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Abstract
The nonlocal models of peridynamics have successfully predicted fractures and deforma-
tions for a variety of materials. In contrast to local mechanics, peridynamic boundary con-
ditions must be defined on a finite volume region outside the body. Therefore, theoreti-
cal and numerical challenges arise in order to properly formulate Dirichlet-type nonlocal 
boundary conditions, while connecting them to the local counterparts. While a careless 
imposition of local boundary conditions leads to a smaller effective material stiffness close 
to the boundary and an artificial softening of the material, several strategies were proposed 
to avoid this unphysical surface effect. In this work, we study convergence of solutions 
to nonlocal state-based linear elastic model to their local counterparts as the interaction 
horizon vanishes, under different formulations and smoothness assumptions for nonlocal 
Dirichlet-type boundary conditions. Our results provide explicit rates of convergence that 
are sensitive to the compatibility of the nonlocal boundary data and the extension of the 
solution for the local model. In particular, under appropriate assumptions, constant exten-
sions yield 1

2
 order convergence rates and linear extensions yield 3

2
 order convergence rates. 

With smooth extensions, these rates are improved to quadratic convergence. We illustrate 
the theory for any dimension d ≥ 2 and numerically verify the convergence rates with a 
number of two-dimensional benchmarks, including linear patch tests, manufactured solu-
tions, and domains with curvilinear surfaces. Numerical results show a first-order conver-
gence for constant extensions and second-order convergence for linear extensions, which 
suggests a possible room of improvement in the future convergence analysis.
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1  Introduction

The peridynamics theory formulated in [1] has been successful in modeling deformations, 
fracture, and predicting behavior in a variety of materials: concrete, metal, viscoelastic, 
viscoplastic [2–10]. As a nonlocal model, peridynamics employs integral, rather than dif-
ferential, operators which allows to relax the regularity constraints of partial differential 
equations (PDEs) and to capture effects arising from long-range forces at the microscale 
and mesoscale, not accounted by PDEs [11–17]. Consequently, the model (with a variety 
of formulations) has been of interest even in the absence of damage, as a series of papers 
showed well-posedness and properties of the solutions, as well as convergence of the non-
local operators and solutions to classical counterparts in the limit of vanishing horizon of 
interaction [18–25].

In peridynamics, the nonlocality manifests itself through interactions on a finite range. 
As such, boundary value problems have data supported on a collar that contains the points 
with whom the domain entertains interactions [14, 26–28]. The size of the collar (also 
called the interaction domain) is determined by a system parameter, called horizon, and 
usually denoted by � . Formulating a boundary value problem in the nonlocal setting brings 
in an additional level of complexity, as appropriate boundary conditions must be defined. 
While for a local problem data on the domain’s surface can be easily provided by experi-
mentalists through surface measurements, in the nonlocal setting one must provide volu-
metric data for the boundary collar, which may be difficult (or even impossible) to obtain. 
Thus, practitioners must introduce ad hoc methods for prescribing both Dirichlet and Neu-
mann-type boundary conditions for nonlocal problem [29–40], and in this work we mainly 
focus on the Dirichlet-type volume constraints. Most commonly, the convergence of non-
local solutions to classical counterparts has been studied for homogeneous Dirichlet-type 
boundary conditions in second order ([22, 23]), or higher order ([41]) problems. In these 
works, the local problem is set on domain Ω , while the nonlocal equation holds on Ω ⧵ Γ 
(where Γ ⊂ Ω is an interior collar set of positive measure), with zero boundary conditions 
on Γ . With this setup (where the nonlocal solution has exactly the same values as the local 
solution on the nonlocal boundary) it is expected to observe quadratic convergence (with 
respect to � ) for the L2 norm of the difference between the local and nonlocal solutions.

For nonhomogeneous Dirichlet-type boundary data, a series of approaches have been 
introduced and investigated for peridynamics and the general nonlocal problems. Currently, 
popular strategies to enforce local Dirichlet boundary conditions in nonlocal models can be 
generally classified into two types: by modifying the nonlocal operator near the boundary 
[34], or by extending or converting the surface (local) data into volumetric data [35, 36]. 
The first approach was introduced in [34], where the authors propose to gradually change 
the nonlocal operator to a local operator on the boundary, so as to avoid the use of nonlocal 
boundary conditions. For nonlocal diffusion problems, thanks to the nonlocal trace theo-
rem provided in [42], this approach features well-posedness. However, to the best of our 
knowledge, no work has yet addressed the well-posedness of this approach in the vectorial 
framework of peridynamics. On the other hand, the second approach is often developed by 
means of constant, linear, or higher-order extrapolations of the given boundary data on the 
surface of codimension-one onto the boundary collar [36, 43], and it is more commonly 
employed to prescribe the Dirichlet boundary condition in peridynamics.

On scalar-valued nonlocal problems such as the nonlocal diffusion problems, in [35] 
the authors proved the second-order convergence of the nonlocal solution to the local one 
with linear extensions on the boundary conditions defined based on the exact derivatives of 
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the local limit. When the exact local derivative is not known a priori, in [36], the authors 
proposed to implicitly compute the appropriate normalization factors and they were able to 
obtain second-order consistency of the nonlocal operators with the local ones. For vector-
valued systems, in the context of peridynamics a naive fictitious nodes method (FNM) was 
originally proposed by assigning the same values to all fictitious points corresponding to 
a boundary point [44]. The naive FNM was later extended to the Taylor FNM by using 
Taylor expansion (to linear terms) for points in the boundary collar [45] and the mirror-
based FNM by reflecting the values on interior collar nodes to their corresponding mirror 
nodes for domains with simple geometries [46–49]. Recently, the mirror-based FNM was 
further extended to more general domains in [40] for nonlocal diffusion problems, where 
the authors propose a novel approach of extending the solution across the boundary along 
a “nonlocal normal” that is computed using the gradient of the index-function that meas-
ures the size of the support of interaction. The approach is investigated numerically, and 
it shows better agreement with classical solutions, while also being able to handle non-
smooth boundaries, and even crack lines. Similar as the mirror FNM idea in [40] and the 
vanishing horizon idea in [34], in [50] the authors propose two methods for dealing with 
boundary conditions in one-dimensional bond-based peridynamics model. The Extended 
Domain Method (EDM) adds a layer to the domain Ω on which an odd reflection of the 
classical solution is imposed. For the Variable Horizon Method (VHM), the boundary is 
interior to the domain and it is considered of variable depth, so that as the horizon shrinks 
to zero, the nonlocal solution converges to classical. The numerical studies show quadratic 
convergence in � , if some additional corrections are performed.

1.1 � Description of the Results

In this work, we present a comprehensive study for convergence of nonlocal solutions to 
classical counterparts, which holds for the vector-valued linearized peridynamic solid model 
(LPS) [51], a prototypical state-based model, with nonhomogeneous Dirichlet-type bound-
ary conditions. The vector-valued system is notoriously difficult to study even in classical 
elasticity due to the cross-interactions between solution components, so well-posedness and 
regularity results rely heavily on Korn-type inequalities [23]. Nonlocal versions of these 
tools are employed here to study how one may optimally impose nonlocal boundary condi-
tions in order to ensure a high degree of compatibility with the local system.

The analysis performed in this paper does not prescribe a particular method for impos-
ing boundary conditions for the nonlocal system. Instead, we establish bounds for the dif-
ference between the local and nonlocal solutions, in terms of the difference (on an interior 
collar) between the nonlocal data and extensions of different degrees of regularity (even 
fractional) for the classical solution. The construction of different possible extensions is 
illustrated in Fig. 1, where Γ+

2�
 is an exterior collar (see the Definition (1)) that nonlocal 

boundary conditions will be prescribed to guarantee the well-posedness of the nonlocal 
equation.

To provide a more precise description, suppose that {�𝛿}𝛿>0 ⊆ L2(Ω;ℝd) is a family  
of solutions to the nonlocal problems parameterized by � . Suppose that �0 ∈ W2,2(ℝd;ℝd) 
is an extension of the strong solution �0 ∈ W2,2(Ω;ℝd) to the corresponding local prob-
lem. The theoretical bound for the rate of convergence of ‖�� − �0‖L2(Ω;ℝd) is decom-
posed into two components. One component captures the rate of convergence away 
from the local boundary and depends on the regularity above W2,2 that the local  
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solution possesses. The other component captures the rate of convergence near the  
local boundary �Ω . The convergence near the boundary, in turn, depends upon an exte-
rior and interior term. More specifically, the exterior term is provided by a priori rates  
of convergence of the prescribed collar values on Γ+

2�
 to the extended local solution as  

�Ω is approached. Knowledge, if any, about the convergence of �� to �0 on Γ−
2�

 can also 
be incorporated to improve the theoretical rate of convergence.

In Table 1, we assume the extension of the local solution has bounded fourth-order 
derivatives (quantified by � = 2 , see Theorem 5). Thus, the convergence away from the 
boundary is of order-two, and it is the convergence rate near the boundary that dominates 
the theoretical rate. The value of � ≥ 0 identifies the rate at which the collar-values 
approach �0 as �Ω is approached. If � = 0 , then the function values have order-one con-
vergence, which can be ensured, for example, with a constant extension of the local 
boundary values. If � = 1 , then the first-order derivatives of the collar-values and �0 have 
order-one convergence, which can be provided by a linear extension of the local bound-
ary values. If the prescribed collar-values coincide with �0 on Γ+

2�
 , then � is effectively 

infinite—there is no boundary component for the lower bound on the theoretical rate of 
convergence (RC). We use � to reflect a priori information, if any, about the rate of con-
vergence of �� to �0 as �Ω is approached from the interior. If it is only known that {�𝛿}𝛿>0 
are uniformly bounded, then � =

1

2
 . In the table, we use � =

1

2
 for � = 0 and � =

5

2
 for 

� = 1 . These choices are based on numerical observations in Sect. 6. If ‖�� − �0‖L2(Γ−
2�
) has  

order-one convergence to zero, then � =
3

2
 . See Theorem 5 for the result in its full gener-

ality and notation.

Fig. 1   Different types of exten-
sions of a local solution to the 
nonlocal boundary layer Γ+

2�
 : 

continuous (constant), C1 (linear), 
C2 (quadratic/smooth)

Table 1   Theoretical and 
numerical rates of convergence 
(RC) for the nonlocal solution to 
its classical counterpart. � , � , and 
� are as defined in Theorem 5

Type of extension � � � Theoretical RC Numerical RC

Constant 2 0 3/2 �1∕2 �

Linear C1 2 1 5/2 �3∕2 �2

Smooth C∞ 2 ∞ – �2 �2
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1.2 � Significance/Contributions

The study of convergence of nonlocal solutions to classical counterparts is performed here 
by taking into consideration 

	 (i)	 how well the nonlocal boundary condition matches with a (smooth) extension of the 
classical solution;

	 (ii)	 the degree of smoothness for the extension.

