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Chiral spin textures like magnetic skyrmions and domain walls have attracted extensive study due to their 
possible applications in spintronics technologies1. Skyrmions in particular are a strong candidate for binary 
information carriers in technologies like racetrack memory2. They are topological stable, spatially compact, 
and easily driven by electrical currents3,4. However, skyrmions are typically only stable in a limited region of 
phase space - i.e., at certain temperatures, and with an applied external field. To realize their potential in 
spintronic technologies, skyrmions must be stabilized in commercially viable conditions: at room temperature, 
with zero applied field, and in a range of physical geometries.  

Skyrmions have prototypically been studied in materials with broken inversion symmetry, such as non-
centrosymmetric bulk magnets and interfacially asymmetric multilayers5,6. These materials' broken inversion 
symmetry leads to the noncollinear Dzyaloshinskii-Moriya (DM) interaction, which competes with collinear 
interactions like the Heisenberg exchange to create stable swirling spin textures. Particularly by manipulating 
interfacial DM interactions7, progress has been made creating tailored skyrmions at room-temperature and 
with no applied field8.   

However, skyrmions can also be stabilized in multilayer materials lacking symmetry breaking mechanisms. 
Skyrmions in Fe/Gd multilayers are stabilized by the competition between long-range dipolar energy and 
domain wall energy, rather than the DM interaction9. Because these materials lack any symmetry-breaking 
mechanism, they support skyrmion lattices with no preferred helicity - both helicities can exist simultaneously. 
Preferred helicity can then be introduced and tuned by the introduction of symmetry-breaking layers. Further, 
Montoya et al. showed that a skyrmion lattice, stable at room temperature and with zero applied field, could 
by induced in Fe/Gd thin films by applying a magnetic field tilted with respect to the film normal4.  

The McMorran group uses Lorentz TEM (LTEM), a spin-sensitive electron microscopy technique, to take real-
space images of magnetic thin films like the Fe/Gd multilayers fabricated by Dr. Montoya et. al. LTEM is 
sensitive to the transverse component of the magnetization, which induces a phase shift in the transmitted 
electron. By defocussing, this phase shift manifests as contrast, from which we can reconstruct the induced 
phase using the single image transport of intensity equation (SITIE)10, and thus the transverse magnetic 
moments (Fig 1).  

LTEM is well-suited to the study of magnetic thin films, as the objective lens of the microscope (not needed 
in the Lorentz configuration), can be used to apply a uniform out-of-plane magnetic field. The thin film can be 
tilted to apply an in-plane field component - all the while, synchronously imaging the magnetic configuration. 

  

Here, we study an aspect of chiral spin texture behavior highly relevant to spintronic applications: domain 
behavior near material edges. In particular, we study Fe/Gd multilayers deposited on holey SiN membrane - a 
SiN support film perforated by a square grid of holes. This configuration presents three interesting regions to 
study: a "central" region (Fig 2c.), far from any edge effects, and two perpendicular thin stripes (~5µm wide) 
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between adjacent holes (Fig 2a, 2d). We see that edge effects have a highly non-trivial effect on the formation 
of chiral spin textures, particularly in the presence of tilted external magnetic fields. The interplay between 
striped domains, skyrmions, coupled skyrmions, and more complex spin textures, which has previously been 
investigated as a function of out-of-plane applied field strength, is also affected by edge effects and by the 
angle of the applied field.  

These results are a step towards the use of skyrmions in practical spintronic applications, as such applications 
need to understand and control skyrmions in a variety of geometries.  

Samples were fabricated by Sergio Montoya and Eric Fullerton of the Center for Memory and Recording 
Research, UC San Diego. We would like to thank Josh Razink and the CAMCOR Nanofabrication Facility, 
University of Oregon. 

 
Figure 1. (a) Recorded intensity and (b) reconstructed magnetization using SITIE. 
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Figure 2. Chiral spin textures in Fe/Gd multilayers in three different regions. The thin film is exposed to a 
magnetic field normal to its surface, then tilted up to 45º, and then returned to zero tilt, still with an applied 
field. This results in drastically different skyrmion nucleation in the three regions. 
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