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Abstract

The nonlocal models of peridynamics have successfully predicted fractures and deforma-
tions for a variety of materials. In contrast to local mechanics, peridynamic boundary con-
ditions must be defined on a finite volume region outside the body. Therefore, theoreti-
cal and numerical challenges arise in order to properly formulate Dirichlet-type nonlocal
boundary conditions, while connecting them to the local counterparts. While a careless
imposition of local boundary conditions leads to a smaller effective material stiffness close
to the boundary and an artificial softening of the material, several strategies were proposed
to avoid this unphysical surface effect. In this work, we study convergence of solutions
to nonlocal state-based linear elastic model to their local counterparts as the interaction
horizon vanishes, under different formulations and smoothness assumptions for nonlocal
Dirichlet-type boundary conditions. Our results provide explicit rates of convergence that
are sensitive to the compatibility of the nonlocal boundary data and the extension of the
solution for the local model. In particular, under appropriate assumptions, constant exten-
sions yield % order convergence rates and linear extensions yield % order convergence rates.
With smooth extensions, these rates are improved to quadratic convergence. We illustrate
the theory for any dimension d > 2 and numerically verify the convergence rates with a
number of two-dimensional benchmarks, including linear patch tests, manufactured solu-
tions, and domains with curvilinear surfaces. Numerical results show a first-order conver-
gence for constant extensions and second-order convergence for linear extensions, which
suggests a possible room of improvement in the future convergence analysis.
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1 Introduction

The peridynamics theory formulated in [1] has been successful in modeling deformations,
fracture, and predicting behavior in a variety of materials: concrete, metal, viscoelastic,
viscoplastic [2-10]. As a nonlocal model, peridynamics employs integral, rather than dif-
ferential, operators which allows to relax the regularity constraints of partial differential
equations (PDEs) and to capture effects arising from long-range forces at the microscale
and mesoscale, not accounted by PDEs [11-17]. Consequently, the model (with a variety
of formulations) has been of interest even in the absence of damage, as a series of papers
showed well-posedness and properties of the solutions, as well as convergence of the non-
local operators and solutions to classical counterparts in the limit of vanishing horizon of
interaction [18-25].

In peridynamics, the nonlocality manifests itself through interactions on a finite range.
As such, boundary value problems have data supported on a collar that contains the points
with whom the domain entertains interactions [14, 26-28]. The size of the collar (also
called the interaction domain) is determined by a system parameter, called horizon, and
usually denoted by 6. Formulating a boundary value problem in the nonlocal setting brings
in an additional level of complexity, as appropriate boundary conditions must be defined.
While for a local problem data on the domain’s surface can be easily provided by experi-
mentalists through surface measurements, in the nonlocal setting one must provide volu-
metric data for the boundary collar, which may be difficult (or even impossible) to obtain.
Thus, practitioners must introduce ad hoc methods for prescribing both Dirichlet and Neu-
mann-type boundary conditions for nonlocal problem [29-40], and in this work we mainly
focus on the Dirichlet-type volume constraints. Most commonly, the convergence of non-
local solutions to classical counterparts has been studied for homogeneous Dirichlet-type
boundary conditions in second order ([22, 23]), or higher order ([41]) problems. In these
works, the local problem is set on domain , while the nonlocal equation holds on Q \ T"
(where I C Q is an interior collar set of positive measure), with zero boundary conditions
on I'. With this setup (where the nonlocal solution has exactly the same values as the local
solution on the nonlocal boundary) it is expected to observe quadratic convergence (with
respect to 6) for the L? norm of the difference between the local and nonlocal solutions.

For nonhomogeneous Dirichlet-type boundary data, a series of approaches have been
introduced and investigated for peridynamics and the general nonlocal problems. Currently,
popular strategies to enforce local Dirichlet boundary conditions in nonlocal models can be
generally classified into two types: by modifying the nonlocal operator near the boundary
[34], or by extending or converting the surface (local) data into volumetric data [35, 36].
The first approach was introduced in [34], where the authors propose to gradually change
the nonlocal operator to a local operator on the boundary, so as to avoid the use of nonlocal
boundary conditions. For nonlocal diffusion problems, thanks to the nonlocal trace theo-
rem provided in [42], this approach features well-posedness. However, to the best of our
knowledge, no work has yet addressed the well-posedness of this approach in the vectorial
framework of peridynamics. On the other hand, the second approach is often developed by
means of constant, linear, or higher-order extrapolations of the given boundary data on the
surface of codimension-one onto the boundary collar [36, 43], and it is more commonly
employed to prescribe the Dirichlet boundary condition in peridynamics.

On scalar-valued nonlocal problems such as the nonlocal diffusion problems, in [35]
the authors proved the second-order convergence of the nonlocal solution to the local one
with linear extensions on the boundary conditions defined based on the exact derivatives of
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the local limit. When the exact local derivative is not known a priori, in [36], the authors
proposed to implicitly compute the appropriate normalization factors and they were able to
obtain second-order consistency of the nonlocal operators with the local ones. For vector-
valued systems, in the context of peridynamics a naive fictitious nodes method (FNM) was
originally proposed by assigning the same values to all fictitious points corresponding to
a boundary point [44]. The naive FNM was later extended to the Taylor FNM by using
Taylor expansion (to linear terms) for points in the boundary collar [45] and the mirror-
based FNM by reflecting the values on interior collar nodes to their corresponding mirror
nodes for domains with simple geometries [46—49]. Recently, the mirror-based FNM was
further extended to more general domains in [40] for nonlocal diffusion problems, where
the authors propose a novel approach of extending the solution across the boundary along
a “nonlocal normal” that is computed using the gradient of the index-function that meas-
ures the size of the support of interaction. The approach is investigated numerically, and
it shows better agreement with classical solutions, while also being able to handle non-
smooth boundaries, and even crack lines. Similar as the mirror FNM idea in [40] and the
vanishing horizon idea in [34], in [50] the authors propose two methods for dealing with
boundary conditions in one-dimensional bond-based peridynamics model. The Extended
Domain Method (EDM) adds a layer to the domain € on which an odd reflection of the
classical solution is imposed. For the Variable Horizon Method (VHM), the boundary is
interior to the domain and it is considered of variable depth, so that as the horizon shrinks
to zero, the nonlocal solution converges to classical. The numerical studies show quadratic
convergence in 6, if some additional corrections are performed.

1.1 Description of the Results

In this work, we present a comprehensive study for convergence of nonlocal solutions to
classical counterparts, which holds for the vector-valued linearized peridynamic solid model
(LPS) [51], a prototypical state-based model, with nonhomogeneous Dirichlet-type bound-
ary conditions. The vector-valued system is notoriously difficult to study even in classical
elasticity due to the cross-interactions between solution components, so well-posedness and
regularity results rely heavily on Korn-type inequalities [23]. Nonlocal versions of these
tools are employed here to study how one may optimally impose nonlocal boundary condi-
tions in order to ensure a high degree of compatibility with the local system.

The analysis performed in this paper does not prescribe a particular method for impos-
ing boundary conditions for the nonlocal system. Instead, we establish bounds for the dif-
ference between the local and nonlocal solutions, in terms of the difference (on an interior
collar) between the nonlocal data and extensions of different degrees of regularity (even
fractional) for the classical solution. The construction of different possible extensions is
illustrated in Fig. 1, where I ;5 is an exterior collar (see the Definition (1)) that nonlocal
boundary conditions will be prescribed to guarantee the well-posedness of the nonlocal
equation.

To provide a more precise description, suppose that {us}., C L*(Q;R?) is a family
of solutions to the nonlocal problems parameterized by §. Suppose that u, € W>?(R4;R%)
is an extension of the strong solution u, € W>?(Q;R?) to the corresponding local prob-
lem. The theoretical bound for the rate of convergence of [lu; — ug||;2qre) 1S decom-
posed into two components. One component captures the rate of convergence away
from the local boundary and depends on the regularity above W?? that the local
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Fig. 1 Different types of exten-
sions of a local solution to the
nonlocal boundary layer F;’ 5
continuous (constant), C' (linear),
C? (quadratic/smooth)

===x= Constant Extension
= | inear Extension

= == Smooth Extension

Local Solution

solution possesses. The other component captures the rate of convergence near the
local boundary 0Q. The convergence near the boundary, in turn, depends upon an exte-
rior and interior term. More specifically, the exterior term is provided by a priori rates
of convergence of the prescribed collar values on F;a to the extended local solution as
0Q is approached. Knowledge, if any, about the convergence of u; to u, on I';; can also
be incorporated to improve the theoretical rate of convergence.

