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We consider the problem of computing the diameter of a unicycle graph (i.e., a graph 
with a unique cycle). We present an O (n) time algorithm for the problem, where n is the 
number of vertices of the graph. This improves the previous best O (n logn) time solution 
[Oh and Ahn, ISAAC 2016]. Using this algorithm as a subroutine, we solve the problem of 
adding a shortcut to a tree so that the diameter of the new graph (which is a unicycle 
graph) is minimized; our algorithm takes O (n2 logn) time and O (n) space. The previous 
best algorithms solve the problem in O (n2 log3 n) time and O (n) space [Oh and Ahn, ISAAC 
2016], or in O (n2) time and O (n2) space [Bilò, ISAAC 2018].

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph of n vertices such that each edge has a positive length. A shortest path connecting two vertices s and 
t in G is a path of minimum total edge length; the length of the shortest path is also called the distance between s and t
in G . The diameter of G is the maximum distance between all pairs of vertices of G . G is a unicycle graph if it has only one 
cycle, i.e., G is a tree plus an additional edge.

We consider the problem of computing the diameter of a unicycle graph G . Previously, Oh and Ahn [20] solved the 
problem in O (n log n) time, where n is the number of vertices of G . We present an improved algorithm of O (n) time. 
Using our new algorithm, we also solve the diameter-optimally augmenting tree (DOAT for short) problem, defined as fol-
lows.

Let T be a tree of n vertices such that each edge has a positive length. We want to add a new edge (called shortcut) to 
T such that the new graph (which is a unicycle graph) has the minimum diameter. We assume that there is an oracle that 
returns the length of any given shortcut in O (1) time. Previously, Oh and Ahn [20] solved the problem in O (n2 log3 n) time 
and O (n) space, and Bilò [3] reduced the time to O (n2) but the space increases to O (n2). As observed by Oh and Ahn [20], 
the problem has an �(n2) lower bound on the running time as all �(n2) possible shortcuts have to be checked in order to 
find an optimal shortcut. Hence, Bilò’s algorithm is time-optimal. In this paper, we propose an algorithm with a better time 
and space trade-off, and our algorithm uses O (n2 log n) time and O (n) space.
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(WALCOM 2021). This research was supported in part by NSF under Grant CCF-2005323.
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1.1. Related work

The diameter is an important measure of graphs and computing it is one of the most fundamental algorithmic graph 
problems. For general graphs or even planar graphs, the only known way to compute the diameter is to first solve the all-
pair-shortest-path problem (i.e., compute the distances of all pairs of vertices of the graph), which inherently takes �(n2)

time, e.g., [11,25]. Better algorithms exist for special graphs. For example, the diameter of a tree can be computed in linear 
time, e.g., by first computing its center [19]. If G is an outerplanar graph and all edges have the same length, its diameter 
can be computed in linear time [10]. The diameter of interval graphs (with equal edge lengths) can also be computed in 
linear time [21]. Our result adds the unicycle graph (with different edge lengths) to the linear-time solvable graph category.

The DOAT problem and many of its variations enjoy an increasing interest in the research community. If the tree T is 
embedded in a metric space (so that the triangle inequality holds for edge lengths), Große et al. [15] first solved the problem 
in O (n2 log n) time. Bilò [3] later gave an O (n log n) time and O (n) space algorithm, and another (1 + ε)-approximation 
algorithm of O (n + 1

ε log 1
ε ) time and O (n + 1

ε ) space for any ε > 0. A special case where T is a path embedded in a metric 
space was first studied by Große et al. [14], who gave an O (n log3 n) time algorithm, and the algorithm was later improved 
to O (n log n) time by Wang [23]. Hence, Bilò’s work [3] generalizes Wang’s result [23] to trees.

A variant of the DOAT problem which aims to minimize the continuous diameter, i.e., the diameter of T is measured with 
respect to all the points of the tree (including the points in the interior of the edges), has also been studied. If T is a path 
embedded in the Euclidean plane, De Carufel et al. [5] solved the problem in O (n) time. If T is a tree embedded in a metric 
space, De Carufel et al. [6] gave an O (n log n) time algorithm. If T is a general tree, Oh and Ahn [20] solved the problem in 
O (n2 log3 n) time and O (n) space.

The DOAT problem is to minimize the diameter. The problem of minimizing the radius was also considered. For the case 
where T is a path embedded in a metric space, Johnson and Wang [17] presented a linear time algorithm which adds a 
shortcut to T so that the radius of the resulting graph is minimized. The radius considered in [17] is defined with respect 
to all points of T , not just the vertices. Wang and Zhao [24] studied the same problem with radius defined with respect to 
only the vertices, and they gave a linear time algorithm.

The more general problem in which one wants to add k shortcuts to a graph to minimize the diameter is NP-hard [22]
and some variations are even W[2]-hard [12,13]. Approximation algorithms have been proposed [4,7,9,12,18]. The upper 
and lower bounds on the values of diameters of certain augmented graphs were also studied, e.g., [1,8,16]. Bae et al. [2]
considered the problem of adding k shortcuts to a circle in the plane to minimize the diameter of the resulting graph.

1.2. Our approach

To compute the diameter of a unicycle graph G , Oh and Ahn [20] reduces the problem to a geometric problem and then 
uses a one-dimensional range tree to solve the problem. We take a completely different approach. Let C be the unique cycle 
of G . We define certain “domination” relations on the vertices of C so that if a vertex v is dominated by another vertex 
then v is not important to the diameter. We then present a pruning algorithm to find all undominated vertices (and thus 
those dominated vertices are “pruned”); it turns out that finding the diameter among the undominated vertices is fairly 
easy. In this way, we compute the diameter of G in linear time.

For the DOAT problem on a tree T , Oh and Ahn [20] considered all possible shortcuts of T by following an Euler tour of 
T ; they used the aforementioned one-dimensional range tree to update the diameter for the next shortcut. Bilò’s method [3]
is to transform the problem to adding a shortcut to a path whose edge lengths satisfy a property similar in spirit to the 
triangle inequality (called graph-triangle inequality) and then the problem on P can be solved by applying the O (n log n)

time algorithm for trees in metric space [3]. Unfortunately, the problem transformation algorithm relies on using O (n2)

space to store the lengths of all possible �(n2) shortcuts of T . The algorithm has to consider all these �(n2) shortcut 
lengths in a global manner and thus it inherently uses �(n2) space. Note that Bilò’s method [3] does not need an algorithm 
for computing the diameter of a unicycle graph.

We propose a novel approach. We first compute a diametral path P of T . Then we reduce the DOAT problem on T
to finding a shortcut for P . To this end, we consider vertices of P individually. For each vertex vi of P , we want to find 
an optimal shortcut with the restriction that it must connect vi , dubbed a vi -shortcut. For this, we define a “domination” 
relation on all vi -shortcuts and we show that those shortcuts dominated by others are not important. We then design a 
pruning algorithm to find all shortcuts that are not dominated by others; most importantly, these undominated shortcuts 
have certain monotonicity properties that allow us to perform binary search to find an optimal vi -shortcut by using our 
diameter algorithm for unicycle graphs as a subroutine. With these efforts, we find an optimal vi -shortcut in O (n log n) time 
and O (n) space. The space can be reused for computing optimal vi -shortcuts of other vertices of P . In this way, the total 
time of the algorithm is O (n2 log n) and the space is O (n).

Outline. In the following, we present our algorithm for computing the diameter of a unicycle graph in Section 2. Section 3
is concerned with the DOAT problem.

2. Computing the diameter of unicycle graphs

In this section, we present our linear time algorithm for computing the diameter of unicycle graphs.
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For a subgraph G ′ of a graph G and two vertices u and v from G ′ , we use πG ′ (u, v) to denote a shortest path from u
to v in G ′ and use dG ′ (u, v) to denote the length of the path. We use �(G) to denote the diameter of G . A pair of vertices 
(u, v) is called a diametral pair and πG(u, v) is called a diametral path if dG (u, v) = �(G).

In the following, let G be a unicycle graph of n vertices. Our goal is to compute the diameter �(G) (along with a 
diametral pair). Let C denote the unique cycle of G .

2.1. Observations

Removing all edges of C (while keeping its vertices) from G results in a forest. Each component is a tree that contains 
a vertex v of C ; we use T (v) to denote the tree. Let v1, v2, . . . , vm be the vertices ordered clockwise on C . Let T (G) =
{T (vi) | 1 ≤ i ≤ m}. Note that the sets of vertices of all trees of T (G) form a partition of the vertex set of G .

Consider a diametral pair (u∗, v∗) of G . There are two cases: (1) both u∗ and v∗ are in the same tree of T (G); (2) u∗
and v∗ are in two different trees of T (G). To handle the first case, we compute the diameter of each tree of T (G), which 
can be done in linear time (e.g., using the algorithm of [19]). Computing the diameters for all trees takes O (n) time. The 
longest diameter of these trees is the diameter of G . In the following, we focus on the second case.

