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Abstract

Local-to-nonlocal (LtN) coupling refers to a class of methods aimed at combining nonlocal
and local modeling descriptions of a given system into a unified coupled representation. This
allows to consolidate the accuracy of nonlocal models with the computational expediency
of their local counterparts, while often simultaneously removing nonlocal modeling issues
such as surface effects. The number and variety of proposed LtN coupling approaches have
significantly grown in recent years, yet the field of LtN coupling continues to grow and still
has open challenges. This review provides an overview of the state of the art of LtN coupling
in the context of nonlocal diffusion and nonlocal mechanics, specifically peridynamics. We
present a classification of LtN coupling methods and discuss common features and chal-
lenges. The goal of this review is not to provide a preferred way to address LtN coupling but
to present a broad perspective of the field, which would serve as guidance for practitioners
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in the selection of appropriate LtN coupling methods based on the characteristics and needs
of the problem under consideration.

Keywords Nonlocal models - Coupling methods - Nonlocal diffusion - Nonlocal
mechanics - Peridynamics

1 Introduction
1.1 Nonlocal Models and the Need of Coupling Methods

Nonlocal models such as nonlocal diffusion and peridynamics can describe phenomena not
well represented by classical partial differential equations (PDEs). These include problems
characterized by long-range interactions and discontinuities [20, Chapter 1]. For instance, in
the context of diffusion, long-range interactions effectively describe anomalous diffusion,
whereas in the context of mechanics, crack formation results in material discontinuities. We
refer to these phenomena, in a general sense, as nonlocal effects. Even though this work
is focused on nonlocal models for diffusion and mechanics in single-physics applications,
nonlocal models can characterize a wide range of complex scientific and engineering prob-
lems, including subsurface transport [18, 76, 77, 116, 117], phase transitions [11, 30, 33],
image processing [24, 36, 63, 89], multi-scale systems [3, 4, 51, 123], turbulence [10, 108,
115], and stochastic processes [26, 37, 94, 98].

The fundamental difference between the nonlocal models considered in this paper and
classical local PDE-based models is the fact that the latter only involve differential opera-
tors, whereas the former also rely on integral operators.! The integral form allows for the
description of long-range interactions (spanning either small regions or the whole space) and
reduces the regularity requirements on problem solutions. Here, we consider nonlocal mod-
els, based on integro-differential formulations, characterized by spatial integral operators
that lack spatial derivatives. This enhances the accuracy of their modeling representations
by generalizing the space of admissible solutions, which can feature discontinuities.

Despite their improved accuracy, the usability of nonlocal equations could be com-
promised by several modeling and numerical challenges such as the unconventional
prescription of nonlocal boundary conditions, the calibration of nonlocal model parameters,
often unknown or subject to uncertainty, and the expensive numerical solution. In fact, the
computational cost of solving a nonlocal problem is significantly higher than that corre-
sponding to PDESs. Specifically, the associated computational expense of a nonlocal problem
depends on the ratio between the characteristic nonlocal interaction length (the so-called
interaction radius or horizon) and the chosen simulation grid or mesh size. When this ratio
becomes large, simulations can be unfeasible [20, Chapter 14].

Nevertheless, it is often the case that nonlocal effects are concentrated only in some
parts of the domain, whereas, in the remaining parts, the system can be accurately described
by a PDE. The goal of local-to-nonlocal (LtN) coupling is to combine the computational
efficiency of PDEs with the accuracy of nonlocal models, under the assumption that the

'Nonlocal models, in general, can be based on weakly nonlocal or strongly nonlocal formulations. The former
enrich classical PDEs by explicitly including higher gradients of field variables, whereas the latter are based
on integral-type formulations with a weighted average of field variables [13, 41, 75]. In this paper, we only
concern ourselves with strongly nonlocal formulations.
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location of nonlocal effects can be identified. In this context, the main challenge of a cou-
pling method is to accurately merge substantially different local and nonlocal descriptions
of a single system into a mathematically and physically consistent coupled formulation.

