly to the right of ry. Let P(sy) denote the subset of points of P
between p;(si) and pr(sx) inclusively that are outside s;. We sort the points of P(s;) by their x-coordinates, and we call
each adjacent pair of points (or their indices) in the sorted list a bounding couple (e.g., see Fig. 6). Let C(s;) denote the set of
all bounding couples of s, and for each bounding couple of C(si), we assign wy to it as the weight. Let C = ;<< C(Sk),
and if the same bounding couple is defined by multiple disks, then we only keep the copy in C with the minimum weight.
Also, we consider a bounding couple (i, j) as an ordered pair such that i < j, and i is considered as the left end of the
couple while j is the right end.

The reason why we define bounding couples is that if P[i, j] is a maximal subsequence of P covered by s then (i —
1, j+ 1) is a bounding couple. On the other hand, if (i, j) is a bounding couple of C(sy), then P[i + 1, j — 1] is a maximal
subsequence of P covered by s, unless j =i+ 1. Hence, each bounding couple (i, j) of C with j#i+ 1 corresponds to a

8

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 6. Illustrating the definition of bounding couples: the numbers are the indices of the points of P. In this example, p;(si) is point 2 and p,(si) is point
11, and the bounding couples are: (2, 3), (3,5), (5,7), (7,10), (10,11).

segment in the set S’, and |S’| < |C|. Observe that C has at most n — 1 couples (i, j) with j=1i+ 1, and given C, we can
obtain S’ in additional O(|C|) time.
According to our above discussion, to prove Lemmas 8 and 9, it suffices to prove the following two lemmas.

Lemma 10. In the Lo, metric, |C| <2(n + m) and C can be computed in O ((n + m) log(n + m)) time.
Lemma 11. In the Ly metric, |C| < 2(n+ m) + k and C can be computed in O ((n + m) log(n + m) + « logm) time.

Consider a bounding couple (i, j) of C, defined by a disk si. We call it a left bounding couple if p; = p;(sk), a right bounding
couple if p; = p;(sx), and a middle bounding couple otherwise (e.g., in Fig. 6, (2, 3) is the left bounding couple, (10, 11) is the
right bounding couple, and the rest are middle bounding couples). It is easy to see that a disk can define at most one left
bounding couple and at most one right bounding couple. Therefore, the number of left and right bounding couples in C is
at most 2m. It remains to bound the number of middle bounding couples of C.

In the following, we will prove Lemmas 10 and 11 in Sections 6.2 and 6.3, respectively.

6.2. The Lo, metric

In this section, our goal is to prove Lemma 10.

In the Lo, metric, every disk is a square that has four axis-parallel edges. We use [, and ry to particularly refer to the
left and right endpoints of the upper edge of s, respectively.

For a point p; and a square sk, we say that p; is vertically above (resp., below) the upper edge of si if p; is above (resp.,
below) the upper edge of s, and x(Iy) < x(p;) < x(r,). Due to our general position assumption, p; is not on the boundary of
sk, and thus p; above/below the upper edge of s, implies that p; is strictly above/below the edge. Also, since no point of
P is below L, a point p; € P is in s if and only if p; is vertically below the upper edge of si. If p; is vertically above the
upper edge of s, we also say that p; is vertically above s or s is vertically below p;.

The following lemma proves an upper bound for |C|.

Lemma 12. [C| < 2(n +m).

Proof. Recall that the total number of left and right bounding couples of C is at most 2m. In the following, we show that
the number of middle bounding couples of C is at most 2n.

We first prove an observation: For each point p; of P, among all points of P to the northwest of p;, there is at most one
point that can form a middle bounding couple with p;; similarly, among all points of P to the northeast of pj, there is at
most one point that can form a middle bounding couple with p;.

We only prove the northwest case since the other case is analogous. Suppose there is a point p; € P to the northwest of
p;j and (pj, p;) is a middle bounding couple. Assume to the contrary that there is another point p, € P to the northwest of
pj and (pp, p;) is a middle bounding couple defined by a disk s;. Without loss of generality, we assume h <.

Since (pp, pj) is a middle bounding couple, both p, and p; are vertically above si. Since p; is to the northwest of p;
and h <i < j, p; is also vertically above si. But then p; would prevent (h, j) from being a middle bounding couple defined
by s, incurring contradiction. This proves the observation.

We proceed to show that the number of middle bounding couples is at most 2n. Indeed, for any middle bounding couple
(i, j) of C, we charge it to the lower point of p; and p;. In light of the observation, each point of P will be charged at most
twice. As such, the total number of middle bounding couples is at most 2n. The lemma thus follows. O

We proceed to compute the set C. The following lemma gives an algorithm to compute all left and right bounding
couples of C.

Lemma 13. All left and right bounding couples of C can be computed in O ((n + m) log(n + m)) time.

Proof. We only describe how to compute all left bounding couples, and the algorithm for computing the right bounding
couples is similar.

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

i4e

> I

Fig. 7. lllustrating the information maintained by our sweeping algorithm. P(I) = {pj,, pi,, Pi;» Pi,}. Each horizontal segment represents the upper edge of
a disk. The sets H(i;)'s are shown with different colors, e.g., H(i1) consists of two blue disks, H(i4) consists of two red disks, and Hj, consists of the four
black disks.

First of all, we compute the points p;(sy) and p,(si) for all k=1, 2, ..., m. Each such point can be computed in O (logn)
time by binary search on the sorted sequence of P. Hence, computing all such points takes O(mlogn) time. To compute
all left bounding couples, it is sufficient to compute the points p(sy) for all disks sy € S, where p(sy) is the leftmost point
of P outside s, and between [, and ry if it exists and p(sy) is pr(sx) otherwise, because (p;(sk), p(sk)) is the left bounding
couple defined by si. To this end, we propose the following algorithm.

We sweep a vertical line [from left to right, and an event happens if [encounters a point of P U {ly,r¢] 1 <k <m}.
For this, we first sort all points of P U {ly, x| 1 <k <m}. During the sweeping, we use a balanced binary search tree T to
maintain those disks sy intersecting | whose points p(si) have not been computed yet. The disks in T are ordered by the
y-coordinates of their upper edges.