Note that, in contrast with other works, the analysis allows one to consider general nonlo-
cal boundary conditions (no a priori construction needs to be made), and then based on 
the compatibility between the nonlocal data and the extension to classical problem, and 
the availability of additional bounds, an explicit rate of convergence is derived. This flex-
ibility in implementations allows considerations of different types of nonlocal boundary 
data, which may be selected to best fit other desired features of the model (e.g., to conserve 
some physical property of the boundary data, or to take into account interactions with other 
dynamics in a coupled system).

The explicit decay rates obtained in Theorem 5 are based on carefully analyzing bounds 
on different sets (interior, exterior collars, etc.), thus also identifying the bottleneck in 
obtaining faster convergence. Thus, the availability of improved bounds on the interior 
collar will increase the rate of convergence. However, a final verdict on whether these 
(assumed) bounds are expected to hold for irregular boundaries or solutions, has not been 
delivered, so investigations into the optimality of these results are forthcoming.

As it was mentioned above, the results apply to vector valued systems, a setting for 
which a comparison principle is not available. This is in contrast to diffusion problems, 
where the availability of comparison principles allows a more direct method of capturing 
the difference between classical and nonlocal problems.

The results of this paper are proven for general kernels (of different singularities), so 
they are applicable for a variety of nonlocal systems where the profiles of interaction can 
model different media or behaviors. Additionally, the main argument does not use any 
information on 

(a)	 the shape of the domain; the regularity of the boundary may only (indirectly) affect the 
smoothness of the extensions.

(b)	 the regularity/bounds on the nonlocal solution inside the domain, beyond L2 integrabil-
ity.

Finally, the convergence bounds transfer to the dynamic case, with the only significant dif-
ference that the constants may increase exponentially in time (but are bounded for finite 
times).

1.3 � Paper Organization

The background material together with the notation is introduced in Sect.  2. The linear 
peridynamic solid (LPS) model is introduced in Sect. 3, together with the notation for the 
nonlocal operators and domains used throughout. Also in Sect.  3, the nonlocal bound-
ary value problem with Dirichlet-type constraints is introduced, for which wellposedness 
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follows by employing a Poincaré–Korn-type inequality. The convergence analysis for this 
static case is obtained in Sect. 4, under several different scenarios distinguishing between 
the types of extension (continuous, linear, or smooth) of the boundary value data, and other 
conditions. The dynamic system is studied in Sect. 5, where similar rates are shown. The 
numerical experiments are presented for both, the static and dynamic cases in Sect. 6. The 
final Sect. 7 presents conclusions of this work, as well as future directions.

2 � Notation and Preliminaries

The results of the paper hold in the vectorial framework, for which vector and tensor opera-
tions will be required. Given a vector space �  , we denote �⊗l = � ⊗⋯⊗ �

�����������
l times

≅ � ×⋯ × �
���������

l times

 , 

which can be identified with � � . In the sequel, �  will be a space of l-th order tensors, with 
components in ℝ , so 𝕍 = ℝ

d⊗l ≅ ℝ
dl , for some l = 0, 1, 2,… . We use ∙ for the usual vec- 

tor dot product and ℝd⊗0 ∶= ℝ
1 = ℝ

d0 and ℝd⊗1 = ℝ
d.

Let {�i}di=1 ⊆ ℝ
d be the unit coordinate vectors in ℝd . Given � ∈ ℝ

d , we may write

More generally, given � ∈ ℝ
d⊗l,

We will use an extension of inner products and contractions to tensors of higher-orders. 
Suppose that � ∈ ℝ

d⊗n and � ∈ ℝ
d⊗m , with n ≥ m . The inner product of � and � is

with

The norm of � , we define

Cauchy’s inequality implies

� = (�)i =

d∑
i=1

vi�i, with vi = � ∙ �i, for i = 1,… , d.

� = (�)i1…il
=

d∑
i1=1

⋯

d∑
il=1

Ai1⋯il
�i1 ⊗⋯⊗ �il , for i1,… , il = 1,… , d.

� ∙ � = (�)d
i1…in−m=1

=

d∑
i1=1

⋯

d∑
in−m=1

Ci1…in−m
�i1 ⊗⋯⊗ �in−m ∈ ℝ

d⊗(n−m),

and �� = (�)d
i1…in−m=1

=

d∑
i1=1

⋯

d∑
in−m=1

Di1…in−m
�i1 ⊗⋯⊗ �in−m ∈ ℝ

d⊗(n−m),

Ci1…in−m
=

d∑
j1,…,jm=1

Aj1…jmi1…in−m
Bj1…jm

and Di1…in−m
=

d∑
j1,…,jm=1

Ai1…in−mj1…jm
Bjm…j1

|�| = (� ∙ �)
1

2 .

|��| ≤ |�||�| and |�⊗ �| ≤ |�||�|.
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Suppose that � = (�)i1…im
∈ Wk,2(Ω+

𝛿0
;ℝd⊗m) , so the (k + m)-order tensor of k-th-order 

derivatives satisfies 𝜕k� ∈ L2(Ω+
𝛿
;ℝd⊗m ⊗ℝ

⊗k) . In components,

Finally, we use the notation �⊗m = �⊗⋯⊗ �
���������

m times

∈ ℝ
d⊗m.

We denote by � the second-order (matrix) identity tensor and �sym is the fourth-order sym-
metric identity tensor. In components

Nonlocal boundaries and domains. The results will involve nonlocal boundaries with 
interior and exterior layers, for which we will adopt the following notation. For each 𝜌 > 0 
define

Additional notation regarding operators and domains will be introduced throughout the 
statements and proofs below.

3 � A Linear State‑Based Peridynamic Model

We consider the state-based linear peridynamic solid (LPS) model in a body occupying 
the domain Ω ⊂ ℝ

d . While the main results hold for any dimension d ≥ 2 , we are primar-
ily interested in d = 2 or 3. Before presenting more details, we introduce some opera-
tors and bilinear forms. For each 𝛿 > 0 , let B𝛿(�) ⊆ ℝ

d denote the �-ball centered at � . Let 
K� ∶ (0,∞) → [0,∞) be a Borel-measurable function, with support contained in [0, �] , and 
define �� ∶ ℝ

d
→ ℝ

d by

Following [23], the weighted volume for the �-ball B� = B�(�) is

(
𝜕k�

)
i1…imj1…jk

=

d∑
i1,…,im

d∑
j1,…,jk

𝜕k

𝜕xjk ⋯ 𝜕xj1
wi1…im

�i1 ⊗⋯⊗ �ik ⊗ �j1 ⊗⋯⊗ �jm

(�)ij =

d∑
i,j=1

=
(
�i ∙ �j

)
�i ⊗ �j

and
(
�sym

)
i,j,k,l

=
1

2

d∑
i,j,k,l=1

[(
�i ∙ �k

)(
�j ∙ �l

)
+
(
�i ∙ �l

)(
�j ∙ �k

)]
�i ⊗ �j ⊗ �k ⊗ �l.

(1)Γ+
𝜌
∶= {x ∈ ℝ

n ⧵Ω ∶ 0 < dist(x, 𝜕Ω) < 𝜌} and Ω+
𝜌
∶= Ω ∪ Γ+

𝜌

(2)Γ−
𝜌
∶= {x ∈ Ω ∶ dist(x, 𝜕Ω) < 𝜌} and Ω−

𝜌
∶= Ω ⧵ Γ−

𝜌
.

(3)��(�) ∶= K�(|�|)�.

(4)m(�) =
∫B�

��(�) ∙ �d� =
∫B�

K�(|�|)|�|2d�,
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3.1 � Nonlocal Operators and Bilinear Functionals

For the above kernel � and its weighted volume m(�) , we introduce the nonlocal dilata-
tion of a map � ∈ L2(ℝd;ℝd) by

Next, we introduce the main component operators for the linear Navier-system. On 
the space L2(ℝd;ℝd) , we define A� ,B� by

and

The nonlocal Navier-operator L� defined on L2(ℝd;ℝd) is given by

The ranges of the operators A� ,B� ,L� introduced above depend on the integrability/
smoothness properties of �� . The scaling constants CA,CB > 0 are chosen such that

For � ∶ ℝ
d
→ ℝ

d sufficiently smooth, it will be shown below in Theorem  3 that 
A�� → A0� and B�� → B0� , with the local Navier-operator L0 given by

and thus L�� → L0� , with

Two popular choices for the kernels are K1
�
(r) = Λ� and K2

�
(r) = Λ�∕r . For these 

examples, the parameters for 3D linear elasticity are CA = 3 , CB = 30 and

For 2D problems, CA = 2 , CB = 16.

Given �,� ∈ L2(ℝd;ℝd) satisfying � = � = � on ℝd ⧵Ω , define the bilinear forms 
WA,�(�,�) and WB,�(�,�) by

(5)��(�;�) =
d

m(�) ∫B�

��(�) ∙ �(� + �)d�.

(6)A��(�) ∶=
CA

m(�) ∫B�

��(�)��(� + �;�)d�

(7)B𝛿�(�) ∶=
CB

m(𝛿) ∫B𝛿

[
�𝛿(�)⊗ �

|�|2
]
(�(� + �) − �(�))d�.

(8)L��(�) ∶= −(� − �)A��(�) − �B��(�).

(9)
CA

m(𝛿) ∫B𝛿

�𝛿(�)⊗ �d� = � and
CB

m(𝛿) ∫B𝛿

�𝛿(�)⊗ �⊗3

|�|2 d� = �⊗ � + 2�sym.

(10)A0�(�) = � div �(�) and B0�(�) = � div �(�) + div ��(�)

(11)L0�(�) = −(� − �)A0�(�) − �B0�(�) = −�� div �(�) − � div ��(�).

(12)
K1
𝛿
(𝜌)

m(𝛿)
=

{
5

4𝜋𝛿5
, for 𝜌 ≤ 𝛿;

0, for 𝜌 > 𝛿;
and

K2
𝛿
(𝜌)

m(𝛿)
=

{
1

𝜋𝛿4𝜌
, for 𝜌 ≤ 𝛿;

0, for 𝜌 > 𝛿.

(13)
K1
𝛿
(𝜌)

m(𝛿)
=

{
2

𝜋𝛿4
, for 𝜌 ≤ 𝛿;

0, for 𝜌 > 𝛿;
and

K2
𝛿
(𝜌)

m(𝛿)
=

{
3

2𝜋𝛿3𝜌
, for 𝜌 ≤ 𝛿;

0, for 𝜌 > 𝛿.
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and

Using Fubini’s theorem and a change of variables, we may rewrite

and

Then, the bilinear form associated with L� is

and the nonlocal strain energy is W�(�, �).