Suppose T (vi) contains u∗ and T (v j) contains v∗ for i �= j. Observe that the diametral path πG (u∗, v∗) is the concate-
nation of the following three paths: πT (vi )(u∗, vi), πC (vi, v j), and πT (v j)(v j, v∗). Further, u∗ is the farthest vertex in T (vi)

from vi ; the same holds for v∗ and T (v j). On the basis of these observations, we introduce some concepts as follows.
For each vertex vi ∈ C , we define a weight w(vi) as the length of the path from vi to its farthest vertex in T (vi). 

The weights for all vertices on C can be computed in total O (n) time. With this definition in hand, we have �(G) =
max1≤i< j≤m(w(vi) + dC (vi, v j) + w(v j)). We say that (vi, v j) is a vertex-weighted diametral pair of C if T (vi) contains u∗
and T (v j) contains v∗ for a diametral pair (u∗, v∗) of G . To compute �(G), it suffices to find a vertex-weighted diameter 
pair of C .

We introduce a domination relation for vertices on C .

Definition 1. For two vertices vi, v j ∈ C , we say that vi dominates v j if w(vi) > w(v j) + dC (vi, v j).

The following lemma shows that if a vertex is dominated by another vertex, then it is not “important”.

Lemma 2. For two vertices vi and v j of C , if vi dominates v j , then v j cannot be in any vertex-weighted diametral pair of C unless 
(vi, v j) is such a pair.

Proof. We assume that (vi, v j) is not a vertex-weighted diametral pair. Assume to the contrary that (vk, v j) is a vertex-
weighted diametral pair of C . Then, k �= i and �(G) = w(vk) + dC (vk, v j) + w(v j). Note that dC (vk, v j) ≤ dC (vk, vi) +
dC (vi, v j) holds. Since vi dominates v j , we have w(vi) > w(v j) + dC (vi, v j). Consequently, we can derive

�(G) = w(vk) + dC (vk, v j) + w(v j)

≤ w(vk) + dC (vk, vi) + dC (vi, v j) + w(v j)

< w(vk) + dC (vk, vi) + w(vi).

But this contradicts with the definition of �(G). The lemma thus follows. �
2.2. A pruning algorithm

In the sequel, we describe a linear time pruning algorithm to find all vertices of C that are dominated by other vertices 
(and thus those dominated vertices are “pruned”). As will be seen later, the diameter can be easily found after these vertices 
are pruned.

Let |C | denote the sum of the lengths of all edges of C . For any vertex vi of C , we define Cccw (vi) as the set of vertices 
v j of C such that the path from vi to v j counterclockwise along C has length at most |C |/2 (e.g., see Fig. 1); define Ccw (vi)

as the set of vertices of C not in Cccw(vi). We assume that vi /∈ Cccw(vi) and vi /∈ Ccw(vi).

Lemma 3. With O (n) time preprocessing, given any two vertices vi and v j of C , we can do the following in O (1) time: (1) compute 
dC (vi, v j); (2) determine whether v j is in Cccw(vi); (3) determine whether one of vi and v j dominates the other.

Proof. We first compute the weight w(vi) for all vertices vi ∈ C . This can be done in O (n) time. Then, we compute the 
length |C |. Next, by scanning the vertices v1, v2, . . . , vm on C , we compute an array A[1, . . . , m] with A[i] equal to the 
length of the path from v1 to vi clockwise along C . Hence, for any 1 ≤ i < j ≤ m, A[ j] − A[i] is the length of the path from 
vi to v j clockwise along C and |C | − (A[ j] − A[i])) is the length of the path from vi to v j counterclockwise along C . Note 
that dC (vi, v j) = min{A[ j] − A[i], |C | − (A[ j] − A[i])}.
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Fig. 1. Illustrating the definitions of Cccw (vi) (the disks except vi ) and Ccw (vi) (the squares). We assume that p is a point on C that together with vi

partitions C into two half-cycles of equal length.

Consider any two vertices vi and v j of C . Without loss of generality, we assume i < j. By comparing A[ j] − A[i] with 
|C |/2, we can determine whether v j is in Cccw(vi) in O (1) time. As w(vi) and w(v j) are both available, whether one of vi
and v j dominates the other can be determined in O (1) time. �

With Lemma 3 in hand, starting from v1, our pruning algorithm processes the vertices of C from v1 to vm in order (see 
Algorithm 1 for the pseudocode). The algorithm maintains a stack S , which is empty initially. Consider a vertex vi . If S = ∅, 
then we push vi into S . Otherwise, let v be the vertex at the top of S . If v is not in Cccw(vi), then we also push vi into 
S . Otherwise, we check whether one of v and vi dominates the other. If they do not dominate each other, then we push 
vi into S . Otherwise, if vi dominates v , we pop v out of S , and then we continue to pop the new top element v of S out 
as long as the following three conditions are all satisfied: (1) S �= ∅; (2) v ∈ Cccw(vi); (3) vi dominates v . Once one of the 
three conditions is not satisfied, we push vi into S . If v dominates vi , we do nothing.

After vm is processed, the first stage of the pruning algorithm is over. In the second stage, we process the vertices in the 
stack S in a bottom-up manner until a vertex not in Ccw (v1); the processing of a vertex is done in the same way as above 
(the vertex should be removed from S first). Specifically, let vi be the vertex at the bottom of S . If vi is not in Ccw (v1), 
then we stop the algorithm and return the vertices in the current stack S . Otherwise, we remove vi from S and then apply 
the same processing algorithm as above in the first stage (i.e., begin with checking whether S is empty).

Intuitively, the first stage of the algorithm does a “full-cycle” scan on C while the second stage does a “half-cycle” scan 
(i.e., the half-cycle clockwise from v1). With Lemma 3, the algorithm can be implemented in O (n) time. The following 
lemma establishes the correctness of the algorithm.

Lemma 4. Let S be the stack after the algorithm is over.

1. Each vertex of C that is not in S is dominated by a vertex in S.
2. No two vertices of S dominate each other.

Proof. We first prove an observation about two transitive properties of the domination relation, which will be used to prove 
the lemma.

Observation 1. Let vi, v j, vk be any three vertices of C. We have the following transitive properties.

1. If vi dominates v j and v j dominates vk, then vi dominates vk.
2. If vi and v j do not dominate each other, v j and vk do not dominate each other, and dC (vi, vk) = dC (vi, v j) + dC (v j, vk), then 

vi and vk do not dominate each other.

Proof of Observation 1.

1. Since vi dominates v j and v j dominates vk , we have w(vi) > w(v j) +dC (vi, v j) and w(v j) > w(vk) +dC (v j, vk). Thus, 
w(vi) > w(vk) + dC (v j, vk) + dC (vi, v j) ≥ w(vk) + dC (vi, vk). Hence, vi dominates vk .

2. As vi and v j do not dominate each other, w(vi) ≤ w(v j) + dC (vi, v j). As v j and vk do not dominate each other, 
w(v j) ≤ w(vk) + dC (v j, vk). Since dC (vi, vk) = dC (vi, v j) + dC (v j, vk), we have

w(vi) ≤ w(v j) + dC (vi, v j) ≤ w(vk) + dC (v j, vk) + dC (vi, v j) = w(vk) + dC (vi, vk),

and

w(vk) ≤ w(v j) + dC (v j, vk) ≤ w(vi) + dC (vi, v j) + dC (v j, vk) = w(vi) + dC (vi, vk).

Therefore, vi and vk do not dominate each other.
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Algorithm 1: The pruning algorithm.

Function ProcessVertex(vi , S):
if S == ∅ then

S.push(vi) // Push vertex vi into the stack
end
else

v ← S.top() // S.top() is the top element of the stack
if v /∈ Cccw (vi) then

S.push(vi)

end
else if vi and v do not dominate each other then

S.push(vi)

end
else if vi dominates v then

S.pop() // Pop the top element out of S
while S �= ∅ and S.top() ∈ Cccw (vi) and vi dominates S.top() do

S.pop()

end
S.push(vi)

end
end

end
Function Main(S = ∅, C):

// the full-cycle scan
S = ∅
for i = 1, 2, ..., m do

ProcessVertex(vi , S) // Call ProcessVertex function on vi

end
// the half-cycle scan
vi ← the bottom element of S
while vi ∈ Ccw (v1) do

Remove vi from S
ProcessVertex(vi , S)
vi ← the bottom element of S

end
return S

end

This proves Observation 1.

We are now in a position to prove the lemma.

Proof of Lemma 4(1). We start with the first lemma statement. Consider a vertex vi of C that is not in S . According to 
Algorithm 1, vi may or may not be processed in the second stage. If vi is processed in the second stage, then vi was 
pushed into S during the first stage but is removed from S in the second stage (hence vi was processed twice in the 
algorithm). If vi is not processed in the second stage, then vi was not in S at the end of the first stage (hence vi is 
processed only once in the algorithm). In either case, vi must be dominated by a vertex v j that was in S . If v j is still in 
S at the end of Algorithm 1, then Lemma 4(1) is proved; otherwise, we can prove inductively that v j is dominated by a 
vertex vk in S . By Observation 1, vi is dominated by vk and thus Lemma 4(1) follows.