In Table 1, we assume the extension of the local solution has bounded fourth-order
derivatives (quantified by a = 2, see Theorem 5). Thus, the convergence away from the
boundary is of order-two, and it is the convergence rate near the boundary that dominates
the theoretical rate. The value of f§ > 0 identifies the rate at which the collar-values
approach u, as dQ is approached. If # = 0, then the function values have order-one con-
vergence, which can be ensured, for example, with a constant extension of the local
boundary values. If # = 1, then the first-order derivatives of the collar-values and u,, have
order-one convergence, which can be provided by a linear extension of the local bound-
ary values. If the prescribed collar-values coincide with u, on F;{S, then g is effectively
infinite—there is no boundary component for the lower bound on the theoretical rate of
convergence (RC). We use y to reflect a priori information, if any, about the rate of con-
vergence of u; to u, as dQ is approached from the interior. If it is only known that {u} 5.,
are uniformly bounded, then y = 1 In the table, we use y = 2 for =0 and y = 2 for
f = 1. These choices are based on numerical observations in Sect. 6. If ||u; — uy| ;) has
order-one convergence to zero, then y = % See Theorem 5 for the result in its full gener-
ality and notation.

Table 1 Theoretical and
numerical rates of convergence
(RC) for the nonlocal solution to

Type of extension a f ¢ Theoretical RC ~ Numerical RC

h R Constant 2 0 32 g§\/2 )

its classical counterpart. a, f#, and

y are as defined in Theorem 5 Linear C' 2 1 512 872 5°
Smooth C*® 2 o - 52 52
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1.2 Significance/Contributions

The study of convergence of nonlocal solutions to classical counterparts is performed here
by taking into consideration

(i) how well the nonlocal boundary condition matches with a (smooth) extension of the
classical solution;
(i1) the degree of smoothness for the extension.

Note that, in contrast with other works, the analysis allows one to consider general nonlo-
cal boundary conditions (no a priori construction needs to be made), and then based on
the compatibility between the nonlocal data and the extension to classical problem, and
the availability of additional bounds, an explicit rate of convergence is derived. This flex-
ibility in implementations allows considerations of different types of nonlocal boundary
data, which may be selected to best fit other desired features of the model (e.g., to conserve
some physical property of the boundary data, or to take into account interactions with other
dynamics in a coupled system).

The explicit decay rates obtained in Theorem 5 are based on carefully analyzing bounds
on different sets (interior, exterior collars, etc.), thus also identifying the bottleneck in
obtaining faster convergence. Thus, the availability of improved bounds on the interior
collar will increase the rate of convergence. However, a final verdict on whether these
(assumed) bounds are expected to hold for irregular boundaries or solutions, has not been
delivered, so investigations into the optimality of these results are forthcoming.

As it was mentioned above, the results apply to vector valued systems, a setting for
which a comparison principle is not available. This is in contrast to diffusion problems,
where the availability of comparison principles allows a more direct method of capturing
the difference between classical and nonlocal problems.

The results of this paper are proven for general kernels (of different singularities), so
they are applicable for a variety of nonlocal systems where the profiles of interaction can
model different media or behaviors. Additionally, the main argument does not use any
information on

(a) the shape of the domain; the regularity of the boundary may only (indirectly) affect the
smoothness of the extensions.
(b) the regularity/bounds on the nonlocal solution inside the domain, beyond L? integrabil-

1ty.

Finally, the convergence bounds transfer to the dynamic case, with the only significant dif-
ference that the constants may increase exponentially in time (but are bounded for finite
times).

1.3 Paper Organization

The background material together with the notation is introduced in Sect. 2. The linear
peridynamic solid (LPS) model is introduced in Sect. 3, together with the notation for the
nonlocal operators and domains used throughout. Also in Sect. 3, the nonlocal bound-
ary value problem with Dirichlet-type constraints is introduced, for which wellposedness
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follows by employing a Poincaré—Korn-type inequality. The convergence analysis for this
static case is obtained in Sect. 4, under several different scenarios distinguishing between
the types of extension (continuous, linear, or smooth) of the boundary value data, and other
conditions. The dynamic system is studied in Sect. 5, where similar rates are shown. The
numerical experiments are presented for both, the static and dynamic cases in Sect. 6. The
final Sect. 7 presents conclusions of this work, as well as future directions.

2 Notation and Preliminaries

The results of the paper hold in the vectorial framework, for which vector and tensor opera-

tions will be required. Given a vector space V, we denote V¥ =V ® - @ V VX - XV,
——— u—v——/

[ times [ times
which can be identified with V7. In the sequel, V will be a space of I-th order tensors, with

components in R, so V = R® ~ Rd], for some [ =0,1,2,.... We use * for the usual vec-
tor dot product and R?®° : = R! = R and R¥®! = R4,
Let {e;}¢ . C R? be the unit coordinate vectors in R?. Given v € R?, we may write
it i1 y

d
V=(v)i=2v,el, withv, =vee, fori=1,...,d.
i=1

More generally, given A € R®/,

A=@A), =D DA e @ ~®e, fori,.. i=1...d

iy
i=1 i=1

We will use an extension of inner products and contractions to tensors of higher-orders.
Suppose that A € R®" and B € R¥®", with n > m. The inner product of A and B is

d d

d d
d dR(n—
and AB = (D)ll A = Z 2 D iu—meil Q- ® ein—m ER st m>’
i=1 by =1
with
d
Ciroi = Z Ay iy B, A Dy 2 Aiiivein B,
Jiseeedm=1 =1
The norm of A, we define
1
Al = (A« A2,

Cauchy’s inequality implies

|AB| <|A||B] and [|A®B| <[A[[B].
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Suppose that w = (w); ,; € Wk’z(Qg];[Rd@m), so the (k + m)-order tensor of k-th-order
derivatives satisfies o0fw € LZ(Q‘L;R”Z@’” ® R®), In components,

(d'w) Z Z i€ ® B O ® - ®¢

R P 1 m
ool 1 J‘

Finally, we use the notationa®” =a ® --- @ a € R%®”,
———

m times
We denote by I the second-order (matrix) identity tensor and I

metric identity tensor. In components

sym 18 the fourth-order sym-

d

M=) =(e+¢)e; D¢

ij=1

and (I Z [(e;oe)(ejoe) + (e oe)(eoe)]e, Qe Qe ®e,.

le[ 1

5}’"‘ lel

Nonlocal boundaries and domains. The results will involve nonlocal boundaries with
interior and exterior layers, for which we will adopt the following notation. For each p > 0
define

={xeR"\ Q : 0 < dist(x,dQ) < p} and Q:::QUF: (1

= (r€Q:distr,0Q) <p}  and Q :=Q\T;. 2

Additional notation regarding operators and domains will be introduced throughout the
statements and proofs below.

3 ALinear State-Based Peridynamic Model

We consider the state-based linear peridynamic solid (LPS) model in a body occupying
the domain Q C R? While the main results hold for any dimension d > 2, we are primar-
ily interested in d =2 or 3. Before presenting more details, we introduce some opera-
tors and bilinear forms. For each 6 > 0, let Bs(x) C R? denote the 8-ball centered at x. Let
K; : (0,00) = [0, 0) be a Borel-measurable function, with support contained in [0, 6], and
define K; : R? — R9by

K;(z) 1= K;(|z))z. 3)
Following [23], the weighted volume for the 6-ball B; = B;(0) is

m(5):/ Kﬁ(z)-zdz:/ K;(|z|)|z) dz, 4)
B; B

5
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3.1 Nonlocal Operators and Bilinear Functionals

For the above kernel K and its weighted volume m(6), we introduce the nonlocal dilata-
tion of a map u € L>(R%;R9) by

0s(x;u) = % /B‘ K;(z) e u(x + z)dz. (3)

Next, we introduce the main component operators for the linear Navier-system. On
the space L2(R4;R%), we define A;, B; by

C
Asu(x) 1= W“;)/B K;(2)05(x + z;u)dz ©6)
and
C K(z)®z
Bsu(x) := m(g) /Bé [ 5|Z|2 ](u(x+z)—u(x))dz. 7

The nonlocal Navier-operator £; defined on L>(R4;R%) is given by
Lsux) :=—(4— pAsux) — uBsu(x). (8)
The ranges of the operators Ay, B;, L introduced above depend on the integrability/
smoothness properties of K;. The scaling constants C 4, Cgz > 0 are chosen such that
Cp K;(z) ® 28
m(8) Jp, |z|?

