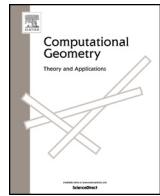


Contents lists available at ScienceDirect

Computational Geometry: Theory and Applications

www.elsevier.com/locate/comgeo


Algorithms for the line-constrained disk coverage and related problems[☆]

Logan Pedersen, Haitao Wang*
Department of Computer Science, Utah State University, Logan, UT 84322, USA

ARTICLE INFO
Article history:

Received 14 July 2021

Received in revised form 4 February 2022

Accepted 18 April 2022

Available online 22 April 2022

Keywords:

Disk coverage

Line-constrained

Half-plane coverage

Geometric coverage

ABSTRACT

Given a set P of n points and a set S of m weighted disks in the plane, the disk coverage problem asks for a subset of disks of minimum total weight that cover all points of P . The problem is NP-hard. In this paper, we consider a line-constrained version in which all disks are centered on a line L (while points of P can be anywhere in the plane). We present an $O((m+n)\log(m+n) + \kappa \log m)$ time algorithm for the problem, where κ is the number of pairs of disks whose boundaries intersect. Alternatively, we can also solve the problem in $O(nm\log(m+n))$ time. For the unit-disk case where all disks have the same radius, the running time can be reduced to $O((n+m)\log(m+n))$. In addition, we solve in $O((m+n)\log(m+n))$ time the L_∞ and L_1 cases of the problem, in which the disks are squares and diamonds, respectively. We further demonstrate that our techniques can also be used to solve other geometric coverage problems. For example, given in the plane a set P of n points and a set S of n weighted half-planes, we solve in $O(n^4 \log n)$ time the problem of finding a subset of half-planes to cover P so that their total weight is minimized. This improves the previous best algorithm of $O(n^5)$ time by almost a linear factor. If all half-planes are lower ones, then our algorithm runs in $O(n^2 \log n)$ time, which improves the previous best algorithm of $O(n^4)$ time by almost a quadratic factor.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Given a set P of n points and a set S of m disks in the plane such that each disk has a weight, the *disk coverage* problem asks for a subset of disks of minimum total weight that cover all points of P . We assume that the union of all disks covers all points of P . It is known that the problem is NP-hard [15] and many approximation algorithms have been proposed, e.g., [21,25].

In this paper, we consider a line-constrained version of the problem in which all disks (possibly with different radii) have their centers on a line L , say, the x -axis. To the best of our knowledge, this line-constrained problem was not particularly studied before. We present an $O((m+n)\log(m+n) + \kappa \log m)$ time algorithm, where κ is the number of pairs of disks whose boundaries intersect (and thus $\kappa \leq m(m-1)/2$; e.g., if the disks are disjoint, then $\kappa = 0$ and the algorithm runs in $O((m+n)\log(m+n))$ time). Alternatively, we can also solve the problem in $O(nm\log(m+n))$ time. For the *unit-disk* case

[☆] This research was supported in part by NSF under Grant CCF-2005323. A preliminary version of this paper appeared in *Proceedings of the 17th Algorithms and Data Structures Symposium (WADS 2021)*.

* Corresponding author.

E-mail addresses: logan.pedersen@aggiemail.usu.edu (L. Pedersen), haitao.wang@usu.edu (H. Wang).

where all disks have the same radius, the running time can be reduced to $O((n+m)\log(m+n))$. In addition, we solve in $O((m+n)\log(m+n))$ time the L_∞ and L_1 cases of the problem, in which the disks are squares and diamonds, respectively. As a by-product, we present an $O((m+n)\log(m+n))$ time algorithm for the 1D version of the problem where all points of P are on L and the disks are line segments of L . In addition, we show that the problem has an $\Omega(n\log n)$ time lower bound in the algebraic decision tree model even for the 1D case. This implies that our algorithms for the 1D, L_∞ , L_1 , and unit-disk cases are all optimal when $m = O(n)$.

Our algorithms potentially have applications, e.g., in facility locations. For example, suppose we want to build some facilities along a railway which is represented by L (although an entire railway may not be a straight line, it may be considered straight in a local region) to provide service for some customers that are represented by the points of P . The center of a disk represents a candidate location for building a facility that can serve the customers covered by the disk and the cost for building the facility is the weight of the disk. The problem is to determine the best locations to build facilities so that all customers can be served and the total cost is minimized. This is exactly an instance of our problem.

Although the problems are line-constrained, our techniques can actually be used to solve other geometric coverage problems. If all disks of S have the same radius and the set of disk centers is separated from P by a line ℓ , the problem is called *line-separable unit-disk coverage*. The unweighted case of the problem where the weights of all disks are 1 has been studied in the literature [2,10,11]. In particular, the fastest algorithm was given by Claude et al. [10] and the runtime is $O(n\log n + nm)$. The algorithm, however, does not work for the weighted case. Our algorithm for the line-constrained L_2 case can be used to solve the weighted case in $O(nm\log(m+n))$ time or in $O((m+n)\log(m+n) + \kappa\log m)$ time, where κ is the number of pairs of disks whose boundaries intersect on the side of ℓ that contains P . More interestingly, we can use the algorithm to solve the following *half-plane coverage problem*. Given in the plane a set P of n points and a set S of m weighted half-planes, find a subset of the half-planes to cover all points of P so that their total weight is minimized. For the *lower-only case* where all half-planes are lower ones, Chan and Grant [8] gave an $O(mn^2(m+n))$ time algorithm. In light of the observation that a half-plane is a special disk of infinite radius, our line-separable unit-disk coverage algorithm can be applied to solve the problem in $O(nm\log(m+n))$ time or in $O(n\log n + m^2\log m)$ time. This improves the result of [8] by almost a quadratic factor (note that the techniques of [8] are applicable to more general problem settings such as downward shadows of x -monotone curves). For the general case where both upper and lower half-planes are present, Har-Peled and Lee [17] proposed an algorithm of $O(n^5)$ time when $m = n$. By using our lower-only case algorithm, we solve the problem in $O(n^3m\log(m+n))$ time or in $O(n^3\log n + n^2m^2\log m)$ time. Hence, our result improves the one in [17] by almost a linear factor. We believe that our techniques may have other applications that remain to be discovered.

1.1. Related work

Our problem is a new type of set cover problem. The general set cover problem, which is fundamental and has been studied extensively, is hard to solve, even approximately [16,18,23]. Many set cover problems in geometric settings, often called geometric coverage problems, are also NP-hard, e.g., [8,17]. As mentioned above, if the line-constrained condition is dropped, then the disk coverage problem becomes NP-hard, even if all disks are unit disks with the same weight [15]. Polynomial time approximation schemes (PTAS) exist for the unweighted problem [25] as well as the weighted unit-disk case [21]. For the weighted general disk case, a quasi-polynomial time approximation scheme (QPTAS) is known [24], but whether a PTAS exists remains an interesting open problem.

Alt et al. [1] studied a problem closely related to ours, with the same input, consisting of P , S , and L , and the objective is also to find a subset of disks of minimum total weight that cover all points of P . But the difference is that S is comprised of all possible disks centered at L and the weight of each disk is defined as r^α with r being the radius of the disk and α being a given constant at least 1. Alt et al. [1] gave an $O(n^4\log n)$ time algorithm for any L_p metric and any $\alpha \geq 1$, an $O(n^2\log n)$ time algorithm for any L_p metric and $\alpha = 1$, and an $O(n^3\log n)$ time algorithm for the L_∞ metric and any $\alpha \geq 1$. Recently, Pedersen and Wang [26] improved all these results by providing an $O(n^2)$ time algorithm for any L_p metric and any $\alpha \geq 1$. A 1D variation of the problem was studied in the literature where points of P are all on L and another set Q of m points is given on L as the only candidate centers for disks. Bilò et al. [5] first showed that the problem is solvable in polynomial time. Lev-Tov and Peleg [20] gave an algorithm of $O((n+m)^3)$ time for any $\alpha \geq 1$. Biniaz et al. [6] recently proposed an $O((n+m)^2)$ time algorithm for the case $\alpha = 1$. Pedersen and Wang [26] solved the problem in $O(n(n+m) + m\log m)$ time for any $\alpha \geq 1$.

Our problem may also be somehow related to mobile sensor barrier coverage, e.g., see [9,12,14,22], where the sensors are required to move to cover all barriers and the objectives are usually to minimize the movements of all sensors. Other line-constrained problems have also been studied in the literature, e.g., [19,28].

1.2. Our approach

We first solve the 1D version of the line-constrained problem by a simple dynamic programming algorithm. Then, for the general “1.5D” problem (i.e., points of P are in the plane), a key observation is that if the points of P are sorted by their x -coordinates, then the sorted list can be partitioned into sublists such that there exists an optimal solution in which each disk covers a sublist. Based on the observation, we reduce the 1.5D problem to an instance of the 1D problem with a set P' of n points and a set S' of segments. Two challenges arise in our approach.

The first challenge is to give a small bound on the size of S' . A straightforward method shows that $|S'| \leq n \cdot m$. In the unit-disk case and the L_1 case, we prove that $|S'|$ can be reduced to m by similar methods. In the L_∞ case, with a different technique, we show that $|S'|$ can be bounded by $2(n + m)$. The most challenging case is the L_2 case. By a number of observations, we prove that $|S'| \leq 2(n + m) + \kappa$.

The second challenge of our approach is to compute the set S' (the set P' , which actually consists of all projections of the points of P onto L , can be easily obtained in $O(n)$ time). Our algorithms for computing S' for all cases use the sweeping technique. The algorithms for the unit-disk case and the L_1 case are relatively easy, while those for the L_∞ and L_2 cases require much more effort. Although the two algorithms for L_∞ and L_2 are similar in spirit, the boundary intersections of the disks in the L_2 case bring more difficulties and make the algorithm more involved and less efficient. In summary, computing S' can be done in $O((n + m) \log(n + m))$ time for all cases except the L_2 case which takes $O((n + m) \log(n + m) + \kappa \log m)$ time.

Outline. The rest of the paper is organized as follows. We define some notation in Section 2 and we present our algorithm for the 1D problem in Section 3. The unit-disk case and the L_1 case are discussed in Section 4 and Section 5, respectively. The algorithms for the L_∞ and L_2 cases are given in Section 6. Using the algorithm for the L_2 case, we solve the line-separable disk coverage problem and the half-plane coverage problem in Section 7. Section 8 concludes the paper with a lower bound proof.

2. Preliminaries

We assume that L is the x -axis. We also assume that all points of P are above or on L since otherwise if a point p_i is below L , then we could obtain the same optimal solution by replacing p_i with its symmetric point with respect to L . For ease of exposition, we make a general position assumption that no two points of P have the same x -coordinate and no point of P lies on the boundary of a disk of S ; degenerated cases can be easily handled by standard techniques of perturbation, e.g., [13].

For any point p in the plane, we use $x(p)$ and $y(p)$ to refer to its x -coordinate and y -coordinate, respectively.

We sort all points of P by their x -coordinates, and let p_1, p_2, \dots, p_n be the sorted list from left to right on L . For any $1 \leq i \leq j \leq n$, let $P[i, j]$ denote the subset $\{p_i, p_{i+1}, \dots, p_j\}$. Sometimes we use indices to refer to points of P . For example, point i refers to p_i .

We sort all disks of S by the x -coordinates of their centers from left to right, and let s_1, s_2, \dots, s_m be the sorted list. We assume that each disk of S is a closed region including its boundary. For each disk s_i , we use c_i to denote its center and use w_i to denote its weight. We assume that each w_i is positive (otherwise one could always include s_i in the solution). For each disk s_i , let l_i and r_i refer to its leftmost and rightmost points, respectively.

We often talk about the relative positions of two geometric objects O_1 and O_2 (e.g., two points, or a point and a line). We say that O_1 is to the *left* of O_2 if $x(p) \leq x(p')$ holds for every point $p \in O_1$ and every point $p' \in O_2$, and *strictly left* means $x(p) < x(p')$. Similarly, we can define *right*, *above*, *below*, etc.