3.2 � Well‑Posedness for the Dirichlet‑Type Constraint Problem

In order to define the nonlocal system with a Dirichlet-type boundary condition, we use 
the notation introduced in Eqs. (1)−(2) for the domain Ω with two interior collars and two 
exterior collars, as illustrated in Fig. 2.

We now consider a state-based peridynamic problem with Dirichlet-type boundary 
condition:

(14)WA,�(�,�) =
∫Ω

[
A��(�)

]
�(�)d�

(15)WB,�(�, �) =
∫Ω

[
B��(�)

]
�(�)d�.

(16)WA,�(�,�) =
1

d ∫Ω

��(�;�)��(�;�)d�

(17)

WB,�(�,�) =
1

2m(�) ∫Ω ∫B�

K�(|�|)
(
[�(� + �) − �(�)] ∙ �

�

)(
[�(� + �) − �(�)] ∙ �

�

)
d�d�.

(18)W�(�,�) = CA(� − �)WA,�(�,�) + CB�WB,�(�,�),

Fig. 2   Domain Ω with adja-
cent layers. Interior layers: 
Γ−
𝛿
,Γ−

2𝛿
⊂ Ω ; Exterior layers: 

Γ+
𝛿
,Γ+

2𝛿
⊂ ℝ

d ⧵Ω
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The well-posedness of the above system follows from the Korn–Poincaré-type inequal-
ity below which is an application of Proposition 5 in [23].

Theorem 1  Assume Ω ⊂ ℝ
d is a bounded domain with a sufficiently smooth boundary (in 

particular, it satisfies the interior cone condition). Then, there exists a 𝛿0 > 0 and a con-
stant CP-K < ∞ such that for each 0 < 𝛿 ≤ 𝛿0,

With existence of solutions to the nonlocal problem (19) established, we will study in 
the next section convergence of nonlocal solutions to the classical counterparts.

4 � Convergence Analysis

We will now show the truncation error of the Dirichlet-type volume constraint formulation. 
We denote by �� the solution of the nonlocal problem (19) and �0 as the solution of the 
classical elastic problem:

4.1 � Operator Convergence

For an integer k > 0 let � ∈ Ck(ℝd;ℝd⊗m) . Then, Taylor’s formula, with remainder, can be 
written as

Here, 

We note that j is not a multi-index. Observe that Rk is linear and

(19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
CA

m(𝛿) ∫B𝛿 (�)

(𝜆 − 𝜇)K𝛿(�� − ��)(� − �)(𝜃(�) + 𝜃(�))d�

−
CB

m(𝛿) ∫B𝛿 (�)

𝜇K𝛿(�� − ��) (� − �)⊗ (� − �)

�� − ��2 ⋅ (�(�) − �(�))d� = � (�), for � in Ω,

𝜃(�) =
d

m(𝛿) ∫B𝛿 (�)

K𝛿(�� − ��)(� − �) ⋅ (�(�) − �(�))d�, for � in Ω+
𝛿
,

�(�) = �D(�), for � in Γ+
2𝛿
.

‖�‖L2(Ω;ℝd) ≤ CP-KWB,�(�, �), for all � ∈ {� ∈ L2(ℝd) ∶ �(�) = � a.e. � ∈ ℝ
d ⧵Ω}.

(20)

{
−∇ ⋅ (�tr(�)� + 2��) = � , where � =

1

2
(∇� + (∇�)T ), in Ω,

� = �D, on �Ω.

(21)�(� + �) = �(�) +

k∑
j=1

1

j!
𝜕j�(�)�⊗j +Rk(�(�);�)�

⊗k.

Rk(�(�);�) ∶=
1

(k − 1)!

(
∫

1

0

(1 − s)k−1
[
�k�(� + s�) − �k�(�)

]
ds

)
.
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We will need the following pointwise representation for mappings in fractional Sobolev 
functions. It provides a generalization of the Hajłasz-type pointwise representation for 
functions in a first-order Sobolev space [52]. The argument is nearly identical to the proof 
for Theorem 1.1, part (2), in [53] and is included for the sake of completeness.

Theorem  2  Let 0 < 𝛼 < 1 and 0 < 𝛿0 ≤ 1 and 0 < 𝛿′ < 𝛿0 be given. Suppose that 
� ∈ W𝛼,2(Ω+

𝛿0
;ℝd⊗m) , so

Put c� = c�(d) ∶= 2d+1 ⋅ 4�∕|B1| and �1 ∶= �0 − �� , and define w� ∶ Ω+
�
→ ℝ by

Then, w� ∈ L2(Ω+
�0
) and

Proof  It is clear that ‖w𝛼‖L2(Ω∪Γ+
𝛿
) ≤ ���W𝛼,2(Ω+

𝛿0
;ℝd⊗m) . Let � ∈ Ω�� and � ∈ B𝛿1

(�) ⊆ Ω+
𝛿0

 be 
given. Put r ∶= |� − �| < 𝛿1 . Observe that Br(�) ⊆ Ω+

𝛿0
∩ B2r(�) , so

	�  ◻

Lemma 1  Let k ≥ 1 and 0 ≤ � ≤ 1 be given. Suppose that � ∈ Wk+𝛼,2(Ω+
𝛿0
;ℝd⊗m) . Let 

0 < 𝛿′ < 𝛿0 be given, and put �1 ∶= �0 − �� . 

(a)	 If � = 0 , then for each 𝜀 > 0 , there exists 0 < 𝛿 ≤ 𝛿1 such that 

(22)
Rk(�(� + �1);�2) −Rk(�(�);�2) = Rk(���(�);�2)�1 +Rk(R1(�(�);�1)�1;�2)

=
[
Rk(���(�);�2) +R1

(
Rk(�(�);�2);�1

)]
�1

|�|2
W𝛼,2(Ω+

𝛿0
)
∶=

∫Ω+
𝛿0

∫Ω+
𝛿0

|�(�) − �(�)|2
|� − �|d+2𝛼 d�d� < ∞.

(23)w�(�) ∶=

(
∫Ω+

�0
∩B2(�)

|�(�) − �(�)|2
|� − �|d+2� d�

) 1

2

.

(24)
|�(�) − �(�)|2 ≤ c�|� − �|2�(w�(�)

2 + w�(�)
2
)
, for all � ∈ Ω�� and � ∈ B�1

(�).

|�(�) − �(�)|2 = 1

|Br| �Br(�)

|�(�) − �(�)|2d��

≤
2

|Br|
(
�Br(�)

|�(�) − �(��)|2d�� +
�Br(�)

|�(��) − �(�)|2d��
)

≤
2

|Br|

(
�Ω+

�0
∩B2r(�)

|�(�) − �(��)|2d�� +
�Br(�)

|�(��) − �(�)|2d��
)

≤
2rd+2�

|Br|

(
2d+2�

�Ω+
�0
∩B2r(�)

|�(�) − �(��)|2
|� − ��|n+2� d�� +

�Br(�)

|�(��) − �(�)|2
|�� − �|d+2� d��

)

≤

(
2d+1+2�

|B1|
)
r2�

(
w�(�)

2 + w�(�)
2
)

=c�|� − �|2�(w�(�)
2 + w�(�)

2
)
.
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(b)	 If 0 < 𝛼 < 1 , then for each 0 < 𝛿 ≤ 𝛿1 , we have 

(c)	 If � = 1 , then for each 0 < 𝛿 ≤ 𝛿1 , we have 

Proof  With a standard density argument, we may assume � ∈ C∞(Ω+
𝛿0
;ℝd⊗m) . Part (a) is an 

immediate consequence of the definition of Rk(�(⋅);�) and the continuity for the translation 
operator in L2(ℝd) . Note that if � ∈ Ω+

��
 and � ∈ B� , then � + � ∈ Ω�0

For part (b), let � ∈ B� . We use Minkowski’s integral inequality and Eq. (24) with

as follows:

Recalling the definition of w� in Eq. (23), with � = �k� , the first integral is bounded by 
|�k�|W�,2 . For the second integral, given 0 < s < 1,

For the last line, we used Fubini’s theorem and the change of variables � + s� ↦ �� . Again, 
we note that � ∈ Ω+

��
 and � ∈ B� implies � + s� ∈ Ω+

�0
 . Incorporating these bounds into Eq. 

(26) completes the proof.

‖Rk(�(⋅);�)‖L2(Ω+

𝛿�
) < 𝜀, for all � ∈ B𝛿 .

‖Rk(�(⋅);�)‖L2(Ω+

𝛿�
) ≤

2c𝛼

(k − 1)!
���𝛼�𝜕k��W𝛼,2(Ω+

𝛿0
;ℝd⊗m⊗ℝ⊗k), for all � ∈ B𝛿 .

‖Rk(�(⋅);�)‖L2(Ω+

𝛿�
) ≤

1

(k − 1)!
����𝜕k+1��L2(Ω+

𝛿0
;ℝd⊗m⊗ℝ⊗(k+1)), for all � ∈ B𝛿 .

� = 𝜕k� ∈ W𝛼,2(Ω+
𝛿0
;ℝd⊗m ⊗ℝ

k)

(25)‖Rk(�;�)‖2L2(Ω+

𝛿�
;ℝd⊗m⊗ℝ⊗k)

≤
1

(k − 1)! �Ω+

𝛿�
�

1

0

���𝜕
k�(� + s�) − 𝜕k�(�)

���
2

dsd�

(26)

≤
c�

(k − 1)! �Ω+

��
�

1

0

s2�|�|2�(w�(�)
2 + w�(� + s�)2

)
dsd�

≤
c�

(k − 1)!
|�|2�

(
�Ω+

�0

w�(�)
2d� +

�

1

0 �Ω+

��

w�(� + s�)2d�ds

)

�Ω

w𝛼(� + s�)2d� =
�Ω+

𝛿�
�Ω+

𝛿0
∩B2(�+s�)

||𝜕k�(�) − 𝜕k�(� + s�)||2
|� − (� + s�)|d+2𝛼 d�d�

≤
�Ω+

𝛿�
�Ω+

𝛿0

||𝜕k�(�) − 𝜕k�(� + s�)||2
|� − (� + s�)|d+2𝛼 d�d�

≤
�Ω+

𝛿0

�Ω+
𝛿0

||𝜕k�(�) − 𝜕k�(��)||2
|� − ��|d+2𝛼 d��d� = |𝜕k�|W𝛼,2(Ω+

𝛿0
;ℝd⊗m⊗ℝ⊗k).
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Part (c) follows from Eq. (25) and the fundamental theorem of calculus. 	� ◻

4.1.1 � Operator Convergence for �ı

Theorem 3  Let 0 ≤ � ≤ 3 and 0 < 𝛿′ < 𝛿0 be given. Suppose that � ∈ W1+�,2(Ω+
�0
;ℝd) , and 

put �1 ∶= �0 − �� . 