During the sweeping, if | encounters the left endpoint [, of a disk sk, we insert s; into T. If | encounters the right
endpoint r of si, we remove s, from T and set p(sy) = pr(sx). If | encounters a point p; of P, then for each disk s of T
whose upper edge is below p;, we set p(sy) = p; and remove s; from T.

It is not difficult to see that the algorithm correctly computes all points p(si) for all s € S in O ((n+m)log(m+n)) time.
The lemma thus follows. O

In the following, we focus on computing all middle bounding couples of C.

6.2.1. Computing the middle bounding couples

We sweep a vertical line | from left to right, and an event happens if | encounters a point in P U {l,r¢| 1 <k <m}. Let
H be the set of disks that intersect I. During the sweeping, we maintain the following information and invariants (e.g., see
Fig. 7).

1. A sequence P(l) ={pi,, Di,, ---» Di;} of t points of P, which are to the left of | and ordered from northwest to southeast.
P(l) is stored in a balanced binary search tree T (P(l)).
2. A collection H of t + 1 subsets of H: H(ij) for j=0,1,...,t, which form a partition of H, defined as follows.

H(iy) is the subset of disks of H that are vertically below p;,. For each j=t—1,t —2,...,1, H(ij) is the subset of
disks of H\ U,i:jﬂ H (i) that are vertically below pi;- H(io) = H\ U;-:1 H(i;). While H(ip) may be empty, none of H(i;)
for 1 < j <t is empty.

Each set H(ij) is maintained by a balanced binary search tree T(H(i;)) ordered by the y-coordinates of the upper
edges of the disks. We have all disks stored in leaves of T(H(ij)), and each internal node v of the tree also stores a
weight equal to the minimum weight of all disks in the leaves of the subtree rooted at v.

3. For each point p;; € P(l), among all points of P strictly between p;; and [, no point is vertically above any disk of H(ij).
4. Among all points of P strictly to the left of [, no point is vertically above any disk of H(ip).

In summary, our algorithm maintains the following trees: T(P(l)), T(H(i;)) for all j € [0, t].

Initially when [is to the left of all disks and points of P, we have H = and P(l) =). We next describe how to process
events.

If | encounters the left endpoint [y of a disk s, we insert s, to H(ip). The time for processing this event is O (logm)
since |H(ig)| <m.

If I encounters the right endpoint ry of a disk s, we need to determine which set H(ij) of H contains si. For this, we
associate each right endpoint with its disk in the preprocessing so that it can keep track of which set of 4 contains the
disk. Using this mechanism, we can determine the set H(i;) that contains s; in constant time. We then remove s; from
T(H(ij)). If H(i;) becomes empty and j # 0, then we remove p;; from P(l). One can verify that all algorithm invariants still
hold. The time for processing this event is O (log(m + n)).

If | encounters a point py of P, which is a major event we need to handle, we process it as follows. We search T (P (l))
to find the first point p;; of P(l) below p; (e.g., j =3 in Fig. 8). We remove the points p;, for all k € [j, t] from P(l). We
have the following lemma.

10

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

i9® o Ph
i3
iqe

> [

Fig. 8. Illustrating the processing of an event at py € P. The sets H(i;)’s are shown with different colors. In this example, iz, i3, and is will be removed
from P(l) and p, will be inserted to P(l), so after the event P(I) ={pj,, pn}. Also, (i2, h), (i3, h), (i4, h) will be reported as middle bounding couples.

Lemma 14. For each point p;, withk € [j,t], (i, h) is a middle bounding couple defined by and only by the disks of H (iy) (i.e., H(iy)
consists of all disks of S that define (i, h) as a middle bounding couple).

Proof. By the definition of H(iy), p;, is vertically above each disk of H(iy). By the definition of j and also because all disks
of H(iy) intersect I, p, is vertically above each disk of H(iy). With the third algorithm invariant, (i, h) is a middle bounding
couple defined by every disk of H(iy).

On the other hand, suppose a disk s defines (i, h) as a middle bounding couple. Then, both p;, and p, must be vertically
above s. This implies that s intersects I, and thus s is in H. By algorithm invariant (4), s cannot be in H(ip). Because pj, is
vertically above s, s must be in Utb:k H (ip). Further, since (iy, h) is a middle bounding couple, among all points of P strictly
between p;, and pp, no point is vertically above s. This implies that s cannot be in H(ip) for any b > k. Therefore, s must
be in H(iy). The lemma thus follows. O

In light of Lemma 14, for each k € [j, t], we report (i, h) as a middle bounding couple with weight equal to the minimum
weight of all disks of H(i}), which is stored at the root of T (H(iy)).

Next, we process the point p;; ,, for which we have the following lemma. The proof technique is similar to that for
Lemma 14, so we omit it.

Lemma 15. If pj, is vertically below the lowest disk of H(ij_1), then (ij_1, h) is not a middle bounding couple; otherwise, (i;_1, h) is
a middle bounding couple defined by and only by disks of Hj_1 that are vertically below py.

By the above lemma, we first check whether pj is vertically below the lowest disk of H(ij_1). If yes, we do nothing.
Otherwise, we report (ij_1,h) as a middle bounding couple with weight equal to the minimum weight of all disks of
H(ij_1) vertically below pj,, which can be computed in O (logm) time by using weights at the internal nodes of T(H(i;j_1)).
We further have the following lemma.

Lemma 16. If all disks of H(ij_1) are vertically below py, then there does not exist a middle bounding couple (ij_1, b) with b > h.

Proof. Assume to the contrary that (i;_1,b) is such a middle bounding couple with b > h, say, defined by a disk s. Then,
since x(pi;_,) <x(pn) = x(I) < x(pp), s intersects I, and thus s is in H. Also, since s defines the couple, Pi; is vertically
, must be in U,Z:J;] H(iy), and thus s is in Ult<=j71 H(iy). Recall that
all disks of Uf(:j H(iy) are vertically below pj. Since all disks of H(i;_1) are vertically below py, all disks of Uizjq H (iy)
are vertically below pp. Hence, s is also vertically below ps. Because all three points p;; ,, pn, and pj are vertically above
s, and x(pi;_,) < X(pn) < X(pp), (ij—1,b) cannot be a bounding couple defined by s. The lemma thus follows. O

above s. Note that all disks of H vertically below p;;_

We check whether pj, is above the highest disk of H(ij_1) using the tree T(H(i;_1)). If yes, then the above lemma tells
that there will be no more middle bounding couples involving ij_; any more, and thus we remove p;;_, from P(l).
The following lemma implies that all middle bounding couples with p, as the right end have been computed.