Cau
— [ K =1 =IQI+2l,,.
o) /B ,,~ 5(z) @ zdz and dz ®I+2L,,. (9

For u : R? —» R4 sufficiently smooth, it will be shown below in Theorem 3 that
Asu — Aqgu and Bsu — Byu, with the local Navier-operator £, given by
Ajux) =ddivux) and Byux) =0 div u(x)+ div du(x) (10)
and thus L;u — Lju, with
Loux) = —(4 — p)Ayu(x) — uByu(x) = — A0 div u(x) — u div ou(x). (11)

Two popular choices for the kernels are K;(r) =A; and K;(r) = A;/r. For these
examples, the parameters for 3D linear elasticity are C 4 = 3, Cz = 30 and

K)(p) D forp <6 K3 (p) L forp<e
00 _ ] dge reso g 2] iy TS0 g
m(d) 0, for p > 6; m(6) 0, for p > 6.
For 2D problems, C 4, =2, Cz = 16.
Ko [ 2 <& e [ forp<s:
5 _ e for p < 6; and 5 _ 2763p° orpg =0 (13)
m(5) 0, forp>é; m(d) 0, for p > 6.

Given v,w € L2(R%R9) satisfying v=w =0 on R?\ Q, define the bilinear forms
W4 5(v,w) and W 5(v, w) by
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Fig.2 Domain Q with adja-
cent layers. Interior layers:
7, T3, C Q; Exterior layers:
;.15 C R\ Q

+
d
L5
Wys(v,w) = / [Asv(x)] w(x)dx (14)
Q
and
Wgs(u,v) = / [B(;v(x)] w(x)dx. (15)
Q
Using Fubini’s theorem and a change of variables, we may rewrite
1
Wy s(v, W) = p / 05(x;v)0,(x;w)dx (16)
Q
and
1 [v(x+2z)—v(x)] ez [Wx +2z)—wXx)] ez
Wesvow=zis | f 5 Ko - ) ( - )dzdx.
a7
Then, the bilinear form associated with £; is
Ws(v, W) = C4(A — i)W 4 5(v, W) + CguWi 5(v, W), (18)

and the nonlocal strain energy is W(v, v).

3.2 Well-Posedness for the Dirichlet-Type Constraint Problem

In order to define the nonlocal system with a Dirichlet-type boundary condition, we use
the notation introduced in Eqgs. (1)—(2) for the domain Q with two interior collars and two
exterior collars, as illustrated in Fig. 2.

We now consider a state-based peridynamic problem with Dirichlet-type boundary
condition:
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c
-— / (A = K5y — xD(y — x)(0(x) + 0(y))dy
m(3) Jp (x)
-8 [y xR EY T ) oy = £, forxin €,
m(8) J,x) ly — x|
0(x) = 4 / Ks(ly —xD)(y —x) - (u(y) — u(x))dy, for x in QF,
m(8) Jp,x)
u(x) = up(x), forx in 7.

19)
The well-posedness of the above system follows from the Korn—Poincaré-type inequal-
ity below which is an application of Proposition 5 in [23].

Theorem 1 Assume Q C R? is a bounded domain with a sufficiently smooth boundary (in
particular, it satisfies the interior cone condition). Then, there exists a 6, > 0 and a con-
stant Cp_x < oo such that for each 0 < 6 < &,

IVl 2 ray < CoxWgs(v.v), forallv e {we L*(RY : w(x)=0ae. x € R\ Q}.

With existence of solutions to the nonlocal problem (19) established, we will study in
the next section convergence of nonlocal solutions to the classical counterparts.

4 Convergence Analysis

We will now show the truncation error of the Dirichlet-type volume constraint formulation.
We denote by ug the solution of the nonlocal problem (19) and u, as the solution of the
classical elastic problem:

{ =V (Atr(E)I +2uE) =f, where E = %(Vu +(Vw’), inQ, 20)

u=up, on 0Q.

4.1 Operator Convergence

For an integer k > 0 let w € CK(R4;R4®™). Then, Taylor’s formula, with remainder, can be
written as

k
WX +z) = W(X) + Z jl'afw(x)z@’f + Ry (w(x);z)z®*, QD

Jj=1

Here,

Ri(w(x);z) :=

1
(k l 1! </ - s)kil [akW(X + 52) — akW(X)]ds>_
-DI\ o

We note that j is not a multi-index. Observe that R is linear and
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RiWEX +2));z,) — R (W(X);Zy) = R (0,W(X);2,)Z; + R (R (W(X);2,)Z,32,)

= R0, W(X)12,) + R (R (W(X):12,)52, ) |2y (22)

We will need the following pointwise representation for mappings in fractional Sobolev
functions. It provides a generalization of the Hajtasz-type pointwise representation for
functions in a first-order Sobolev space [52]. The argument is nearly identical to the proof
for Theorem 1.1, part (2), in [53] and is included for the sake of completeness.

Theorem 2 Letr O <a <1 and 0< 8, <1 and 0< 6 <68, be given. Suppose that
wE W“’Q(Q;O;Rd@’”), S0

[w(y) — w(x)|*
w2 . . :=/ / Y~ W dydx < oo.
W'Z(Q%) Qf JQr |y—X|d+2°’ y

% %0
Putc, = c,(d) :=2""-4°/|B||and &, := &, — &', and define w, : QF — Rby

1

wy) - w2\’
LX) 1= 27 " ay ) . (23)
) (/ngngz(x) ly — x|#+2e y>

Then, w, € LZ(Q;O) and

[W(y) = W)I* < ¢,y = X (w,(x)" + w,(y)*), forallx € Q; andy € B; ().
(24)
Proof 1t is clear that Well2@urs) < lewmz(g%ﬂmm). Letx € Q5 andy € By (x) € ng be
given. Putr := |y — x| < §,. Observe that B,(x) C Q;O N B,.(y), so

IW(y) — wx)|? =— Iw(y) — w(x)|2dx’
1B, J5.x)

2 ( / Iw(y) — W) Pdx’ + / |w(x/)—w(x>|2dx'>
1B, \J5 B,(x)

2 / w(y) — wx)2dx’ + / W) = o Pdx’
|B,| Qf NBy,(y) B.(X)

+a _ (2 N _ 2
S2rd pd+20 / [w(y) /w(xz I 4 + / IW(?f) vdV(;c)l ax’
|Br| ﬂ;'“nb’z,(y) |y —X |n+ “ B,(x) |X - Xl S

d+1+2a
s(le | )rz"(wa(y>2+wu(x)2)
1

=C, |y = x> (W, (y)* + w,(x)?).

IA

IA

O
Lemma 1 Let k> 1 and 0 < a <1 be given. Suppose that v € W"”’Z(Q’&:;Rd@m). Let
0 < &' < &, be given, and put §; 1= 5y, —&'.

(@) Ifa =0, then for each € > 0, there exists 0 < 6 < 6, such that
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||Rk(v(-);z)||Lz(Qé+/) <eg, forall z e B;.
(b) IfO < a <1, then for each0 < 6 < 6,, we have
2¢, o1 Ak
IR (VO 2@y, < mm 0¥Vl we2of miengmen),  forall z € B;.
(¢) Ifa=1,thenforeach0 < 6 < 6,, we have

”Rk(v(');z)”LZ(Q;/) = (k 1)' |Z| Ia Vle(Q;rO;Rmm@R@(kH)), fOT all Y AS Bé.

Proof With a standard density argument, we may assume v € C*® (Q:;n ;RI®™)_Part (a) is an

immediate consequence of the definition of R (v(-);z) and the continuity for the translation
operator in L2(R¢). Note that if x € Qf andz € Bs, thenx +z € Qs
For part (b), let z € B;. We use M1nk0wsk1 s integral inequality and Eq. (24) with

w = d'v € WrA(Q} ;R®" @ RY)

as follows:

IR (vs z)I|L2(Q+ RS @REY) _(k — 1), /m / |akv(x + 52) — akv(x)| dsdx  (25)

c

1
<— 52 z)* (w,(X)? + w, (X + s2)* ) dsdx
(k=1 ./g;, /0 ( )

Ca 2a 2 : 2
< |z| / w,(x)“dx +/ / w,(X + sz)“dxds
(k= D! o o Jay,

Recalling the definition of w, in Eq. (23), with w = o*v, the first integral is bounded by
|0*V| 2. For the second integral, given 0 < s < 1,

dkv o*v(x + sz 2
/ W, (X + 52)°dx = / / | (y) ( ) ) dydx
Q QF NBy(x+s52) — (X + sz)[d+2e
|0kv(y) ov(x + 52)|’
/ / dydx
o Jor, — (X + sz)| 4+

|akv(y) — v, .
< /g: </Q+ |y — X/|d+2a dx dy = |0 VlWa,Z(Qé:];Rd@m@R@k).
0

For the last line, we used Fubini’s theorem and the change of variables x + sz — x’. Again,
we note that x € Q* and z € By implies X + sz € Q+ Incorporating these bounds into Eq.
(26) completes the proof

(26)
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Part (c) follows from Eq. (25) and the fundamental theorem of calculus. O
4.1.1 Operator Convergence for O

Theorem 3 Let 0 < a <3and 0 < §' < § be given. Suppose that u € W1+"’2(Q;S*O;Rd), and
putd, =68, — 6"

(@) Ifa=0,1,2, then for each € > 0, there exists 0 < 6 < 6, such that

”05(,11) —div u”Lz(Q;,) < 55(1.