As an added value, LtN coupling can provide a viable way to circumvent the non-trivial
task of prescribing nonlocal boundary conditions. Such conditions have to be prescribed in
a layer surrounding the domain where data are not available or are hard to access; how-
ever, surface (local) data are normally available. In practice, this requires extending surface
(local) boundary conditions to volumetric (nonlocal) boundary conditions in a way that is
not always clear or well-defined. An ad hoc treatment of nonlocal boundaries often results
in unphysical surface effects (see discussions in [80]). Using a local model adjacent to the
boundary of the domain allows for prescription of classical boundary conditions, provided
the solution around the boundary is regular enough. Throughout this paper, we mention
coupling approaches that have been used for this task. There are other potential benefits
of LtN coupling, such as controlling undesired wave dispersion or leveraging available
computational tools based on classical PDEs. However, these are beyond the scope of this
paper.

The purpose of this paper is to present the state of the art of LtN coupling in the con-
text of nonlocal diffusion and nonlocal mechanics, specifically peridynamics. While the list
of proposed LtN coupling methods is extensive, this paper focuses on a select number of
approaches. The description provided should, however, give the reader a broad enough per-
spective on the diversity of LtN coupling techniques and the variety of ways to approach
LtN coupling problems, both in terms of mathematical formulation and practical implemen-
tation. We stress that our goal is strictly to give an overview of available coupling strategies
and highlight their properties, while describing common features and challenges. This work
does not intend to present a relative assessment of LtN coupling methods. Yet the reader can
use this review as a guide for selecting the most appropriate method for the problem at hand.

1.2 Overview of Classes of Coupling Methods

We divide coupling approaches in two main classes based on how the transition from a
nonlocal description to a local description is carried out. A schematic overview of such clas-
sification and of the methods belonging to each class is reported in Fig. 1; that figure also
indicates the corresponding sections where the methods are described in detail. We refer to
the first class as the Constant Horizon (CH) class, which contains approaches characterized
by an abrupt change in the horizon as we move from the nonlocal region to the local region;
whereas we refer to the second class as the Varying Horizon (VH) class, which contains
approaches that, in contrast, feature a smooth transition of the horizon. In the next para-
graphs we briefly mention several methods belonging to each class. A detailed description
of those methods will be reported in the next sections.

In the CH class, we identify a first group of approaches that resemble generalized domain
decomposition (GDD) methods. A first example is the optimization-based coupling method
introduced in [34], analyzed in [35], and extended in [39]. This strategy treats the coupling
condition as an optimization objective, which is minimized subject to the model equations
acting independently in their respective sub-domains. As opposed to other LtN coupling
approaches, this method reverses the roles of the coupling conditions and the governing
equations, keeping the latter separate. In particular, the coupling of local and nonlocal mod-
els is effected by couching the LtN coupling into an optimization problem. The objective
is to minimize the mismatch of the local and nonlocal solutions on the overlap of their
sub-domains, the constraints are the associated governing equations, and the controls are
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LtN COUPLING METHODS —
v v
‘ CONSTANT HORIZON (CH) ‘ ‘ VARYING HORIZON (VH) ‘
GENERALIZED DOMAIN ATOMISTIC-TO- ENERGY FORCE
DECOMPOSITION CONTINUUM TYPE BASED BASED
Optimization-Based Arlequin Shrinking Horizon Partial Stress
SECTION 3.1 SECTION 4.1 SECTION 5.1 SECTION 5.2
Partitioned Procedure Morphing
SECTION 3.2 SECTION 4.2

Quasi-Nonlocal
SECTION 4.3

Blending
SECTION 4.4

Splice
SECTION 4.5

Fig.1 Overview of classes of LtN coupling approaches and corresponding methods

the nonlocal and local boundary conditions on the virtual boundaries generated by the
decomposition.

A second GDD example relies on the partitioned procedure as a general coupling strat-
egy for heterogeneous systems, such as multi-scale and multi-physics problems [8, 93,
112, 146]. In the partitioned procedure, the system is divided into sub-problems in their
respective sub-domains. Different models are then employed independently in each sub-
problem, which communicates with other sub-problems only via transmission conditions on
the sub-domain interfaces. The coupled problem is then solved based on iterative solutions
of sub-problems, and proper transmission conditions are required on the sub-domain inter-
faces to impose solution continuity on those interfaces and to enforce the energy balance
of the whole system. Among the possible transmission conditions, the Robin transmission
condition, which is a linear combination of the Dirichlet and Neumann transmission condi-
tions, has been proven to be very efficient (see, e.g., [8, 31, 46, 48]). In [158], a partitioned
procedure with Robin transmission conditions was applied to LtN coupling of mechanics
models with an overlapping region, and the method was later extended to LtN coupling
without an overlapping region in [157].