Lemma 17. For any middle bounding couple (b, h), b must bein {ij_1,ij,...,i}.

Proof. Assume to the contrary that (b, h) is a middle bounding couple with b not in the set {ij_q,ij,..., i}, say, defined
by a disk s. Then, s must intersect [, and thus is in H. Also, s is vertically below both p, and py.

First of all, since py is strictly to the left of | and pj is vertically above s, by our algorithm invariant (4), s cannot be in
H(ip). Thus, s is in H(ij) for some j € [1, t]. Depending on whether i; < b, there are two cases.

If ij > b, then since s € H(ij), pi is vertically above s. Because x(pp) < x(pi;) < x(pn) and all these three points are
vertically above s, (b, h) cannot be a middle bounding couple defined by s, incurring contradiction.

11

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 9. lllustrating the conflicting intervals: Each arc represents an interval.

If ij < b, then since s € H(ij) and py, is vertically above s, we obtain contradiction with our algorithm invariant (3) as pj
is strictly between p;; and I. D

Next, we add py to the end of the current sequence P(l) (note that the points p;, for all k € [j,t] and possibly p;;_, have
been removed from P(l); e.g., see Fig. 8). Finally, we need to compute the tree T (H(h)) for the set H(h), which is comprised
of all disks of H vertically below pj since py is the lowest point of P(l). We compute T (H(h)) as follows.

First, starting from an empty tree, for each k=t,t — 1, ..., j in this order, we merge T(H(h)) with the tree T (H(iy)).
Notice that the upper edge of each disk in T(H(iy)) is higher than the upper edges of all disks of T(H(h)). Therefore,
each such merge operation can be done in O (logm) time. Second, for the tree T(H(ij—1)), we perform a split operation to
split the disks into those with upper edges above p, and those below pp, and then merge those below pp with T(H(h))
while keeping those above py in T(H(ij_1)). The above split and merge operations can be done in O (logm) time. Third, we
remove those disks below pj from H(ip) and insert them to T (H(h)). This is done by repeatedly removing the lowest disk
s from H(ip) and inserting it to T(H(h)) until the upper edge of s is higher than py. This completes our construction of the
tree T(H(h)).

The above describes our algorithm for processing the event at p;. One can verify that all algorithm invariants still hold.
The running time of this step is O((1 + k1 + k»)logm) time, where k; is the number of points removed from P(l) (the
number of merge operations is at most k1) and k; is the number of disks of H(ig) got removed for constructing T (H (h)). As
we sweep the line [from left to right, once a point is removed from P (l), it will not be inserted again, and thus the total sum
of k1 in the entire algorithm is at most n. Also, once a disk is removed from H(ip), it will never be inserted again, and thus
the total sum of k, in the entire algorithm is at most m. Hence, the overall time of the algorithm is O ((n + m)log(n + m)).
This proves Lemma 10.

6.3. The Ly metric

In this section, our goal is to prove Lemma 11.

Recall our general position assumption that no point of P is on the boundary of a disk of S. Also recall that all points
of P are above L. In the L, metric, the two extreme points [and r; of a disk s, are unique. For a point p; € P and a disk
sk € S, we say that p; is vertically above s if p; is outside s, and x(ly) < x(p;) < x(ry), and p; is vertically below s if p; is
inside s,. We also say that s is vertically below p; if p; is vertically above sj.

The following lemma gives an upper bound for |C|.

Lemma 18. [C| < 2(n +m) + k.

Proof. Recall that the left and right bounding couples of C is at most 2m. Let C;, denote the set of all middle bounding
couples of C. In the following, we argue that |C;| <2n+«.

For convenience, we consider a middle bounding couple (i, j) as a bounding interval [i, j] defined on indices of P. We
call the indices larger than i and smaller than j as the interior of the interval. Those indices smaller than i and larger than
j are considered outside the interval.

We say that two bounding intervals [a, b] and [a’, b'] conflict if either a <a’ <b < b’ or @’ <a <b’ <b. Hence, those two
intervals do not conflict if either they are interior-disjoint or one interval contains the other. Since two bounding intervals
defined by the same disk are interior-disjoint, they never conflict.

We first prove an observation: For any two disks, there is at most one pair of conflicting bounding intervals defined by the two
disks.

Assume to the contrary there are two pairs of conflicting bounding intervals defined by two disks s and s’. Let the first
pair be [a,b] and [d’,b’] and the second pair be [c,d] and [c’,d']. Without loss of generality, we assume that [a, b] and
[c,d] are defined by s, and [d’, b’] and [c’, d’] are defined by s’. Note that [a, b] and [c, d] may be the same and [a’, b’] and
[c’,d'] may also be the same. However, as they are different pairs, either [a, b] and [c, d] are distinct, or [a’,b’] and [¢/,d']
are distinct. Without loss of generality, we assume that [a, b] and [c, d] are distinct and b < c. Depending on whether [a’, b']
and [c,d’'] are the same, there are two cases.

- If [d’,b'] and [c’,d’] are the same, then since b <c, we have a <da’ <b <c < b’ <d (see Fig. 9). By the definition of
bounding intervals, p, and p. are in the disk s’ while py and py are vertically above s’, and similarly, p and pj are

in the disk s while pg, pp, D¢, pq are vertically above s.

12

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

da'b vy

Fig. 10. Illustrating the disk s’ and points a’, b’, b, qap, and qpp'.

a o b c ¢ d d/

Fig. 11. Illustrating the conflicting intervals: Each arc represents an interval. The intervals of solid (resp., dotted) arcs are defined by s (resp., s').

Since pj is contained in s’ while py and py are vertically above s’ (e.g., see Fig. 10), we claim that any disk centered
at L and containing both py, and pp must contain the point p,. Indeed, let gy, be the point on L that has the same
distance with py and pp, and let g, be the point on L that has the same distance with p, and py (e.g., see Fig. 10).
Since x(pa’) < x(pp) and py is in 5" while py is not, we can obtain that x(qyp) < x(c’), where ¢’ is the center of s’. For
the same reason, x(qpp') > X(c’). Therefore, qq} is strictly to the left of qpy. Now consider any disk s” with center ¢” at
L such that s” contains both py and py. If x(c”) < x(qqp), then x(c”) < x(qpp’) and thus ¢” is closer to p, than to py.
Since s” contains py, s” also contains py. On the other hand, if x(c”) > x(qq'p), then ¢” is closer to pj than to py. Since
s” contains py, s” also contains py. This proves the claim.