(b) If0<a<3anda # 1,2, then and a constant A\, independent of 6 and u, such that

[|05C5w) = divu[ 5 g, < Agloulyriaq: migr)*  forall0 <6 <4y,
o 0
with

A = 241, 0<a<3anda # 1,2,
CENEE I S a=3.

Proof Foreach0<s<1,x € Qf

+»andz € B, we findx + 5z € Q;O. Using Eq. (21),

u(x +z) — u(x) = dux)z + R, (u(x);z)z.

Incorporating this into the definition of 6;, we may write

(mizé) ) 0;(x;u) = / K;(@) « [u(x +2) — u(x)]dz
B;

= / K;(z) « [0u(x)z]dz + / K;(2) « [R,(u(x);z)z]dz

B; B;

=< / Ké(z)®zdz>-au(x)+ / [K5(2) ® z] « R, (u(x);z)dz.
B;

B;
27
For the first equality, we used the antisymmetry of K;. Recalling Eq. (4) provides

m(5)</ Ké(z)mdz) e = (5)(/ Ké('z'”Z'de)I-au(x)—I-au(x)

=div u(x).

Thus,
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1

2 2
. d
105C50) = div ull g sm< / ( / | |K5(z>||z||R1<u(x>;z)|dz) dx)

d ;
S@/B,, </g 'Ké(Z”z|Z|2|R1(u(x);z)|2dx> o @

d_ / 1K (12Dl 1211 R ()23 0 .
5 Js,

For the second inequality, we used Minkowski’s integral inequality. Recall that
ue W”"’Z(Q;O). Part (a) of the theorem, with & = 0, follows from Lemma 1(a), and part
(b), with 0 < a < 1, follows from Lemma 1(b).

Now, suppose that 1 < a < 2. We can then use the antisymmetry of z = K;(z) ® z&?
= K;(|z|)z®? and Eq. (21) to write

) — i d ®2 o2
0s(x;u) = div u(x) + 3m() </B5 K;s(z) ® z dz> 0 u(x)

J

=0 29

d
+% /Bﬁ [K5(z) ® 2%7] « R,(u(x);z)dz.

Arguing as in Eq. (28), we deduce that
2d
m(8)

2d6
m(6)

o500 i wlsy < | R IR2)0
G0)

/ 1K (2D 2P IR0 2 0 .

If @« = 1, then Lemma 1(a) implies part (a) of the theorem. If 1 < a < 2, then Lemma 1(b)
implies part (b). For « = 2, part (b) is implied by Lemma 1(c).

As observed above, the kernel z — K;(z) ® %% is antisymmetric, so the corresponding
integral in Eq. (29) is zero. Hence, if « > 2, we have

05(x;u) = div u(x) + E / [Ké(z) ® z®3] R;i(u(x);z)dz.

For @ = 2, an argument similar to that used for (28) yields part (a). Arguing as in (30), we

obtain part (b) when 2 < & < 3. For the rest of part (b), when a = 3, we apply part (c) of
Lemma 1 to complete the proof of the theorem. a

Theorem4 Let 0 < a < 2 be given. Suppose thatu € W2+"’*2(§25+0;Rd).

(@) Ifa=0ora=1,then foreache > 0, there exists a0 < 6 < 8,/2 such that
[[Asu = Agul| o, < €6*  and || Bsu = Byu||zq, < 6.

(b) IfO0< a <2anda # 1, then there is a constant A;, independent of 6 and a, such that
forall0 < 6 <6,/2,
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[[Asu = Agu 0 < A;|“|W2+a-2(950)5a and  ||Bsu = Byul| ) < A;Iulwm,z(%)ga

Proof The argument is similar to the one used for Theorem 3. First, we prove the conver-
gence rates for Aj, then the argument for B; will be discussed. Since u € W2+"’~2(Q;r RY),
0

we find g :=divu € W1+"”2(S26+0).
As a > 0, applying Eq. (21) provides

divu(x +z) = g(x + z) =g(x) + dg(x)z + R (g(x);2)z
=g(x) + 0g(x) o 2 + R, (g(x);2) » z.

First, we observe that the antisymmetry of K; implies

K;(z))g(x)dz; =0
B&

and, by Fubini’s theorem,
/ / K;(z)([Ks(z) @ 2, « R (u(x);2,)) dz,dz,
Bs J B;

= ( Ké(zl)dz1> / [K5(z,) ® 2,] » R (u(x);z,)dz, = 0.
B;

5

Suppose that 0 < a < 2. Using Eq. (27),

C
Asu(x) = Wf% /B K;(z))g(x + z,)dz,

RS
ac ,
+ 2//1<5(z,)([1<5(z2)cg>z2]-72,(u(x+z1);z2))dz2c1z1.
m(8) B; JB;
=100

For 7,, we have

/ K;(z)[g(x +2)) — g(x)|dz, / [K5(z) @z, [0g(x) + R, (g(x):z,)] dz,

I v m(8)

=0g(x) + % / [KE(ZI) ® ZI]R (8(x);z,)dz,,

where Eq. (9) was used for the last line. Thus,
. Cy
|1;(x) — 0 div u(x)| < —— |K;(z))||z,||R,(g(x);2))|dz,, forallx € Q.
m(6) B;
The Minkowski integral inequality yields

. C
1, =0 div gy < ~ /B Ky(@)12, P IR GOzl 20y dzs
5

@ Springer



Journal of Peridynamics and Nonlocal Modeling

For I,, define r, (:;z,) := R, (u(-);z,). Applying Eq. (22), we deduce that

L(x) = 4Ca

e /B‘s \ K;(2)([K5(2) ® 2] « [Ry(u(x + 2)):2,) — R (u(x):2,)| ) dz,dz,

= / / K;(z)([Ks(2)) ® 2,] « [R)(0u(x);z,) + R, (r)(x:2,):2))| 2, ) dz,dz,,
m(6)* Jg, /B,
and so
dCy
|L(x)| < (o) / / |K5(zl)||zl||K5(zz)||zzl[lRl(du(X);zz)l + |R1(rl(x;zz);zl)|]dzzdzl.

Using, again, Minkowskis’s integral inequality,

dc, 2 12
1l 20 SW 5, /s, K12, DK (12,12, " |2, |
X [”R1(au(');lz)”L2(g) + ”R1(r1('§zz)§zl)”L2(g)]dzzdz1-

Note that in the integrals for both /, and /,, the domains of integration are B 5 C B;, jo- We
find g € W'*2(Q; ), ou € W'*2(Q; ;R®?), and r,(-;2,) € W'H*2(Q; /»;R4®?), for each
z, € B; ). It follows that

||./45u — 0 div u”Lz(Q)
<y = o divull 2 + 1Ll 2

C.A 2 . d
< % K51z DIz, IR ()2 )l 12y 924

m(6)?

/ / K1 DK (12Dl 212 1Ry Q)2 + 1R (2002l dzadlzs

For 0 < @ < 1, the convergence for A;u follows from Lemma 1 and assumption (9).
If1 < @ <2, we can use the expansion in Eq. (29). Then,

Asux) = 1,(x) +

8

C
m(;)z /B 5 /B [K;(2))] [Ks(2y) ® 25°] « Ry(u(x + 2,)52,)dz,dz,

J/

"'g

=:5(x)

With the additional differentiability of u,

C
L (x) =W£)/3 K;(z)[s(x +2)) — g(x)|dz,

¢ 1
=WJ§) s, K(s(zl)[ﬁg(x)zl + Eazg(x)z‘l2>2 + Rz(g(X);Zl)Z?Z] dz,
Cy
=08+ 06 K5(|Zl Dz, [Ry(g(x)iz,)2®?] dz,,

m(3)

SO
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oCy
|7, (x) — ad1vu(x)|<6Ts) K5(|z1|>|z1|2|R2<g<x>;z1)|dz1.