For convenience, we use p_0 (resp., p_{n+1}) to denote a point on L strictly to the left (resp. right) of all points of P and all disks of S .

We use the term *optimal solution subset* to refer to a subset of S used in an optimal solution, and the *optimal objective value* refers to the total sum of the weights of the disks in an optimal solution subset.

3. The 1D problem

In the 1D problem, each disk $s_i \in S$ is a line segment on L , and thus l_i and r_i are the left and right endpoints of s_i , respectively. We present a simple dynamic programming algorithm for the problem. We first introduce some notation.

For each segment $s_j \in S$, let $f(j)$ refer to the index of the rightmost point of $P \cup \{p_0\}$ strictly to the left of l_j , i.e., $f(j) = \arg \max_{0 \leq i \leq n} \{p_i : x(p_i) < x(l_j)\}$. Due to the definition of p_0 , $f(j)$ is well defined. The indices $f(j)$ for all $j = 1, 2, \dots, m$ can be obtained in $O(n + m)$ time after we sort all points of P along with the left endpoints of all segments of S . More specifically, we sweep a point p from left to right on L using the above sorted list. During the sweep, we maintain the number i of points of P to the left of p . When p meets a point of P , we increment i by one. When p meets the left endpoint of a segment $s_j \in S$, we set $f(j) = i$.

For each $i \in [1, n]$, let $W(i)$ denote the minimum total weight of a subset of disks of S covering all points of $P[1, i]$. Our goal is to compute $W(n)$. For convenience, we set $W(0) = 0$. For each segment $s_j \in S$, we define its *cost* as $\text{cost}(j) = w_j + W(f(j))$. One can verify that $W(i)$ is equal to the minimum $\text{cost}(j)$ among all segments $s_j \in S$ that cover p_i . This is the recursive relation of our dynamic programming algorithm.

We sweep a point q on L from left to right. Initially, q is at p_0 . During the sweeping, we maintain a subset $S(q)$ of segments that cover q , and the cost of each segment of $S(q)$ is already known. Also, the values $W(i)$ for all points $p_i \in P$ to the left of q have been computed. An event happens when q encounters an endpoint of a segment of S or a point of P . To guide the sweeping, we sort all endpoints of the segments of S along with the points of P .

If q encounters a point $p_i \in P$, then we find the segment of $S(q)$ with the minimum cost and assign the cost to $W(i)$. If q encounters the left endpoint of a segment s_j , we set $\text{cost}(j) = w_j + W(f(j))$ and then insert s_j into $S(q)$. If q encounters



Fig. 1. Illustrating the two points $a_r(i)$ and $a_l(i)$. The black points are points of P . The vertical line is the one through the center of s_i . Only the upper half disk of s_i is shown.

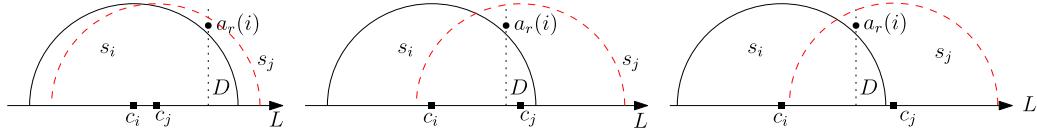


Fig. 2. Illustrating the proof of Lemma 1. The red dashed half-circle is s_j and the black solid half-circle is s_i . The two squares on L are the centers of the two disks. Left: $x(c_j) \leq x(a_r(i))$. Middle: $x(a_r(i)) < x(c_j) < x(r_i)$. Right: $x(r_i) \leq x(c_j)$.

the right endpoint of a segment, we remove the segment from $S(q)$. If we maintain the segments of $S(q)$ by a balanced binary search tree with their costs as keys, then processing each event takes $O(\log m)$ time as $|S(q)| \leq m$.

Therefore, the sweeping takes $O((n+m)\log m)$ time, after sorting the points of P and all segment endpoints in $O((n+m)\log(n+m))$ time. After the sweeping, $W(n)$ is the optimal objective value, and an optimal solution subset of S can be obtained by the standard back-tracking technique, and we omit the details.

Theorem 1. *The 1D disk coverage problem is solvable in $O((n+m)\log(n+m))$ time.*

4. The L_2 unit-disk case

In this case, all disks of S have the same radius. We will reduce the problem to an instance of the 1D problem and then apply Theorem 1. To this end, we will need to present several observations.

For each disk s_i , among all points of $P \cup \{p_0, p_{n+1}\}$ to the right of its center c_i , define $a_r(i)$ as the index of the leftmost point outside s_i (e.g., see Fig. 1). Similarly, among all points of $P \cup \{p_0, p_{n+1}\}$ to the left of c_i , define $a_l(i)$ as the index of the rightmost point outside s_i . Note that $a_r(i)$ and $a_l(i)$ are well defined due to p_0 and p_{n+1} . If $a_l(i) + 1 < a_r(i)$, then we say that s_i is a *useful disk*.

Let $P(s_i)$ denote the subset of points of P that are covered by s_i . We further partition $P(s_i)$ into three subsets as follows. Let $P_l(s_i)$ consist of the points of $P(s_i)$ strictly to the left of point $a_l(i)$. Let $P_r(s_i)$ consist of the points of $P(s_i)$ strictly to the right of point $a_r(i)$. Let $P_m(s_i) = P(s_i) \setminus (P_l(s_i) \cup P_r(s_i))$. Observe that $P_m(s_i) \neq \emptyset$ if and only if s_i is a useful disk, and if s_i is a useful disk, then $P_m(s_i) = P[a_l(i) + 1, a_r(i) - 1]$.

The following lemma is due to the fact that all disks of S have the same radius and are centered at L .

Lemma 1. *Consider a disk s_i . If another disk s_j covers the point $a_r(i)$, then s_j covers all points of $P_r(s_i)$; similarly, if another disk s_j covers the point $a_l(i)$, then s_j covers all points of $P_l(s_i)$.*

Proof. We only prove the case for $a_r(i)$, since the other case is similar. Let $k = a_r(i)$. Assume that a disk s_j covers the point p_k . Our goal is to prove that s_j covers all points of $P_r(s_i)$. This is obviously true if $P_r(s_i) = \emptyset$. In the following, we assume that $P_r(s_i) \neq \emptyset$. This implies that $x(p_k) < x(r_i)$, where r_i is the rightmost point of s_i . Also, by definition, we have $x(c_i) \leq x(p_k)$, where c_i is the center of s_i .

Let D be the region of s_i to the right of the vertical line through p_k . By definition, $P_r(s_i) = D \cap P$. Since s_i and s_j have the same radius and s_j covers p_k while s_i does not, we claim that D must be contained in the disk s_j (e.g., see Fig. 2). The claim immediately leads to the lemma. We prove the claim below.

First of all, since $x(c_i) \leq x(p_k)$ by definition of p_k , and s_j covers p_k while s_i does not, it must hold that $x(c_i) < x(c_j)$. There are three cases depending on the location of c_j : $x(c_j) \leq x(p_k)$, $x(p_k) < x(c_j) < x(r_i)$, and $x(r_i) \leq x(c_j)$; e.g., see Fig. 2.

1. If $x(c_j) \leq x(p_k)$, then consider a unit-disk s with center c at c_i . Imagine that we move the center c on L from c_i to $x(p_k)$. During the movement, D must be contained in the disk s all the time. Since $x(c_i) < x(c_j) \leq x(p_k)$, c must be at c_j at some moment during the above movement. This implies that s_j contains D .
2. If $x(r_i) \leq x(c_j)$, then since p_k is inside s_j , the rectangle R with $\overline{r_i p_k}$ as a diagonal must be contained in s_j . On the other hand, since p_k is above s_i and $x(c_i) \leq x(p_k)$, the region D is contained in the rectangle R . Hence, s_j contains D .
3. If $x(p_k) < x(c_j) < x(r_i)$, then the vertical line ℓ through c_j partitions D into two parts D_1 and D_2 on the left and right of ℓ , respectively. Using the above unit-disk movement argument (i.e., if we move the center c of a unit-disk s from c_i

to c_j , then s always contains D_2), one can easily see that D_2 is contained in s_j . For D_1 , observe that it is contained in the rectangle R' with $\overline{c_j p_k}$ as a diagonal. Since p_k is inside s_j and c_j is the center of s_j , R' must be contained in s_j . Therefore, D_1 is contained in s_j . Hence, D , which is the union of D_1 and D_2 , is contained in s_j .

This proves the claim and thus the lemma. \square

The following lemma will help us to reduce the problem to the 1D problem.

Lemma 2. Suppose S_{opt} is an optimal solution subset and s_i is a disk in S_{opt} . Then, the following hold.

1. s_i must be a useful disk.
2. $P_m(s_i)$ has at least one point not covered by any disk of $S_{opt} \setminus \{s_i\}$.
3. All points of $P_l(s_i) \cup P_r(s_i)$ are covered by the disks of $S_{opt} \setminus \{s_i\}$.

Proof. First of all, since s_i is in S_{opt} and $w_i > 0$, s_i must cover a point $p^* \in P$ that is not covered by any other disk of S_{opt} . Depending on whether $a_l(i) = 0$ and whether $a_r(i) = n + 1$, there are several cases.

- If $a_l(i) = 0$ and $a_r(i) = n + 1$, then all points of P are covered by s_i . Therefore, S_{opt} has only one disk, which is s_i . Further, $a_l(i) = 0$ and $a_r(i) = n + 1$ imply that $P_l(s_i) = P_r(s_i) = \emptyset$. Hence, the lemma follows.
- If $a_l(i) \neq 0$ and $a_r(i) = n + 1$, then some disk s_j of $S_{opt} \setminus \{s_i\}$ must cover the point $a_l(i)$. Then, by Lemma 1, s_j must cover all points of $P_l(s_i)$. Hence, $p^* \notin P_l(s_i)$. Since $a_r(i) = n + 1$, we have $P_r(s_i) = \emptyset$. Thus, p^* is in $P_m(s_i)$. Therefore, the lemma follows.
- If $a_l(i) = 0$ and $a_r(i) \neq n + 1$, then the proof is analogous to the above second case and we omit it.
- If $a_l(i) \neq 0$ and $a_r(i) \neq n + 1$, then by a similar proof as the above second case, we know that all points of $P_l(s_i)$ are covered by a disk of $S_{opt} \setminus \{s_i\}$. Similarly, since $a_r(i) \neq n + 1$, we can show that all points of $P_r(s_i)$ are covered by a disk of $S_{opt} \setminus \{s_i\}$. This implies that p^* is in $P_m(s_i)$. Therefore, the lemma follows. \square

By Lemma 2, to find an optimal solution, it is sufficient to consider only useful disks, and further, for each useful disk s_i , it is sufficient to assume that it only covers the points of $P_m(s_i) = P[a_l(i) + 1, a_r(i) - 1]$. This observation leads to the following approach to reduce our problem to an instance of the 1D problem.

We assume that the indices $a_l(i)$ and $a_r(i)$ for all $i \in [1, m]$ are known. For each point p_i , we project it vertically on L , and let P' be the set of all projected points. For each useful disk s_i , we create a segment on L whose left endpoint has x -coordinate equal to $x(p_{k+1})$ with $k = a_l(i)$ and whose right endpoint has x -coordinate equal to $x(p_{k'-1})$ with $k' = a_r(i)$, and the weight of the segment is equal to w_i . Let S' be the set of all segments thus defined. According to the above discussion, an optimal solution to the 1D problem on P' and S' corresponds to an optimal solution to our original problem on P and S . By Theorem 1, the 1D problem can be solved in $O((n + m) \log(n + m))$ time because $|P'| = n$ and $|S'| \leq m$.

It remains to compute the indices $a_l(i)$ and $a_r(i)$ for all $i \in [1, m]$, which is done in the following lemma.

Lemma 3. Computing $a_l(j)$ and $a_r(j)$ for all $j \in [1, m]$ can be done in $O((n + m) \log(n + m))$ time.

Proof. We only describe how to compute $a_r(j)$ for all $j \in [1, m]$, and the algorithm for $a_l(j)$ is similar.