(a)	 If � = 0, 1, 2 , then for each 𝜀 > 0 , there exists 0 < 𝛿 ≤ 𝛿1 such that 

(b)	 If 0 < 𝛼 ≤ 3 and � ≠ 1, 2 , then and a constant Λ� , independent of � and � , such that 

 with 

Proof  For each 0 ≤ s ≤ 1 , � ∈ Ω+
��
 , and � ∈ B� , we find � + s� ∈ Ω+

�0
 . Using Eq. (21),

Incorporating this into the definition of �� , we may write

For the first equality, we used the antisymmetry of �� . Recalling Eq. (4) provides

Thus, 

‖‖𝜃𝛿(⋅;�) − div �‖‖L2(Ω+

𝛿�
)
< 𝜀𝛿𝛼 .

‖‖𝜃𝛿(⋅;�) − div �‖‖L2(Ω+

𝛿�
)
< Λ𝛼|𝜕�|W1+𝛼 (Ω+

𝛿0
;ℝd⊗ℝ)𝛿

𝛼 , for all 0 < 𝛿 ≤ 𝛿1,

Λ𝛼 ∶=

{
2c𝛼−1, 0 < 𝛼 < 3 and 𝛼 ≠ 1, 2,

1, 𝛼 = 3.

�(� + �) − �(�) = ��(�)� +R1(�(�);�)�.

(27)

(
m(𝛿)

d

)
𝜃𝛿(�;�) =

∫B𝛿

�𝛿(�) ∙ [�(� + �) − �(�)]d�

=
∫B𝛿

�𝛿(�) ∙ [𝜕�(�)�]d� +
∫B𝛿

�𝛿(�) ∙
[
R1(�(�);�)�

]
d�

=

(
∫B𝛿

�𝛿(�)⊗ �d�

)
∙ 𝜕�(�) +

∫B𝛿

[
�𝛿(�)⊗ �

]
∙R1(�(�);�)d�.

d

m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �d�

)
∙ 𝜕�(�) =

1

m(𝛿)

(
∫B𝛿

�𝛿(|�|)|�|2d�
)
� ∙ 𝜕�(�) = � ∙ 𝜕�(�)

=div �(�).
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For the second inequality, we used Minkowski’s integral inequality. Recall that 
� ∈ W1+�,2(Ω+

�0
) . Part (a) of the theorem, with � = 0 , follows from Lemma  1(a), and part  

(b), with 0 < 𝛼 < 1 , follows from Lemma 1(b).
Now, suppose that 1 ≤ 𝛼 < 2 . We can then use the antisymmetry of � ↦ �𝛿(�)⊗ �⊗2

= K𝛿(|�|)�⊗3 and Eq. (21) to write

Arguing as in Eq. (28), we deduce that

If � = 1 , then Lemma 1(a) implies part (a) of the theorem. If 1 < 𝛼 < 2 , then Lemma 1(b) 
implies part (b). For � = 2 , part (b) is implied by Lemma 1(c).

As observed above, the kernel � ↦ �𝛿(�)⊗ �⊗2 is antisymmetric, so the corresponding 
integral in Eq. (29) is zero. Hence, if � ≥ 2 , we have

For � = 2 , an argument similar to that used for (28) yields part (a). Arguing as in (30), we 
obtain part (b) when 2 < 𝛼 < 3 . For the rest of part (b), when � = 3 , we apply part (c) of 
Lemma 1 to complete the proof of the theorem. 	�  ◻

Theorem 4  Let 0 ≤ � ≤ 2 be given. Suppose that � ∈ W2+�,2(Ω+
�0
;ℝd) . 

(a)	 If � = 0 or � = 1 , then for each 𝜀 > 0 , there exists a 0 < 𝛿 ≤ 𝛿0∕2 such that 

(b)	 If 0 < 𝛼 ≤ 2 and � ≠ 1 , then there is a constant Λ�
�
 , independent of � and � , such that 

for all 0 < 𝛿 ≤ 𝛿0∕2 , 

(28)

����(⋅;�) − div ���L2(Ω) ≤ d

m(�)

�
�Ω

�
�B�

���(�)�����R1(�(�);�)�d�
�2

d�

� 1

2

≤
d

m(�) �B�

�
�Ω

���(�)�2���2�R1(�(�);�)�2d�
� 1

2

d�

≤
d

m(�) �B�

���(���)����2‖R1(�(⋅);�)‖L2(Ω)d�.

(29)

𝜃𝛿(�;�) = div �(�) +
d

2m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �⊗2d�

)

�����������������������������
=�

∙𝜕2�(�)

+
d

m(𝛿) ∫B𝛿

[
�𝛿(�)⊗ �⊗2

]
∙R2(�(�);�)d�.

(30)

����(⋅;�) − div ���L2(Ω+

��
)
≤

2d

m(�) �B�

���(�)����2‖R2(�(⋅);�)‖L2(Ω)d�

≤
2d�

m(�) �B�

�K�(���)����3‖R2(�(⋅);�)‖L2(Ω)d�.

𝜃𝛿(�;�) = div �(�) +
d

m(𝛿) ∫B𝛿

[
�𝛿(�)⊗ �⊗3

]
∙R3(�(�);�)d�.

‖‖A𝛿� −A0�
‖‖L2(Ω) < 𝜀𝛿𝛼 and ‖‖B𝛿� − B0�

‖‖L2(Ω) < 𝜀𝛿𝛼 .
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Proof  The argument is similar to the one used for Theorem 3. First, we prove the conver-
gence rates for A� , then the argument for B� will be discussed. Since � ∈ W2+�,2(Ω+

�0
;ℝd) , 

we find g ∶= div � ∈ W1+�,2(Ω+
�0
).

As � ≥ 0 , applying Eq. (21) provides

First, we observe that the antisymmetry of �� implies

and, by Fubini’s theorem,

Suppose that 0 ≤ 𝛼 < 2 . Using Eq. (27),

For I1 , we have

where Eq. (9) was used for the last line. Thus, 

The Minkowski integral inequality yields

‖‖A𝛿� −A0�
‖‖L2(Ω) < Λ�

𝛼
|�|W2+𝛼,2(Ω𝛿0

)𝛿
𝛼 and ‖‖B𝛿� − B0�

‖‖L2(Ω) < Λ�
𝛼
|�|W2+𝛼,2(Ω𝛿0

)𝛿
𝛼

div �(� + �) = g(� + �) =g(�) + �g(�)� +R1(g(�);�)�

=g(�) + �g(�) ∙ � +R1(g(�);�) ∙ �.

∫B�

��(�1)g(�)d�1 = �

∫
B𝛿
∫
B𝛿

�𝛿(�1)
([
�𝛿(�2)⊗ �2

]
∙R1(�(�);�2)

)
d�2d�1

=

(
∫
B𝛿

�𝛿(�1)d�1

)
∫
B𝛿

[
�𝛿(�2)⊗ �2

]
∙R1(�(�);�2)d�2 = �.

A𝛿�(�) =
CA

m(𝛿) ∫B𝛿

�𝛿(�1)g(� + �1)d�1

�����������������������������������������
I1(�)

+
dCA

m(𝛿)2 ∫B𝛿
∫B𝛿

�𝛿(�1)
([
�𝛿(�2)⊗ �2

]
∙R1(�(� + �1);�2)

)
d�2d�1

�����������������������������������������������������������������������������������������������������
=∶I2(�)

.

I1 =
CA

m(𝛿) ∫B𝛿

�𝛿(�1)
[
g(� + �1) − g(�)

]
d�1 =

CA

m(𝛿) ∫B𝛿

[
�𝛿(�1)⊗ �1

][
𝜕g(�) +R1(g(�);�1)

]
d�1

=𝜕g(�) +
CA

m(𝛿) ∫B𝛿

[
�𝛿(�1)⊗ �1

]
R1(g(�);�1)d�1,

||I1(�) − � div �(�)|| ≤
CA

m(�) �B�

|��(�1)||�1||R1(g(�);�1)|d�1, for all � ∈ Ω.

��I1 − � div ���L2(Ω) ≤
CA

m(�) �B�

K�(�1)��1�2‖R1(g(⋅);�1)‖L2(Ω)d�1
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For I2 , define �1(⋅;�2) ∶= R1(�(⋅);�2) . Applying Eq. (22), we deduce that

and so

Using, again, Minkowskis’s integral inequality,

Note that in the integrals for both I1 and I2 , the domains of integration are B𝛿 ⊆ B𝛿0∕2
 . We 

find g ∈ W1+�,2(Ω�0
) , 𝜕� ∈ W1+𝛼,2(Ω𝛿0

;ℝd⊗2) , and �1(⋅;�2) ∈ W1+𝛼,2(Ω𝛿0∕2
;ℝd⊗2) , for each 

�2 ∈ B�0∕2
 . It follows that

For 0 ≤ 𝛼 < 1 , the convergence for A�� follows from Lemma 1 and assumption (9).
If 1 ≤ � ≤ 2 , we can use the expansion in Eq. (29). Then, 

With the additional differentiability of �,

so

I2(�) =
dCA

m(𝛿)2 ∫B𝛿
∫B𝛿

�𝛿(�1)
([
�𝛿(�2)⊗ �2

]
∙
[
R1(�(� + �1);�2) −R1(�(�);�2)

])
d�2d�1

=
dCA

m(𝛿)2 ∫B𝛿
∫B𝛿

�𝛿(�1)
([
�𝛿(�2)⊗ �2

]
∙
[
R1(𝜕�(�);�2) +R1(�1(�;�2);�1)

]
�1
)
d�2d�1,

|I2(�)| ≤
dCA

m(�)2 �B�
�B�

|��(�1)||�1||��(�2)||�2|
[|R1(��(�);�2)| + |R1(�1(�;�2);�1)|

]
d�2d�1.

‖I2‖L2(Ω) ≤
dCA

m(�)2 �B�
�B�

K�(��1�)K�(��2�)��1�2��2�2

×
�‖R1(��(⋅);�2)‖L2(Ω) + ‖R1(�1(⋅;�2);�1)‖L2(Ω)

�
d�2d�1.