For I, as with I,, we can use the antisymmetry of z, — K(z,) to argue

|L(x)| = (5)2 / / K;(z)([K5(zy) ® 22%] [Ry(0u(x);2,) + R (r,(x;2,):2,)| 2, ) dz,dz,
€
S ] IRl K ][R + 1R, eyl

Here, 1,(:2y) 1= R,(u(-);z,) € W (Q; /;R?®?), for each z, € B; C B; . As before,
we apply Minkowski’s integral inequality to conclude

5C,
1L s—/ Ky(12, DK ([2:Dlz, P2
sl =5 5 5, s, sUz DEs(1Z,1)12 1712,
X (IR (Qu(-):z)ll 2 umaery + 1R (X (-120):2)) | 2 o) | A2, d2,

The convergence for Azu, again, follows from Lemma 1 and assumption (9).
The arguments for B; are similar, but more straightforward, than those used above. For
the case 0 < a < 1, we use

ux +z) = ux) + ou(x)z + %z)zu(x)z®2 + R, (u(x);2)z%2.

Hence, with assumption (9),

_ Cg K;(z) ® z%? Cy K;(z) ® z®3 )
Bl =) </B ) o </B ) P

/ (- /

g

~-
=0 =IQI+21

Cs K;(z) ® z%° .
m(8) < |22 >R2(U(X),Z)dz.

sym

Forthe casel < a <2, we use
ux +z) = ux) + ou(x)z + %62u(x)z®2 + é63u(x)z®3 + R5(u(x);2)z%°.

Since z = Kj(z) ® z8* = K;(|z|)z® is antisymmetric, we find

_ Gy K;(z) ® 2&° Cs K;(2) ® 2%° 2
Bsu(x) =n6) </B§ PE dz) ou(x) + e </ PE dz) o0 u(x)

- - -7

g

=0 —I®I+21

C K ®4
m(g) ( 6(Z|)Z(§Z >R3(U(X);Z)dz.

sym

In both cases, the result again follows from Lemma 1. O
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4.2 Convergence of Solutions

Assume that f € LZ(Q) and u;, € L*(R?) N L?(0Q). Throughout this section, for each
5> 0 with 26 < 5, we use u; € LX(QF ;RY) and u, € W22(Q;R?) to denote the solutions
to

26°

{ L) =f(x), xeQ, { Louy(x) = f(x), x € Q, a1

u;(x) = up(x), x €7 uy(x) =up(x), x€9Q’

Our main assumptions are

(Al) With 0<a <2, we find u, € W*%2(Q) and that there is an extension
u, € W>*2(R%R9) for u,,

(A2) There exists a constant M; < oo and f# > 0 such that,

[uy(x) — up(x)| < M, dist(x,0Q)'*?, forae. x € Qg
(A3) There exists an M, < oo such that

(5) / |Ks(z)|dz < M,, forall0<é< 5.

(A4) There is an M; < oo and y € R such that

llug = sl 2y < M367,  forall0 <6 < 5. (32)

Theorem 5 Suppose that (A1), (A2), and (A3) hold.
(a) Then, there exists a C < oo with the following property:
(al) Ifa =0, 1, then for each € > 0, there exists a0 < 6 = 6(¢) < $ such that
llus —wgll 2 pe) < 6% + s’
(@2)If0< a <2anda # 1, then
s — woll 2 ey < C<5a +603 )
() If the assumption (A4) also holds, then there exists a C < oo such that

1) If a =0,1, then for each € > 0, then there exists a C < oo with the following
property:

ﬁ+2y 1

||u5 - uO”LZ(Q;Rd) < e6* + Cé

B2)If0<a<2anda # 1, then
lus —ugll 2 orey < C<5a +o )

Proof Throughout the proof C’ < oo denotes a constant that may change from line to line
but is independent of 6. Define u;, v5 € L*(R%;R¢) by
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_ xeQ _ _
u(x) 1= { ;Zgg i 2 R\ Q and  V5(x) = Wy(x) — Uy(X). (33)

Since v; is identically zero on R¢ \ Q, we may use the Poincaré—Korn inequality in The-
orem 1. Thus, we may select 6, > 0 so that for each 0 < 6 < §,

llu; — “o”La(Q) ”Vb”LZ(Q) < CpxWp (V5. Vs) < Cpx W5(V5, V5)
=—Cpx / [L5us(x)] V5 (x)dx — Cp / [£5 (w5 —us)(x)]  V5(x)dx
(2 N — Q
=f(x)
+ Cpk / [ﬁaﬁo(x)] o V5(x)dx
Q
=Cpx / [L5u(x) — Loug(x)] « V5(x)dx +Cp / [£5(us — ;) (x)] * V5(x)dx.
Q Q

. -7

=i =1

24

(34)
With assumption (A1), we may apply Theorem 4 to bound |/, 5|in terms of 6.
We use the remaining assumptions to bound |/, 5|. Define v; € L*(R%;R) by
. — . _J0, XEQ,
V(%) 1= U0 — U (%) = { up(X) — Uy(x), x € RI\ Q.
Since the support of v; is contained in R? \ Q, we find that £;(v;) = 0 on Q. Thus,
L= / 7 [L5v5(%)] * V5(x)dx. 35)
26
We now work to bound || £;v; ||r;5- Assume (A2) and (A3) hold. From its definition,
||£5V5”1“2*(s < ||~/45V5||1";(s + ”Bav(s”r;ﬁ- (36)

Forae.x €'y and a.e. 2,2, € B, we find

[Vs(X + 2y +2,)| <dist(x + 2, +2,,0Q)" < (dist(0Q, x) + [z, + |z2|)l+ﬂ
<35'*.

Thus, forae.x e I'~
Cy
[Asvs(x)] SE K51z Dz 105(x + z1);v5)|dz,

m(5)2/ / K;5(1z, D1z, |K5(12, D12, V5 (X + 2y + 25)d2z,dz,

C/51+
m(5)2 //K‘S 1z, )z, |K5(|2, )|z, |dz,dz,

<C's# 1,

It follows that
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1 1
4595l < C'6P7H05,17 < €672,

We similarly find ||65v5||12._ <cC 61"%. From these bounds, (36), and the bounds for /, 5 in
25 ’

Theorem 4, we obtain
— 2 _ _ _ _
V51172 q) < C’(||£5u0 = Lol 20 Vs ll 20y + ”Eavélle(F;é)”V&“LZ(F;ﬁ))’

and part (a) of the Theorem follows. For part (b), we also assume (A4). From the inequality
above, we get

— _ _ _ B
”V5 ”LZ(Q) S C’ ( ||£5u0 - EO“O ”LZ(Q) ”v§ ”LZ(Q) + 5ﬂ+}' 2 )
This proves the result, else we reach a contradiction. O

Remark 1 The results of Theorem 5 above provide three “knobs™ for identifying lower
bounds for rates of convergence, as follows:

e The exponent « is limited by the degree of smoothness for the extended local solu-
tion and is independent of the collar values for the nonlocal problem. For a local
solution with a smooth extension @« = 2, which corresponds to quadratic convergence
away from the boundary.

e The exponent f quantifies the order at which the prescribed collar values converge
to the extension of the local solution as the boundary 0€2 is approached. For con-
stant extensions of the boundary values on dQ2, we have f > 0; for linear extensions,
B > 1. If the prescribed collar data are provided by the extension u, of the local solu-
tion, then f is effectively infinite and the convergence is of order 5*.

e Part (a) of the theorem only assumes {u;}s., C L*(Q). The family of nonlocal solu-
tions needs not even be uniformly bounded in L?(Q). If information about the rate of
convergence of u; — u, on the interior collar I';; is available, this can be captured
with the parameter y. For example, if there is a uniform bound for the nonlocal solu-
tions, then y = %

We next provide a corollary, which provides an alternative to (A4). Given
v € L2(R4;R?), define

Gv(x) = ﬁ /B K, (2)][V(x + 2) — v(x)|dz.

Consider the following assumption, where v; is defined in Eq. (33).
(A4’) There exists an M} < coand ay’ > 0 such that

16951l < M,s",  forall0 <6 <6.