We sweep the plane with a vertical line l from left to right, and an event happens if l encounters a point of P or a disk center. For this, we first sort all points of P and all disk centers, in $O((n + m) \log(n + m))$ time. During the sweeping, we maintain a list Q of disks s_i whose centers have been swept and whose indices $a_r(i)$ have not been computed yet. Q is just a first-in-first-out queue storing the disks ordered by their centers from left to right. Initially, $Q = \emptyset$.

During the sweeping, if l encounters the center of a disk s_j , we add s_j to the rear of Q . If l encounters a point p_i , then we process it as follows. Starting from the front disk s_j of Q , we check whether s_j covers p_i . If yes, then one can verify that every disk in Q covers p_i , and thus in this case we finish processing p_i . Otherwise, we remove s_j from Q and set $a_r(j) = i$, after which we proceed on the next disk in Q (if Q becomes \emptyset , then we finish processing p_i). If Q is not empty after p_n is processed, then we set $a_r(j) = n + 1$ for all $s_j \in Q$.

The running time of the sweeping algorithm after sorting is $O(n + m)$. The lemma thus follows. \square

With the preceding lemma, we have the following theorem.

Theorem 2. The line-constrained disk coverage problem for unit disks is solvable in $O((n + m) \log(n + m))$ time.

5. The L_1 case

In this case, each disk of S is a diamond, whose boundary is comprised of four edges of slopes 1 and -1 , but the diamonds of S may have different radii. We show that the problem can be solved in $O((n + m) \log(n + m))$ time by similar techniques to the unit-disk case in Section 4.

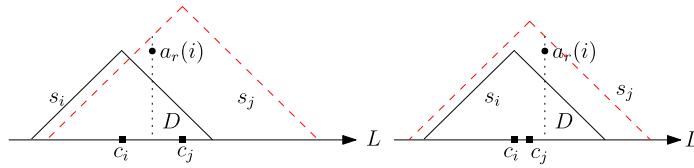


Fig. 3. Illustrating the proof of Lemma 1 for the L_1 case, as a counterpart of Fig. 2. Now both s_i and s_j are diamonds (only the upper halves are shown). Left: c_j is to the right of point $a_r(i)$. Right: c_j is to the left of point $a_r(i)$. In both cases, s_j contains the region D .

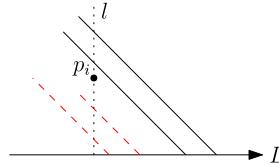


Fig. 4. Illustrating an event when l encounters a point $p_i \in P$. Four diamonds (only their upper right edges are shown) are in Q . To process the event, the two red dashed diamonds will be removed from Q , and their indices $a_r(j)$ will be set to i .

For each diamond $s_i \in S$, we still define the two indices $a_l(i)$ and $a_r(i)$ as well as the three subsets $P_l(s_i)$, $P_r(s_i)$, and $P_m(s_i)$ in exactly the same way as in Section 4. We still call s_i a *useful disk* if $a_l(i) + 1 < a_r(i)$.

Although the disks may have different radii, the geometric properties of the L_1 metric guarantee that Lemma 1 still applies. The proof is literally the same as before (indeed, one can verify that the region D must be contained in the diamond s_j ; e.g., see Fig. 3 as a counterpart of Fig. 2), so we omit it. As Lemma 2 mainly relies on Lemma 1, it also applies here. Consequently, once the indices $a_r(j)$ and $a_l(j)$ for all $j \in [1, m]$ are known, we can use the same algorithm as before to find an optimal solution in $O((n+m)\log(n+m))$ time. The algorithm for computing the indices $a_r(j)$ and $a_l(j)$, however, is not the same as before in Lemma 3. We provide a new algorithm in the following lemma.

Lemma 4. *Computing $a_l(j)$ and $a_r(j)$ for all $j \in [1, m]$ can be done in $O((n+m)\log(n+m))$ time.*

Proof. We only describe how to compute $a_r(j)$ for all $j \in [1, m]$, and the algorithm for $a_l(i)$ is similar.

We sweep the plane with a vertical line l from left to right, and an event happens if l encounters a point of P or the center of a diamond s_j . For this, we first sort all points of P and the centers of all diamonds in $O((n+m)\log(n+m))$ time. During the sweeping, we maintain a list Q of diamonds s_i whose centers have been swept and whose indices $a_r(i)$ have not been computed yet. We store the diamonds of Q by a balanced binary search tree with the x -coordinates of the *rightmost points* of the diamonds as the keys. Initially, $Q = \emptyset$.

During the sweeping, if l encounters the center of a diamond s_j , then we insert s_j into Q . If l encounters a point p_i , then we process it as follows. Find the diamond s_j in Q with the smallest key (i.e., the diamond of Q whose rightmost point is the leftmost). If s_j covers p_i , then one can verify that every diamond in Q covers p_i ,¹ and thus in this case we finish processing p_i . Otherwise (e.g., see Fig. 4), we delete s_j from Q and set $a_r(j) = i$, after which we proceed on the next diamond in Q with the smallest key (if Q becomes \emptyset , then we finish processing p_i). If Q is not empty after p_n is processed, then we set $a_r(j) = n + 1$ for all $s_j \in Q$.

The running time of the sweeping algorithm after sorting is $O((n+m)\log m)$. The lemma thus follows. \square

Theorem 3. *The line-constrained disk coverage problem in the L_1 metric is solvable in $O((n+m)\log(n+m))$ time.*

6. The L_∞ and L_2 cases

In this section, we give our algorithms for the L_∞ and L_2 cases. The algorithms are similar in the high level. However, the nature of the L_2 metric makes the L_2 case more involved in the low level computations. In Section 6.1, we present a high-level algorithmic scheme that works for both metrics. Then, we complete the algorithms for L_∞ and L_2 cases in Sections 6.2 and 6.3, respectively.

6.1. An algorithmic scheme for L_∞ and L_2 metrics

In this subsection, unless otherwise stated, all statements are applicable to both metrics. Note that a disk in the L_∞ metric is a square.

¹ To see this, notice that all diamonds in Q have their upper right edges intersecting l , which currently contains p_i , and further, the diamond in Q with the smallest key has the lowest such edge.

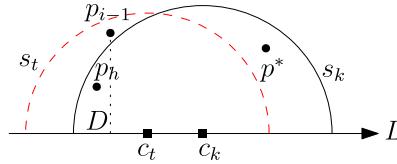


Fig. 5. Illustrating the proof of Lemma 5. The red dashed half-circle shows disk s_t , which covers p_{i-1} , and $x(c_t) \leq x(c_k)$). The disk s_t must also cover the point p_h .

For a disk $s_k \in S$, we say that a subsequence $P[i, j]$ of P with $1 \leq i \leq j \leq n$ is a *maximal subsequence covered by s_k* if all points of $P[i, j]$ are covered by s_k but neither p_{i-1} nor p_{j+1} is covered by s_k (it is well defined due to p_0 and p_{n+1}). Let $F(s_k)$ be the set of all maximal subsequences covered by s_k . Note that the subsequences of $F(s_k)$ are pairwise disjoint.

Lemma 5. Suppose S_{opt} is an optimal solution subset and s_k is a disk of S_{opt} . Then, there is a subsequence $P[i, j]$ in $F(s_k)$ such that the following hold.

1. $P[i, j]$ has a point that is not covered by any disk in $S_{opt} \setminus \{s_k\}$.
2. For any point $p \in P$ that is covered by s_k but is not in $P[i, j]$, p is covered by a disk in $S_{opt} \setminus \{s_k\}$.

Proof. First of all, s_k must cover a point p^* that is not covered by any disk in $S_{opt} \setminus \{s_k\}$. Since the subsequences of $F(s_k)$ are pairwise disjoint, p^* is in a unique subsequence $P[i, j]$ of $F(s_k)$. In the following, we show that $P[i, j]$ has the property as stated in the lemma.

Consider any point $p_h \in P$ that is covered by s_k but is not in $P[i, j]$. By the definition of maximal sequences, either $h \leq i-1$ or $h \geq j+1$. We only discuss the case $h \leq i-1$ since the other case is similar. In the following, we show that p_h must be covered by a disk in $S_{opt} \setminus \{s_k\}$, which will prove the lemma.

By the definition of maximal sequences, neither p_{i-1} nor p_{j+1} is covered by s_k . Since S_{opt} is an optimal solution, $S_{opt} \setminus \{s_k\}$ must have a disk s_t that covers p_{i-1} . According to the above discussion, s_t does not cover p^* . Since p^* is to the right of p_{i-1} , the center c_t of s_t cannot be to the right of the center c_k of s_k , since otherwise s_t would cover p^* as well because s_k covers p^* . Let D be the region of s_k to the left of the vertical line through p_{i-1} . Since $h \leq i-1$ and p_h is inside s_k , p_h must be contained in D (e.g., see Fig. 5). Since $x(c_t) \leq x(c_k)$ and p_{i-1} is in s_t but not in s_k , one can verify that D is contained in s_t . Thus, p_h must be covered by s_t . \square

In light of Lemma 5, we reduce the problem to an instance of the 1D problem with a point set P' and a line segment set S' , as follows.

For each point of P , we vertically project it on L , and the set P' is comprised of all such projected points. Thus P' has exactly n points. For any $1 \leq i \leq j \leq n$, we use $P'[i, j]$ to denote the projections of the points of $P[i, j]$. For each point $p_i \in P$, we use p'_i to denote its projection point in P' .

The set S' is defined as follows. For each disk $s_k \in S$ and each subsequence $P[i, j] \in F(s_k)$, we create a segment for S' , denoted by $s[i, j]$, with left endpoint at p'_i and right endpoint at p'_j . Thus, $s[i, j]$ covers exactly the points of $P'[i, j]$. We set the weight of $s[i, j]$ to w_k . Note that if $s[i, j]$ is already in S' , which is defined by another disk s_h , then we only need to update its weight to w_k in case $w_k < w_h$ (so each segment appears only once in S'). We say that $s[i, j]$ is defined by s_k (resp., s_h) if its weight is equal to w_k (resp., w_h).

According to Lemma 5, we intend to say that an optimal solution OPT' to the 1D problem on P' and S' corresponds to an optimal solution OPT to the original problem on P and S in the following sense: if a segment $s[i, j] \in S'$ is included in OPT' , then we include the disk that defines $s[i, j]$ in OPT . However, since a disk of S may define multiple segments of S' , to guarantee the correctness of the above correspondence, we need to show that OPT' is a *valid solution*: no two segments in OPT' are defined by the same disk of S . For this, we have the following lemma.

Lemma 6. Any optimal solution on P' and S' is a valid solution.

Proof. Let OPT' be any optimal solution. Let $s[i, j]$ be a segment in OPT' . So $s[i, j]$ is defined by a disk s_k for the maximal subsequence $P[i, j]$. In the following we show that no other segments defined by s_k are in OPT' , which will prove the lemma.

Assume to the contrary that OPT' has another segment $s[i', j']$ defined by s_k . Then, since the maximal subsequences covered by s_k are pairwise disjoint, either $j' < i$ or $j < i'$ holds. In the following, we only discuss the case $j' < i$ since the other case is similar.

By the definition of maximal subsequences, neither $p_{j'+1}$ nor p_{i-1} is covered by s_k . Note that $j' + 1 = i - 1$ is possible. Hence, OPT' must have a segment s' defined by another disk s_h covering p_{i-1} such that s' covers the projection point p'_{i-1} of p_{i-1} . Since $s[i, j]$ is in OPT' , $P'[i, j]$ has at least one point p^* that is not covered by any segment in OPT' other than $s[i, j]$. Thus, p^* is not covered by s' .