A second group of approaches in the CH class is also based on a decomposition of
the domain, which normally resembles an overlapping domain decomposition. However,
as opposed to GDD methods, these approaches typically rely on hybrid descriptions that
combine local and nonlocal models in a transition region between local and nonlocal
sub-domains. We refer to this group of approaches as atomistic-to-continuum (AtC) type
coupling approaches due to their resemblance to such coupling methods (see, e.g., the
review articles [32, 91, 100]). We observe that, in some sense, AtC coupling is a special
case of LtN coupling, where the nonlocal model is a discrete atomistic representation and
the local model is given by a classical PDE.

In the group of AtC type coupling approaches, a first example is the Arlequin method.
This is a general coupling technique introduced in [14, 15] and further studied in [16, 17].
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This technique was applied to AtC coupling in [12] with various follow-on works (see,
e.g., [29, 110, 111]). Application of the Arlequin method for LtN coupling was proposed
in [71] in the context of static problems and later applied to dynamic settings in [149]. The
Arlequin method is an example of an energy-based blending approach, where the energy
of the system in the transition region is defined as a weighted average of the local and
nonlocal energies. In the local and nonlocal sub-domains, the energy is defined according to
the models operating in those sub-domains. A Lagrange multiplier enforces compatibility
of the kinematics of both models.

A second example of AtC type coupling is the morphing approach proposed in [90]
and extended in [5, 6, 72]. This method is based on blending the material properties of
the local and nonlocal models. The method consists of a single model defined over the
entire domain with an equilibrium equation that contains both local and nonlocal contribu-
tions. The transition between the nonlocal sub-domain and the local sub-domain is achieved
through a gradual change in the material properties characterizing the two models in the
transition region or “morphing” zone. In this region, local and nonlocal material proper-
ties are suitably weighted under the constraint of energy equivalence for homogeneous
deformations.

A third example of AtC type coupling is the quasi-nonlocal (QNL) coupling method.
This method was originally proposed in the context of AtC coupling [127] and is based on
energy minimization with the aim of eliminating spurious forces for linear deformations.
The QNL method redefines the nonlocal energy of the system by reformulating nonlocal
interactions not fully contained within the nonlocal sub-domain. The QNL strategy was
applied to nonlocal-to-nonlocal coupling in [82] and to LtN coupling in [56].

A fourth example of AtC type coupling is the force-based blending method proposed
in [118] and extended in [121]. Force-based blending has been studied in the context of
AtC coupling (see, e.g., [7, 57, 83, 84]). This approach employs a blending function to
create a weighted average of the local and nonlocal governing equations, and that function
is chosen in a way that the blended model reduces to the local and nonlocal models in
their respective sub-domains. Similar to the morphing approach, a single blended model is
defined over the entire domain; however, the force-based blending method does not enforce
energy equivalence. In this paper, we employ the term “blending” to refer to force-based
blending, since other methods which could be classified within a blending category, such as
the Arlequin and morphing, are called by their specific names. As opposed to AtC blending
methods, which normally seek means to blend given atomistic and continuum models, the
peculiarity of the LtN blending method from [118, 121] is that a reference nonlocal model
is first postulated over the entire domain, and then the blended model is attained by simply
combining the use of a blending function with assumptions on the material response. An
underlying connection between the local and nonlocal models is leveraged in the derivation
of the blended model. A force-based coupling approach, which resembles blending due to
a partition of unity-based superposition of local and nonlocal parts of displacements within
an overlapping region, was presented in [137] and extended in [138].