��A�� − � div ���L2(Ω)
≤ ‖I1 − � div �‖L2(Ω) + ‖I2‖L2(Ω)
≤

CA

m(�) �B�

K�(��1�)��1�2‖R1(g(⋅);�1)‖L2(Ω)d�1

+
dCA

m(�)2 �B�
�B�

K�(��1�)K�(��2�)��1�2��2�2
�‖R1(��(⋅);�2)‖L2(Ω) + ‖R1(�(⋅;�2);�1)‖L2(Ω)

�
d�2d�1

A𝛿�(�) = I1(�) +
CA

m(𝛿)2 ∫B𝛿
∫B𝛿

[
�𝛿(�1)

][
�𝛿(�2)⊗ �⊗2

2

]
∙R2(�(� + �1);�2)d�2d�1

�������������������������������������������������������������������������������������������������������
=∶I3(�)

I1(�) =
CA

m(𝛿) ∫B𝛿

�𝛿(�1)
[
g(� + �1) − g(�)

]
d�1

=
CA

m(𝛿) ∫B𝛿

�𝛿(�1)
[
𝜕g(�)�1 +

1

2
𝜕2g(�)�⊗2

1
+R2(g(�);�1)�

⊗2

1

]
d�1

=𝜕g(�) +
CA

m(𝛿) ∫B𝛿

K𝛿(|�1|)�1
[
R2(g(�);�1)�

⊗2

1

]
d�1,
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For I3 , as with I2 , we can use the antisymmetry of �1 ↦ �(�1) to argue

Here, �2(⋅;�2) ∶= R2(�(⋅);�2) ∈ W𝛼−1(Ω𝛿0∕2
;ℝd⊗3) , for each �2 ∈ B𝛿 ⊆ B𝛿2

 . As before, 
we apply Minkowski’s integral inequality to conclude

The convergence for A�� , again, follows from Lemma 1 and assumption (9).
The arguments for B� are similar, but more straightforward, than those used above. For 

the case 0 ≤ 𝛼 < 1 , we use

Hence, with assumption (9),

For the case 1 ≤ � ≤ 2 , we use

Since � ↦ �𝛿(�)⊗ �⊗4 = K𝛿(|�|)�⊗5 is antisymmetric, we find

In both cases, the result again follows from Lemma 1. 	�  ◻

|I1(�) − � div �(�)| ≤ �
�CA

m(�) �B�

K�(|�1|)|�1|2|R2(g(�);�1)|d�1.

|I3(�)| =
CA

m(𝛿)2 �B𝛿
�B𝛿

�𝛿(�1)
([
�𝛿(�2)⊗ �⊗2

2

][
R2(𝜕�(�);�2) +R1(�2(�;�2);�1)

]
�1
)
d�2d�1

≤
𝛿CA

m(𝛿)2 �B𝛿
�B𝛿

|�𝛿(�1)||�1||�𝛿(�2)||�2|
[|R2(𝜕�(�);�2)| + |R1(�2(�;�2);�1)|

]
d�2d�1.

‖I3‖L2(Ω) ≤
𝛿CA

m(𝛿)2 �B𝛿
�B𝛿

K𝛿(��1�)K𝛿(��2�)��1�2��2�2

×
�‖R2(𝜕�(⋅);�2)‖L2(Ω;ℝd⊗4) + ‖R1(�2(⋅;�2);�1)‖L2(Ω;ℝd⊗4)

�
d�2d�1

�(� + �) = �(�) + 𝜕�(�)� +
1

2
𝜕2�(�)�⊗2 +R2(�(�);�)�

⊗2.

B𝛿�(�) =
CB

m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �⊗2

|�|2 d�

)

�������������������������������
=�

𝜕�(�) +
CB

m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �⊗3

|�|2 d�

)

�����������������������������������������
=�⊗�+2�sym

𝜕2�(�)

+
CB

m(𝛿) ∫B𝛿

(
�𝛿(�)⊗ �⊗3

|�|2
)
R2(�(�);�)d�.

�(� + �) = �(�) + 𝜕�(�)� +
1

2
𝜕2�(�)�⊗2 +

1

6
𝜕3�(�)�⊗3 +R3(�(�);�)�

⊗3.

B𝛿�(�) =
CB

m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �⊗2

|�|2 d�

)

�������������������������������
=�

𝜕�(�) +
CB

m(𝛿)

(
∫B𝛿

�𝛿(�)⊗ �⊗3

|�|2 d�

)

�����������������������������������������
=�⊗�+2�sym

𝜕2�(�)

+
CB

m(𝛿) ∫B𝛿

(
�𝛿(�)⊗ �⊗4

|�|2
)
R3(�(�);�)d�.
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4.2 � Convergence of Solutions

Assume that � ∈ L2(Ω) and �D ∈ L2(ℝd) ∩ L2(�Ω) . Throughout this section, for each 
𝛿 > 0 with 2� ≤ � , we use �� ∈ L2(Ω+

2�
;ℝd) and �0 ∈ W2,2(Ω;ℝd) to denote the solutions 

to

Our main assumptions are
(A1) With 0 ≤ � ≤ 2 , we find �0 ∈ W2+�,2(Ω) and that there is an extension 

�0 ∈ W2+�,2(ℝd;ℝd) for �0.
(A2) There exists a constant M1 < ∞ and � ≥ 0 such that,

(A3) There exists an M2 < ∞ such that

(A4) There is an M3 < ∞ and � ∈ ℝ such that

Theorem 5  Suppose that (A1), (A2), and (A3) hold.

(a) Then, there exists a C < ∞ with the following property:

(a1) If � = 0, 1 , then for each 𝜀 > 0 , there exists a 0 < 𝛿 = 𝛿(𝜀) ≤ 𝛿 such that

(a2) If 0 < 𝛼 ≤ 2 and � ≠ 1 , then

(b) If the assumption (A4) also holds, then there exists a C < ∞ such that

(b1) If � = 0, 1 , then for each 𝜀 > 0 , then there exists a C < ∞ with the following 
property:

(b2) If 0 < 𝛼 ≤ 2 and � ≠ 1 , then

Proof  Throughout the proof C� < ∞ denotes a constant that may change from line to line 
but is independent of � . Define �� , �� ∈ L2(ℝd;ℝd) by

(31)
{

L���(�) = � (�), � ∈ Ω,

��(�) = �D(�), � ∈ Γ+
2�

and

{
L0�0(�) = � (�), � ∈ Ω,

�0(�) = �D(�), � ∈ �Ω
.

|�0(�) − �D(�)| ≤ M1dist(�, �Ω)
1+� , for a.e. � ∈ Ω+

�
.

𝛿

m(𝛿) �B𝛿

|�𝛿(�)|d� ≤ M2, for all 0 < 𝛿 ≤ 𝛿.

(32)‖�0 − �𝛿‖L2(Γ−
2𝛿
) ≤ M3𝛿

𝛾 , for all 0 < 𝛿 ≤ 𝛿.

‖�� − �0‖L2(Ω;ℝd) ≤ ��� + C��−
1

2 .

‖�� − �0‖L2(Ω;ℝd) ≤ C
�
�� + ��−

1

2

�
.

‖�� − �0‖L2(Ω;ℝd) ≤ ��� + C�
2�+2�−1

4 .

‖�� − �0‖L2(Ω;ℝd) ≤ C
�
�� + �

2�+2�−1

4

�
.
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Since �� is identically zero on ℝd ⧵Ω , we may use the Poincaré–Korn inequality in The-
orem 1. Thus, we may select 𝛿0 > 0 so that for each 0 < 𝛿 ≤ 𝛿0,

With assumption (A1), we may apply Theorem 4 to bound |I1,�| in terms of �.
We use the remaining assumptions to bound |I2,�| . Define �� ∈ L2(ℝd;ℝd) by

Since the support of �� is contained in ℝd ⧵Ω , we find that L�(��) = � on Ω−
2�

 . Thus, 

We now work to bound ‖L���‖Γ−
2�
 . Assume (A2) and (A3) hold. From its definition,

For a.e. � ∈ Γ−
�
 and a.e. �1, �2 ∈ B� , we find

Thus, for a.e. � ∈ Γ−

It follows that

(33)��(�) ∶=

{
��(�), � ∈ Ω

�0(�), � ∈ ℝ
d ⧵Ω

and ��(�) = ��(�) − �0(�).

(34)

‖�� − �0‖2L2(Ω) =‖��‖2L2(Ω) ≤ CP-KWB,�(�� , ��) ≤ CP-KW�(�� , ��)

= − CP-K
�Ω

�
L���(�)

�
⏟⏞⏞⏟⏞⏞⏟

=� (�)

∙��(�)d� − CP-K
�Ω

�
L�

�
�� − ��

�
(�)

�
∙ ��(�)d�

+ CP-K
�Ω

�
L��0(�)

�
∙ ��(�)d�

=CP-K
�Ω

�
L��0(x) − L0�0(�)

�
∙ ��(�)d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶I1,�

+CP-K
�Ω

�
L�

�
�� − ��

�
(�)

�
∙ ��(�)d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶I2,�

.

��(�) ∶= ��(�) − ��(�) =

{
�, � ∈ Ω,

�D(�) − �0(�), � ∈ ℝ
d ⧵Ω.

(35)I2,� =
∫Γ−

2�

[
L���(�)

]
∙ ��(�)d�.

(36)‖L���‖Γ−
2�
≤ ‖A���‖Γ−

2�
+ ‖B���‖Γ−

2�
.

|��(� + �1 + �2)| ≤dist(� + �1 + �2, �Ω)
1+�

≤
(
dist(�Ω, �) + |�1| + |�2|

)1+�
≤3�1+� .

|A���(�)| ≤
CA

m(�) �B�

K�(|�1|)|�1||��(� + �1);��)|d�1

≤
C�

m(�)2 �B�
�B�

K�(|�1|)|�1|K�(|�2|)|�2|��(� + �1 + �2)d�2d�1

≤
C��1+�

m(�)2 �B�
�B�

K�(|�1|)|�1|K�(|�2|)|�2|d�2d�1
≤C���−1.
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We similarly find ‖B���‖2Γ−
2�

≤ C���−
1

2 . From these bounds, (36), and the bounds for I1,� in 
Theorem 4, we obtain

and part (a) of the Theorem follows. For part (b), we also assume (A4). From the inequality 
above, we get

This proves the result, else we reach a contradiction. 	�  ◻

Remark 1  The results of Theorem  5 above provide three “knobs” for identifying lower 
bounds for rates of convergence, as follows:

•	 The exponent � is limited by the degree of smoothness for the extended local solu-
tion and is independent of the collar values for the nonlocal problem. For a local 
solution with a smooth extension � = 2 , which corresponds to quadratic convergence 
away from the boundary.