We claim that the center c_h of s_h is strictly to the left of the center c_k of s_k . Indeed, assume to the contrary that $x(c_h) \geq x(c_k)$. Then, let D be the region of s_k to the right of the vertical line through p_{i-1} . Notice that all points of $P[i, j]$ are in D . Also, since s_h covers p_{i-1} while s_k does not and $x(c_h) \geq x(c_k)$, D is contained in s_h . This means that all points of $P[i, j]$ are covered by s_h , and thus all points of $P[i-1, j]$ are covered by s_h since s_h covers p_{i-1} . Hence, the segment s' covers all points of $P'[i-1, j]$, and thus, s' covers the points p^* , which contradicts with the fact that s' does not cover p^* . This proves the claim that $x(c_h) < x(c_k)$.

Depending on whether s_h covers all points of $P[j'+1, i-1]$, there are two cases.

- If s_h covers all points of $P[j'+1, i-1]$, then since $x(c_h) < x(c_k)$ and s_k does not cover $p_{j'+1}$ (but covers all points of $P[i', j']$), by the similar analysis as above, we can show that s_h also covers all points of $P[i', j']$ and thus all points of $P[i', i-1]$. Further, since s' is a segment defined by s_h and s' covers the projection point p'_{i-1} of p_{i-1} , s' must cover all projection points of $P'[i', i-1]$. Therefore, if we remove $s[i', j']$ from OPT' , the remaining segments of OPT' still cover all points of P' , which contradicts with that OPT' is an optimal solution.
- If s_h does not cover all points of $P[j'+1, i-1]$, then let h_1 be the largest index in $[j'+1, i-2]$ such that p_{h_1} is not covered by s_h . Then, p'_{h_1} is not covered by the segment s' . Hence, OPT' must have a segment defined by another disk s_{j_1} covering p_{h_1} such that the segment covers p'_{h_1} . By the same analysis as above, we can show that $x(c_{j_1}) < x(c_h)$, and thus $x(c_{j_1}) < x(c_k)$.

If s_{j_1} covers all points of $P[j'+1, h_1-1]$, then we can use the same analysis as the above case to show that $s[i', j']$ is a redundant segment of OPT' , which incurs contradiction. Otherwise, we let h_2 be the largest index in $[j'+1, h_1-1]$ such that p_{h_2} is not covered by s_{j_1} . Then, we can follow the same analysis above to either obtain contradiction or consider the next index in $[j'+1, h_2-1]$. Note that this procedure is finite as the number of indices of $[j'+1, h_1-1]$ is finite. Therefore, eventually we will obtain contradiction.

The lemma thus follows. \square

With the above lemma, combining with our algorithm for the 1D problem, we have the following result.

Lemma 7. *If the set S' is computed, then an optimal solution can be found in $O((n + |S'|) \log(n + |S'|))$ time.*

It remains to determine the size of S' and compute S' . An obvious answer is that $|S'|$ is bounded by $m \cdot \lceil n/2 \rceil$ because each disk can have at most $\lceil n/2 \rceil$ maximal sequences of P , and a trivial algorithm can compute S' in $O(nm \log(m+n))$ time by scanning the sorted list P for each disk. Therefore, by Lemma 7, we can solve the problem in both L_∞ and L_2 metrics in $O(nm \log(m+n))$ time.

With more geometric observations, the following two subsections will prove the two following lemmas, respectively.

Lemma 8. *In the L_∞ metric, $|S'| \leq 2(n + m)$ and S' can be computed in $O((n + m) \log(n + m))$ time.*

Lemma 9. *In the L_2 metric, $|S'| \leq 2(n + m) + \kappa$ and S' can be computed in $O((n + m) \log(n + m) + \kappa \log m)$ time.*

With Lemma 7, we have the following results.

Theorem 4. *The line-constrained disk coverage problem in the L_∞ metric is solvable in $O((n + m) \log(n + m))$ time.*

Theorem 5. *The line-constrained disk coverage problem in the L_2 metric is solvable in $O(nm \log(m+n))$ time or in $O((n + m) \log(n + m) + \kappa \log m)$ time, where κ is the number of pairs of disks of S whose boundaries intersect each other.*

Bounding couples Before moving on, we introduce a new concept *bounding couples*, which will be used to prove Lemmas 8 and 9 in Sections 6.2 and 6.3.

Consider a disk $s_k \in S$. Let $p_l(s_k)$ denote the rightmost point of $P \cup \{p_0, p_{n+1}\}$ strictly to the left of l_k ; similarly, let $p_r(s_k)$ denote the leftmost point of $P \cup \{p_0, p_{n+1}\}$ strictly to the right of r_k . Let $P(s_k)$ denote the subset of points of P between $p_l(s_k)$ and $p_r(s_k)$ inclusively that are outside s_k . We sort the points of $P(s_k)$ by their x -coordinates, and we call each adjacent pair of points (or their indices) in the sorted list a *bounding couple* (e.g., see Fig. 6). Let $C(s_k)$ denote the set of all bounding couples of s_k , and for each bounding couple of $C(s_k)$, we assign w_k to it as the weight. Let $C = \bigcup_{1 \leq k \leq m} C(s_k)$, and if the same bounding couple is defined by multiple disks, then we only keep the copy in C with the minimum weight. Also, we consider a bounding couple (i, j) as an ordered pair such that $i < j$, and i is considered as the left end of the couple while j is the right end.

The reason why we define bounding couples is that if $P[i, j]$ is a maximal subsequence of P covered by s_k then $(i-1, j+1)$ is a bounding couple. On the other hand, if (i, j) is a bounding couple of $C(s_k)$, then $P[i+1, j-1]$ is a maximal subsequence of P covered by s_k unless $j = i+1$. Hence, each bounding couple (i, j) of C with $j \neq i+1$ corresponds to a

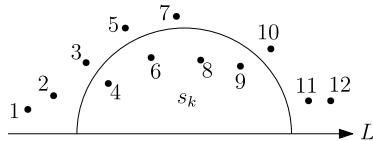


Fig. 6. Illustrating the definition of bounding couples: the numbers are the indices of the points of P . In this example, $p_l(s_k)$ is point 2 and $p_r(s_k)$ is point 11, and the bounding couples are: (2, 3), (3, 5), (5, 7), (7, 10), (10, 11).

segment in the set S' , and $|S'| \leq |\mathcal{C}|$. Observe that \mathcal{C} has at most $n - 1$ couples (i, j) with $j = i + 1$, and given \mathcal{C} , we can obtain S' in additional $O(|\mathcal{C}|)$ time.

According to our above discussion, to prove Lemmas 8 and 9, it suffices to prove the following two lemmas.

Lemma 10. In the L_∞ metric, $|C| \leq 2(n+m)$ and C can be computed in $O((n+m) \log(n+m))$ time.

Lemma 11. In the L_2 metric, $|\mathcal{C}| \leq 2(n+m) + \kappa$ and \mathcal{C} can be computed in $O((n+m) \log(n+m) + \kappa \log m)$ time.

Consider a bounding couple (i, j) of \mathcal{C} , defined by a disk s_k . We call it a *left bounding couple* if $p_i = p_l(s_k)$, a *right bounding couple* if $p_j = p_r(s_k)$, and a *middle bounding couple* otherwise (e.g., in Fig. 6, $(2, 3)$ is the left bounding couple, $(10, 11)$ is the right bounding couple, and the rest are middle bounding couples). It is easy to see that a disk can define at most one left bounding couple and at most one right bounding couple. Therefore, the number of left and right bounding couples in \mathcal{C} is at most $2m$. It remains to bound the number of middle bounding couples of \mathcal{C} .

In the following, we will prove Lemmas 10 and 11 in Sections 6.2 and 6.3, respectively.

6.2. The L_∞ metric

In this section, our goal is to prove Lemma 10.

In the L_∞ metric, every disk is a square that has four axis-parallel edges. We use l_k and r_k to particularly refer to the left and right endpoints of the upper edge of s_k , respectively.

For a point p_i and a square s_k , we say that p_i is *vertically above* (resp., *below*) the upper edge of s_k if p_i is above (resp., below) the upper edge of s_k and $x(l_k) \leq x(p_i) \leq x(r_k)$. Due to our general position assumption, p_i is not on the boundary of s_k , and thus p_i above/below the upper edge of s_k implies that p_i is strictly above/below the edge. Also, since no point of P is below L , a point $p_i \in P$ is in s_k if and only if p_i is vertically below the upper edge of s_k . If p_i is vertically above the upper edge of s_k , we also say that p_i is vertically above s_k or s_k is vertically below p_i .

The following lemma proves an upper bound for $|\mathcal{C}|$.

Lemma 12. $|\mathcal{C}| \leq 2(n + m)$.

Proof. Recall that the total number of left and right bounding couples of \mathcal{C} is at most $2m$. In the following, we show that the number of middle bounding couples of \mathcal{C} is at most $2n$.

We first prove an *observation*: For each point p_j of P , among all points of P to the northwest of p_j , there is at most one point that can form a middle bounding couple with p_j ; similarly, among all points of P to the northeast of p_j , there is at most one point that can form a middle bounding couple with p_j .

We only prove the northwest case since the other case is analogous. Suppose there is a point $p_i \in P$ to the northwest of p_j and (p_i, p_j) is a middle bounding couple. Assume to the contrary that there is another point $p_h \in P$ to the northwest of p_j and (p_h, p_j) is a middle bounding couple defined by a disk s_k . Without loss of generality, we assume $h < i$.

Since (p_h, p_j) is a middle bounding couple, both p_h and p_j are vertically above s_k . Since p_i is to the northwest of p_j and $h < i < j$, p_i is also vertically above s_k . But then p_i would prevent (h, j) from being a middle bounding couple defined by s_k , incurring contradiction. This proves the observation.

We proceed to show that the number of middle bounding couples is at most $2n$. Indeed, for any middle bounding couple (i, j) of \mathcal{C} , we charge it to the lower point of p_i and p_j . In light of the observation, each point of P will be charged at most twice. As such, the total number of middle bounding couples is at most $2n$. The lemma thus follows. \square

We proceed to compute the set \mathcal{C} . The following lemma gives an algorithm to compute all left and right bounding couples of \mathcal{C} .

Lemma 13. All left and right bounding couples of \mathcal{C} can be computed in $O((n+m) \log(n+m))$ time.

Proof. We only describe how to compute all left bounding couples, and the algorithm for computing the right bounding couples is similar.

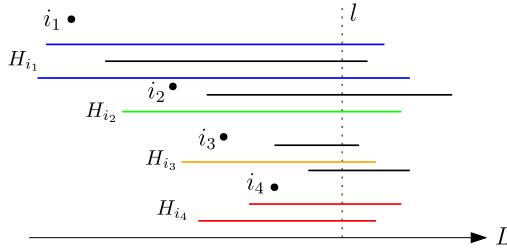


Fig. 7. Illustrating the information maintained by our sweeping algorithm. $P(l) = \{p_{i_1}, p_{i_2}, p_{i_3}, p_{i_4}\}$. Each horizontal segment represents the upper edge of a disk. The sets $H(i_j)$'s are shown with different colors, e.g., $H(i_1)$ consists of two blue disks, $H(i_4)$ consists of two red disks, and H_{i_0} consists of the four black disks.

First of all, we compute the points $p_l(s_k)$ and $p_r(s_k)$ for all $k = 1, 2, \dots, m$. Each such point can be computed in $O(\log n)$ time by binary search on the sorted sequence of P . Hence, computing all such points takes $O(m \log n)$ time. To compute all left bounding couples, it is sufficient to compute the points $p(s_k)$ for all disks $s_k \in S$, where $p(s_k)$ is the leftmost point of P outside s_k and between l_k and r_k if it exists and $p(s_k) = p_r(s_k)$ otherwise, because $(p_l(s_k), p(s_k))$ is the left bounding couple defined by s_k . To this end, we propose the following algorithm.

We sweep a vertical line l from left to right, and an event happens if l encounters a point of $P \cup \{l_k, r_k \mid 1 \leq k \leq m\}$. For this, we first sort all points of $P \cup \{l_k, r_k \mid 1 \leq k \leq m\}$. During the sweeping, we use a balanced binary search tree T to maintain those disks s_k intersecting l whose points $p(s_k)$ have not been computed yet. The disks in T are ordered by the y -coordinates of their upper edges.