A final example of AtC type coupling is the splice method. This method was first pro-
posed in [132] to couple two nonlocal models with different horizons and then applied to
LtN coupling. A similar approach for LtN coupling, although introduced instead for dis-
cretized models, was presented in a series of publications (see [58, 102, 128-130, 151, 159,
160]) and combined with a VH technique, which will be introduced below, in [161]. In the
splice method, the governing equation at each point is given by either the local or nonlocal
model. There is no particular coupling enforced, except that points described by the nonlo-
cal model may interact with points described by the local model and vice versa. When such
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a situation occurs, points with a given description (either local or nonlocal) treat their envi-
ronment, e.g., the nonlocal neighborhood, with the same modeling representation as their
own. For instance, a point in a nonlocal region interacting with some points in a local region
would treat those points as if they were also described by a nonlocal model.

In the VH class, we can also find energy-based and force-based approaches. The idea
behind VH is that a nonlocal model converges to a local model, under suitable regularity
assumptions, when the horizon approaches zero (see Sections 2.2.1 and 2.2.2). Naturally,
allowing the horizon to vary spatially in a domain, so that it approaches zero in certain
sub-domains with enough regularity, provides a transition from a nonlocal to a local repre-
sentation. Discussions on a VH in the context of adaptive refinement appeared in [21, 22]
and similar adaptivity ideas appeared in the context of atomistic systems in [119] to remove
surface effects. A nonlocal formulation with spatially varying horizon applied to interface
problems was presented in [120], where two-horizon systems were treated and specialized
to the case in which one of the two horizons is taken to zero. A similar formulation applied
to two- or multi-horizon systems was discussed in [73, 113, 114, 123]. More recently, in
[28], for a two-horizon setting, the coupling problem was formulated via minimization of
the total energy of the system; the LtN coupling problem can be obtained by taking the limit
to zero of one of the horizons. The case of a smoothly varying horizon was presented and
analyzed in [132], and it was used to couple two nonlocal models with different horizons.
In [140, 144], the validity of nonlocal models with a shrinking horizon applied to LtN cou-
pling was discussed. An approach using a VH for LtN coupling of discretized models was
discussed in [104].

The group of energy-based approaches in the VH class is related to the formulations pre-
sented in [113, 120, 123, 132, 140, 144]. Such energy-based formulations, unfortunately,
introduce linear spurious forces. In order to allow varying the horizon in space while pre-
venting this coupling artifact, the partial stress method was presented in [132]. This method
belongs to the group of force-based approaches and introduces a new tensor referred to as
the partial stress, which is used to describe the material response in the transition region
between the nonlocal and local sub-domains.

There are alternative approaches in the literature that address LtN coupling. Specifically,
while we focus on LtN coupling of continuum models, some proposed methods tackle the
coupling problem at the discrete level (we have already mentioned a few above). The first
peridynamic work in this context appears in [92], where a coupling is performed by imple-
menting a peridynamic model in a conventional finite element (FE) analysis code using
truss elements; a similar work can be found in [125]. In this context, an overlapping-based
approach between peridynamics and classical FEs, which relies on interfacial elements, is
described in [78, 88, 154], whereas a sub-modeling approach is presented in [1, 107]. Efforts
to couple peridynamics with the extended finite element method (FEM) appear in [47, 62,
87]. A coupling approach with an emphasis on balancing the forces between the peridy-
namic region and the FE region to satisfy Newton’s third law is proposed in [155]. Another
coupling method based on coarsening a peridynamic discretization is proposed in [123] and
implemented in [152, 153]; these implementations resemble the splice method in the context
of FE discretizations of peridynamic models. Finally, works addressing dynamic coupling
artifacts, such as interfacial spurious wave reflections, can be found in [61, 79, 103]. All
these approaches, however, are beyond the discussions held in this review.

Desired Properties of a LtN Coupling Method There are various considerations to account

for when designing a LtN coupling method. The first one is ensuring that the reference
local and nonlocal models are physically consistent. This is guaranteed by the convergence
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of the nonlocal model to the local model as discussed in Sections 2.2.1 and 2.2.2 for non-
local diffusion and nonlocal mechanics, respectively. Once the local and nonlocal models
are determined to be physically consistent, the main challenge becomes removing or mini-
mizing the appearance of coupling artifacts on the interface/in the transition region between
the local and nonlocal sub-domains. We describe below some desired properties of LtN
coupling methods and discuss related coupling artifacts.