Recall that the disk s contains py and py. By the above claim, s contains pj, but this contradicts with that pj, is strictly
above s.

- If [d’,b’] and [c¢/,d'] are not the same, then without loss of generality, we assume that b’ < ¢’. Since [a, b] conflicts
with [d’,b'], either a <a’ <b < b’ or d <a <b’ <b. Similarly, since [c, d] conflicts with [c/,d’], either c < ¢ <d < d’
or ¢’ <c <d <d. In the following, we assume that a <a’ <b <b’ and c < ¢’ <d <d’ (e.g., see Fig. 11), and the other
cases can be proved in a similar way.

Since ¢ < ¢’ <d and b’ < ¢/, we obtain that a’ < b < ¢’. Since [a’,b’] and [¢/,d'] are bounding intervals defined by the
disk s” while b is in the interior of [a’,b’], s’ contains p, but is vertically below p, and p.. Then, by the claim proved
in the first case, any disk centered at L and containing both p, and p» must contain p, as well.

On the other hand, since [a, b] and [c, d] are bounding intervals defined by s while a’ is in the interior of [a, b] and ¢’
is in the interior of [c, d], s contains both p, and p. but is vertically below p,. However, since s contains both p, and
pe and s is centered at L, according to the above claim, s contains pj. Therefore, we obtain contradiction.

This proves the observation.

We then prove another observation: If a bounding interval defined by a disk conflicts with a bounding interval defined by another
disk, then the boundaries of the two disks must intersect.

Indeed, suppose two bounding intervals [a, b] and [a’, b’] conflict. Let s be the disk defining [a, b] and s’ be the disk
defining [a’, b’]. Without loss of generality, we assume that a < a’ <b < b’. By the definition of bounding intervals, p,; must
be inside s but outside s’ while p, must be inside s’ but outside s. Therefore, the boundaries of s and s’ must intersect.

The above two observations imply that the total number of pairs of conflicting intervals of Cy;, is at most x. Now, for each
pair of conflicting intervals, we remove one interval from Cp,, so we remove at most « intervals from Cy,. For differentiation,
let C/, denote the new set of Cp, after the removal, and Cy, still refers to the original set. Observe that |Cp| < |C},| + « and
no two intervals of C;, conflict. In the following we show |Cy,| < 2n, which will lead to |Cn| < k + 2n.

Our proof mainly relies on the property that no two bounding intervals of C;, conflict. For any two intervals of Cj,, either
they are interior-disjoint or one contains the other. We will form all intervals of C/, as a tree structure T. To this end, for
each i with 1 <i<n—1, if [i,i+ 1] is not in C},, then we add it to C;,. The tree T is defined as follows. Each interval of
C, defines a node of T. The n — 1 intervals [i,i+ 1] for all i=1,2,...,n—1 are the leaves of T. For every two intervals I
and I of C/,, I1 is the parent of I, if and only if I1 contains I and there is no other interval I in Cp, such that I €1 C Iy.
Notice that every internal node of T has at least two children. Since T has n — 1 leaves, the number of internal nodes is no
more than n — 2. Therefore, T has no more than 2n nodes, implying that |C/,| <2n. O

We next describe our algorithm for computing the set C. For each disk s, we refer to the half-circle of the boundary of
sk above L as the arc of s;. Note that every two arcs of S intersect at most once. In the following, depending on the context,
s, may also refer to its arc.

We begin with computing the left and right bounding couples.

Lemma 19. All left and right bounding couples of C can be computed in O ((n + m) log(n 4+ m) + « logm) time.

13

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 12. Illustrating the information maintained by our sweeping algorithm. P(I) = {p;,, pi,, Pis, Pi,}. H(i1) consists of the two blue arcs and H(is) consists
of the two red arcs. H(ig) consists of the black arc.

Proof. We only describe how to compute all left bounding couples, because the algorithm for computing the right bounding
couples is similar.

First of all, we compute the points p;(si) and pr(si) for all 1 <k <m. Each such point can be computed in O (logn)
time by binary search on the sorted sequence of P. Hence, computing all such points takes O (mlogn) time. To compute all
left bounding couples, it is sufficient to compute the points p(sk) for all disks s; € S, where p(sk) is the leftmost point of
P outside s; and between [, and ry if it exists, and p(sy) is pr(sx) otherwise, because (p;(sk), p(sx)) is the left bounding
couple defined by si. To this end, we propose a sweeping algorithm similar to that for the Ly, case. The difference is that
the arcs of S may intersect each other and thus the sweeping needs to handle the events at intersections.

We sweep a vertical line | from left to right, and an event happens if | encounters a point of P U {l,r¢| 1 <k <m} or an
intersection of two arcs of S. For this, we first sort all points of P U {ly, 1| 1 <k <m}. We determine the intersections and
handle the intersection events in a similar way as the sweeping algorithm for computing line segment intersections [3,7,4];
note that we are able to do so because every two arcs of S intersect at most once. During the sweeping, we maintain the
arcs s of S intersecting [whose points p(si) have not been computed yet. Those arcs are stored in a balanced binary search
tree T, ordered by the y-coordinates of their intersections with L.

During the sweeping, if | encounters the left endpoint [, of an arc s, then we insert s, into T. If | encounters the right
endpoint r; of an arc s, then we remove s, from T and set p(sx) = pr(sx). If | encounters a point p; of P, then for each
arc s, of T that is below p;, we set p(sy) = p; and remove s, from T. If [encounters an intersection of two arcs, then we
process it in the same way as the line segment intersection algorithm, and we omit the discussion here (we also need to
detect intersections in other events above, which is similar to the line segment intersection algorithm and is omitted)

The running time of the algorithm is O ((n 4+ m)log(n + m) + k logm). In particular, the O (x logm) factor in the time
complexity is for handling the intersections of the arcs. O

It remains to compute the middle bounding pairs of C. The algorithm is similar in spirit to that for the L, case. However,
it is more involved and requires new techniques due to the nature of the L, metric as well as the boundary intersections of
the disks of S.