Corollary 1 Suppose that Q satisfies the uniform exterior sphere condition. In addition to
(A1), (A2), and (A3), assume (A4), then part (b) of Theorem 5 holds withy = y' + %
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Proof We use an argument similar to the one used in [18]. Given a set E C R<and 6 > 0,
define E; :={px € R?:0<p<dandx € E}. The uniform exterior sphere condition
ensures there is a 6 > 0, j, € N, and open sets {Uk}]]z‘]=1 c Fg_ and {Sk}io=1 C 0B, with the
following properties:

. F;E c U’;OZI Uy and there exists ac > 0 and 0 < p, < 6 such that

L/ K,(zD)|zlPdz > o, forall 0 < p <3,
(0) Jz,,

where Z,, 1= pZ, \ B, .

e For each 6>0, xe€U;, :={y €U, :dist(y,0Q) <46} and weZ, we find
X+ pw e URd\QforallO<p<5

. Foreach0<6<6andxeUﬁk,thereemstsal<jX < ji, such that x + jz € R\ Q for
allz € Z;,.

Roughly speaking, we require a finite collection of subsets of the unit sphere such that for each
X € Uj, and each z in the associated annular sector Z; ;, of B, the sequence {x + jZ}7 *  stays
within 26 units of the d€2 and terminates at X + ]Xz € R? \ Q. An example is a square, m Wthh
case we can use four trapezoidal regions { U, }% 4 that border the boundary of the square and
four corresponding quarter sectors {5 };;1 of the unit circle.

Let k=1,...,k, and § > 0 be given. Since v5; =0 on Rd\Q, for each x € Uy, and
z € Z;,, we have

jX
V5001 < Y [V;(x +jz) = V(x + ( = )],
J=1
with X; = x + jz. Multiplying both sides by |K;(2)| |z|m(6)~! and integrating with respect to
z yields
Jx—1 M/ .
—_ 1 — — 3]0 ’
[vs(x)| < W(é) Z /Zk IKs@)|1z]|v5(x; + 2) — v(x)|dz < Tglw )

j=0
Taking the L2-norm over I'Z 25 WE see that assumption (A4) is satisfied with y =y’ %
Thus, we may apply Theorem 5. a
Remark 2

e The uniform exterior sphere condition is satisfied, for example, by any C?-domain or a
convex set.
e A straightforward modification of the argument can be used to replace || Gv;|| L=(rs,) with

IGv; ||L2(r;5) in assumption (A4’). In this case, we obtainy =y’ + 1
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5 Convergence of Solutions for the Dynamic System

The results obtained in the steady-state case problem extend to the dynamic system,
with similar bounds, but constants that may grow exponentially in time. Suppose
that u; € C*(0,T;:L*(Q))) and u, € C*(0,T;W'*(Q)) satisfy the initial boundary
value problems

pu; — Lsu; =£(,x), xeQ, t>0 puy — Lony =£(1,x), x€Q,1>0
u;(7,X) = up (1, X), xel},t>0 and u, (7, X) = up (7, X), Xx€dQ t>0
u;(0,x) = P(x), X € Q;’é u,(0,x) = ¢(x), xeQ
u; (0,x) = y(x), x € Q) u, (0,%) = y(x), X € Q.
(37
Here, we consider the material density p = 1 without loss of generality and denote
u; = 2u and wu; = a—zu .
57 o KT

The precise statements mirror Theorem 5 and are given by

Theorem 6 Let f € L*(0,T:L*(Q)), u;, € C(0, T:L*(Q},) N L*(0Q)) and ¢,y € L*(Q;
be given. Let a, f,y > 0 be given, and suppose that u, € C2(0, T;W*+*2(Q:R%)). Then, the
estimates in parts (al), (a2) of Theorem 5 hold under same assumptions (A1)-(A3) for the
time dependent solution, with all statements appropriately adjusted for the dynamic case,
and the bounds M, M,, C time dependent.

For the second part, we additionally assume that

(A4”) There is an Mg < oo andy, € R such that

llug, = w5 ll 2y, < 337, forall0 <5 < 5. (38)
Then, there exists a C = C(t) < oo such that

®V) Ifa =0, 1, then for each € > 0:

26427, -1

llus(0) —ug@ll 2 qpay < €6°+C6™+ .

G2)If0<aL2anda # 1, then

26421 =
lus (@) — wy)ll 2 irey < C<6" +6 ¢ )

Proof We use the same approach as in the proof of Theorem 5, with the same notation and
extensions to the collar I ;“6). Subtracting the equations from (37) that hold on €, multiply-
ing by the difference v; :=u; — u,, integrating over the domain, and using the symmetry

of the kernel (nonlocal integration by parts) yield:
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d

> / (V5> dx + W5(¥5,¥5) = / [£58o(x) = LoUp(x)] « V5, (X)dx + / [£5(us —05)(x0)] V5, (x)dx
tJa Q Q

(39

Using Young’s inequality, bounds on F; 5 and rearranging the terms give the estimate:

d — R — — — —
z </Q(V§I)2 dx + W(s(V(s’Va)) < 8”"5,”22(9) + 4[| L5uy — Lo“o”iz(m + 4L (a5 - uﬁ)lliz(rgé),

(40)
where we used the fact that u; —u; = 0in Q. Let
¢ = /Q (vs)> dx + W5(¥5,V;)
then Eq. (40) together with the bounds
IC,5, - £060“22(Q) < C,6™, 1L 5Cu, —EE)H;(FZ}) < C,8%! 41)

which are established exactly in the same way as in the proof of Theorem 5, we obtain
¢ < 8L(t) + C,5° + C,6%P1,
We obtain the bound
() < Ce' = 1)@ + 677, (42)

80 W5(v5,V;) < C(e' — 1)(8* + 6%/~1). By the Poincaré—Korn inequality, we obtain that
v -1
V51l 20y < Cle' = 1D +872),

where C depends also on the Poincaré—Korn constant.
For the second part, we go back to inequality Eq. (40) and use the bounds Eq. (41) and
assumption (A4”) to obtain:

1
(1) < 8¢ + €8 + ML5P 2, (43)

Applying Gronwall’s inequality again yields the bounds (b1’) and (b2’). a

6 Numerical Tests and Empirical Convergence Rates

In this section, we aim to numerically verify the analysis developed in Sects. 4—5. In par-
ticular, with nonlocal Dirichlet-type boundary conditions define by extending the surface
(local) data into volumetric data, we denote the solution of Eq. (19) as u; and its local
limit, the solution of Eq. (20), as u,. We now investigate the convergence of numerical
approximations ug, by taking 6 — 0 and the spatial refinement 4 — 0 simultaneously. Three
types of boundary conditions will be investigated: the “smooth extension” where a smooth
extended local solution is provided as u,(x) for x € l";s, the “constant extension” which
employs the naive fictitious node methods such that u,(x) is defined by the surface (local)
data at its corresponding projection on d€2, and the “linear extension” which employs the
mirror-based fictitious node methods and extends the surface (local) and the interior data
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Initial interior diam=2

52001 2 o Interior nodes 2 o Interior nodes

o Fictitious nodes e Fictitious nodes
° — Interior surface ——Interior surface
~—Exterior surface

Magnitude of displacement

4.3e-01

I Initial exterior diam=3

Fig. 3 Problem settings for a hollow disk and two types of grids (in blue) with mirror-based fictitious nodes
(in orange) for the hollow cylinder example. Left: polar grids where the interior nodes are generated as
X, N Q := {(p,hcos(zp,yh/5), pyhsin(zp,h/5)|p = (py,p,) € Z2} N Q. Right: Cartesian grids where the
interior nodes are generated as X, N Q := {(p,h, p,hlp = (p1,p2) €22} NQ

into the exterior layer l";& linearly. As an illustration for the mirror grids, two example
meshes for a hollow cylinder problem are provided in Fig. 3, with further details to be pro-
vided later on in the section.

To observe the convergence rates of |[u; — u||;2qre)> an important feature of the dis-
cretization would be to preserve this asymptotic limit as §, 7 — 0. Discretizations which
preserve the correct local limit under spatial refinement # — 0 and 6 — O are termed
asymptotically compatible (AC) [25]. For further discussions and an incomplete list
of AC methods see [37, 38, 54—61]. Here, we numerically solve Eq. (19) by employ-
ing a meshfree, particle discretization method introduced in [39] and analyzed in [62].
This optimization-based meshfree method features asymptotic compatibility in the 6—
convergence tests [63], i.e., when u; — u, and one refines both § and 4 at the same
rate, the numerical nonlocal solution converges to the local limit. In this work, we will
also investigate the convergence of numerical nonlocal solutions under the 6—conver-
gence setting, since banded stiffness matrices are obtained in such a setting and scalable
implementations are allowed. Therefore, we always choose & such that the ratio g is
bound by a constant M as 6 — 0.