During the sweeping, if l encounters the left endpoint l_k of a disk s_k , we insert s_k into T . If l encounters the right endpoint r_k of s_k , we remove s_k from T and set $p(s_k) = p_r(s_k)$. If l encounters a point p_i of P , then for each disk s_k of T whose upper edge is below p_i , we set $p(s_k) = p_i$ and remove s_k from T .

It is not difficult to see that the algorithm correctly computes all points $p(s_k)$ for all $s_k \in S$ in $O((n+m) \log(m+n))$ time. The lemma thus follows. \square

In the following, we focus on computing all middle bounding couples of \mathcal{C} .

6.2.1. Computing the middle bounding couples

We sweep a vertical line l from left to right, and an event happens if l encounters a point in $P \cup \{l_k, r_k \mid 1 \leq k \leq m\}$. Let H be the set of disks that intersect l . During the sweeping, we maintain the following information and invariants (e.g., see Fig. 7).

1. A sequence $P(l) = \{p_{i_1}, p_{i_2}, \dots, p_{i_t}\}$ of t points of P , which are to the left of l and ordered from northwest to southeast. $P(l)$ is stored in a balanced binary search tree $T(P(l))$.
2. A collection \mathcal{H} of $t+1$ subsets of H : $H(i_j)$ for $j = 0, 1, \dots, t$, which form a partition of H , defined as follows. $H(i_t)$ is the subset of disks of H that are vertically below p_{i_t} . For each $j = t-1, t-2, \dots, 1$, $H(i_j)$ is the subset of disks of $H \setminus \bigcup_{k=j+1}^t H(i_k)$ that are vertically below p_{i_j} . $H(i_0) = H \setminus \bigcup_{j=1}^t H(i_j)$. While $H(i_0)$ may be empty, none of $H(i_j)$ for $1 \leq j \leq t$ is empty.
3. Each set $H(i_j)$ is maintained by a balanced binary search tree $T(H(i_j))$ ordered by the y -coordinates of the upper edges of the disks. We have all disks stored in leaves of $T(H(i_j))$, and each internal node v of the tree also stores a weight equal to the minimum weight of all disks in the leaves of the subtree rooted at v .
4. For each point $p_{i_j} \in P(l)$, among all points of P strictly between p_{i_j} and l , no point is vertically above any disk of $H(i_j)$.
5. Among all points of P strictly to the left of l , no point is vertically above any disk of $H(i_0)$.

In summary, our algorithm maintains the following trees: $T(P(l))$, $T(H(i_j))$ for all $j \in [0, t]$.

Initially when l is to the left of all disks and points of P , we have $H = \emptyset$ and $P(l) = \emptyset$. We next describe how to process events.

If l encounters the left endpoint l_k of a disk s_k , we insert s_k to $H(i_0)$. The time for processing this event is $O(\log m)$ since $|H(i_0)| \leq m$.

If l encounters the right endpoint r_k of a disk s_k , we need to determine which set $H(i_j)$ of \mathcal{H} contains s_k . For this, we associate each right endpoint with its disk in the preprocessing so that it can keep track of which set of \mathcal{H} contains the disk. Using this mechanism, we can determine the set $H(i_j)$ that contains s_k in constant time. We then remove s_k from $T(H(i_j))$. If $H(i_j)$ becomes empty and $j \neq 0$, then we remove p_{i_j} from $P(l)$. One can verify that all algorithm invariants still hold. The time for processing this event is $O(\log(m+n))$.

If l encounters a point p_h of P , which is a major event we need to handle, we process it as follows. We search $T(P(l))$ to find the first point p_{i_j} of $P(l)$ below p_h (e.g., $j = 3$ in Fig. 8). We remove the points p_{i_k} for all $k \in [j, t]$ from $P(l)$. We have the following lemma.

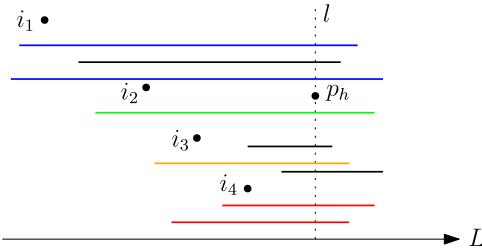


Fig. 8. Illustrating the processing of an event at $p_h \in P$. The sets $H(i_j)$'s are shown with different colors. In this example, i_2 , i_3 , and i_4 will be removed from $P(l)$ and p_h will be inserted to $P(l)$, so after the event $P(l) = \{p_i_1, p_h\}$. Also, (i_2, h) , (i_3, h) , (i_4, h) will be reported as middle bounding couples.

Lemma 14. For each point p_{i_k} with $k \in [j, t]$, (i_k, h) is a middle bounding couple defined by and only by the disks of $H(i_k)$ (i.e., $H(i_k)$ consists of all disks of S that define (i_k, h) as a middle bounding couple).

Proof. By the definition of $H(i_k)$, p_{i_k} is vertically above each disk of $H(i_k)$. By the definition of j and also because all disks of $H(i_k)$ intersect l , p_h is vertically above each disk of $H(i_k)$. With the third algorithm invariant, (i_k, h) is a middle bounding couple defined by every disk of $H(i_k)$.

On the other hand, suppose a disk s defines (i_k, h) as a middle bounding couple. Then, both p_{i_k} and p_h must be vertically above s . This implies that s intersects l , and thus s is in H . By algorithm invariant (4), s cannot be in $H(i_0)$. Because p_{i_k} is vertically above s , s must be in $\bigcup_{b=k}^f H(i_b)$. Further, since (i_k, h) is a middle bounding couple, among all points of P strictly between p_{i_k} and p_h , no point is vertically above s . This implies that s cannot be in $H(i_b)$ for any $b > k$. Therefore, s must be in $H(i_k)$. The lemma thus follows. \square

In light of Lemma 14, for each $k \in [j, t]$, we report (i_k, h) as a middle bounding couple with weight equal to the minimum weight of all disks of $H(i_k)$, which is stored at the root of $T(H(i_k))$.

Next, we process the point $p_{i_{j-1}}$, for which we have the following lemma. The proof technique is similar to that for Lemma 14, so we omit it.

Lemma 15. If p_h is vertically below the lowest disk of $H(i_{j-1})$, then (i_{j-1}, h) is not a middle bounding couple; otherwise, (i_{j-1}, h) is a middle bounding couple defined by and only by disks of H_{j-1} that are vertically below p_h .

By the above lemma, we first check whether p_h is vertically below the lowest disk of $H(i_{j-1})$. If yes, we do nothing. Otherwise, we report (i_{j-1}, h) as a middle bounding couple with weight equal to the minimum weight of all disks of $H(i_{j-1})$ vertically below p_h , which can be computed in $O(\log m)$ time by using weights at the internal nodes of $T(H(i_{j-1}))$. We further have the following lemma.

Lemma 16. If all disks of $H(i_{j-1})$ are vertically below p_h , then there does not exist a middle bounding couple (i_{j-1}, b) with $b > h$.

Proof. Assume to the contrary that (i_{j-1}, b) is such a middle bounding couple with $b > h$, say, defined by a disk s . Then, since $x(p_{i_{j-1}}) < x(p_h) = x(l) < x(p_b)$, s intersects l , and thus s is in H . Also, since s defines the couple, $p_{i_{j-1}}$ is vertically above s . Note that all disks of H vertically below $p_{i_{j-1}}$ must be in $\bigcup_{k=j-1}^t H(i_k)$, and thus s is in $\bigcup_{k=j-1}^t H(i_k)$. Recall that all disks of $\bigcup_{k=j}^t H(i_k)$ are vertically below p_h . Since all disks of $H(i_{j-1})$ are vertically below p_h , all disks of $\bigcup_{k=j-1}^t H(i_k)$ are vertically below p_h . Hence, s is also vertically below p_h . Because all three points $p_{i_{j-1}}$, p_h , and p_b are vertically above s , and $x(p_{i_{j-1}}) < x(p_h) < x(p_b)$, (i_{j-1}, b) cannot be a bounding couple defined by s . The lemma thus follows. \square

We check whether p_h is above the highest disk of $H(i_{j-1})$ using the tree $T(H(i_{j-1}))$. If yes, then the above lemma tells that there will be no more middle bounding couples involving i_{j-1} any more, and thus we remove $p_{i_{j-1}}$ from $P(l)$.

The following lemma implies that all middle bounding couples with p_h as the right end have been computed.

Lemma 17. For any middle bounding couple (b, h) , b must be in $\{i_{j-1}, i_j, \dots, i_t\}$.

Proof. Assume to the contrary that (b, h) is a middle bounding couple with b not in the set $\{i_{j-1}, i_j, \dots, i_t\}$, say, defined by a disk s . Then, s must intersect l , and thus is in H . Also, s is vertically below both p_b and p_h .

First of all, since p_b is strictly to the left of l and p_b is vertically above s , by our algorithm invariant (4), s cannot be in $H(i_0)$. Thus, s is in $H(i_j)$ for some $j \in [1, t]$. Depending on whether $i_j < b$, there are two cases.

If $i_j > b$, then since $s \in H(i_j)$, p_{i_j} is vertically above s . Because $x(p_b) < x(p_{i_j}) < x(p_h)$ and all these three points are vertically above s , (b, h) cannot be a middle bounding couple defined by s , incurring contradiction.

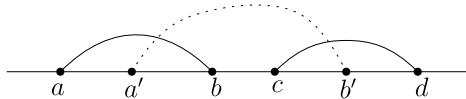


Fig. 9. Illustrating the conflicting intervals: Each arc represents an interval.

If $i_j < b$, then since $s \in H(i_j)$ and p_b is vertically above s , we obtain contradiction with our algorithm invariant (3) as p_b is strictly between p_{i_j} and l . \square

Next, we add p_h to the end of the current sequence $P(l)$ (note that the points p_{i_k} for all $k \in [j, t]$ and possibly $p_{i_{j-1}}$ have been removed from $P(l)$; e.g., see Fig. 8). Finally, we need to compute the tree $T(H(h))$ for the set $H(h)$, which is comprised of all disks of H vertically below p_h since p_h is the lowest point of $P(l)$. We compute $T(H(h))$ as follows.

First, starting from an empty tree, for each $k = t, t-1, \dots, j$ in this order, we merge $T(H(i_k))$ with the tree $T(H(i_k))$. Notice that the upper edge of each disk in $T(H(i_k))$ is higher than the upper edges of all disks of $T(H(h))$. Therefore, each such merge operation can be done in $O(\log m)$ time. Second, for the tree $T(H(i_{j-1}))$, we perform a split operation to split the disks into those with upper edges above p_h and those below p_h , and then merge those below p_h with $T(H(h))$ while keeping those above p_h in $T(H(i_{j-1}))$. The above split and merge operations can be done in $O(\log m)$ time. Third, we remove those disks below p_h from $H(i_0)$ and insert them to $T(H(h))$. This is done by repeatedly removing the lowest disk s from $H(i_0)$ and inserting it to $T(H(h))$ until the upper edge of s is higher than p_h . This completes our construction of the tree $T(H(h))$.

The above describes our algorithm for processing the event at p_h . One can verify that all algorithm invariants still hold. The running time of this step is $O((1 + k_1 + k_2) \log m)$ time, where k_1 is the number of points removed from $P(l)$ (the number of merge operations is at most k_1) and k_2 is the number of disks of $H(i_0)$ got removed for constructing $T(H(h))$. As we sweep the line l from left to right, once a point is removed from $P(l)$, it will not be inserted again, and thus the total sum of k_1 in the entire algorithm is at most n . Also, once a disk is removed from $H(i_0)$, it will never be inserted again, and thus the total sum of k_2 in the entire algorithm is at most m . Hence, the overall time of the algorithm is $O((n + m) \log(n + m))$. This proves Lemma 10.

6.3. The L_2 metric

In this section, our goal is to prove Lemma 11.