•	 The exponent � quantifies the order at which the prescribed collar values converge 
to the extension of the local solution as the boundary �Ω is approached. For con-
stant extensions of the boundary values on �Ω , we have � ≥ 0 ; for linear extensions, 
� ≥ 1 . If the prescribed collar data are provided by the extension �0 of the local solu-
tion, then � is effectively infinite and the convergence is of order ��.

•	 Part (a) of the theorem only assumes {�𝛿}𝛿>0 ⊆ L2(Ω) . The family of nonlocal solu-
tions needs not even be uniformly bounded in L2(Ω) . If information about the rate of 
convergence of �� → �0 on the interior collar Γ−

2�
 is available, this can be captured 

with the parameter � . For example, if there is a uniform bound for the nonlocal solu-
tions, then � =

1

2
.

We next provide a corollary, which provides an alternative to (A4). Given 
� ∈ L2(ℝd;ℝd) , define

Consider the following assumption, where v� is defined in Eq. (33).
(A4’) There exists an M�

3
< ∞ and a � ′ ≥ 0 such that

Corollary 1  Suppose that Ω satisfies the uniform exterior sphere condition. In addition to 
(A1), (A2), and (A3), assume (A4’), then part (b) of Theorem 5 holds with � = � � +

3

2
.

‖A���‖Γ−
2�
≤ C���−1�Γ−

2�
� 1

2 ≤ C���−
1

2 .

‖��‖2L2(Ω) ≤ C�
�
‖L��0 − L0�0‖L2(Ω)‖��‖L2(Ω) + ‖L���‖L2(Γ−

2�
)‖��‖L2(Γ−

2�
)

�
,

‖��‖2L2(Ω) ≤ C�
�
‖L��0 − L0�0‖L2(Ω)‖��‖L2(Ω) + ��+�−

1

2

�
.

G�(�) ∶=
1

m(�) ∫B�

|��(�)||�(� + �) − �(�)|d�.

‖G�𝛿‖L∞(Γ−
2𝛿
) ≤ M�

3
𝛿𝛾

�

, for all 0 < 𝛿 ≤ 𝛿.
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Proof  We use an argument similar to the one used in [18]. Given a set E ⊆ ℝ
d and 𝛿 > 0 , 

define E𝛿 ∶= {𝜌� ∈ ℝ
d ∶ 0 ≤ 𝜌 < 𝛿 and � ∈ E} . The uniform exterior sphere condition 

ensures there is a 𝛿 > 0 , j0 ∈ ℕ , and open sets {Uk}
k0
k=1

⊆ Γ−

𝛿
 and {Sk}

k0
k=1

⊆ 𝜕B1 with the 
following properties:

•	 Γ+

2𝛿
⊆
⋃k0

k=1
Uk and there exists a 𝜎 > 0 and 0 < 𝜌0 < 𝛿 such that 

 where Z�,k ∶= �Zk ⧵ B�0
.

•	 For each 𝛿 > 0 , � ∈ U𝛿,k ∶= {� ∈ Uk ∶ dist(�, 𝜕Ω) < 𝛿} and � ∈ Zk , we find 
� + �� ∈ Γ−

2�
∪ℝ

d ⧵Ω for all 0 < 𝜌 ≤ 𝛿.
•	 For each 0 < 𝛿 ≤ 𝛿 and � ∈ U�,k , there exists a 1 ≤ j� ≤ j0 such that � + j� ∈ ℝ

d ⧵Ω for 
all � ∈ Z�,k.

Roughly speaking, we require a finite collection of subsets of the unit sphere such that for each 
� ∈ U�,k and each � in the associated annular sector Z�,k of B� , the sequence {� + j�}

j�
j=0

 stays  
within 2� units of the �Ω and terminates at � + j�� ∈ ℝ

d ⧵Ω . An example is a square, in which  
case we can use four trapezoidal regions {Uk}

4
k=1

 that border the boundary of the square and 
four corresponding quarter sectors {Sk}4k=1 of the unit circle.

Let k = 1,… , k0 and 𝛿 > 0 be given. Since �� = � on ℝd ⧵Ω , for each � ∈ U�,k and 
� ∈ Z�,k , we have

with �j = � + j� . Multiplying both sides by |��(�)||�|m(�)−1 and integrating with respect to 
� yields

Taking the L2-norm over Γ−
2�

 , we see that assumption (A4) is satisfied with � = � � +
3

2
 . 

Thus, we may apply Theorem 5. 	�  ◻

Remark 2 

•	 The uniform exterior sphere condition is satisfied, for example, by any C2-domain or a 
convex set.

•	 A straightforward modification of the argument can be used to replace ‖G��‖L∞(Γ−
2�
) with 

‖G��‖L2(Γ−
2�
) in assumption (A4’). In this case, we obtain � = � � + 1

1

m(𝛿) �Z𝜌,k

K𝛿(|�|)|�|2d� > 𝜎, for all 0 < 𝜌 ≤ 𝛿,

|��(�)| ≤
j�∑
j=1

|��(� + j�) − �(� + (j − 1)�)|,

|��(�)| ≤ 1

�m(�)

j�−1∑
j=0

�Zk

|��(�)||�||��(�j + �) − �(�j)|d� ≤
M�

3
j0

�
�1+�

�

.
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5 � Convergence of Solutions for the Dynamic System

The results obtained in the steady-state case problem extend to the dynamic system, 
with similar bounds, but constants that may grow exponentially in time. Suppose  
that �� ∈ C2(0,T;L2(Ω+

�
)) and �0 ∈ C2(0, T;W1,2(Ω)) satisfy the initial boundary  

value problems

Here, we consider the material density � = 1 without loss of generality and denote

The precise statements mirror Theorem 5 and are given by

Theorem  6  Let � ∈ L2(0, T;L2(Ω)), �D ∈ C(0, T;L2(Ω+
2�
) ∩ L2(�Ω)) and �,� ∈ L2(Ω+

2�
)  

be given. Let �, �, � ≥ 0 be given, and suppose that �0 ∈ C2(0, T;W2+�,2(Ω;ℝd)) . Then, the 
estimates in parts (a1), (a2) of Theorem 5 hold under same assumptions (A1)-(A3) for the 
time dependent solution, with all statements appropriately adjusted for the dynamic case, 
and the bounds M1,M2,C time dependent.

For the second part, we additionally assume that 

(A4”) There is an M�
3
< ∞ and �0 ∈ ℝ such that

Then, there exists a C = C(t) < ∞ such that 

(b1’) If � = 0, 1 , then for each 𝜀 > 0:

(b2’) If 0 < 𝛼 ≤ 2 and � ≠ 1 , then

Proof  We use the same approach as in the proof of Theorem 5, with the same notation and 
extensions to the collar Γ+

2�
 ). Subtracting the equations from (37) that hold on Ω , multiply-

ing by the difference �� ∶= �� − �0 , integrating over the domain, and using the symmetry 
of the kernel (nonlocal integration by parts) yield:

(37)

⎧⎪⎨⎪⎩

𝜌�𝛿tt − L𝛿�𝛿 = � (t, �), � ∈ Ω, t > 0

�𝛿(t, �) = �D(t, �), � ∈ Γ+
2𝛿
, t > 0

�𝛿(0, �) = �(�), � ∈ Ω+
2𝛿

�𝛿t (0, �) = �(�), � ∈ Ω+
2𝛿

and

⎧⎪⎨⎪⎩

𝜌�0tt − L0�0 = � (t, �), � ∈ Ω, t > 0

�0(t, �) = �D(t, �), � ∈ 𝜕Ω, t > 0

�0(0, �) = �(�), � ∈ Ω

�0t (0, �) = �(�), � ∈ Ω.

��t =
�

�t
�� and ��tt =

�2

�t2
�� .

(38)‖�0t − �𝛿t‖L2(Γ−
2𝛿
) ≤ M�

3
𝛿𝛾0 , for all 0 < 𝛿 ≤ 𝛿.

‖��(t) − �0(t)‖L2(Ω;ℝd) ≤ ��� + C�
2�+2�

0
−1

4 .

‖��(t) − �0(t)‖L2(Ω;ℝd) ≤ C

�
�� + �

2�+2�
0
−1

4

�
.
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Using Young’s inequality, bounds on Γ+
2�

 and rearranging the terms give the estimate:

where we used the fact that �� − �� = 0 in Ω . Let

then Eq. (40) together with the bounds

which are established exactly in the same way as in the proof of Theorem 5, we obtain

We obtain the bound

so W�(�� , ��) ≤ C(et − 1)(�� + �2�−1) . By the Poincaré–Korn inequality, we obtain that

where C depends also on the Poincaré–Korn constant.
For the second part, we go back to inequality Eq. (40) and use the bounds Eq. (41) and 

assumption (A4”) to obtain:

Applying Gronwall’s inequality again yields the bounds (b1’) and (b2’). 	� ◻

6 � Numerical Tests and Empirical Convergence Rates

In this section, we aim to numerically verify the analysis developed in Sects. 4−5. In par-
ticular, with nonlocal Dirichlet-type boundary conditions define by extending the surface 
(local) data into volumetric data, we denote the solution of Eq. (19) as �� and its local 
limit, the solution of Eq. (20), as �0 . We now investigate the convergence of numerical 
approximations �� , by taking � → 0 and the spatial refinement h → 0 simultaneously. Three  
types of boundary conditions will be investigated: the “smooth extension” where a smooth 
extended local solution is provided as �D(�) for � ∈ Γ+

2�
 , the “constant extension” which 

employs the naive fictitious node methods such that �D(�) is defined by the surface (local) 
data at its corresponding projection on �Ω , and the “linear extension” which employs the 
mirror-based fictitious node methods and extends the surface (local) and the interior data 

(39)

d

2dt ∫Ω
(��t )

2 d� +W�(�� , ��t ) = ∫Ω

[
L��0(x) − L0�0(�)

]
∙ ��t (�)d� + ∫Ω

[
L�

(
�� − ��

)
(�)

]
∙ ��t (�)d�

(40)

d

dt

�
�Ω

(��t )
2 d� +W�(�� , ��)

�
≤ 8‖��t‖2L2(Ω) + 4‖L��0 − L0�0‖2L2(Ω) + 4‖L�(�� − ��)‖2L2(Γ−

2�
)
,

� (t) ∶=
∫Ω

(��t )
2 d� +W�(�� , ��)

(41)‖L��0 − L0�0‖2L2(Ω) ≤ C1�
2� , ‖L�(�� − ��)‖2L2(Γ−

2�
)
≤ C2�

2�−1

� �(t) ≤ 8� (t) + C1�
2� + C2�

2�−1.