We sweep a vertical line | from left to right, and an event happens if | encounters a point in P U {l, 1| 1 <k <m} or
an intersection of two disk arcs. Let H be the set of arcs that intersect [. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 12).

1. A sequence P(l) = {pi,, Di, .-, Pi;} of t points to the left of I that are sorted from left to right. P(I) is maintained by a
balanced binary search tree T (P(l)).
2. A collection H of t + 1 subsets of H: H(ij) for j=0,1,...,t, which form a partition of H, defined as follows.

H(iy) is the set of disks of H vertically below p;,. For each j=t—1,t—2,...,1, H(ij) is the set of disks of H \
Ui:jﬂ H (i) vertically below pi;- H@io) =H\ US‘:] H(ij). While H(ip) may be empty, none of H(i;) for 1< j<tis
empty.

Each set H(ij) for j €[0,t] is maintained by a balanced binary search tree T(H(i;)) ordered by the y-coordinates of
the intersections of | with the arcs of the disks. We have all disks stored in the leaves of the tree, and each internal node
v of the tree stores a weight that is equal to the minimum weight of all disks in the leaves of the subtree rooted at v.

For each subset H' C H, the arc of H' whose intersection with [is the lowest is called the lowest arc of H'. We
maintain a set H* consisting of the lowest arcs of all sets H(iy) for 1 <k <t. So |H*| =t. We use a binary search tree
T(H*) to store disks of H*, ordered by the y-coordinates of their intersections with I.

3. For each point p;; € P(l), among all points of P strictly between p;; and [, no point is vertically above any disk of H(ij).
4. Among all points of P strictly to the left of I, no point is vertically above any disk of H(igp).

Remark. Our algorithm invariants are essentially the same as those in the Ly, case. One difference is that the points of P(l)
are not sorted simultaneously by y-coordinates, which is due to that the arcs of S may cross each other (in contrast, in the
L case the upper edges of the squares are parallel). For the same reason, for two sets H(ix) and H(i;) with 1 <k < j <t,
it may not be the case that all arcs of H(ix) are above all arcs of H(ij) at . Therefore, we need an additional set H* to
guide our algorithm, as will be clear later.

14

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Fig. 13. Illustrating the processing of an event at p, € P: (i2,h) and (i4, h) will be reported as middle bounding couples, point i, will be removed from
P(l) and py will be inserted to P(I).

In our sweeping algorithm, we use similar techniques as the line segment intersection algorithm [3,7,4] to determine
and handle arc intersections of S (we are able to do so because every two arcs of S intersect at most once), and the time
on handling them is O ((m + k) logm). Below we will not explicitly explain how to handle arc intersections. Initially H = ¢
and [is to the left of all arcs of S and all points of P.

If | encounters the left endpoint of an arc sy, we insert s; to H(ig).

If | encounters the right endpoint r, of an arc s, then we need to determine which set of H contains si. For this, as
in the Lo, case, we associate each right endpoint with the arc. Using this mechanism, we can find the set H(i;) of H that
contains s in constant time. Then, we remove s, from H(i;). If j =0, we are done for this event. Otherwise, if s, was the
lowest arc of H(ij) before the above remove operation, then s is also in H* and we remove it from H*. If the new set
H(i;) becomes empty, then we remove pi; from P(l). Otherwise, we find the new lowest arc from H(i;) and insert it to
H*. Processing this event takes O (log(n +m)) time using the trees T(H*), T(P(l)), and T (H(i})).

If I encounters an intersection q of two arcs s; and sp, in addition to the processing work for computing the arc inter-
sections, we do the following. Using the right endpoints, we find the two sets of 4 that contain s, and s, respectively. If
sq and sp, are from the same set H(ij) € H, then we switch their order in the tree T(H(i;)) and also update H* if needed
(i.e., if sq is the lowest arc in H(i;) and after the switch s, becomes the lowest arc in H(ij), then we remove s, from H*
and insert s, into it). Otherwise, if s, is the lowest arc in its set and s is also the lowest arc in its set, then both s; and s
are in H*, so we switch their order in T(H*). The time for processing this event is O (logm).

If | encounters a point p, of P, which is a major event we need to handle, we process it as follows. As in the Ly, case,
our goal is to determine the middle bounding couples (i, h) with p; € P(l).

Using T(H*), we find the lowest arc s, of H*. Let H(i;) for some j e [1,t] be the set that contains s, i.e., s, is the
lowest arc of H(ij). If py is above si, then we can show that (i;, h) is a middle bounding couple defined by and only by
the arcs of H(ij) below pj (e.g., see Fig. 13). The proof is similar to Lemma 14, so we omit the details. Hence, we report
(ij, h) as a middle bounding couple with weight equal to the minimum weight of all arcs of H(ij) below pj, which can be
found in O(logm) time using T(H(i;)). Then, we split T(H(i;)) into two trees by p, such that the arcs above pj are still
in T(H(i;)) and those below pj are stored in another tree (we will discuss later how to use this tree). Next we remove
s, from H*. If the new set H(ij) after the split operation is not empty, then we find its lowest arc and insert it into H*;
otherwise, we remove p;; from P(l). We then continue the same algorithm on the next lowest arc of H*.

The above discusses the case where pj, is above si. If py is not above si, then we are done with processing the arcs of
H*. We can show that all middle bounding couples (b, h) with h as the right end have been computed. The proof is similar
to Lemma 17, and we omit the details.

Finally, we add pj to the rear of P(l). As in the Ly, case, we need to compute the tree T(H(h)) for the set H(h), which
is comprised of all arcs of H below py, as follows.

Initially we have an empty tree T(H (h)). Let H' be the subset of the arcs of H* vertically below pp; here H* refers to the
original set at the beginning of the event for pj. The set H’ has already been computed above. Let ' be the subcollection
of H whose lowest arcs are in H’. We process the subsets H(i;) of H' in the inverse order of their indices (for this, after
identifying #’, we can sort the subsets H(i;) of H' by their indices in O(|H’|logm) time; note that |H'| = |H'|), i.e., the
subset of H’ with the largest index is processed first.