Proof of Lemma 4(2). We next prove the second lemma statement. We first prove a claim: at any moment during Algo-
rithm 1, for any two vertices v and u of S such that v is above u in the stack S and u ∈ Cccw(v), v and u do not dominate 
each other. We use mathematical induction to prove it, as follows.

The claim is vacuously true in the beginning of the algorithm because S = ∅. We assume that the claim holds on S right 
before a vertex vi is processed. We show below that the claim still holds on S after vi is processed. We first consider the 
processing of vi in the first stage of the algorithm. Let S refer to the stack right before vi is processed. Let v be the top 
element of S if S �= ∅. According to Algorithm 1, vi is pushed into S in the following four cases.

1. S = ∅. In this case, S = {vi} after vi is processed. Hence, the claim trivially holds.
2. S �= ∅, and v /∈ Cccw(vi). In this case, Cccw (vi) ∩ S = ∅, and thus the claim holds after vi is processed.
3. S �= ∅, v ∈ Cccw(vi), and v and vi do not dominate each other. Let v j be any vertex of S such that v j ∈ Cccw(vi). To 

prove the lemma, it suffices to show that v j and vi do not dominate each other.
Indeed, if v j = v , then we know that v and vi dot not dominate each other. Otherwise, v j is below v . As v j ∈ Cccw(vi), 
since v ∈ Cccw(vi), v j is also in Cccw (v). Since v is above v j in S , by the induction hypothesis v j and v do not dominate 
each other. Since both v j and v are in Cccw(vi), dC (vi, v j) = dC (vi, v) + dC (v, v j) holds. By Observation 1, vi and v j

do not dominate each other. Hence, the claim holds after vi is processed.
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4. S �= ∅, v ∈ Cccw(vi), and vi dominates v . In this case, vi is pushed into S after some vertices including v are popped 
out of S . First of all, since the claim holds on S , after vertices popped out of S , the claim still holds on the new S . Let 
S refer to the stack right before vi is pushed in. Hence, the claim holds on S .
If S = ∅, then the claim still holds after vi is pushed in since vi will be the only vertex in S . Otherwise, let v ′ be the 
top element of S . If v ′ /∈ Cccw(vi), then the claim still holds on S after vi is pushed in. Otherwise, vi does not dominate 
v ′ and both v and v ′ are in Cccw(vi), and thus v ′ is in Cccw(v). By the induction hypothesis, v and v ′ do not dominate 
each other. As vi dominates v , v ′ cannot dominate vi since otherwise v ′ would dominate v by Observation 1. Hence, 
vi and v ′ do not dominate each other. By the same argument as the above third case, v j and vi do not dominate each 
other for any vertex v j of S with v j ∈ Cccw(vi). Hence, the claim holds after vi is pushed into S .

The above proves that the claim still holds after vi is processed in the first stage of the algorithm. Now consider pro-
cessing vi in the second stage. If vi /∈ Ccw(v1), then the algorithm stops without changing S and thus the claim still holds 
on S . Otherwise, vi is removed from S , after which the claim still holds on S . Next, the algorithm processes vi in the same 
way as in the first stage and thus we can use the same argument as above to prove that the claim still holds after vi is 
processed. This proves the claim.

In the sequel we prove Lemma 4(2) by using the claim.
Consider two vertices vi and v j in S at the end of Algorithm 1. Notice that either vi ∈ Cccw(v j) or v j ∈ Cccw(vi). Without 

loss of generality, we assume that the former case holds. Our goal is to show that vi and v j do not dominate each other.
If v j is above vi in S at the end of Algorithm 1, then by the above claim, v j and vi do not dominate each other. 

Otherwise, according to Algorithm 1, vi must be last pushed into S in the second stage while v j must be last pushed into 
S in the first stage. Further, vi was also pushed into S in the first stage before v j was processed and vi was never popped 
out of S in the first stage. Hence, at the moment of Algorithm 1 right before v j was processed, vi was already in S . At the 
moment of Algorithm 1 right after v j was processed, v j was at the top of S and vi was also in S . Since vi ∈ Cccw(v j), by 
the above claim, v j and vi do not dominate each other. This proves Lemma 4(2). �
2.3. Computing the diameter

In the following, we use S to refer to the stack after the pruning algorithm. Note that S cannot be empty. The following 
lemma shows how S can help to find a vertex-weighted diametral pair of C .

Lemma 5. If |S| = 1, then any vertex-weighted diametral pair of C must contain the only vertex in S. Otherwise, for any vertex v of C
that is not in S, v cannot be in any vertex-weighted diametral pair of C.

Proof. Suppose |S| = 1 and let v be the only vertex in S . Then, by Lemma 4, every vertex of C \ {v} is dominated by v . Let 
(u∗, v∗) be a vertex-weighted diametral pair of C . At least one of u∗ and v∗ is not v . Without loss of generality, we assume 
u∗ �= v . Hence, u∗ is dominated by v . Since (u∗, v∗) is a vertex-weighted diametral pair, by Lemma 2, v∗ must be v . This 
proves the lemma for the case |S| = 1.

Now assume |S| > 1. Let v be a vertex of C that is not in S . By Lemma 4, S has a vertex u that dominates v . Assume 
to the contrary that v is in a vertex-weighted diametral pair. Then by Lemma 2, the pair must be (u, v). As |S| > 1, S
has another vertex u′ that is not in {u, v}. Since u dominates v , we have w(u) > w(v) + dC (u, v). Since u and u′ do not 
dominate each other, we have w(u) ≤ w(u′) + dC (u, u′). Consequently, we can derive

w(u) + dC (u, u′) + w(u′) ≥ w(u) + w(u) > w(u) + dC (u, v) + w(v).

But this incurs contradiction since (u, v) is a vertex-weighted diametral pair. �
In light of Lemma 5, if |S| = 1, we compute the diameter �(G) as follows. Let v be the only vertex in S . We find the 

vertex u ∈ C \ {v} that maximizes the value w(u) + dC (u, v) + w(v), which can be done in O (n) time with Lemma 3. By 
Lemma 5, (u, v) is a vertex-weighted diametral pair and �(G) = w(u) + dC (u, v) + w(v).

If |S| > 1, by Lemma 5, �(G) = maxu,v∈S(w(u) + dC (u, v) + w(v)). The following lemma finds a vertex-weighted diame-
tral pair and thus computes �(G) in linear time.

Lemma 6. A pair (u, v) of vertices in S that maximizes the value w(u) + dC (u, v) + w(v) can be found in O (n) time.

Proof. Consider a vertex u ∈ S . Let vi and v j be two vertices in S ∩ Ccw(u) such that dC (u, vi) < dC (u, v j) (e.g., see Fig. 2). 
Note that dC (u, v j) = dC (u, vi) + dC (vi, v j). We claim that w(u) + dC (u, vi) + w(vi) ≤ w(u) + dC (u, v j) + w(v j). Indeed, 
by Lemma 4(2), vi and v j do not dominate each other. Hence, w(u) + dC (u, vi) + w(vi) ≤ w(u) + dC (u, vi) + w(v j) +
dC (vi, v j) = w(u) + dC (u, v j) + w(v j). The claim follows. The claim implies that if we consider the vertices v of S ∩ Ccw(u)

from u along C in clockwise order, then the value w(u) + dC (u, v) + w(v) is monotonically increasing. Similarly, if we 
consider the vertices v of S ∩ Cccw(u) from u along C in counterclockwise order, then the value w(u) + dC (u, v) + w(v) is 
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Fig. 2. Illustrating the proof of Lemma 6: we assume that p is a point on C that together with u partitions C into two half-cycles of equal length.

monotonically increasing. Let ucw (resp., uccw ) refer to the farthest vertex from u in Ccw(u) (resp., Cccw(u)); e.g., see Fig. 2. 
Based on the above discussion, it holds that maxv∈S\{u}(w(u) +dC (u, v) + w(v)) = max{w(u) +dC (u, ucw) + w(ucw ), w(u) +
dC (u, uccw) + w(uccw)}.

To find ucw and uccw , notice that if we traverse the vertices u of S along C in clockwise order, then both ucw and uccw

are also ordered along C in clockwise order. Hence, ucw and uccw for all vertices u of S can be found in total O (n) time 
by traversing the vertices of S along C . Consequently, we have maxu,v∈S((w(u) + dC (u, v) + w(v)) = maxu∈S max{w(u) +
dC (u, ucw) + w(ucw), w(u) + dC (u, uccw) + w(uccw)}, which can be computed in O (n) time. �

The proof of the following theorem summarizes our algorithm.

Theorem 7. The diameter (along with a diametral pair) of a unicycle graph can be computed in linear time.

Proof. Recall that there are two cases for a diametral pair (u∗, v∗) of G: (1) both u∗ and v∗ are in the same tree of T (G); 
(2) u∗ and v∗ are in two different trees of T (G).