Discretizing the whole interaction region Q. by a collection of points
X, = {x;} {i=12,-,) C Q7;, we aim to solve for the displacement u; ~ u(x;) and the nonlo-
cal dilatation 0; =~ 6(x;) on all x; € X, N Q. We first characterize the distribution of colloca-

tion points as follows. Recall the definitions [64] of fill distance hy o = sup mi)? [1x; — x;11,
" x,€X;, Xi€X),

. . 1 . . N .
and separation distance gy, = Smin||x; — X;[|,, we assume that X; is quasi-uniform, namely
i#j

that there exists ¢, > O such thatg, <h, o <cgq,.
We first consider the spatial discretization for the static LPS model Eq. (19) through the

following one point quadrature rule at X, [65]:
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c
(Lhw), = — inegé(xi) (4 - ﬂ)Ka(’Xj - Xi|)(xj —x;)(6; + 9j)coj,~
Cy X;—X; )Q(X;—X;
d )
0, = =5 ZXJEB&(XJ K5(| ’) (u —u, ) for x; in Q7
U, = up(x;), for x; in FZS,
44)

where we specify {a)jqi} as a to-be-determined collection of quadrature weights admit-
ting interpretation as a measure associated with each collocation point Xx;. Particularly, we
employ an optimization-based approach to define these weights [60], by seeking w;; for
integrals supported on balls of the form

INfl:= | faydy~LIfl:i= Y f&.x)o, 45)

Bj(x;) X;EB;(x;)

where we include the subscript i in {a) } to denote that we seek a different family of quad-
rature weights for different subdomains B,(x;). We obtain these weights from the following
optimization problem

argmin )\ @’ suchthat, I[pl=1[p] VpeYV,

{o:} X;,E€B;(x;) (46)

where V,, denotes a Banach space of functions which should be integrated exactly. For the
LPS model, we take V, := {q =29 (y) s | p € Ps(R?) such that [, L Wy < oo} where

p € P5(RY) s the space of quintic polynomlals As shown in [39], the above V,, provides a
reproducing space which is sufficient to integrate Eq. (44) exactly in the case where u and 6
are quadratic polynomials. We refer to previous work [38, 39, 60] for further information,
analysis, and implementation details.

For the dynamic LPS model Eq. (37), to discretize in time we apply the Newmark
scheme. With time step size At, at the (n + 1)—th time step we solve for the displacement
u;’“ ~ u((n + 1)At,x;) and the nonlocal dilatation 91’.’“ ~ 0((n + 1)At, x;) following:

B+t 4 (Lhuy™ = £+ DALX) + 2!+ A + A5, forx; in Q.

A2 l
d .

ol = = K.(x;—X )T< nl u’f“)w , for x. in Q7F,

i m(d) XjeBZ‘;(x,) /A i i i 5
u:-’“ = up(X;), for x; in F%,

b_ 0 _
u’ = ¢(x;), 0, =y(x,), for x; € Q7

47)

where ﬁg is the discretized nonlocal operators as defined in Eq. (44). The acceleration and
velocity at the n + 1-th time step are then calculated as follows:

sen+l - 4 n+l _ n n s n sn+l . _ on At By sen+l
[ At2(u u! — Ama) -}, W o= +7(ui + ™).

Note that although the Newmark scheme is unconditionally stable, in all numerical tests
we take a sufficiently small time step size Ar < 6 so as to study the convergence rates with
respect to 6.
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In the following, we consider static and dynamic problems on three numerical cases: linear
patch tests, smooth manufactured nonlinear solutions, and analytical solutions to curvilinear
surface problems. For the first two cases we consider square domains with Cartesian grids and
mesh spacing 4. In numerical results for these two cases, different colors of lines represent dif-
ferent ratios between 6 and A. For the analytical solutions to curvilinear surface problems, we
consider the deformation of a hollow cylinder under an internal pressure p,, with the setting
plotted in Fig. 3. Two types of grids are generated and tested: polar grids where the interior nodes
are generated as X, N Q := {(p,hcos(zp,h/5), phsin(zp,h/5))|p = (p,,p,) € 72} N,
and Cartesian grids where the interior nodes are generated as X, N Q := {(ph, p,h)|
p = (p,p,) € 7} N Q. In all numerical results on this case, we set § = 3.2 and use red
to represent results from polar grids and blue to represent Cartesian grids'. We notice that
in the hollow cylinder case the computational domain Q has curved surfaces, which are not
explicitly represented in our meshfree method. Moreover, in unstructured meshes such as the
polar meshes the ratios between 6 and 4 are no longer uniform. Both factors would possibly
introduce additional numerical errors and cause the fluctuation of observed convergence rates,
which makes the convergence test on the hollow cylinder case especially challenging (see, e.g.,
[66, 67] for a similar numerical phenomenon). Therefore, our observations and discussions on
the convergence rates are mainly based on the lower bounds from the first two cases (linear
patch tests and smooth manufactured nonlinear solutions).

In all cases, we adopt material parameters under plane strain assumptions:

E=1,4=Ev/(1+v{1 =2V), u=E/Q( +v)).

Two values of Poisson ratio v = 0.3 and 0.49 are investigated which correspond to com-
pressible and nearly-incompressible materials, respectively. In all numerical results, we use
solid lines and dash lines to represent results from v = 0.3 and v = 0.49 cases, respectively.

We summarize the setup and report the formal convergence study for the static LPS
problem in Sect. 6.1 and for the dynamic problem in Sect. 6.2. To investigate whether the
theoretical convergence rates in Theorem 5 and Theorem 6 are realized as § — 0, our
numerical results particularly focus on 1dent1fy1ng the convergence rates of | |u5
and numerically evaluating the value of 3’ by calculating ||Gv;|| ) = o@").

| |L2(Q;Rd)

6.1 Static Problem with Dirichlet-Type Boundary Conditions

To demonstrate the convergence in static LPS problems and the impacts of Dirichlet
boundary conditions, three different settings are considered:
1. Linear case: We consider as linear patch test the displacement

uy(x,y) = Bx + 2y, —x + 2y)

on a square domain Q = [—1/4,1/4] X [-1/4,1/4]. Note that when the analytical u,
is provided on I}, in linear patch tests the local and nonlocal solutions coincide.
2. Nonlinear case: We consider a manufactured local solution adopted from [68]:

! Note here & is a parameter which is proportional to the fill distance hy, o- It does not vary throughout the
domain even for a non-uniform mesh.
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Fig.4 Static problem with smooth extension boundary condition. Left: the L*(Q:;R?) difference between
displacement u; and its local limit u,,. Right: the convergence of ||GV; | . T3 in condition (A4’)

u,y(x,y) = [Ax + Csin(bx), 0], fo,y)=[(A+ 2u)b*C sin(bx), 0].

on a square domain Q =[-1/2,—-1/2] X [-1/2,1/2]. The parameters are taken as

A=09,C=14andb=1.6.
3. Hollow cylinder case: We consider the expansion of a hollow cylinder under an internal

pressure p, = 0.1. The classical linear elasticity model predicts displacements given by

B B
LAyt
x2+y2 x2+y2

uy(x,y) = |Ax +

where
_ (1 +v)(1 = 2v)p,R2 . (1 + v)pyR2R?
KR -R) KR -R) ’

Ry = land R, = 1.5 are the interior and exterior radius of the hollow disk. An illustra-
tion of the hollow cylinder problem setting and displacement magnitudes is plotted in

Fig. 3.

To establish the numerical convergence rates for the difference between u; and u,,
with given extensions of different degrees of regularity, for each setting three boundary
extension strategies are considered to provide data on the exterior collar I“;é:

1. Smooth extension: A smooth extended local solution is provided as u,(x) for x € F;(;.

In particular, we set:
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Fig.5 Static problem with constant extension boundary condition. Left: the L?(Q;R%) difference between
displacement u; and its local limit u,,. Right: the convergence of ||GV; | . T3 in condition (A4’)

up(x) = uy(x), VxinIj.