Suppose we are processing a subset H(i;) of 7. Let s be the lowest arc of H(ij). Recall that we have performed a split
operation on the tree T(H(i;)) to obtain another tree consisting of all arcs of H(ij) below pp, and we use H'(ij) to denote
the set of those arcs and use T(H'(ij)) to denote the tree. If T(H(h)) is empty, then we simply set T(H(h)) = T(H'(ij)).
Otherwise, we find the highest arc s’ of T(H(h)) at I. If s is above s" at I, then every arc of T(H’(ij)) is above all arcs of
T(H(h)) at I and thus we simply perform a merge operation to merge T(H'(i;)) with T(H(h)) (and we use T(H(h)) to refer
to the new merged tree). Otherwise, we call (s, s”) an order-violation pair. In this case, we do the following. We remove s
from T(H'(i})) and insert it to T(H(h)). If T(H’'(i;)) becomes empty, then we finish processing H(i;). Otherwise, we find
the new lowest arc of T(H'(i})), still denoted by s, and then process s in the same way as above.

The above describes our algorithm for processing a subset H(i;j) of 7. Once all subsets of ' are processed, the tree
T(H(h)) for the set H(h) is obtained.

After processing the arcs of H* as above, we also need to consider the arcs of H(ip). For this, we simply scan the arcs
from low to high using the tree T(H(ip)), and for each arc s, if s is above py, then we stop the procedure; otherwise, we
remove s from T(H(ip)) and insert it to T(H (h)).

15

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

>

Fig. 14. lllustrating the proof of Lemma 20: the point iy is vertically below s but vertically above s'.

This finishes our algorithm for processing the event at py. The runtime of this step is O ((1 + kq + k2 + k3) - logm) time,
where k1 is the number of middle bounding couples reported (the number of merge and split operations is at most k1 ; also,
|H'| =kq), ko is the number of arcs of H(ig) got removed for constructing T (H (h)), and k3 is the number of order-violation
pairs. By Lemma 18, the total sum of ki is at most 2(n + m) + k in the entire algorithm. As in the Ly, case, the total sum
of ky is at most m in the entire algorithm. The following lemma proves that the total sum of k3 is at most «. Therefore, the
overall time of the algorithm is O ((n + m)log(n + m) + «x logm).

Lemma 20. The total number of order-violation pairs in the entire algorithm is at most k.

Proof. We follow the notation defined above. Consider an order-violation pair (s,s’), which appears when we process a
subset H'(i;) of #H' for constructing T(H(h)) during an event at a point p, € P, such that s € H'(i;) and s’ € T(H(h)).
Without loss of generality, we assume that this is the first time that (s, s’)? appears as an order-violation pair in our entire
algorithm. As we process the subsets of ' by their inverse index order, s’ is from H (i) for some k with j <k <t. Since
(s,s’) is an order-violation pair, by definition, s is strictly above s at x(I) = x(py); e.g., see Fig. 14. On the other hand, since
s’ € H(ix), we know that p;, is vertically above s’. Since s € H(ij) with j <k, p; must be vertically below s. Thus, s is
strictly above s” at x(p;,). This implies that the boundaries of s and s’ must have an intersection strictly between p;, and
pr. We charge the pair (s, s’) to that intersection. Because s and s’ can have only one intersection, in the following we show
that (s, s”) will never appear as an order-violation pair again in the future algorithm.

First of all, according to our algorithm, (s, s”) will not appear as an order-violation pair again during processing the event
at pp. After the event, both s and s’ are in H(h). Consider a future event for processing another point p; € P. By our
algorithm invariant (2), we have a collection H of sets H,-«j with j=0,1,...,t". Assume to the contrary that (s,s’) appears

as an order-violation pair again. Then, s and s’ must be from two different sets of #, e.g., Hy and Hi’/{. Without loss of
J

generality, let j < k. By the same analysis as before, we can obtain that the boundaries of s and s’ have an intersection ¢
strictly between Py, and pp . Since both s and s’ were in H(h) right after the event at py, it must hold that x(pp) < x(pi}).

Hence, x(pp) < x(q). But this incurs contradiction because we have shown before that the only intersection between the
boundaries of s and s’ is strictly to the left of pj.

The above shows that (s, s”) will appear as an order-violation pair exactly once in the entire algorithm, which is charged
to their only intersection. Therefore, the total number of order-violation pairs in the entire algorithm is at most k. O

In summary, all middle bounding couples of C can be computed in O ((n +m) log(n +m) + « logm) time. Combining with
Lemmas 18 and 19, Lemma 11 is proved.

7. The line-separable unit-disk coverage and the half-plane coverage

In this section, we show that our techniques for the line-constrained disk coverage problems can also be used to solve
other geometric coverage problems.

Recall that the line-separable unit-disk coverage problem refers to the case in which P and centers of S are separated by
a line ¢ and all disks of S have the same radius. Without loss of generality, we assume that ¢ is the x-axis and all points of
P are above ¢. Hence, for each disk s; of S, the portion of s; above £ is a subset of its upper half disk. Since disks of S have
the same radius, the boundaries of any two disks intersect at most once above ¢. We define x as the number of pairs of
disks whose boundaries intersect above ¢. Due to the above properties, to solve the problem, we can simply use the same
algorithm in Section 6 for the line-constrained L, case. Indeed, one can verify that the following critical lemmas that the
algorithm relies on still hold: Lemmas 5, 6, 18, 19, and 20. By Theorem 5, we obtain the following.

Theorem 6. Given in the plane a set P of n points and a set S of m weighted unit-disks such that P and centers of disks S are separated
by a line £, one can compute a minimum weight disk coverage for P in O (nmlog(m + n)) time or in O ((n +m) log(n +m) + k logm)
time, where k is the number of pairs of disks of S whose boundaries intersect in the side of £ containing P.

2 We consider (s, s’) as an unordered pair, so (s, s') is the same as (s, s).

16

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Remark. Note that although disks of S have the same radius, because their centers may not be on the same line, one can
verify that Lemma 1 does not hold any more. Hence, we can not use the same algorithm as in Section 4 for the line-
constrained unit-disk case. But if the centers of all disks of S lie on the same line parallel to ¢ (and below ¢), then Lemma 1
will hold and thus we can use the same algorithm as in Section 4 to solve the problem in O((n 4+ m)log(n +m)) time.