Recall our general position assumption that no point of P is on the boundary of a disk of S . Also recall that all points of P are above L . In the L_2 metric, the two extreme points l_k and r_k of a disk s_k are unique. For a point $p_i \in P$ and a disk $s_k \in S$, we say that p_i is *vertically above* s_k if p_i is outside s_k and $x(l_k) \leq x(p_i) \leq x(r_k)$, and p_i is *vertically below* s_k if p_i is inside s_k . We also say that s_k is *vertically below* p_i if p_i is vertically above s_k .

The following lemma gives an upper bound for $|\mathcal{C}|$.

Lemma 18. $|\mathcal{C}| \leq 2(n + m) + \kappa$.

Proof. Recall that the left and right bounding couples of \mathcal{C} is at most $2m$. Let \mathcal{C}_m denote the set of all middle bounding couples of \mathcal{C} . In the following, we argue that $|\mathcal{C}_m| \leq 2n + \kappa$.

For convenience, we consider a middle bounding couple (i, j) as a *bounding interval* $[i, j]$ defined on indices of P . We call the indices larger than i and smaller than j as the *interior* of the interval. Those indices smaller than i and larger than j are considered *outside* the interval.

We say that two bounding intervals $[a, b]$ and $[a', b']$ *conflict* if either $a < a' < b < b'$ or $a' < a < b' < b$. Hence, those two intervals do not conflict if either they are interior-disjoint or one interval contains the other. Since two bounding intervals defined by the same disk are interior-disjoint, they never conflict.

We first prove an observation: *For any two disks, there is at most one pair of conflicting bounding intervals defined by the two disks.*

Assume to the contrary there are two pairs of conflicting bounding intervals defined by two disks s and s' . Let the first pair be $[a, b]$ and $[a', b']$ and the second pair be $[c, d]$ and $[c', d']$. Without loss of generality, we assume that $[a, b]$ and $[c, d]$ are defined by s , and $[a', b']$ and $[c', d']$ are defined by s' . Note that $[a, b]$ and $[c, d]$ may be the same and $[a', b']$ and $[c', d']$ may also be the same. However, as they are different pairs, either $[a, b]$ and $[c, d]$ are distinct, or $[a', b']$ and $[c', d']$ are distinct. Without loss of generality, we assume that $[a, b]$ and $[c, d]$ are distinct and $b \leq c$. Depending on whether $[a', b']$ and $[c', d']$ are the same, there are two cases.

- If $[a', b']$ and $[c', d']$ are the same, then since $b \leq c$, we have $a < a' < b \leq c < b' < d$ (see Fig. 9). By the definition of bounding intervals, p_b and p_c are in the disk s' while $p_{a'}$ and $p_{b'}$ are vertically above s' , and similarly, $p_{a'}$ and $p_{b'}$ are in the disk s while p_a, p_b, p_c, p_d are vertically above s .

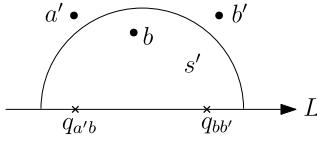


Fig. 10. Illustrating the disk s' and points a' , b' , b , $q_{a'b}$, and $q_{bb'}$.

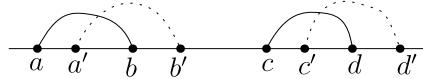


Fig. 11. Illustrating the conflicting intervals: Each arc represents an interval. The intervals of solid (resp., dotted) arcs are defined by s (resp., s').

Since p_b is contained in s' while $p_{a'}$ and $p_{b'}$ are vertically above s' (e.g., see Fig. 10), we claim that any disk centered at L and containing both $p_{a'}$ and $p_{b'}$ must contain the point p_b . Indeed, let $q_{a'b}$ be the point on L that has the same distance with $p_{a'}$ and $p_{b'}$, and let $q_{bb'}$ be the point on L that has the same distance with p_b and $p_{b'}$ (e.g., see Fig. 10). Since $x(p_{a'}) < x(p_b)$ and p_b is in s' while $p_{a'}$ is not, we can obtain that $x(q_{a'b}) < x(c')$, where c' is the center of s' . For the same reason, $x(q_{bb'}) > x(c')$. Therefore, $q_{a'b}$ is strictly to the left of $q_{bb'}$. Now consider any disk s'' with center c'' at L such that s'' contains both $p_{a'}$ and $p_{b'}$. If $x(c'') \leq x(q_{a'b})$, then $x(c'') < x(q_{bb'})$ and thus c'' is closer to p_b than to $p_{b'}$. Since s'' contains $p_{b'}$, s'' also contains p_b . On the other hand, if $x(c'') > x(q_{a'b})$, then c'' is closer to p_b than to $p_{a'}$. Since s'' contains $p_{a'}$, s'' also contains p_b . This proves the claim.

Recall that the disk s contains $p_{a'}$ and $p_{b'}$. By the above claim, s contains p_b , but this contradicts with that p_b is strictly above s .

- If $[a', b']$ and $[c', d']$ are not the same, then without loss of generality, we assume that $b' \leq c'$. Since $[a, b]$ conflicts with $[a', b']$, either $a < a' < b < b'$ or $a' < a < b' < b$. Similarly, since $[c, d]$ conflicts with $[c', d']$, either $c < c' < d < d'$ or $c' < c < d' < d$. In the following, we assume that $a < a' < b < b'$ and $c < c' < d < d'$ (e.g., see Fig. 11), and the other cases can be proved in a similar way.

Since $c < c' < d$ and $b' \leq c'$, we obtain that $a' < b < c'$. Since $[a', b']$ and $[c', d']$ are bounding intervals defined by the disk s' while b is in the interior of $[a', b']$, s' contains p_b but is vertically below $p_{a'}$ and $p_{c'}$. Then, by the claim proved in the first case, any disk centered at L and containing both $p_{a'}$ and $p_{c'}$ must contain p_b as well.

On the other hand, since $[a, b]$ and $[c, d]$ are bounding intervals defined by s while a' is in the interior of $[a, b]$ and c' is in the interior of $[c, d]$, s contains both $p_{a'}$ and $p_{c'}$ but is vertically below p_b . However, since s contains both $p_{a'}$ and $p_{c'}$ and s is centered at L , according to the above claim, s contains p_b . Therefore, we obtain contradiction.

This proves the observation.

We then prove another observation: *If a bounding interval defined by a disk conflicts with a bounding interval defined by another disk, then the boundaries of the two disks must intersect.*

Indeed, suppose two bounding intervals $[a, b]$ and $[a', b']$ conflict. Let s be the disk defining $[a, b]$ and s' be the disk defining $[a', b']$. Without loss of generality, we assume that $a < a' < b < b'$. By the definition of bounding intervals, $p_{a'}$ must be inside s but outside s' while p_b must be inside s' but outside s . Therefore, the boundaries of s and s' must intersect.

The above two observations imply that the total number of pairs of conflicting intervals of \mathcal{C}_m is at most κ . Now, for each pair of conflicting intervals, we remove one interval from \mathcal{C}_m , so we remove at most κ intervals from \mathcal{C}_m . For differentiation, let \mathcal{C}'_m denote the new set of \mathcal{C}_m after the removal, and \mathcal{C}_m still refers to the original set. Observe that $|\mathcal{C}_m| \leq |\mathcal{C}'_m| + \kappa$ and no two intervals of \mathcal{C}'_m conflict. In the following we show $|\mathcal{C}'_m| \leq 2n$, which will lead to $|\mathcal{C}_m| \leq \kappa + 2n$.

Our proof mainly relies on the property that no two bounding intervals of \mathcal{C}'_m conflict. For any two intervals of \mathcal{C}'_m , either they are interior-disjoint or one contains the other. We will form all intervals of \mathcal{C}'_m as a tree structure T . To this end, for each i with $1 \leq i \leq n-1$, if $[i, i+1]$ is not in \mathcal{C}'_m , then we add it to \mathcal{C}'_m . The tree T is defined as follows. Each interval of \mathcal{C}'_m defines a node of T . The $n-1$ intervals $[i, i+1]$ for all $i = 1, 2, \dots, n-1$ are the leaves of T . For every two intervals I_1 and I_2 of \mathcal{C}'_m , I_1 is the parent of I_2 if and only if I_1 contains I_2 and there is no other interval I in \mathcal{C}_m such that $I_2 \subseteq I \subseteq I_1$. Notice that every internal node of T has at least two children. Since T has $n-1$ leaves, the number of internal nodes is no more than $n-2$. Therefore, T has no more than $2n$ nodes, implying that $|\mathcal{C}'_m| \leq 2n$. \square

We next describe our algorithm for computing the set \mathcal{C} . For each disk s_k , we refer to the half-circle of the boundary of s_k above L as the *arc* of s_k . Note that every two arcs of S intersect at most once. In the following, depending on the context, s_k may also refer to its arc.

We begin with computing the left and right bounding couples.

Lemma 19. All left and right bounding couples of \mathcal{C} can be computed in $O((n+m) \log(n+m) + \kappa \log m)$ time.

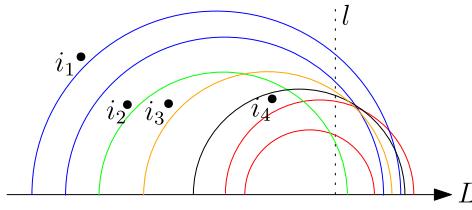


Fig. 12. Illustrating the information maintained by our sweeping algorithm. $P(l) = \{p_{i_1}, p_{i_2}, p_{i_3}, p_{i_4}\}$. $H(i_1)$ consists of the two blue arcs and $H(i_4)$ consists of the two red arcs. $H(i_0)$ consists of the black arc.

Proof. We only describe how to compute all left bounding couples, because the algorithm for computing the right bounding couples is similar.

First of all, we compute the points $p_l(s_k)$ and $p_r(s_k)$ for all $1 \leq k \leq m$. Each such point can be computed in $O(\log n)$ time by binary search on the sorted sequence of P . Hence, computing all such points takes $O(m \log n)$ time. To compute all left bounding couples, it is sufficient to compute the points $p(s_k)$ for all disks $s_k \in S$, where $p(s_k)$ is the leftmost point of P outside s_k and between l_k and r_k if it exists, and $p(s_k)$ is $p_r(s_k)$ otherwise, because $(p_l(s_k), p(s_k))$ is the left bounding couple defined by s_k . To this end, we propose a sweeping algorithm similar to that for the L_∞ case. The difference is that the arcs of S may intersect each other and thus the sweeping needs to handle the events at intersections.

We sweep a vertical line l from left to right, and an event happens if l encounters a point of $P \cup \{l_k, r_k\} \ 1 \leq k \leq m\}$ or an intersection of two arcs of S . For this, we first sort all points of $P \cup \{l_k, r_k\} \ 1 \leq k \leq m\}$. We determine the intersections and handle the intersection events in a similar way as the sweeping algorithm for computing line segment intersections [3,7,4]; note that we are able to do so because every two arcs of S intersect at most once. During the sweeping, we maintain the arcs s_k of S intersecting l whose points $p(s_k)$ have not been computed yet. Those arcs are stored in a balanced binary search tree T , ordered by the y -coordinates of their intersections with l .

During the sweeping, if l encounters the left endpoint l_k of an arc s_k , then we insert s_k into T . If l encounters the right endpoint r_k of an arc s_k , then we remove s_k from T and set $p(s_k) = p_r(s_k)$. If l encounters a point p_i of P , then for each arc s_k of T that is below p_i , we set $p(s_k) = p_i$ and remove s_k from T . If l encounters an intersection of two arcs, then we process it in the same way as the line segment intersection algorithm, and we omit the discussion here (we also need to detect intersections in other events above, which is similar to the line segment intersection algorithm and is omitted).

The running time of the algorithm is $O((n+m)\log(n+m) + \kappa \log m)$. In particular, the $O(\kappa \log m)$ factor in the time complexity is for handling the intersections of the arcs. \square

It remains to compute the middle bounding pairs of \mathcal{C} . The algorithm is similar in spirit to that for the L_∞ case. However, it is more involved and requires new techniques due to the nature of the L_2 metric as well as the boundary intersections of the disks of S .