• The first case can be handled by computing the diameter and the corresponding diametral pair of each tree of T (G), 
which can be done in total O (n) time. The longest diameter of these trees is kept as a candidate diameter of G and the 
corresponding diametral pair is kept as a candidate diametral pair.

• For the second case, we first compute the weights w(vi) for all vertices vi of the cycle C ; for each vi , we also store 
its farthest vertex f (vi) in T (vi). Then, we perform the preprocessing of Lemma 3. Next, we run the pruning algorithm 
to obtain S . If |S| = 1, we find a vertex-weighted diametral pair of C as described above; otherwise, we use Lemma 6
to find such a pair. In either case, let (u, v) denote the pair. Then, a candidate diameter is w(u) + dC (u, v) + w(v). In 
addition, ( f (u), f (v)) is a candidate diametral pair of G .

We compare the candidate diameters obtained from the above two cases and return the larger one as the diameter of 
G; the corresponding diametral pair is a diametral pair of G . The running time of the overall algorithm is O (n). �
3. The Diameter-Optimally Augmenting Trees (DOAT)

In this section, we solve the DOAT problem in O (n2 log n) time and O (n) space. Our algorithm for computing the diam-
eter of a unicycle graph will be used as a subroutine.

3.1. Observations

We follow the same notation as in Section 2 such as πG ′ (s, t), dG ′(s, t), �(G).
Let T be a tree of n vertices such that each edge of T has a positive length. For any two vertices u and v of T , we 

use e(u, v) to refer to the shortcut connecting u and v; note that even if T already has an edge connecting them, we can 
always assume that there is an alternative shortcut (or we could also consider the shortcut as the edge itself with the same 
length). Let |e(u, v)| denote the length of e(u, v). Again, there is an oracle that can return the value |e(u, v)| in O (1) time 
for any shortcut e(u, v). Denote by T + e(u, v) the graph after adding e(u, v) to T . The goal of the DOAT problem is to find 
a shortcut e(u, v) so that the diameter of the new graph �(T + e(u, v)) is minimized. Let �∗(T ) be the diameter of an 
optimal solution. In the following we assume that �∗(T ) < �(T ), since otherwise any shortcut would be sufficient.

For any shortcut e(u, v), T has a unique path πT (u, v) between u and v . We make an assumption that |e(u, v)| <
dT (u, v) since otherwise e(u, v) can never be used (indeed, whenever e(u, v) was used in a shortest path, we could always 
replace it with πT (u, v) to get a shorter path). This assumption is only for the argument of the correctness of our algorithm; 
the algorithm itself still uses the true value of |e(u, v)| (this does not affect the correctness, because if |e(u, v)| ≥ dT (u, v), 
then e(u, v) cannot be an optimal shortcut). For the reference purpose, we refer to this assumption as the shortcut length 
assumption.
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Fig. 3. Illustrating the case {k,h} ∩ {i, j} = ∅.

At the outset, we compute a diametral path P of T in O (n) time. Let v1, v2, . . . , vm be the vertices of P ordered along 
it. Removing the edges of P from T results in m connected components of T , each of which is a tree containing a vertex of 
P ; we let T (vi) denote the tree containing vi . For each vi , we define a weight w(vi) as the distance from vi to its farthest 
vertex in T (vi). Let T = {T (vi) | 1 ≤ i ≤ m}.

For any pair (i, j) of indices with 1 ≤ i < j ≤ m, we define a critical pair of vertices (x, y) with x ∈ T (vi) and y ∈ T (v j)

such that they minimize the value dT (vi )(vi, x′) +|e(x′, y′)| +dT (v j)(y′, v j) among all vertex pairs (x′, y′) with x′ ∈ T (vi) and 
y′ ∈ T (v j).

The following lemma will be used on several occasions later on.

Lemma 8. For any vertex v in any tree T (vk) ∈ T , it holds that dT (vk)(v, vk) ≤ min{dT (v1, vk), dT (vk, vm)}. Also, dT (v1, vk) =
dP (v1, vk) and dT (vk, vm) = dP (vk, vm).

Proof. Assume to the contrary that dT (vk)(v, vk) > min{dT (v1, vk), dT (vk, vm)}. Without loss of generality, we assume 
dT (vk)(v, vk) > dT (v1, vk). Then, dT (v, vm) = dT (vk)(v, vk) + dT (vk, vm) > dT (v1, vk) + dT (vk, vm) = dT (v1, vm) = �(T ), a 
contradiction.

The second part of the lemma holds because P is a path of T . �
The following lemma demonstrates why critical pairs are “critical”.

Lemma 9. Suppose e(u∗, v∗) is an optimal shortcut with u∗ ∈ T (vi) and v∗ ∈ T (v j). Then, i �= j and any critical pair of (i, j) also 
defines an optimal shortcut.

Proof. Because P is a diametral path of T , if i = j, then P is still the shortest path from v1 to vm in the new graph 
T + e(u∗, v∗), and thus we have �∗ = dT +e(u∗,v∗)(v1, vm) = dT (v1, vm) = �(T ). But this contradicts with our assumption 
�∗ < �(T ). Hence, i �= j.

Let (x, y) be a critical pair of (i, j) with x ∈ T (vi) and y ∈ T (v j). Define φ(vi, v j) = dT (vi )(vi, x) + |e(x, y)| + dT (v j)(v j, y)

and φ∗(vi, v j) = dT (vi )(vi, u∗) +|e(u∗, v∗)| +dT (v j)(v j, v∗). By the definition of critical pairs, we have φ(vi, v j) ≤ φ∗(vi, v j). 
Also, due to the shortcut length assumption, it holds that φ(vi , v j) ≤ |e(vi, v j)| < dT (vi, v j).

In the following, we prove that dT +e(x,y)(u, v) ≤ �(T + e(u∗, v∗)) for any two vertices u, v ∈ T . This will prove the 
lemma. To simplify the notation, let Txy = T + e(x, y) and T ∗ = T + e(u∗, y∗).

First of all, if dT ∗ (u, v) = dT (u, v), then dTxy (u, v) ≤ dT (u, v) = dT ∗ (u, v) ≤ �(T ∗). Below we assume dT ∗ (u, v) �= dT (u, v). 
Thus, dT ∗ (u, v) < dT (u, v) and the shortest path πT ∗ (u, v) must contain the shortcut e(u∗, v∗).

Let T (vk) and T (vh) be the trees of T that contain u and v , respectively, with k ≤ h. Based on relationship of the indices 
k, h, i, and j, there are several cases.

1. {k, h} ∩ {i, j} = ∅; e.g., see Fig. 3. In this case, we have

dTxy (u, v) ≤ dT (u, vi) + φ(vi, v j) + dT (v j, v)

≤ dT (u, vi) + φ∗(vi, v j) + dT (v j, v)

= dT ∗(u, v) ≤ �(T ∗).

Note that dT (u, vi) + φ∗(vi, v j) + dT (v j, v) = dT ∗ (u, v) because πT ∗ (u, v) contains e(u∗, v∗) and k ≤ h.
2. k = i and h = j; e.g., see Fig. 4. In this case, we have

dTxy (u, v) ≤ dT (vi)(u, x) + |e(x, y)| + dT (v j)(y, v)

≤ dT (vi)(u, vi) + dT (vi)(vi, x) + |e(x, y)| + dT (v j)(y, v j) + dT (v j)(v j, v).

By Lemma 8, dT (vi )(u, vi) ≤ dT (v1, vi) and dT (v j)(v j, v) ≤ dT (v j, vm). Hence, we can obtain
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Fig. 4. Illustrating the case k = i and h = j.

Fig. 5. Illustrating the case k = i, h > i, and h �= j.

Fig. 6. Illustrating the case k = h = i.

dTxy (u, v) ≤ dT (v1, vi) + dT (vi)(vi, x) + |e(x, y)| + dT (v j)(y, v j) + dT (v j, vm)

= dT (v1, vi) + φ(vi, v j) + dT (v j, vm)

≤ dT (v1, vi) + φ∗(vi, v j) + dT (v j, vm)

= dT ∗(v1, vm) ≤ �(T ∗).
3. k = i, h > i, and h �= j; e.g., see Fig. 5. In this case, we have

dTxy (u, v) ≤ dT (vi)(u, x) + |e(x, y)| + dT (v j)(y, v j) + dT (v j, v)

≤ dT (vi)(u, vi) + dT (vi)(vi, x) + |e(x, y)| + dT (v j)(y, v j) + dT (v j, v)

≤ dT (v1, vi) + dT (vi)(vi, x) + |e(x, y)| + dT (v j)(y, v j) + dT (v j, v)

= dT (v1, vi) + φ(vi, v j) + dT (v j, v)

≤ dT (v1, vi) + φ∗(vi, v j) + dT (v j, v).

On the other hand, since h > i, we also have

dTxy (u, v) ≤ dT (vi)(u, vi) + dT (vi, v) ≤ dT (v1, vi) + dT (vi, v).