We now consider the half-plane coverage problem. Given in the plane a set P of n points and a set S of weighted
half-planes, the goal is compute a minimum weight half-plane coverage for P, i.e., compute a subset of half-planes to cover
all points of P so that the total sum of the weights of the half-planes in the subset is minimized.

We start with the lower-only case where all half-planes of S are lower ones. The problem can be reduced to the line-
separable unit-disk coverage problem. Indeed, we first find a horizontal line ¢ below all points of P. Then, since each
half-plane h of S is a lower one, h can be considered as a disk of infinite radius with center below ¢. In this way, S
becomes a set of unit-disks whose centers are below ¢. By Theorem 6, we have the following result.?

Theorem 7. Given in the plane a set P of n points and a set S of m weighted lower half-planes, one can compute a minimum weight
half-plane coverage for P in O (nmlog(m + n)) time or in O (nlogn + m? logm) time.

For the general case where § may contain both lower and upper half-planes, we reduce it to a set of 0(n?) instances of
the lower-only case, as follows.

Let Sope denote the subset of S in an optimal solution. Har-Peled and Lee [17] observed that if the half-planes of Sqp¢
together cover the entire plane then the size of Sopr is at most 3; in this case we can enumerate all subsets of S of
cardinalities at most 3 and thus obtain an optimal solution in O (n®) time.

In the following we consider the case where the union of the half-planes of So, does not cover the entire plane. In
this case, the complement of the union of the half-planes of Sop is a (possibly unbounded) convex polygon R [17]. For the
ease of discussion, we assume that R is bounded since the algorithm for the other case is similar. Let a and b refer to the
leftmost and rightmost vertices of R, respectively. Let P denote the subset of points of P below the line through a and b,
and P, = P\ Py. The two vertices a and b together partition the edges of R into two chains, a lower chain and an upper
chain. Observe that the half-planes that are bounded by the supporting lines of the edges in the lower chain are all lower
half-planes and they together cover Pq; similarly, the half-planes that are bounded by the supporting lines of the edges
of the upper chain are all upper half-planes and they together cover P;. In light of the observation, finding a minimum
weight coverage for P is equivalent to solving the following two lower-only case sub-problems: finding a minimum weight
coverage for P; using lower half-planes of S and finding a minimum weight coverage for P, using upper half-planes of
S. Because we do not know P; and P,, we enumerate all possible partitions of P by a line. Clearly, there are O (n?) such
partitions. Hence, solving the half-plane coverage problem for P and S is reduced to O (n?) instances of the lower-only case.
By Theorem 7, we can obtain the following result.

Theorem 8. Given in the plane a set P of n points and a set S of m weighted half-planes, one can compute a minimum weight half-plane
coverage for P in O (n3mlog(m + n)) time or in O (n® logn + n?m? logm) time.

8. Concluding remarks

We show that our line-constrained disk coverage problem has an €2(nlogn) time lower bound in the algebraic decision
tree model even for the 1D case.

The reduction is from the element uniqueness problem. Let X = {x1, X2, ..., X} be a set of n numbers, as an instance of
the element uniqueness problem, which is to decide whether all elements of X are distinct. We create an instance of the
1D disk coverage problem with a point set P and a segment set S on the x-axis L as follows. For each x; € X, we create a
point on L with x-coordinate equal to x; and create a segment on L which is the above point with weight equal to 1. Let P
be the set of all such points and let S be the set of all such segments. Then, |P| =|S| =n. It is not difficult to see that the
numbers of X are distinct if and only if the optimal objective value of the 1D disk coverage problem is equal to n. As the
element uniqueness problem has an Q(nlogn) time lower bound under the algebraic decision tree model [27], the same
lower bound also holds for our 1D disk coverage problem.

The lower bound implies that our algorithms for the 1D, unit-disk, L1, and L., cases are all optimal when m = O (n). An
interesting open problem is whether faster algorithms exist for the L, case. Another direction is to investigate whether the
L, case is 3SUM-hard; if yes, then it is quite likely that our algorithm is nearly optimal.

3 Another way to see this is the following. The main property our algorithm for Theorem 5 relies on is that the boundaries of any two disks intersect at
most once above ¢. This property certainly holds for half-planes of S and thus the algorithm is applicable.

17

L. Pedersen and H. Wang Computational Geometry: Theory and Applications 105-106 (2022) 101883

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] H. Alt, E.M. Arkin, H. Bronnimann, J. Erickson, S.P. Fekete, C. Knauer, J. Lenchner, J.S.B. Mitchell, K. Whittlesey, Minimum-cost coverage of point sets by
disks, in: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG), 2006, pp. 449-458.

[2] C. Ambiihl, T. Erlebach, M. Mihaldk, M. Nunkesser, Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs,
in: Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), and the 10th
International Conference on Randomization and Computation (RANDOM), 2006, pp. 3-14.

[3] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. 28 (9) (1979) 643-647.

[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry — Algorithms and Applications, 3rd edition, Springer-Verlag, Berlin,
2008.

[5] V. Bilo, 1. Caragiannis, C. Kaklamanis, P. Kanellopoulos, Geometric clustering to minimize the sum of cluster sizes, in: Proceedings of the 13th European
Symposium on Algorithms (ESA), 2005, pp. 460-471.

[6] A. Biniaz, P. Bose, P. Carmi, A. Maheshwari, I. Munro, M. Smid, Faster algorithms for some optimization problems on collinear points, in: Proceedings
of the 34th International Symposium on Computational Geometry (SoCG), 2018, 8.

[7] K.Q. Brown, Comments on “Algorithms for reporting and counting geometric intersections”, [EEE Trans. Comput. 30 (1981) 147-148.

[8] T.M. Chan, E. Grant, Exact algorithms and APX-hardness results for geometric packing and covering problems, Comput. Geom. Theory Appl. 47 (2014)
112-124.

[9] D.Z. Chen, Y. Gu,]. Li, H. Wang, Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain, Discrete Comput.
Geom. 50 (2013) 374-408.

[10] F. Claude, G.K. Das, R. Dorrigiv, S. Durocher, R. Fraser, A. Lopez-Ortiz, B.G. Nickerson, A. Salinger, An improved line-separable algorithm for discrete unit
disk cover, Discrete Math. Algorithms Appl. 2 (2010) 77-88.