We sweep a vertical line l from left to right, and an event happens if l encounters a point in $P \cup \{l_k, r_k\} \ 1 \leq k \leq m\}$ or an intersection of two disk arcs. Let H be the set of arcs that intersect l . During the sweeping, we maintain the following information and invariants (e.g., see Fig. 12).

1. A sequence $P(l) = \{p_{i_1}, p_{i_2}, \dots, p_{i_t}\}$ of t points to the left of l that are sorted from left to right. $P(l)$ is maintained by a balanced binary search tree $T(P(l))$.

2. A collection \mathcal{H} of $t+1$ subsets of H : $H(i_j)$ for $j = 0, 1, \dots, t$, which form a partition of H , defined as follows.

$H(i_t)$ is the set of disks of H vertically below p_{i_t} . For each $j = t-1, t-2, \dots, 1$, $H(i_j)$ is the set of disks of $H \setminus \bigcup_{k=j+1}^t H(i_k)$ vertically below p_{i_j} . $H(i_0) = H \setminus \bigcup_{j=1}^t H(i_j)$. While $H(i_0)$ may be empty, none of $H(i_j)$ for $1 \leq j \leq t$ is empty.

Each set $H(i_j)$ for $j \in [0, t]$ is maintained by a balanced binary search tree $T(H(i_j))$ ordered by the y -coordinates of the intersections of l with the arcs of the disks. We have all disks stored in the leaves of the tree, and each internal node v of the tree stores a weight that is equal to the minimum weight of all disks in the leaves of the subtree rooted at v .

For each subset $H' \subseteq H$, the arc of H' whose intersection with l is the lowest is called the *lowest arc* of H' . We maintain a set H^* consisting of the lowest arcs of all sets $H(i_k)$ for $1 \leq k \leq t$. So $|H^*| = t$. We use a binary search tree $T(H^*)$ to store disks of H^* , ordered by the y -coordinates of their intersections with l .

3. For each point $p_{i_j} \in P(l)$, among all points of P strictly between p_{i_j} and l , no point is vertically above any disk of $H(i_j)$.
4. Among all points of P strictly to the left of l , no point is vertically above any disk of $H(i_0)$.

Remark. Our algorithm invariants are essentially the same as those in the L_∞ case. One difference is that the points of $P(l)$ are not sorted simultaneously by y -coordinates, which is due to that the arcs of S may cross each other (in contrast, in the L_∞ case the upper edges of the squares are parallel). For the same reason, for two sets $H(i_k)$ and $H(i_j)$ with $1 \leq k < j \leq t$, it may not be the case that all arcs of $H(i_k)$ are above all arcs of $H(i_j)$ at l . Therefore, we need an additional set H^* to guide our algorithm, as will be clear later.

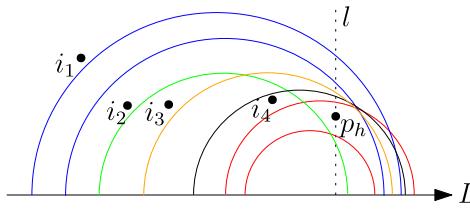


Fig. 13. Illustrating the processing of an event at $p_h \in P$: (i_2, h) and (i_4, h) will be reported as middle bounding couples, point i_2 will be removed from $P(l)$ and p_h will be inserted to $P(l)$.

In our sweeping algorithm, we use similar techniques as the line segment intersection algorithm [3,7,4] to determine and handle arc intersections of S (we are able to do so because every two arcs of S intersect at most once), and the time on handling them is $O((m + \kappa) \log m)$. Below we will not explicitly explain how to handle arc intersections. Initially $H = \emptyset$ and l is to the left of all arcs of S and all points of P .

If l encounters the left endpoint of an arc s_k , we insert s_k to $H(i_0)$.

If l encounters the right endpoint r_k of an arc s_k , then we need to determine which set of \mathcal{H} contains s_k . For this, as in the L_∞ case, we associate each right endpoint with the arc. Using this mechanism, we can find the set $H(i_j)$ of \mathcal{H} that contains s_k in constant time. Then, we remove s_k from $H(i_j)$. If $j = 0$, we are done for this event. Otherwise, if s_k was the lowest arc of $H(i_j)$ before the above remove operation, then s_k is also in H^* and we remove it from H^* . If the new set $H(i_j)$ becomes empty, then we remove p_{i_j} from $P(l)$. Otherwise, we find the new lowest arc from $H(i_j)$ and insert it to H^* . Processing this event takes $O(\log(n + m))$ time using the trees $T(H^*)$, $T(P(l))$, and $T(H(i_j))$.

If l encounters an intersection q of two arcs s_a and s_b , in addition to the processing work for computing the arc intersections, we do the following. Using the right endpoints, we find the two sets of \mathcal{H} that contain s_a and s_b , respectively. If s_a and s_b are from the same set $H(i_j) \in \mathcal{H}$, then we switch their order in the tree $T(H(i_j))$ and also update H^* if needed (i.e., if s_a is the lowest arc in $H(i_j)$ and after the switch s_b becomes the lowest arc in $H(i_j)$, then we remove s_a from H^* and insert s_b into it). Otherwise, if s_a is the lowest arc in its set and s_b is also the lowest arc in its set, then both s_a and s_b are in H^* , so we switch their order in $T(H^*)$. The time for processing this event is $O(\log m)$.

If l encounters a point p_h of P , which is a major event we need to handle, we process it as follows. As in the L_∞ case, our goal is to determine the middle bounding couples (i, h) with $p_i \in P(l)$.

Using $T(H^*)$, we find the lowest arc s_k of H^* . Let $H(i_j)$ for some $j \in [1, t]$ be the set that contains s_k , i.e., s_k is the lowest arc of $H(i_j)$. If p_h is above s_k , then we can show that (i_j, h) is a middle bounding couple defined by and only by the arcs of $H(i_j)$ below p_h (e.g., see Fig. 13). The proof is similar to Lemma 14, so we omit the details. Hence, we report (i_j, h) as a middle bounding couple with weight equal to the minimum weight of all arcs of $H(i_j)$ below p_h , which can be found in $O(\log m)$ time using $T(H(i_j))$. Then, we split $T(H(i_j))$ into two trees by p_h such that the arcs above p_h are still in $T(H(i_j))$ and those below p_h are stored in another tree (we will discuss later how to use this tree). Next we remove s_k from H^* . If the new set $H(i_j)$ after the split operation is not empty, then we find its lowest arc and insert it into H^* ; otherwise, we remove p_{i_j} from $P(l)$. We then continue the same algorithm on the next lowest arc of H^* .

The above discusses the case where p_h is above s_k . If p_h is not above s_k , then we are done with processing the arcs of H^* . We can show that all middle bounding couples (b, h) with h as the right end have been computed. The proof is similar to Lemma 17, and we omit the details.

Finally, we add p_h to the rear of $P(l)$. As in the L_∞ case, we need to compute the tree $T(H(h))$ for the set $H(h)$, which is comprised of all arcs of H below p_h , as follows.

Initially we have an empty tree $T(H(h))$. Let H' be the subset of the arcs of H^* vertically below p_h ; here H^* refers to the original set at the beginning of the event for p_h . The set H' has already been computed above. Let \mathcal{H}' be the subcollection of \mathcal{H} whose lowest arcs are in H' . We process the subsets $H(i_j)$ of \mathcal{H}' in the inverse order of their indices (for this, after identifying \mathcal{H}' , we can sort the subsets $H(i_j)$ of \mathcal{H}' by their indices in $O(|H'| \log m)$ time; note that $|H'| = |\mathcal{H}'|$), i.e., the subset of \mathcal{H}' with the largest index is processed first.

Suppose we are processing a subset $H(i_j)$ of \mathcal{H}' . Let s be the lowest arc of $H(i_j)$. Recall that we have performed a split operation on the tree $T(H(i_j))$ to obtain another tree consisting of all arcs of $H(i_j)$ below p_h , and we use $H'(i_j)$ to denote the set of those arcs and use $T(H'(i_j))$ to denote the tree. If $T(H(h))$ is empty, then we simply set $T(H(h)) = T(H'(i_j))$. Otherwise, we find the highest arc s' of $T(H(h))$ at l . If s is above s' at l , then every arc of $T(H'(i_j))$ is above all arcs of $T(H(h))$ at l and thus we simply perform a merge operation to merge $T(H'(i_j))$ with $T(H(h))$ (and we use $T(H(h))$ to refer to the new merged tree). Otherwise, we call (s, s') an *order-violation pair*. In this case, we do the following. We remove s from $T(H'(i_j))$ and insert it to $T(H(h))$. If $T(H'(i_j))$ becomes empty, then we finish processing $H(i_j)$. Otherwise, we find the new lowest arc of $T(H'(i_j))$, still denoted by s , and then process s in the same way as above.

The above describes our algorithm for processing a subset $H(i_j)$ of \mathcal{H}' . Once all subsets of \mathcal{H}' are processed, the tree $T(H(h))$ for the set $H(h)$ is obtained.

After processing the arcs of H^* as above, we also need to consider the arcs of $H(i_0)$. For this, we simply scan the arcs from low to high using the tree $T(H(i_0))$, and for each arc s , if s is above p_h , then we stop the procedure; otherwise, we remove s from $T(H(i_0))$ and insert it to $T(H(h))$.

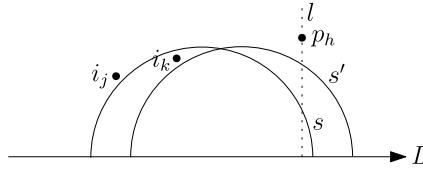


Fig. 14. Illustrating the proof of Lemma 20: the point i_k is vertically below s but vertically above s' .

This finishes our algorithm for processing the event at p_h . The runtime of this step is $O((1 + k_1 + k_2 + k_3) \cdot \log m)$ time, where k_1 is the number of middle bounding couples reported (the number of merge and split operations is at most k_1 ; also, $|H'| = k_1$), k_2 is the number of arcs of $H(i_0)$ got removed for constructing $T(H(h))$, and k_3 is the number of order-violation pairs. By Lemma 18, the total sum of k_1 is at most $2(n + m) + \kappa$ in the entire algorithm. As in the L_∞ case, the total sum of k_2 is at most m in the entire algorithm. The following lemma proves that the total sum of k_3 is at most κ . Therefore, the overall time of the algorithm is $O((n + m) \log(n + m) + \kappa \log m)$.

Lemma 20. *The total number of order-violation pairs in the entire algorithm is at most κ .*

Proof. We follow the notation defined above. Consider an order-violation pair (s, s') , which appears when we process a subset $H'(i_j)$ of H' for constructing $T(H(h))$ during an event at a point $p_h \in P$, such that $s \in H'(i_j)$ and $s' \in T(H(h))$. Without loss of generality, we assume that this is the first time that (s, s') ² appears as an order-violation pair in our entire algorithm. As we process the subsets of H' by their inverse index order, s' is from $H(i_k)$ for some k with $j < k \leq t$. Since (s, s') is an order-violation pair, by definition, s' is strictly above s at $x(l) = x(p_h)$; e.g., see Fig. 14. On the other hand, since $s' \in H(i_k)$, we know that p_{i_k} is vertically above s' . Since $s \in H(i_j)$ with $j < k$, p_{i_k} must be vertically below s . Thus, s is strictly above s' at $x(p_{i_k})$. This implies that the boundaries of s and s' must have an intersection strictly between p_{i_k} and p_h . We charge the pair (s, s') to that intersection. Because s and s' can have only one intersection, in the following we show that (s, s') will never appear as an order-violation pair again in the future algorithm.