Notice that dT ∗ (v1, v) = min{dT (v1, vi) + dT (vi, v), dT (v1, vi) + φ∗(vi, v j) + dT (v j, v)}. Combining the above two in-
equalities, we derive dTxy (u, v) ≤ dT ∗ (v1, v) ≤ �(T ∗).

4. k < j, k �= i, and h = j. This is case is symmetric to Case 3 and we can prove dTxy (u, v) ≤ �(T ∗) by a similar argument.
5. k = h = i; e.g., see Fig. 6. We claim that this case cannot happen. Indeed, recall that πT ∗ (u, v) contains e(u∗, v∗). Since 

both u and v are in T (vi), πT ∗ (u, v) must also contain P [vi, v j], where P [vi, v j] is the subpath of P between vi and 
v j . On the other hand, �(T ) = dT (v1, vm), which is equal to the length of P . Since �(T ) > �∗ = �(T ∗), πT ∗ (v1, vm)

must contain the shortcut e(u∗, v∗) but cannot contain P [vi, v j]. This implies that P [vi, v j] is not a shortest path 
between vi and v j in T ∗ . However, since πT ∗ (u, v), which is a shortest path between u and v in T ∗ , contains P [vi, v j], 
P [vi, v j] must be a shortest path between vi and v j in T ∗ . We thus obtain contradiction.

6. k = h = j. This case is symmetric Case 5. By a similar argument, we can show that it cannot happen.
7. k < i and h = i; e.g., see Fig. 7. We claim that this case cannot happen. Indeed, since πT ∗ (u, v) contains e(u∗, v∗) and 

k < i, πT ∗ (u, v) must also contain the subpath of P between vi and v j . By the same analysis as the above fifth case, 
we can obtain contradiction.

8. k = j and h > j. This case is symmetric to Case 7. By a similar argument, we can show that it cannot happen.

In summary, dTxy (u, v) ≤ �(T ∗) holds in all possible cases. The lemma thus follows. �
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Fig. 7. Illustrating the case k < i and h = i.

Fig. 8. Illustrating the case i = k and j = h.

3.2. Reducing DOAT to finding a shortcut for P

In light of Lemma 9, we reduce our DOAT problem on T to finding a shortcut for the vertex-weighted path P as follows.
For an index pair (i, j) with 1 ≤ i < j ≤ m, we define a shortcut e(vi, v j) connecting vi and v j with length |e(vi, v j)| =

dT (vi )(vi, x) + |e(x, y)| + dT (v j)(v j, y), where (x, y) is a critical pair of (i, j). The diameter �(P + e(vi, v j)) is defined as 
max1≤k<h≤m{w(vk) + dP+e(vi ,v j)(vk, vh) + w(vh)}. The diameter-optimally augmenting path (DOAP) problem on P is to find 
a shortcut e(vi, v j) so that the diameter �(P + e(vi, v j)) is minimized; we use �∗(P ) to denote the minimized diameter.

With the help of Lemma 9, the following lemma shows that the DOAT problem on T can be reduced to the DOAP 
problem on P . Similar problem reductions were also used in [3,14].

Lemma 10.

1. For any index pair (i, j) with 1 ≤ i < j ≤ m, it holds that �(P + e(vi, v j)) = �(T + e(x, y)), where (x, y) is a critical pair of 
(i, j).

2. If e(vi, v j) is an optimal shortcut for the DOAP problem on P , then e(x, y) is an optimal shortcut for the DOAT problem on T , 
where (x, y) is a critical pair of (i, j).

3. �∗(T ) = �∗(P ).

Proof. Before proving Lemma 10(1), we first use it to prove Lemma 10(2) and Lemma 10(3).

Proof of Lemma 10(2). Suppose e(vi, v j) is an optimal shortcut for the DOAP problem on P . By Lemma 10(1), we have 
�(P + e(vi, v j)) = �(T + e(x, y)). Assume to the contrary that e(x, y) is not an optimal shortcut for the DOAT problem for 
T , and let e(u∗, v∗) instead be an optimal shortcut, with u∗ ∈ T (vk) and v∗ ∈ T (vh). Then, �(T +e(x, y)) > �(T +e(u∗, v∗)). 
By Lemma 9, k �= h and the critical pair (x′, y′) of (k, h) also defines an optimal shortcut for T . Hence, �(T + e(u∗, v∗)) =
�(T + e(x′, y′)). By Lemma 10(1), �(P + e(vk, vh)) = �(T + e(x′, y′)). Combining all above, we obtain

�(P + e(vk, vh)) = �(T + e(x′, y′)) = �(T + e(u∗, v∗)) < �(T + e(x, y)) = �(P + e(vi, v j)).

But this incurs contradiction since e(vi, v j) is an optimal shortcut for the DOAP problem on P . Hence, Lemma 10(2) is 
proved.

Proof of Lemma 10(3). Lemma 10(3) follows immediately from Lemma 10(1) and Lemma 10(2). Indeed, suppose e(vi, v j)

is an optimal solution for the DOAP problem on P . Then, by Lemma 10(2), e(x, y) is an optimal shortcut for the DOAT 
problem on T , where (x, y) is a critical pair of (i, j). Hence, we have �(P∗) = �(P + e(vi, v j)) and �(T ∗) = �(T + e(x, y)). 
By Lemma 10(1), �(P + e(vi, v j)) = �(T + e(x, y)). Hence, �∗(T ) = �∗(P ).

Proof of Lemma 10(1). We now prove the first lemma statement. To simplify the notation, let P ′ = P + e(vi, v j) and 
T ′ = T + e(x, y). Our goal is to prove �(P ′) = �(T ′).

First of all, because (x, y) is a critical pair of (i, j), dP ′(vk, vh) = dT ′ (vk, vh) holds for any two vertices vk and vh of P
with 1 ≤ k < h ≤ m.

We first prove that �(P ′) ≤ �(T ′). Let vk and vh be any two vertices of P with 1 ≤ k < h ≤ m. It suffices to show that 
w(vk) + dP ′ (vk, vh) + w(vh) ≤ �(T ′).

Let u be the vertex of T (vk) farthest from vk , i.e., w(vk) = dT (vk)(vk, u). Similarly, let v be the vertex of T (vh) farthest 
from vh . Recall that i < j and k < h. Depending on the values of i, j, k, h, there are several cases.
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Fig. 9. Illustrating the case {i, j} ∩ {k,h} = ∅.

Fig. 10. Illustrating the case i = k and j �= h.

Fig. 11. Illustrating the case j = k.

1. i = k and j = h; e.g., see Fig. 8. In this case, dT ′ (v1, vk) = dT (v1, vk) and dT ′ (vh, vm) = dT (vh, vm). By Lemma 8, 
dT (vk)(u, vk) ≤ dT (v1, vk) and dT (vh)(v, vh) ≤ dT (vh, vm). Hence, we can derive

w(vk) + dP ′(vk, vh) + w(vh) = dT (vk)(u, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

≤ dT (v1, vk) + dT ′(vk, vh) + dT (vh, vm)

= dT ′(v1, vk) + dT ′(vk, vh) + dT ′(vh, vm)

= dT ′(v1, vm) ≤ �(T ′).

2. {i, j} ∩ {k, h} = ∅; e.g., see Fig. 9. In this case, the shortest path πT ′ (u, v) between u and v in T ′ must contain 
πT (vk)(u, vk) and πT (vh)(vh, v). Hence, we have

w(vk) + dP ′(vk, vh) + w(vh) = dT (vk)(u, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

= dT ′(u, v) ≤ �(T ′).

3. i = k and j �= h; e.g., see Fig. 10. In this case, the shortest path πT ′ (v1, v) between v1 and v in T ′ must contain 
πT (v1, vk) and πT (vh)(vh, v). Hence, we have

w(vk) + dP ′(vk, vh) + w(vh) = dT (vk)(u, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

≤ dT (v1, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

= dT ′(v1, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

= dT ′(v1, v) ≤ �(T ′).

4. i �= k and j = h. This case is symmetric to Case 3. By a similar argument, we can show that w(vk) + dP ′ (vk, vh) +
w(vh) ≤ �(T ′).
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Fig. 12. Illustrating the case where both u and v are in T (vk).

5. j = k; e.g., see Fig. 11. In this case, we claim that πT (vk)(u, vk) is πT ′ (u, vk). Indeed, assume to the contrary that this is 
not true. Then, πT ′ (u, vk) must contain the shortcut e(x, y). This further implies that πT ′ (u, vk) must contain πT (vi, vk), 
which is the subpath of P between vi and vk (= v j). Since (x, y) is a critical pair of (i, j), πT (vi, vk) is no shorter than 
the path π ′ = πT (vi )(vi, x) ∪e(x, y) ∪πT (vk)(y, vk). Therefore, if we replace πT (vi, vk) by π ′ in πT ′ (u, vk), we can obtain 
another shortest path π ′

T ′ (u, vk) from u to vk in T ′ . However, π ′
T ′(u, vk) cannot be a shortest path as it contains e(x, y)

twice. This incurs contradiction and thus the claim follows.
Due to the claim, we have dT ′ (u, v) = dT (vk)(u, vk) + dT ′ (vk, vh) + dT (vh)(vh, v). We can now obtain

w(vk) + dP ′(vk, vh) + w(vh) = dT (vk)(u, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

= dT ′(u, v) ≤ �(T ′).
6. i = h. This case is symmetric to Case 5. By a similar argument, we can show that w(vk) + dP ′ (vk, vh) + w(vh) ≤ �(T ′).