[11] E Claude, R. Dorrigiv, S. Durocher, R. Fraser, A. Lopez-Ortiz, A. Salinger, Practical discrete unit disk cover using an exact line-separable algorithm, in:
Proceedings of the 20th International Symposium on Algorithm and Computation (ISAAC), 2009, pp. 45-54.

[12] S. Dobrev, S. Durocher, M. Eftekhari, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, S. Shende,]. Urrutia, Complexity of barrier coverage
with relocatable sensors in the plane, Theor. Comput. Sci. 579 (2015) 64-73.

[13] H. Edelsbrunner, E.P. Miicke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graph. 9 (1990)
66-104.

[14] M. Eftekhari, P. Flocchini, L. Narayanan, J. Opatrny, N. Santoro, On synchronization and orientation in distributed barrier coverage with relocatable
sensors, Theor. Comput. Sci. 887 (2021) 1-10.

[15] T. Feder, D.H. Greene, Optimal algorithms for approximate clustering, in: Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC), 1988, pp. 434-444.

[16] U. Feige, A threshold of In n for approximating set cover,]. ACM 45 (1998) 634-652.

[17] S. Har-Peled, M. Lee, Weighted geometric set cover problems revisited,]. Comput. Geom. 3 (2012) 65-85.

[18] D.S. Hochbaum, W. Maass, Fast approximation algorithms for a nonconvex covering problem, J. Algorithms 3 (1987) 305-323.

[19] A. Karmakar, S. Das, S.C. Nandy, B.K. Bhattacharya, Some variations on constrained minimum enclosing circle problem,]J. Comb. Optim. 25 (2) (2013)
176-190.

[20] N. Lev-Tov, D. Peleg, Polynomial time approximation schemes for base station coverage with minimum total radii, Comput. Netw. 47 (2005) 489-501.

[21] J. Li, Y. Jin, A PTAS for the weighted unit disk cover problem, in: Proceedings of the 42nd International Colloquium on Automata, Languages and
Programming (ICALP), 2015, pp. 898-909.

[22] S. Li, H. Wang, Algorithms for covering multiple barriers, Theor. Comput. Sci. 758 (2019) 61-72.

[23] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, J. ACM 41 (1994) 960-981.

[24] N.H. Mustafa, R. Raman, S. Ray, Settling the APX-hardness status for geometric set cover, in: Proceedings of the 55th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), 2014, pp. 541-550.

[25] N.H. Mustafa, S. Ray, PTAS for geometric hitting set problems via local search, in: Proceedings of the 25th Annual Symposium on Computational
Geometry (SoCG), 2009, pp. 17-22.

[26] L. Pedersen, H. Wang, On the coverage of points in the plane by disks centered at a line, in: Proceedings of the 30th Canadian Conference on
Computational Geometry (CCCG), 2018, pp. 158-164.

[27] EP. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

[28] H. Wang,]. Zhang, Line-constrained k-median, k-means, and k-center problems in the plane, Int.]. Comput. Geom. Appl. 26 (2016) 185-210.

18

http://refhub.elsevier.com/S0925-7721(22)00026-8/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib2CDECA10537CB223EF4298E594980B57s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibAA08DC295F4F0D75990590ACDA41D227s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib32B4B35F417E345EB2769DFB352A1F3Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib9062C9C9053401C19C42A328A189D733s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib9062C9C9053401C19C42A328A189D733s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib171406F8E669EEA4EE3BB27F9BF2E932s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibADF2BECB9679CD699BB42311E7FFB77Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibADF2BECB9679CD699BB42311E7FFB77Es1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib15069E7E33C75A9CEA927853150E62C7s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibF9B423C713134B8CDBD2A0CE4DF0BE54s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibF9B423C713134B8CDBD2A0CE4DF0BE54s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6556F50885CE71B9C800E599580DC229s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6556F50885CE71B9C800E599580DC229s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib7DE6BCA5582CB6A4FF78E029229B2C8Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib7DE6BCA5582CB6A4FF78E029229B2C8Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6F1ACF2F86312EDE8F24E986B00F5BF0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib6F1ACF2F86312EDE8F24E986B00F5BF0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibC812F439264E6AE727514DC97C583F3Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibC812F439264E6AE727514DC97C583F3Bs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib540EC08239195B46CDD86D6F0E83D4A0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib540EC08239195B46CDD86D6F0E83D4A0s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibDCD12C07DC2FD25F1AE2CA5A5FCC1B08s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibDCD12C07DC2FD25F1AE2CA5A5FCC1B08s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibEC7CF9F7EB5288E491497378A890170Ds1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibEC7CF9F7EB5288E491497378A890170Ds1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibBBA0B29E1DED964A58965B98606D3F65s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib64F8CDBAD3FA9378017B8FC2AA99D044s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibD8CF0216AC304754A86267AE5EE7FA90s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibFA343F90A00CB2AF2CF3EDBD20C4F9DAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibFA343F90A00CB2AF2CF3EDBD20C4F9DAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA440366ED02AEF0EAA15410D60C9176Cs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib8AA11448DB0D6A38C87C93855877B6BAs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib01FBE6CEE39DD6CE49863A5B78D6A601s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA8A90FA040F62A1B40978F89773223D8s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib020970FCAAAA9871567471C8CD5DB415s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib020970FCAAAA9871567471C8CD5DB415s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib48B7834182B8EA01E862775CC8DF6D29s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib48B7834182B8EA01E862775CC8DF6D29s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib55BAC94CF000BB1D468232F74271E65Fs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib55BAC94CF000BB1D468232F74271E65Fs1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bib30C30D6288C4F2C831B1C85012D6ED40s1
http://refhub.elsevier.com/S0925-7721(22)00026-8/bibA0206C97C083B282D1E52129EDC967FFs1

	and related problems
	1 Introduction
	1.1 Related work
	1.2 Our approach

	2 Preliminaries
	3 The 1D problem
	4 The L2 unit-disk case
	5 The L1 case
	6 The L∞ and L2 cases
	6.1 An algorithmic scheme for L∞ and L2 metrics
	6.2 The L∞ metric
	6.2.1 Computing the middle bounding couples

	6.3 The L2 metric

	7 The line-separable unit-disk coverage and the half-plane coverage
	8 Concluding remarks
	Declaration of competing interest
	References