(42)� (t) ≤ C(et − 1)(�2� + �2�−1),

‖��‖L2(Ω) ≤ C(et − 1)(�� + ��−
1

2 ),

(43)� �(t) ≤ 8� + C�2� +M�
3
��−

1

2
+�0 .
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into the exterior layer Γ+
2�

 linearly. As an illustration for the mirror grids, two example 
meshes for a hollow cylinder problem are provided in Fig. 3, with further details to be pro-
vided later on in the section.

To observe the convergence rates of ‖�� − �0‖L2(Ω;ℝd) , an important feature of the dis-
cretization would be to preserve this asymptotic limit as �, h → 0 . Discretizations which 
preserve the correct local limit under spatial refinement h → 0 and � → 0 are termed 
asymptotically compatible (AC) [25]. For further discussions and an incomplete list 
of AC methods see [37, 38, 54–61]. Here, we numerically solve Eq. (19) by employ-
ing a meshfree, particle discretization method introduced in [39] and analyzed in [62]. 
This optimization-based meshfree method features asymptotic compatibility in the �−
convergence tests [63], i.e., when ��

�→0
→ �0 and one refines both � and h at the same 

rate, the numerical nonlocal solution converges to the local limit. In this work, we will 
also investigate the convergence of numerical nonlocal solutions under the �−conver-
gence setting, since banded stiffness matrices are obtained in such a setting and scalable 
implementations are allowed. Therefore, we always choose h such that the ratio h

�
 is 

bound by a constant M as � → 0.
Discretizing the whole interaction region Ω+

2�
 by a collection of points 

Xh = {�i}{i=1,2,⋯,Np}
⊂ Ω+

2𝛿
 , we aim to solve for the displacement �i ≈ �(�i) and the nonlo-

cal dilatation �i ≈ �(�i) on all �i ∈ Xh ∩ Ω . We first characterize the distribution of colloca-
tion points as follows. Recall the definitions [64] of fill distance hXh,Ω

= sup
�i∈Xh

min
�i∈Xh

||�i − �j||2 
and separation distance qXh

=
1

2
min
i≠j

||�i − �j||2 , we assume that Xh is quasi-uniform, namely 
that there exists cqu > 0 such that q�h

≤ h�h,Ω
≤ cquq�h

.
We first consider the spatial discretization for the static LPS model Eq. (19) through the 

following one point quadrature rule at Xh [65]:

Fig. 3   Problem settings for a hollow disk and two types of grids (in blue) with mirror-based fictitious nodes 
(in orange) for the hollow cylinder example. Left: polar grids where the interior nodes are generated as 
Xh ∩ Ω ∶= {(p1h cos(�p2h∕5), p1h sin(�p2h∕5))|p = (p1, p2) ∈ ℤ

2} ∩ Ω . Right: Cartesian grids where the 
interior nodes are generated as Xh ∩ Ω ∶= {(p1h, p2h|p = (p1, p2) ∈ ℤ

2} ∩ Ω
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where we specify 
{
�j,i

}
 as a to-be-determined collection of quadrature weights admit-

ting interpretation as a measure associated with each collocation point �i . Particularly, we 
employ an optimization-based approach to define these weights [60], by seeking �j,i for 
integrals supported on balls of the form

where we include the subscript i in 
{
�j,i

}
 to denote that we seek a different family of quad-

rature weights for different subdomains B�(�i) . We obtain these weights from the following 
optimization problem

where �h denotes a Banach space of functions which should be integrated exactly. For the 
LPS model, we take �h ∶=

{
q =

p(�)

|�−�|3 | p ∈ P5(ℝ
d) such that ∫

B𝛿 (�)
q(�)d� < ∞

}
 where 

p ∈ P5(ℝ
d) is the space of quintic polynomials. As shown in [39], the above �h provides a 

reproducing space which is sufficient to integrate Eq. (44) exactly in the case where � and � 
are quadratic polynomials. We refer to previous work [38, 39, 60] for further information, 
analysis, and implementation details.

For the dynamic LPS model Eq. (37), to discretize in time we apply the Newmark 
scheme. With time step size Δt , at the (n + 1)− th time step we solve for the displacement 
�n+1
i

≈ �((n + 1)Δt, �i) and the nonlocal dilatation �n+1
i

≈ �((n + 1)Δt, �i) following:

where Lh
�
 is the discretized nonlocal operators as defined in Eq. (44). The acceleration and 

velocity at the n + 1-th time step are then calculated as follows:

Note that although the Newmark scheme is unconditionally stable, in all numerical tests 
we take a sufficiently small time step size Δt ≪ 𝛿 so as to study the convergence rates with 
respect to �.

(44)

⎧
⎪⎪⎨⎪⎪⎩

(Lh
𝛿
�)i ∶= −

CA

m(𝛿)

∑
�j∈B𝛿 (�i)

(𝜆 − 𝜇)K𝛿(
����j − �i

���)
�
�j − �i

��
𝜃i + 𝜃j

�
𝜔j,i

−
CB

m(𝛿)

∑
�j∈B𝛿 (�i)

𝜇K𝛿(
����j − �i

���)
(�j−�i)⊗(�j−�i)

��j−�i�2 ⋅
�
�j − �i

�
𝜔j,i = �i, for �i in Ω,

𝜃i =
d

m(𝛿)

∑
�j∈B𝛿 (�i)

K𝛿(
����j − �i

���)
�
�j − �i

�
⋅
�
�j − �i

�
𝜔j,i, for �i in Ω

+
𝛿
,

�i = �D(�i), for �i in Γ+
2𝛿
,

(45)I[ f ] ∶=
∫B� (�i)

f (�, �)d� ≈ Ih[ f ] ∶=
∑

�j∈B� (�i)

f (�i, �j)�j,i

(46)argmin
{�j,i}

∑
�j∈B� (�i)

�2
j,i

such that, Ih[p] = I[p] ∀p ∈ �h

(47)

⎧
⎪⎪⎨⎪⎪⎩

4𝜌

Δt2
�̈n+1
i

+ (Lh
𝛿
�)n+1

i
= � ((n + 1)Δt, �i) +

4𝜌

Δt2
(�n

i
+ Δt�̇n

i
+

Δt2

4
�̈n
i
), for �i in Ω,

𝜃n+1
i

=
d

m(𝛿)

∑
�j∈B𝛿 (�i)

Kij(�j − �i)
T
�
�n+1
j

− �n+1
i

�
𝜔j,i, for �i in Ω

+
𝛿
,

�n+1
i

= �D(�i), for �i in Γ
+
2𝛿
,

�0
i
= �(�i), �̇

0
i
= �(�i), for �i ∈ Ω+

2𝛿
,

�̈n+1
i

∶=
4

Δt2
(�n+1

i
− �n

i
− Δt�n

i
) − �̈n

i
, �̇n+1

i
∶= �̇n

i
+

Δt

2
(�̈n

i
+ �̈n+1

i
).
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In the following, we consider static and dynamic problems on three numerical cases: linear 
patch tests, smooth manufactured nonlinear solutions, and analytical solutions to curvilinear 
surface problems. For the first two cases we consider square domains with Cartesian grids and 
mesh spacing h. In numerical results for these two cases, different colors of lines represent dif-
ferent ratios between � and h. For the analytical solutions to curvilinear surface problems, we 
consider the deformation of a hollow cylinder under an internal pressure p0 , with the setting 
plotted in Fig. 3. Two types of grids are generated and tested: polar grids where the interior nodes 
are generated as Xh ∩ Ω ∶= {(p1h cos(�p2h∕5), p1h sin(�p2h∕5))|p = (p1, p2) ∈ ℤ

2} ∩ Ω , 
and Cartesian grids where the interior nodes are generated as Xh ∩ Ω ∶= {(p

1
h, p

2
h)|

p = (p
1
, p

2
) ∈ ℤ

2} ∩ Ω . In all numerical results on this case, we set � = 3.2h and use red 
to represent results from polar grids and blue to represent Cartesian grids1. We notice that 
in the hollow cylinder case the computational domain Ω has curved surfaces, which are not 
explicitly represented in our meshfree method. Moreover, in unstructured meshes such as the 
polar meshes the ratios between � and h are no longer uniform. Both factors would possibly 
introduce additional numerical errors and cause the fluctuation of observed convergence rates, 
which makes the convergence test on the hollow cylinder case especially challenging (see, e.g., 
[66, 67] for a similar numerical phenomenon). Therefore, our observations and discussions on 
the convergence rates are mainly based on the lower bounds from the first two cases (linear 
patch tests and smooth manufactured nonlinear solutions).

In all cases, we adopt material parameters under plane strain assumptions:

Two values of Poisson ratio � = 0.3 and 0.49 are investigated which correspond to com-
pressible and nearly-incompressible materials, respectively. In all numerical results, we use 
solid lines and dash lines to represent results from � = 0.3 and � = 0.49 cases, respectively.

We summarize the setup and report the formal convergence study for the static LPS 
problem in Sect. 6.1 and for the dynamic problem in Sect. 6.2. To investigate whether the 
theoretical convergence rates in Theorem  5 and Theorem  6 are realized as � → 0 , our 
numerical results particularly focus on identifying the convergence rates of ||||�� − �0

||||L2(Ω;ℝd)
 

and numerically evaluating the value of � ′ by calculating ‖G��‖L∞(Γ−
2�
) = O(��

�

).

6.1 � Static Problem with Dirichlet‑Type Boundary Conditions

To demonstrate the convergence in static LPS problems and the impacts of Dirichlet 
boundary conditions, three different settings are considered: 

1.	 Linear case: We consider as linear patch test the displacement 

 on a square domain Ω = [−1∕4, 1∕4] × [−1∕4, 1∕4] . Note that when the analytical u0 
is provided on Γ+

2�
 , in linear patch tests the local and nonlocal solutions coincide.

2.	 Nonlinear case: We consider a manufactured local solution adopted from [68]: 

E = 1, � = E�∕((1 + �)(1 − 2�)),� = E∕(2(1 + �)).

�0(x, y) = (3x + 2y,−x + 2y)

1  Note here h is a parameter which is proportional to the fill distance h
X
h
,Ω . It does not vary throughout the 

domain even for a non-uniform mesh.
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 on a square domain Ω = [−1∕2,−1∕2] × [−1∕2, 1∕2] . The parameters are taken as 
A = 0.9 , C = 1.4 and b = 1.6.

3.	 Hollow cylinder case: We consider the expansion of a hollow cylinder under an internal 
pressure p0 = 0.1 . The classical linear elasticity model predicts displacements given by 

 where 

R0 = 1 and R1 = 1.5 are the interior and exterior radius of the hollow disk. An illustra-
tion of the hollow cylinder problem setting and displacement magnitudes is plotted in 
Fig. 3.