This proves that �(P ′) ≤ �(T ′).

Next we prove that �(T ′) ≤ �(P ′). Let u and v be any two vertices of T with u ∈ T (vk) and v ∈ T (vh), with 1 ≤ k ≤ h ≤
m. It suffices to show that dT ′ (u, v) ≤ �(P ′).

If k �= h, then we can deduce

dT ′(u, v) ≤ dT (vk)(u, vk) + dT ′(vk, vh) + dT (vh)(vh, v)

≤ w(vk) + dT ′(vk, vh) + w(vh)

= w(vk) + dP ′(vk, vh) + w(vh) ≤ �(P ′).

If k = h, then both u and v are in T (vk); e.g., see Fig. 12. Hence, it holds that dT ′ (u, v) ≤ dT (vk)(u, v) ≤ dT (vk)(v, vk) +
dT (vk)(vk, u). By Lemma 8, dT (vk)(v, vk) ≤ min{dT (v1, vk), dT (vk, vm)}. On the other hand, notice that the shortest path 
from u to either v1 or vm in T ′ does not contain the shortcut e(x, y). Without loss of generality, we assume that the 
shortest path πT ′ (u, v1) from u to v1 in T ′ does not contain e(x, y). Thus, πT ′ (u, v1) must contain πT (v1, vk), implying 
that πT (v1, vk) is πT ′ (v1, vk). Note that πT (v1, vk) is πP (v1, vk), which is the portion of P between v1 and vk . Hence, 
πP (v1, vk) is also the shortest path from v1 to vk in P ′ (i.e., πP ′ (v1, vk) does not contain the shortcut e(vi, v j)). Therefore, 
dP ′ (v1, vk) = dT (v1, vk). Since u ∈ T (vk), w(vk) ≥ dT (vk)(vk, u). Combining all above we can derive

�(P ′) ≥ w(v1) + dP ′(v1, vk) + w(vk) = w(v1) + dT (v1, vk) + w(vk)

≥ dT (v1, vk) + w(vk) ≥ dT (v1, vk) + dT (vk)(vk, u)

≥ dT (vk)(v, vk) + dT (vk)(vk, u) ≥ dT ′(u, v).

This proves Lemma 10(1) and thus the entire lemma. �
In light of Lemma 10, we will focus on solving the DOAP problem on the vertex-weighted path P . Notice that the lengths 

of the shortcuts of P have not been computed yet.

3.3. Computing an optimal shortcut for P

To find an optimal shortcut for the DOAP problem on P , for each i ∈ [1, m − 1], we will compute an index j(i) that 
minimizes the diameter �(P + e(vi, v j)) among all indices j ∈ [i + 1, m], i.e., j(i) = arg mini+1≤ j≤m �(P + e(vi, v j)), as 
well as the diameter �(P + e(vi, v j(i))). After that, the optimal shortcut of P is the one that minimizes �(P + e(vi, v j(i)))

among the shortcuts e(i, j(i)) for all i ∈ [1, m − 1]. We refer to the shortcuts for e(vi, v j) for all j ∈ [i + 1, m] as vi -shortcuts. 
Therefore, our goal is to find an optimal vi -shortcut e(i, j(i)) for each i ∈ [1, m − 1].

Let ni denote the number of vertices in T (vi), for each 1 ≤ i ≤ m. Note that n = ∑m
i=1 ni . Fix an index i with 1 ≤ i ≤

m − 1. In the following, we will present an algorithm that computes an optimal vi -shortcut e(vi, v j(i)) and the diameter 
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Fig. 13. e(vi , v j) dominates e(vi , vk) if |e(vi , v j)| + dP (v j , vk) ≤ |e(vi , vk)|, i.e., the length of the red path is less than or equal to the length of the blue 
path. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

�(P + e(vi, v j(i))) in O (n · ni + n log n) time and O (n) space. In this way, solving the DOAP problem on P takes O (n2 log n)

time and O (n) space in total.
We introduce a domination relationship among vi -shortcuts.

Definition 11. For any two indices j and k with i < j, k ≤ m, j �= k, we say that e(vi, v j) dominates e(vi, vk) if |e(vi, v j)| +
dP (v j, vk) ≤ |e(vi, vk)|; e.g., see Fig. 13.

The following lemma implies that if e(vi, v j) dominates e(vi, vk), then shortcut e(vi, vk) can be ignored or “pruned”.

Lemma 12. If e(vi, v j) dominates e(vi, vk), then �(P + e(vi, v j)) ≤ �(P + e(vi, vk)).

Proof. Let u and v be any two vertices of P . To prove the lemma, it suffices to show that dP+e(vi ,v j)(u, v) ≤ dP+e(vi ,vk)(u, v). 
We assume that j < k, since the proof for the case j > k is similar.

If dP+e(vi ,vk)(u, v) = dP (u, v), then dP+e(vi ,v j)(u, v) ≤ dP (u, v) = dP+e(vi ,vk)(u, v). Otherwise, the shortest path
πP+e(vi ,vk)(u, v) contains the shortcut e(vi, vk). Hence, dP+e(vi ,vk)(u, v) is equal to either dP (u, vi) + |e(vi, vk)| + dP (vk, v)

or dP (u, vk) + |e(vi, vk)| + dP (vi, v). We assume that it is the former case. Then we have

dP+e(vi ,vk)(u, v) = dP (u, vi) + |e(vi, vk)| + dP (vk, v)

≥ dP (u, vi) + |e(vi, v j)| + dP (v j, vk) + dP (vk, v)

≥ dP (u, vi) + |e(vi, v j)| + dP (v j, v)

≥ dP+e(vi ,v j)(u, v)

The lemma thus follows. �
Let Si be the set of all vi -shortcuts, i.e., Si = {e(vi, v j)| i + 1 ≤ j ≤ m}. In the following, we describe a pruning algorithm 

(which we refer to as Algorithm 2) that computes a subset S of Si such that no two shortcuts of S dominate each other 
and S contains at least one optimal vi -shortcut. As will be seen later, these properties of S allow an efficient algorithm to 
find an optimal vi -shortcut.

Before running the pruning algorithm, we compute the lengths of shortcuts of Si by brute force as follows. First, with 
O (n) time preprocessing, given any two vertices u and v with u ∈ T (vi) and v ∈ T (v j) for j �= i, we can compute dT (u, v)

in constant time. Consider a tree T (v j) with j ≥ i + 1. Computing the length of e(vi, v j) reduces to finding a critical pair 
of (i, j). To this end, we compute dT (vi )(vi, u) + |e(u, v)| + dT (v j)(v, v j) for all vertices u ∈ T (vi) and all vertices v ∈ T (v j), 
which can be done in O (ni · n j) time (and O (n) space). As such, computing the lengths of all shortcuts of Si takes O (ni · n)

time.
Our pruning algorithm processes the shortcuts e(vi, v j) for all j = i + 1, i + 2, . . . , m one by one. A stack S is maintained 

and S = ∅ initially. Consider any j ∈ [i +1, m]. If S = ∅, then we push e(vi, v j) into S . Otherwise, let e be the shortcut at the 
top of S . If e and e(vi, v j) do not dominate each other, then we push e(vi, v j) into S . Otherwise, if e dominates e(vi, v j), 
then we proceed on j + 1, i.e., e(vi, v j) is pruned. If e(vi, v j) dominates e, then we pop e out of S (i.e., e is pruned). Next, 
we keep popping the top element out of S until either S becomes ∅ or e(vi, v j) does not dominate it; in either case we 
push e(vi, v j) into S .

As the lengths of the shortcuts of Si are available, Algorithm 2 runs in O (n) time. The following lemma proves the 
correctness of Algorithm 2.

Lemma 13. After Algorithm 2, no two shortcuts of S dominate each other and S contains at least one optimal vi-shortcut.

Proof. We first prove the following observation, which will be used for proving the lemma.

Observation 2. Consider any three indices j, k, and h with i < j < k < h ≤ m. We have the following transitive properties.

1. If e(vi, v j) dominates e(vi, vk), and e(vi, vk) dominates e(vi, vh), then e(vi, v j) dominates e(vi, vh).
2. If e(vi, v j) and e(vi, vk) do not dominate each other, and e(vi, vk) and e(vi, vh) do not dominate each other, then e(vi, v j) and 

e(vi, vh) do not dominate each other.
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Proof of Observation 2. Since i < j < k < h, dP (v j, vk) + dP (vk, vh) = dP (v j, vh).