Results of solution convergence with smooth extension are plotted in Fig. 4. We
observe that the numerical solution passes the patch test within machine precision.
For the nonlinear case, we observe second-order L?(€;R?)-norm convergence for dis-
placements in both compressible and nearly-incompressible materials, which is con-
sistent with the theoretical bound discussed in Theorem 5 (a) and Remark 1. In the
hollow disk case, the observed convergence rate for displacement error fluctuates from
1.66 +0.17 to 2.52 + 0.06, possibly due to numerical errors introduced from curved
boundaries. Moreover, a deteriorated convergence rate is observed from tests with
polar meshes because of the non-uniform ratio between 6 and grid sizes. Similar phe-
nomena are also observed in the constant and linear extension strategies discussed
below and were reported in previous numerical studies using meshfree methods (see,
e.g., [66]).

2. Constant extension: The naive fictitious node method is employed such that u,(x) is
defined by the surface (local) data at its corresponding projection on 0€Q. In particular,

up(x) =uy(x), Vxinlj,,
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Fig.6 Static problem with linear extension boundary condition. Left: the L2(Q;R¢) difference between dis-
placement u; and its local limit u,,. Right: the convergence of [|GV; | . T3 in condition (A4’)

where X := argmin dist(y, x). We note that the constant extension on the boundary

yEIQ
region does not pass the linear patch test theoretically. Results for the three numerical

cases are plotted in Fig. 5, where we can see that || Gv,]| Lo(T5) is uniformly bounded but
not converging in all cases, i.e., ' = 0. Therefore, Theorem 5 (b) and Corollary 1 pro-
vides an estimated convergence bound for ||u; — || L@Rd 3 0(6'/?). Numerically,
we observe at least O(6%8) convergence for displacements, and the convergence rates
get closer to 1 as we refine the mesh. This observed convergence rate is slightly better
than the O(5'/?) theoretical convergence rate and suggests that the theoretical rate of

convergence in Theorem 5 (b) might be sub-optimal.
3. Linear extension: We consider the mirror-based fictitious node methods which extends

the surface (local) and the interior data into the exterior layer I';, linearly. Particularly,

we set
up(x) = 2uy(X) —u;(2X —x),  VxinTj,

where X - = arygerargn dist(y. X). For the linear patch test case, machine precision accu-
racy is again observed. For the other two cases, in Fig. 6 we present convergence
results, where we observe O(8) convergence for ||Gv,]| L=, 88 6 =0, ie., Y =1
Therefore, an 0(6/?) theoretical convergence rate is provided by Theorem 5 (b) and
Corollary 1. On the other hand, almost quadratic convergence is observed for u; — u,
in the L? norm, which is again slightly better than the O(6/%) theoretical convergence

rate.
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Fig.7 Dynamic problem with smooth extension boundary condition. Left: the L2(Q;R¢) difference between
displacement ug(7', -) and its local limit uy (7, -). Right: the convergence of || GV, || T3 in condition (A4’)

6.2 Dynamic Problem with Dirichlet Boundary Conditions

With density p = 1.0, in dynamic LPS problems we also consider three different settings.
To observe the convergence with respect to 6, in all cases we take a sufficiently small time
step size At = 0.01 and simulate until 7 = 0.1.

1. Linear case: We consider as linear patch test the displacement

uy(t,x,y) =t +3x+2y,t —x+2y)

on a square domain Q = [-1/4,1/4] x [-1/4,1/4].
2. Nonlinear case: We consider a manufactured local solution adopted from [68]:

u,(t,x,y) = [Ax + Bsin(at)x + Csin(bx), 0]
on a square domain Q = [—1/2,1/2] X [-1/2, 1/2] with the external loading
£(2,x,y) = [(A + 2u)b*C sin(bx) — pa®Bx sin(at), 0].

The parameters are takenas A =09, B=0.1,C=14,a=10and b =1.2.
3. Hollow cylinder case: We consider the expansion of a hollow cylinder under an increas-
ing internal pressure p,t. Under this setting, the classical solution uy, is given by

Bxt Byt
5 ,Ayt + 21y

uy(t,x,y) = [Axt +
o, X, y) ity

where p,, A, B and R, R, are as defined in the static hollow cylinder case.
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Fig.8 Dynamic problem with constant extension boundary condition. Left: the L?(€;R?) difference
between displacement u,(7, -) and its local limit u, (7, -). Right: the convergence of || GV, ||« T3 in condition

(A47)

Similar as in static LPS problems, three boundary extension strategies are considered
to study the numerical convergence rates with given extensions of different degrees of

regularity:

1. Smooth extension: We set
up(r,X) =uy(1,x), VxinTj., 7> 0.

It is observed that the numerical solution passes the linear patch test to within
machine precision. In Fig. 7, we plot the numerical results for the nonlinear and hol-
low cylinder cases. In the nonlinear case, we observe slightly higher than second-order
L*(Q;R?) convergence for displacements: the convergence rates vary from 2.20 + 0.21
to 2.48 + 0.09. This fluctuation of convergence rate is partly due to the higher-order
(0O(67), p > 2) modeling deviations that arises between the local and nonlocal models.
In the hollow cylinder case, fluctuating convergence rates are again observed, due to

the numerical errors discussed before.
2. Constant extension: We set

up(r,X) =uy(1,X), VxinTj,, 1> 0,
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Fig.9 Dynamic problem with linear extension boundary condition. Left: the L>(€;R?) difference between
displacement u,(7', -) and its local limit uy (7, -). Right: the convergence of ||Gv; ||« ) in condition (A4’)

where X := argmin dist(y, x). Numerical convergence results for all three numerical

yEIQ
cases are provided in Fig. 8. In the linear and nonlinear cases, we can see that the con-

vergence rates are very similar to the static cases: ||Gv,]| Lo(T5) is uniformly bounded
with y’ = 0. Therefore, the theoretical analysis in Theorem 6 provides an O(8'/2)
bound for ||u; — ||, (@mdy While numerically we observe convergence rates between
0.92 +0.04 and 1.05 + 0.04 in the linear and nonlinear cases.

Linear extension: We set

uy(1,X) = 2uy(1,X) —us(£,2X —x), VxinIj,7>0

where X := argmin dist(y, x). For the linear patch test case, machine precision accu-

yeoQ
racy is obtained. For the other two cases, in Fig. 9 we plot the numerical results for

[Jus = uo|| 2 o.mey @A 1GVsll ooy For IGVslleo(r- . at least first-order convergence
rate is observed in the nonlinear case and a nearly first-order convergence is observed
in the hollow cylinder case. On the other hand, for u; — uy in the L? norm the conver-
gence rates in the nonlinear cases are very similar to the rates observed in static cases:
a roughly second-order convergence rate is observed, although convergence rate fluctu-
ates due to the solution nonlinearity. Therefore, the numerical rate of convergence for
||us — || 2 umey is mearly half order higher than the theoretical rate provided by

Theorem 6.
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7 Conclusions and Future Directions

The paper illustrates several aspects behind convergence of vector-valued solutions to non-
local systems of equations to classical counterparts. As a particular aspect, we investigate
the relationship between the smoothness of the extension of a classical solution and the
degree of convergence as the horizon of interaction shrinks to zero. The conclusion is that
in order to increase the rate of convergence one must align the nonlocal boundary data with
smoother extensions of the classical solution. A better agreement with the classical exten-
sion and a higher degree of regularity would guarantee a faster convergence rate.

The optimality of the theoretical results regarding the rates of convergence is an impor-
tant question for future explorations, especially as the theoretical results and numerical
experiments exhibit an O(6'/%) gap in the order of convergence. It remains to be shown
if one can produce examples of nonlocal solutions which match the theoretical rates of
convergence. For this direction, a sensible approach would be to explore more irregular
domains, or problems with more irregular data. These studies can further be carried out
also in terms of other types of regularity to nonlinear problems, e.g., nonlinear diffusion
or wave propagation in the nonlocal setting. While it is expected that more general ker-
nels can be considered (due to the availability of results in [18, 69]), a much more com-
plex investigation is needed for dynamic fracture, where the limit for the nonlocal solutions
would first need to be identified. Nonlinear problems in the vectorial setting are addition-
ally beset with well-posedness issues, especially as nonlocal Korn-type inequalities do not
have the same strength as for classical operators, so higher-order nonlinearities need to be
tackled with more sophisticated analysis tools.

Finally, these results have been obtained for Dirichlet-type boundary conditions, so
Neumann-type boundary problems such as [38, 39] will be investigated elsewhere. An
additional open problem would be the investigation of convergence rates for higher-order
problems, such as for the nonlocal biharmonic with clamped or hinged boundary condi-
tions, as introduced in [41].
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