To establish the numerical convergence rates for the difference between �� and �0 
with given extensions of different degrees of regularity, for each setting three boundary 
extension strategies are considered to provide data on the exterior collar Γ+

2�
 : 

1.	 Smooth extension: A smooth extended local solution is provided as �D(�) for � ∈ Γ+
2�

 . 
In particular, we set: 

�0(x, y) = [Ax + C sin(bx), 0], � (x, y) = [(� + 2�)b2C sin(bx), 0].

�0(x, y) =

[
Ax +

Bx

x2 + y2
,Ay +

By

x2 + y2

]

A =
(1 + �)(1 − 2�)p0R

2
0

K(R2
1
− R2

0
)

, B =
(1 + �)p0R

2
0
R2
1

K(R2
1
− R2

0
)

,

Fig. 4   Static problem with smooth extension boundary condition. Left: the L2(Ω;ℝd) difference between 
displacement �� and its local limit �0 . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition (A4’)
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 Results of solution convergence with smooth extension are plotted in Fig.  4. We 
observe that the numerical solution passes the patch test within machine precision. 
For the nonlinear case, we observe second-order L2(Ω;ℝd)-norm convergence for dis-
placements in both compressible and nearly-incompressible materials, which is con-
sistent with the theoretical bound discussed in Theorem 5 (a) and Remark 1. In the 
hollow disk case, the observed convergence rate for displacement error fluctuates from 
1.66 ± 0.17 to 2.52 ± 0.06 , possibly due to numerical errors introduced from curved 
boundaries. Moreover, a deteriorated convergence rate is observed from tests with 
polar meshes because of the non-uniform ratio between � and grid sizes. Similar phe-
nomena are also observed in the constant and linear extension strategies discussed 
below and were reported in previous numerical studies using meshfree methods (see, 
e.g., [66]).

2.	 Constant extension: The naive fictitious node method is employed such that �D(�) is 
defined by the surface (local) data at its corresponding projection on �Ω . In particular, 

�D(�) = �0(�), ∀� in Γ+
2�
.

�D(�) = �0(�), ∀� in Γ+
2�
,

Fig. 5   Static problem with constant extension boundary condition. Left: the L2(Ω;ℝd) difference between 
displacement �� and its local limit �0 . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition (A4’)
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 where � ∶= argmin
�∈�Ω

dist(�, �) . We note that the constant extension on the boundary 

region does not pass the linear patch test theoretically. Results for the three numerical 
cases are plotted in Fig. 5, where we can see that ‖G��‖L∞(Γ−

2�
) is uniformly bounded but 

not converging in all cases, i.e., � � = 0 . Therefore, Theorem 5 (b) and Corollary 1 pro-
vides an estimated convergence bound for ||||�� − �0

||||L2(Ω;ℝd)
 as O(�1∕2) . Numerically, 

we observe at least O(�0.86) convergence for displacements, and the convergence rates 
get closer to 1 as we refine the mesh. This observed convergence rate is slightly better 
than the O(�1∕2) theoretical convergence rate and suggests that the theoretical rate of 
convergence in Theorem 5 (b) might be sub-optimal.

3.	 Linear extension: We consider the mirror-based fictitious node methods which extends 
the surface (local) and the interior data into the exterior layer Γ+

2�
 linearly. Particularly, 

we set 

 where � ∶= argmin
�∈�Ω

dist(�, �) . For the linear patch test case, machine precision accu-
racy is again observed. For the other two cases, in Fig. 6 we present convergence 
results, where we observe O(�) convergence for ‖G��‖L∞(Γ−

2�
) as � → 0 , i.e., � � = 1 . 

Therefore, an O(�3∕2) theoretical convergence rate is provided by Theorem 5 (b) and 
Corollary 1. On the other hand, almost quadratic convergence is observed for �� − �0 
in the L2 norm, which is again slightly better than the O(�3∕2) theoretical convergence 
rate.

�D(�) = 2�0(�) − ��(2� − �), ∀� in Γ+
2�
,

Fig. 6   Static problem with linear extension boundary condition. Left: the L2(Ω;ℝd) difference between dis-
placement �� and its local limit �0 . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition (A4’)
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6.2 � Dynamic Problem with Dirichlet Boundary Conditions

With density � = 1.0 , in dynamic LPS problems we also consider three different settings. 
To observe the convergence with respect to � , in all cases we take a sufficiently small time 
step size Δt = 0.01 and simulate until T = 0.1 . 

1.	 Linear case: We consider as linear patch test the displacement 

 on a square domain Ω = [−1∕4, 1∕4] × [−1∕4, 1∕4].
2.	 Nonlinear case: We consider a manufactured local solution adopted from [68]: 

 on a square domain Ω = [−1∕2, 1∕2] × [−1∕2, 1∕2] with the external loading 

 The parameters are taken as A = 0.9 , B = 0.1 , C = 1.4 , a = 1.0 and b = 1.2.
3.	 Hollow cylinder case: We consider the expansion of a hollow cylinder under an increas-

ing internal pressure p0t . Under this setting, the classical solution �0 is given by 

 where p0 , A, B and R0 , R1 are as defined in the static hollow cylinder case.

�0(t, x, y) = (t + 3x + 2y, t − x + 2y)

�0(t, x, y) = [Ax + B sin(at)x + C sin(bx), 0]

� (t, x, y) = [(� + 2�)b2C sin(bx) − �a2Bx sin(at), 0].

�0(t, x, y) =

[
Axt +

Bxt

x2 + y2
,Ayt +

Byt

x2 + y2

]

Fig. 7   Dynamic problem with smooth extension boundary condition. Left: the L2(Ω;ℝd) difference between 
displacement ��(T , ⋅) and its local limit �0(T , ⋅) . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition (A4’)
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Similar as in static LPS problems, three boundary extension strategies are considered 
to study the numerical convergence rates with given extensions of different degrees of 
regularity: 

1.	 Smooth extension: We set 

 It is observed that the numerical solution passes the linear patch test to within 
machine precision. In Fig. 7, we plot the numerical results for the nonlinear and hol-
low cylinder cases. In the nonlinear case, we observe slightly higher than second-order 
L2(Ω;ℝd) convergence for displacements: the convergence rates vary from 2.20 ± 0.21 
to 2.48 ± 0.09 . This fluctuation of convergence rate is partly due to the higher-order 
( O(�p) , p > 2 ) modeling deviations that arises between the local and nonlocal models. 
In the hollow cylinder case, fluctuating convergence rates are again observed, due to 
the numerical errors discussed before.

2.	 Constant extension: We set 

�D(t, �) = �0(t, �), ∀� in Γ+
2𝛿
, t > 0.

�D(t, �) = �0(t, �), ∀� in Γ+
2𝛿
, t > 0,

Fig. 8   Dynamic problem with constant extension boundary condition. Left: the L2(Ω;ℝd) difference 
between displacement ��(T , ⋅) and its local limit �0(T , ⋅) . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition  

(A4’)
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 where � ∶= argmin
�∈�Ω

dist(�, �) . Numerical convergence results for all three numerical 

cases are provided in Fig. 8. In the linear and nonlinear cases, we can see that the con-
vergence rates are very similar to the static cases: ‖G��‖L∞(Γ−

2�
) is uniformly bounded 

with � � = 0 . Therefore, the theoretical analysis in Theorem  6 provides an O(�1∕2) 
bound for ||||�� − �0

||||L2(Ω;ℝd)
 , while numerically we observe convergence rates between 

0.92 ± 0.04 and 1.05 ± 0.04 in the linear and nonlinear cases.
3.	 Linear extension: We set 

 where � ∶= argmin
�∈�Ω

dist(�, �) . For the linear patch test case, machine precision accu-

racy is obtained. For the other two cases, in Fig. 9 we plot the numerical results for 
||||�� − �0

||||L2(Ω;ℝd)
 and ‖G��‖L∞(Γ−

2�
) . For ‖G��‖L∞(Γ−

2�
) , at least first-order convergence 

rate is observed in the nonlinear case and a nearly first-order convergence is observed 
in the hollow cylinder case. On the other hand, for �� − �0 in the L2 norm the conver-
gence rates in the nonlinear cases are very similar to the rates observed in static cases: 
a roughly second-order convergence rate is observed, although convergence rate fluctu-
ates due to the solution nonlinearity. Therefore, the numerical rate of convergence for ||||�� − �0

||||L2(Ω;ℝd)
 is nearly half order higher than the theoretical rate provided by 

Theorem 6.

�D(t, �) = 2�0(t, �) − �𝛿(t, 2� − �), ∀� in Γ+
2𝛿
, t > 0

Fig. 9   Dynamic problem with linear extension boundary condition. Left: the L2(Ω;ℝd) difference between 
displacement ��(T , ⋅) and its local limit �0(T , ⋅) . Right: the convergence of ‖G��‖L∞(Γ−

2�
) in condition (A4’)
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7 � Conclusions and Future Directions

The paper illustrates several aspects behind convergence of vector-valued solutions to non-
local systems of equations to classical counterparts. As a particular aspect, we investigate 
the relationship between the smoothness of the extension of a classical solution and the 
degree of convergence as the horizon of interaction shrinks to zero. The conclusion is that 
in order to increase the rate of convergence one must align the nonlocal boundary data with 
smoother extensions of the classical solution. A better agreement with the classical exten-
sion and a higher degree of regularity would guarantee a faster convergence rate.

The optimality of the theoretical results regarding the rates of convergence is an impor-
tant question for future explorations, especially as the theoretical results and numerical 
experiments exhibit an O(�1∕2) gap in the order of convergence. It remains to be shown 
if one can produce examples of nonlocal solutions which match the theoretical rates of 
convergence. For this direction, a sensible approach would be to explore more irregular 
domains, or problems with more irregular data. These studies can further be carried out 
also in terms of other types of regularity to nonlinear problems, e.g., nonlinear diffusion 
or wave propagation in the nonlocal setting. While it is expected that more general ker-
nels can be considered (due to the availability of results in [18, 69]), a much more com-
plex investigation is needed for dynamic fracture, where the limit for the nonlocal solutions 
would first need to be identified. Nonlinear problems in the vectorial setting are addition-
ally beset with well-posedness issues, especially as nonlocal Korn-type inequalities do not 
have the same strength as for classical operators, so higher-order nonlinearities need to be 
tackled with more sophisticated analysis tools.

Finally, these results have been obtained for Dirichlet-type boundary conditions, so 
Neumann-type boundary problems such as [38, 39] will be investigated elsewhere. An 
additional open problem would be the investigation of convergence rates for higher-order 
problems, such as for the nonlocal biharmonic with clamped or hinged boundary condi-
tions, as introduced in [41].
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author, Yue Yu, upon reasonable request.
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