1. If e(vi, v j) dominates e(vi, vk), and e(vi, vk) dominates e(vi, vh), then we have

|e(vi, v j)| + dP (v j, vh) = |e(vi, v j)| + dP (v j, vk) + dP (vk, vh)

≤ |e(vi, vk)| + dP (vk, vh) ≤ |e(vi, vh)|.
Hence, e(vi, v j) dominates e(vi, vh).

2. If e(vi, v j) and e(vi, vk) do not dominate each other, and e(vi, vk) and e(vi, vh) do not dominate each other, then we 
have

|e(vi, v j)| + dP (v j, vh) = |e(vi, v j)| + dP (v j, vk) + dP (vk, vh)

> |e(vi, vk)| + dP (vk, vh) > |e(vi, vh)|.
Hence, e(vi, v j) does not dominate e(vi, vh).

|e(vi, vh)| + dP (v j, vh) = |e(vi, vh)| + dP (vk, vh) + dP (v j, vk)

> |e(vi, vk)| + dP (v j, vk) > |e(vi, v j)|.
Hence, e(vi, vh) does not dominate e(vi, v j).
Therefore, e(vi, v j) and e(vi, vh) do not dominate each other.

This proves Observation 2.

We are now in a position to prove the lemma.
We first show that no two shortcuts in S dominate each other by mathematical induction. Initially the statement holds, 

for S = ∅. We assume that the statement holds right before e(vi, v j) is processed. Let S refer to the stack right before 
e(vi, v j) is processed; let e be the shortcut at the top of S if S �= ∅. According to Algorithm 2, e(vi, v j) is pushed into S in 
the following cases.

1. S = ∅. In this case, S has only one shortcut after e(vi, v j) is pushed in. Hence, the statement trivially holds.
2. S �= ∅, and e and e(vi, v j) do not dominate each other. Let e′ be any shortcut in S . To prove the statement holds on S

after e(vi, v j) is pushed in, it suffices to show that e′ and e(vi, v j) do not dominate each other. If e′ = e, then this is 
obviously true. Otherwise, by the induction hypothesis, e′ and e do not dominate each other. As e and e(vi, v j) do not 
dominate each other, by Observation 2, e′ and e(vi, v j) do not dominate each other.

3. S �= ∅, and e(vi, v j) dominates e. In this case, e is popped out of S , and afterwards, the algorithm keeps popping out 
the top element of S until either S becomes ∅ or e(vi, v j) does not dominate the current top element of S , denoted 
by e′′ . In the former case, the statement trivially holds. In the latter case, we claim that e′′ does not dominate e(vi, v j). 
Indeed, by the induction hypothesis, e and e′′ do not dominate each other. Since e(vi, v j) dominates e, e′′ cannot 
dominate e(vi, v j) since otherwise e′′ would dominate e by Observation 2. Then, following the same argument as Case 
2, e(vi, v j) and e′ do not dominate each other for any e′ in the current stack S . The statement thus holds after e(vi, v j)

is pushed into S .

This proves that no two shortcuts in S dominate each other.
We next show that S contains at least one optimal vi -shortcut. Let e∗ be an optimal vi -shortcut. If e∗ is in S , then 

we are done with the proof. Otherwise, according to Algorithm 2, e∗ must be dominated by another shortcut e of Si . By 
Lemma 12, e is also an optimal vi -shortcut. If e is in S , then we are done with the proof. Otherwise, we can inductively 
show that S contains an optimal vi -shortcut.

This completes the proof of the lemma. �
Using the algorithm for Theorem 7 as a subroutine, the following lemma provides a binary search algorithm that finds 

an optimal vi -shortcut from S in O (n log n) time and O (n) space.

Lemma 14. An optimal vi-shortcut in S can be found in O (n logn) time and O (n) space.

Proof. We first prove some properties that our algorithm relies on.
Consider the graph P + e(vi, v j) for an index j with i < j ≤ m. By slightly abusing the notation, let �(i, j) = �(P +

e(vi, v j)). Suppose (va, vb) is a diametral pair of P +e(vi, v j) with a < b. Then, �(i, j) = w(va) +dP+e(vi ,v j)(va, vb) + w(vb).
We claim that if a ∈ (1, i], then (v1, vb) is also a diametral pair. Indeed, since a �= 1, by Lemma 8 and the definition of 

w(va), we have w(va) ≤ dP (v1, va). Hence, we can derive
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Fig. 14. (a) α(i, j) is the distance between v1 and vm . (b) β(i, j) is the maximum distance between v1 and all vertices on (i, j). (c) γ (i, j) is the maximum 
distance between vm and all vertices on (i, m). (d) δ(i, j) is the maximum distance between two vertices on (i, j). (e) λ(i, j) is the maximum distance 
between v1 and all vertices on (1, i].

w(va) + dP+e(vi ,v j)(va, vb) + w(vb) ≤ dP (v1, va) + dP+e(vi ,v j)(va, vb) + w(vb)

= dP+e(vi ,v j)(v1, vb) + w(vb)

≤ w(v1) + dP+e(vi ,v j)(v1, vb) + w(vb).

Hence, (v1, vb) is also a diametral pair.
Similarly, we claim that if b ∈ [ j, m), then (va, vm) is also a diametral pair. The claim can be proved by a similar argument 

as above.
Note that since a < b, a �= m and b �= 1. Due to the above two claims, we assume that a ∈ {1} ∪ (i, m) and b ∈ (1, j) ∪ {m}. 

Based on the values of a and b, we define the following five functions (e.g., see Fig. 14).

1. For the case a = 1 and b = m, we define

α(i, j) = w(v1) + dP (v1, vi) + |e(vi, v j)| + dP (v j, vm) + w(vm).

Hence, if a = 1 and b = m, we have �(i, j) = α(i, j).
2. For the case a = 1 and b ∈ (i, j), we define

β(i, j) = w(v1) + max
i<b′< j

{
min{dP (v1, vb′),dP (v1, vi) + |e(vi, v j)| + dP (v j, vb′)} + w(vb′)

}
.

Hence, if a = 1 and b ∈ (i, j), we have �(i, j) = β(i, j).
3. For the case a ∈ (i, m) and b = m, we define

γ (i, j) = max
i<a′<m

{
w(va′) + dP+e(vi ,v j)(va′ , vm)

}
+ w(vm).

Note that dP+e(vi ,v j)(va′ , vm) is equal to min{dP (va′ , vm), dP (va′ , vi) + |e(vi, v j)| + dP (v j, vm)} if a′ ∈ (i, j), and 
dP (va′ , vm) otherwise.
Hence, if a ∈ (i, m) and b = m, we have �(i, j) = γ (i, j).

4. For the case i < a < b < j, we define

δ(i, j) = max
i<a′<b′< j

{
w(va′) + min{dP (va′ , vb′),dP (va′ , vi) + |e(vi, v j)| + dP (v j, vb′)} + w(vb′)

}
.

Hence, if a, b ∈ (i, j), we have �(i, j) = δ(i, j).
5. For the case a = 1 and b ∈ (1, i], we define

λ(i, j) = max
1<b′≤i

{
w(v1) + dP (v1, vb′) + w(vb′)

}
.

Hence, if a = 1 and b ∈ (1, i], we have �(i, j) = λ(i, j).

With the above definitions, we have

�(i, j) = max{α(i, j),β(i, j), γ (i, j), δ(i, j), λ(i, j)}.
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Hence, if j changes in [i + 1, m], the graph of �(i, j) is the upper envelope of the graphs of the five functions.
Recall that our goal is to find an optimal vi -shortcut in S . Let I denote the set of the indices j of all shortcuts e(vi, v j)

of S . We consider these indices of I in order. We intend to show that �(i, j) is a unimodal function (first decreases and 
then increases) as j changes in I . To this end, we prove that each of the above five functions is a monotonically increasing 
or decreasing function as j changes in I . Note that each index of I is in [i + 1, m]. To simplify the notation, we simply let 
I = {i + 1, i + 2, . . . , m}, or equivalently, one may consider that our pruning algorithm does not prune any shortcut from Si
and thus S = Si .

As no two shortcuts of S dominate each other, e(vi, v j) and e(vi, v j+1) do not dominate each other for any j ∈ (i, m), 
i.e., |e(vi, v j)| + dP (v j, v j+1) > |e(vi, v j+1)| and |e(vi, v j+1)| + dP (v j, v j+1) > |e(vi, v j)|. Relying on this property, we prove 
monotonicity properties of the five functions as follows. Consider any index j ∈ (i, m).

1. α(i, j) > α(i, j + 1).
Proof:

α(i, j + 1) = w(v1) + dP (v1, vi) + |e(vi, v j+1)| + dP (v j+1, vm) + w(vm)

< w(v1) + dP (v1, vi) + |e(vi, v j)| + dP (v j, v j+1) + dP (v j+1, vm) + w(vm)

= w(v1) + dP (v1, vi) + |e(vi, v j)| + dP (v j, vm) + w(vm)

= α(i, j).

Hence, α(i, j) is monotonically decreasing as j increases.
2. β(i, j) ≤ β(i, j + 1).