First of all, according to our algorithm, (s, s') will not appear as an order-violation pair again during processing the event at p_h . After the event, both s and s' are in $H(h)$. Consider a future event for processing another point $p_{h'} \in P$. By our algorithm invariant (2), we have a collection \mathcal{H} of sets $H_{i'_j}$ with $j = 0, 1, \dots, t'$. Assume to the contrary that (s, s') appears as an order-violation pair again. Then, s and s' must be from two different sets of \mathcal{H} , e.g., $H_{i'_j}$ and $H_{i'_k}$. Without loss of generality, let $j < k$. By the same analysis as before, we can obtain that the boundaries of s and s' have an intersection q strictly between $p_{i'_j}$ and $p_{h'}$. Since both s and s' were in $H(h)$ right after the event at p_h , it must hold that $x(p_h) \leq x(p_{i'_j})$. Hence, $x(p_h) < x(q)$. But this incurs contradiction because we have shown before that the only intersection between the boundaries of s and s' is strictly to the left of p_h .

The above shows that (s, s') will appear as an order-violation pair exactly once in the entire algorithm, which is charged to their only intersection. Therefore, the total number of order-violation pairs in the entire algorithm is at most κ . \square

In summary, all middle bounding couples of \mathcal{C} can be computed in $O((n + m) \log(n + m) + \kappa \log m)$ time. Combining with Lemmas 18 and 19, Lemma 11 is proved.

7. The line-separable unit-disk coverage and the half-plane coverage

In this section, we show that our techniques for the line-constrained disk coverage problems can also be used to solve other geometric coverage problems.

Recall that the line-separable unit-disk coverage problem refers to the case in which P and centers of S are separated by a line ℓ and all disks of S have the same radius. Without loss of generality, we assume that ℓ is the x -axis and all points of P are above ℓ . Hence, for each disk s_i of S , the portion of s_i above ℓ is a subset of its upper half disk. Since disks of S have the same radius, the boundaries of any two disks intersect at most once above ℓ . We define κ as the number of pairs of disks whose boundaries intersect above ℓ . Due to the above properties, to solve the problem, we can simply use the same algorithm in Section 6 for the line-constrained L_2 case. Indeed, one can verify that the following critical lemmas that the algorithm relies on still hold: Lemmas 5, 6, 18, 19, and 20. By Theorem 5, we obtain the following.

Theorem 6. *Given in the plane a set P of n points and a set S of m weighted unit-disks such that P and centers of disks S are separated by a line ℓ , one can compute a minimum weight disk coverage for P in $O(nm \log(m + n))$ time or in $O((n + m) \log(n + m) + \kappa \log m)$ time, where κ is the number of pairs of disks of S whose boundaries intersect in the side of ℓ containing P .*

² We consider (s, s') as an unordered pair, so (s, s') is the same as (s', s) .

Remark. Note that although disks of S have the same radius, because their centers may not be on the same line, one can verify that Lemma 1 does not hold any more. Hence, we can not use the same algorithm as in Section 4 for the line-constrained unit-disk case. But if the centers of all disks of S lie on the same line parallel to ℓ (and below ℓ), then Lemma 1 will hold and thus we can use the same algorithm as in Section 4 to solve the problem in $O((n+m)\log(n+m))$ time.

We now consider the half-plane coverage problem. Given in the plane a set P of n points and a set S of weighted half-planes, the goal is compute a minimum weight half-plane coverage for P , i.e., compute a subset of half-planes to cover all points of P so that the total sum of the weights of the half-planes in the subset is minimized.

We start with the *lower-only case* where all half-planes of S are lower ones. The problem can be reduced to the line-separable unit-disk coverage problem. Indeed, we first find a horizontal line ℓ below all points of P . Then, since each half-plane h of S is a lower one, h can be considered as a disk of infinite radius with center below ℓ . In this way, S becomes a set of unit-disks whose centers are below ℓ . By Theorem 6, we have the following result.³

Theorem 7. *Given in the plane a set P of n points and a set S of m weighted lower half-planes, one can compute a minimum weight half-plane coverage for P in $O(nm\log(m+n))$ time or in $O(n\log n + m^2\log m)$ time.*

For the general case where S may contain both lower and upper half-planes, we reduce it to a set of $O(n^2)$ instances of the lower-only case, as follows.

Let S_{opt} denote the subset of S in an optimal solution. Har-Peled and Lee [17] observed that if the half-planes of S_{opt} together cover the entire plane then the size of S_{opt} is at most 3; in this case we can enumerate all subsets of S of cardinalities at most 3 and thus obtain an optimal solution in $O(n^3)$ time.

In the following we consider the case where the union of the half-planes of S_{opt} does not cover the entire plane. In this case, the complement of the union of the half-planes of S_{opt} is a (possibly unbounded) convex polygon R [17]. For the ease of discussion, we assume that R is bounded since the algorithm for the other case is similar. Let a and b refer to the leftmost and rightmost vertices of R , respectively. Let P_1 denote the subset of points of P below the line through a and b , and $P_2 = P \setminus P_1$. The two vertices a and b together partition the edges of R into two chains, a lower chain and an upper chain. Observe that the half-planes that are bounded by the supporting lines of the edges in the lower chain are all lower half-planes and they together cover P_1 ; similarly, the half-planes that are bounded by the supporting lines of the edges of the upper chain are all upper half-planes and they together cover P_2 . In light of the observation, finding a minimum weight coverage for P is equivalent to solving the following two lower-only case sub-problems: finding a minimum weight coverage for P_1 using lower half-planes of S and finding a minimum weight coverage for P_2 using upper half-planes of S . Because we do not know P_1 and P_2 , we enumerate all possible partitions of P by a line. Clearly, there are $O(n^2)$ such partitions. Hence, solving the half-plane coverage problem for P and S is reduced to $O(n^2)$ instances of the lower-only case. By Theorem 7, we can obtain the following result.

Theorem 8. *Given in the plane a set P of n points and a set S of m weighted half-planes, one can compute a minimum weight half-plane coverage for P in $O(n^3m\log(m+n))$ time or in $O(n^3\log n + n^2m^2\log m)$ time.*

8. Concluding remarks

We show that our line-constrained disk coverage problem has an $\Omega(n\log n)$ time lower bound in the algebraic decision tree model even for the 1D case.

The reduction is from the element uniqueness problem. Let $X = \{x_1, x_2, \dots, x_n\}$ be a set of n numbers, as an instance of the element uniqueness problem, which is to decide whether all elements of X are distinct. We create an instance of the 1D disk coverage problem with a point set P and a segment set S on the x -axis L as follows. For each $x_i \in X$, we create a point on L with x -coordinate equal to x_i and create a segment on L which is the above point with weight equal to 1. Let P be the set of all such points and let S be the set of all such segments. Then, $|P| = |S| = n$. It is not difficult to see that the numbers of X are distinct if and only if the optimal objective value of the 1D disk coverage problem is equal to n . As the element uniqueness problem has an $\Omega(n\log n)$ time lower bound under the algebraic decision tree model [27], the same lower bound also holds for our 1D disk coverage problem.

The lower bound implies that our algorithms for the 1D, unit-disk, L_1 , and L_∞ cases are all optimal when $m = O(n)$. An interesting open problem is whether faster algorithms exist for the L_2 case. Another direction is to investigate whether the L_2 case is 3SUM-hard; if yes, then it is quite likely that our algorithm is nearly optimal.

³ Another way to see this is the following. The main property our algorithm for Theorem 5 relies on is that the boundaries of any two disks intersect at most once above ℓ . This property certainly holds for half-planes of S and thus the algorithm is applicable.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] H. Alt, E.M. Arkin, H. Brönnimann, J. Erickson, S.P. Fekete, C. Knauer, J. Lenchner, J.S.B. Mitchell, K. Whittlesey, Minimum-cost coverage of point sets by disks, in: Proceedings of the 22nd Annual Symposium on Computational Geometry (SoCG), 2006, pp. 449–458.
- [2] C. Ambühl, T. Erlebach, M. Mihalák, M. Nunkesser, Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs, in: Proceedings of the 9th International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), and the 10th International Conference on Randomization and Computation (RANDOM), 2006, pp. 3–14.
- [3] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric intersections, *IEEE Trans. Comput.* 28 (9) (1979) 643–647.
- [4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, *Computational Geometry – Algorithms and Applications*, 3rd edition, Springer-Verlag, Berlin, 2008.
- [5] V. Bilò, I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, Geometric clustering to minimize the sum of cluster sizes, in: Proceedings of the 13th European Symposium on Algorithms (ESA), 2005, pp. 460–471.
- [6] A. Biniaz, P. Bose, P. Carmi, A. Maheshwari, I. Munro, M. Smid, Faster algorithms for some optimization problems on collinear points, in: Proceedings of the 34th International Symposium on Computational Geometry (SoCG), 2018, 8.
- [7] K.Q. Brown, Comments on “Algorithms for reporting and counting geometric intersections”, *IEEE Trans. Comput.* 30 (1981) 147–148.
- [8] T.M. Chan, E. Grant, Exact algorithms and APX-hardness results for geometric packing and covering problems, *Comput. Geom. Theory Appl.* 47 (2014) 112–124.
- [9] D.Z. Chen, Y. Gu, J. Li, H. Wang, Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain, *Discrete Comput. Geom.* 50 (2013) 374–408.
- [10] F. Claude, G.K. Das, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, B.G. Nickerson, A. Salinger, An improved line-separable algorithm for discrete unit disk cover, *Discrete Math. Algorithms Appl.* 2 (2010) 77–88.
- [11] F. Claude, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, A. Salinger, Practical discrete unit disk cover using an exact line-separable algorithm, in: Proceedings of the 20th International Symposium on Algorithm and Computation (ISAAC), 2009, pp. 45–54.
- [12] S. Dobrev, S. Durocher, M. Eftekhari, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opatrny, S. Shende, J. Urrutia, Complexity of barrier coverage with relocatable sensors in the plane, *Theor. Comput. Sci.* 579 (2015) 64–73.
- [13] H. Edelsbrunner, E.P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, *ACM Trans. Graph.* 9 (1990) 66–104.
- [14] M. Eftekhari, P. Flocchini, L. Narayanan, J. Opatrny, N. Santoro, On synchronization and orientation in distributed barrier coverage with relocatable sensors, *Theor. Comput. Sci.* 887 (2021) 1–10.
- [15] T. Feder, D.H. Greene, Optimal algorithms for approximate clustering, in: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), 1988, pp. 434–444.
- [16] U. Feige, A threshold of $\ln n$ for approximating set cover, *J. ACM* 45 (1998) 634–652.
- [17] S. Har-Peled, M. Lee, Weighted geometric set cover problems revisited, *J. Comput. Geom.* 3 (2012) 65–85.
- [18] D.S. Hochbaum, W. Maass, Fast approximation algorithms for a nonconvex covering problem, *J. Algorithms* 3 (1987) 305–323.
- [19] A. Karmakar, S. Das, S.C. Nandy, B.K. Bhattacharya, Some variations on constrained minimum enclosing circle problem, *J. Comb. Optim.* 25 (2) (2013) 176–190.
- [20] N. Lev-Tov, D. Peleg, Polynomial time approximation schemes for base station coverage with minimum total radii, *Comput. Netw.* 47 (2005) 489–501.
- [21] J. Li, Y. Jin, A PTAS for the weighted unit disk cover problem, in: Proceedings of the 42nd International Colloquium on Automata, Languages and Programming (ICALP), 2015, pp. 898–909.
- [22] S. Li, H. Wang, Algorithms for covering multiple barriers, *Theor. Comput. Sci.* 758 (2019) 61–72.
- [23] C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, *J. ACM* 41 (1994) 960–981.
- [24] N.H. Mustafa, R. Raman, S. Ray, Settling the APX-hardness status for geometric set cover, in: Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2014, pp. 541–550.
- [25] N.H. Mustafa, S. Ray, PTAS for geometric hitting set problems via local search, in: Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG), 2009, pp. 17–22.
- [26] L. Pedersen, H. Wang, On the coverage of points in the plane by disks centered at a line, in: Proceedings of the 30th Canadian Conference on Computational Geometry (CCCG), 2018, pp. 158–164.
- [27] F.P. Preparata, M.I. Shamos, *Computational Geometry: An Introduction*, Springer-Verlag, New York, 1985.
- [28] H. Wang, J. Zhang, Line-constrained k -median, k -means, and k -center problems in the plane, *Int. J. Comput. Geom. Appl.* 26 (2016) 185–210.