Proof: For each b′ ∈ (i, j), we have

min{dP (v1, vb′),dP (v1, vi) + |e(vi, v j)| + dP (v j, vb′)}
≤ min{dP (v1, vb′),dP (v1, vi) + |e(vi, v j+1)| + dP (v j+1, v j) + dP (v j, vb′)}
= min{dP (v1, vb′),dP (v1, vi) + |e(vi, v j+1)| + dP (v j+1, vb′)}.

Hence, β(i, j) ≤ β(i, j + 1) holds and β(i, j) is monotonically increasing as j increases.
3. γ (i, j) ≥ γ (i, j + 1).

Proof:
Let a′ be the index such that γ (i, j + 1) = w(va′ ) + dP+e(vi ,v j+1)(va′ , vm) + w(vm). Depending on whether a′ ∈ (i, j + 1)

or a′ ∈ [ j + 1, m), there are two cases.
• If a′ ∈ [ j + 1, m), then

γ (i, j + 1) = w(va′) + dP (va′ , vm) + w(vm).

On the other hand, dP+e(vi ,v j)(va′ , vm) = dP (va′ , vm). Hence, γ (i, j) ≥ w(va′ ) + dP (va′ , vm) + w(vm) = γ (i, j + 1).
• If a′ ∈ (i, j + 1), then

γ (i, j + 1) = w(va′) + min{dP (va′ , vm),dP (va′ , vi) + |e(vi, v j+1)| + dP (v j+1, vm)} + w(vm).

Since e(vi, v j) and e(vi, v j+1) do not dominate each other, we have

dP (va′ , vi) + |e(vi, v j+1)| + dP (v j+1, vm)

< dP (va′ , vi) + |e(vi, v j)| + dP (v j, v j+1) + dP (v j+1, vm)

= dP (va′ , vi) + |e(vi, v j)| + dP (v j, vm).

Hence,

γ (i, j + 1) ≤ w(va′) + min{dP (va′ , vm),dP (va′ , vi) + |e(vi, v j)| + dP (v j, vm)} + w(vm).

If a′ ∈ (i, j), then we have γ (i, j) ≥ w(va′ ) + min{dP (va′ , vm), dP (va′ , vi) + |e(vi, v j)| + dP (v j, vm)} + w(vm) ≥
γ (i, j + 1); otherwise, γ (i, j) ≥ w(va′ ) + dP (va′ , vm) + w(vm) ≥ w(va′ ) + min{dP (va′ , vm), dP (va′ , vi) + |e(vi, v j)| +
dP (v j, vm)} + w(vm) ≥ γ (i, j + 1). As such, in either case γ (i, j) ≥ γ (i, j + 1) holds.

Hence, γ (i, j) is monotonically decreasing as j increases.
4. δ(i, j) ≤ δ(i, j + 1).

Proof: For each i < a′ < b′ < j, we have,

min{dP (va′ , vb′),dP (va′ , vi) + |e(vi, v j)| + dP (v j, vb′)}
≤ min{dP (va′ , vb′),dP (va′ , vi) + |e(vi, v j+1)| + dP (v j+1, v j) + dP (v j, vb′)}
≤ min{dP (va′ , vb′),dP (va′ , vi) + |e(vi, v j+1)| + dP (v j+1, vb′)}.
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Hence, δ(i, j) ≤ δ(i, j + 1) and δ(i, j) is monotonically increasing as j increases.
5. λ(i, j) = λ(i, j + 1).

Proof: By definition, λ(i, j) is constant for all indices j. Thus, λ(i, j) = λ(i, j + 1).

On the basis of the above monotonicity properties of the functions, we present a binary search algorithm that finds an 
optimal vi -shortcut in O (n log n) time and O (n) space.

Our algorithm performs binary search on the indices [l, r], with l = i + 1 and r = m initially. In each step, we de-
cide whether we will proceed on [k, r] or on [l, k], where k = � l+r

2 
. To this end, we compute �(i, k) and �(i, k + 1). By 
Lemma 10, �(i, k) = �(T + e(x, y)) where (x, y) is a critical pair of (i, k). Since T + e(x, y) is a unicycle graph, we compute 
�(T +e(x, y)) in O (n) time by Theorem 7. Therefore, �(i, k) can be computed in O (n) time. Note that the algorithm of The-
orem 7 also returns a diametral pair for T + e(x, y), and we can decide which of the five cases for the functions α, β , γ , δ, 
and λ the diametral pair belong to. We do the same for �(i, k +1). Assume that �(i, k) = f (i, k) and �(i, k +1) = g(i, k +1), 
for two functions f and g in {α, β, γ , δ, λ}. Then we have the following cases

1. f = g . We have the following subcases.
• f = g ∈ {β, δ}. In this case, our algorithm proceeds on the interval [l, k]. To see this, since both β and δ are monoton-

ically increasing functions, we have �(i, j) ≥ f (i, j) ≥ f (i, k) = �(i, k), for any j ∈ (k, r]. As such, the diameter �(i, j)
would increase if we proceed on j ∈ (k, r].

• f = g ∈ {α, γ }. In this case, we proceed on the interval [k, r] because both functions are monotonically decreasing.
• f = g = λ. In this case, we stop the algorithm and return e(i, k) as an optimal vi -shortcut. To see this, �(i, j) ≥

λ(i, j) = λ(i, k) = �(i, k) for any j ∈ [l, r]. Hence, �(i, j) achieves the minimum at j = k among all j ∈ [l, r].
2. f �= g . We have the following subcases.

• One of f and g is λ. In this case, by a similar argument as before, we return e(vi, vk) as an optimal vi -shortcut if 
f = λ, and return e(vi, vk+1) as an optimal vi -shortcut if g = λ.

• { f , g} = {β, δ}. In this case, since both β and δ are increasing functions, by a similar argument as before, we proceed 
on the interval [l, k].

• { f , g} = {α, γ }. In this case, since both α and γ are decreasing functions, by a similar argument as before, we proceed 
on the interval [k, r].

• One of f and g is in {β, δ} and the other is in {α, γ }. In this case, one of e(vi, vk) and e(vi, vk+1) is an optimal vi -
shortcut, which can be determined by comparing �(i, k) with �(i, k + 1). To see this, without loss of generality, we 
assume that f ∈ {β, δ} and g ∈ {α, γ }. Hence, �(i, j) ≥ f (i, j) ≥ f (i, k) = �(i, k) for any j ∈ [k + 1, r], and �(i, j) ≥
g(i, j) ≥ g(i, k + 1) = �(i, k + 1) for any j ∈ [l, k]. As such, min{�(i, k), �(i, k + 1)} ≤ �(i, j) for all j ∈ [l, r].

The algorithm will find an optimal vi -shortcut in O (log n) iterations. As each iteration takes O (n) time, the total time of 
the algorithm is O (n log n). The space is O (n). �

The proof of the following theorem summarizes our algorithm for the DOAT problem.

Theorem 15. The DOAT problem on the tree T can be solved in O (n2 log n) time and O (n) space.

Proof. We first compute a diametral path P of T as well as the weights w(vi) for all vertices vi of P , which takes O (n)

time. Then, for each i ∈ [1, m − 1], we compute an optimal vi -shortcut e(vi, v j(i)) and its diameter �(P + e(vi, v j(i))) for 
the DOAP problem on the vertex-weighted path P . To do so, we first compute the critical pairs of (i, j) for all j ∈ [i + 1, m]
and thus the lengths of the set Si of the shortcuts e(vi, v j) for all j ∈ [i + 1, m]. This step takes O (n · ni) time and O (n)

space. Next, we run a pruning algorithm to prune those shortcuts that are dominated by others from Si and obtain a subset 
S of Si such that no two shortcuts of S dominate each other and S contains an optimal vi -shortcut; this step takes O (n)

time.
After having S , by using the algorithm of Theorem 7 as a subroutine, a binary search algorithm can find an optimal 

vi -shortcut e(vi, v j(i)) as well as the diameter �(P + e(vi, v j(i)). Recall that the critical pairs of (i, j) for all j ∈ [i + 1, m]
have been computed. Let (xi, yi) be the critical pair of (i, j(i)). We store (xi, yi) and �(P + e(vi, v j(i)). Other space used 
in this step will be disregarded when we run the same algorithm to compute the optimal vi -shortcuts for other i’s; so the 
total space used in the algorithm is bounded by O (n). After the optimal vi -shortcuts for all i ∈ [1, m − 1] are computed, we 
determine the index i with minimum �(P + e(vi, v j(i)) and return e(xi, yi) as the optimal shortcut for the DOAT problem 
on T and return �(P + e(i, j(i)) as the diameter. It takes O (n · ni + n log n) time and O (n) space to compute an optimal 
vi -shortcut for each i ∈ [1, m − 1]. Hence, computing optimal vi -shortcuts for all i ∈ [1, m − 1] takes O (n2 log n) time in 
total, for 

∑m
i=1 ni = n. The space is O (n) because only constant space is occupied (for storing (xi, yi) and �(P + e(vi, v j(i)))) 

after an optimal vi -shortcut is computed for each i. �
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