A basic desired property of a LtN coupling method is patch-test consistency, which is
established when such a method passes the so-called patch test or consistency test [86, 91,
100]. The main idea is as follows: if for a certain class of problems the local and nonlocal
solutions, u! and u™, respectively, coincide, then “patching” the two problems by cou-
pling the corresponding models should still return the same problem solution. Note that to
be comparable, the local and nonlocal problems are augmented with consistent boundary
conditions and forcing terms.

As an example, we define a linear patch test in one dimension as follows:

Definition 1 (Linear patch test) Given a linear function u'™(x) = ag + a;x with ag and
ay constants and local and nonlocal operators £ and LN, respectively, such that

LM =0 and £NNM =0,

a coupling method passes the linear patch test if, in the absence of a forcing term and with
consistent boundary conditions, #'™ is also the solution of the coupled problem.

Note that patch tests in higher dimensions can be defined in a similar manner. Also,
similar to Definition 1, one can define a higher-order patch test as follows:

Definition 2 (Higher-order patch test) Given a polynomial of degree p € {2, 3},
uPl (x) = ip:O a;x" with {a;} ipzo constants, and local and nonlocal operators such that

ELupoly — fpoly and LNLupoly — fpoly,

where fP° is a polynomial of degree p—2, a coupling method passes the pth-order patch
test if, with consistent boundary conditions and forcing term given by fPY, 4P is the
solution of the coupled problem.

Examples of linear (p = 1) and quadratic (p =2) patch tests are provided in the following
sections. Note that the linear patch test is the most popular consistency test used in many
coupling settings; however, it is rather simple as often higher orders of deformation occur
in practical scenarios. To illustrate such an example, we include a quadratic patch test.

A related concept to the patch test is that of “ghost” forces. Specifically, when a coupling
method does not pass a patch test, non-physical forces normally arise in the transition region
between the local and nonlocal sub-domains. These non-physical forces are often referred
to as “ghost” forces and can be computed as the residual of the equilibrium equation (see,
e.g., [90]). The concept of “ghost” forces was introduced in the context of AtC coupling
(see, e.g., [100]).

Another desired property of a LtN coupling method is asymptotic compatibility. This
ensures that the method preserves the physical consistency of the local and nonlocal models.
Specifically, the solution corresponding to a LtN coupling method should be such that it
coincides with the local solution everywhere when the nonlocal effects vanish. More details
in this regard are provided in the following sections.

A third desired property of a LtN coupling method is energy equivalence. Due to the
physical consistency of the local and nonlocal models, it is expected that these models
would have equivalent energy descriptions for a certain class of problems. Consequently,
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an appealing property of a LtN coupling method is to also preserve the energy descrip-
tion for such class of problems. This consideration becomes a natural requirement for
energy-based LtN coupling methods, since they possess an associated energy functional.
In contrast, force-based LtN coupling methods do not possess, in general, an associated
energy functional.

While the above properties concern common coupling artifacts in static problems,
other spurious effects can emerge in dynamic scenarios. A prime example of these spu-
rious effects is wave reflections on the interface/in the transition region between the
local and nonlocal sub-domains. While most LtN coupling methods retain at least some
of the above static properties to a certain degree, controlling spurious wave reflections
appears to be a much harder task and thus related discussions are excluded from this
review.

We point out that the methods described in this review are not tied to a particular dis-
cretization. However, the choice of discretization used for local and nonlocal models may
affect some of the properties mentioned above. As an example, when the nonlocal dis-
cretization does not guarantee asymptotic compatibility, the coupling method will inherit
that limitation. Discussions on numerical methods that preserve asymptotic compatibility at
the discrete level can be found in [38, 50, 142, 145].

1.3 Outline of the Paper

This review is organized as follows. In Section 2, we introduce the notation, discuss cou-
pling configurations, and describe the mathematical models and recall relevant results,
including a description of the nonlocal vector calculus [54, 66]. In Section 3, we provide a
description of GDD approaches, i.e., optimization-based methods and the partitioned pro-
cedure. Section 4 describes several methods belonging to the group of AtC type coupling
approaches, including the Arlequin, morphing, quasi-nonlocal, blending, and splice meth-
ods. In Section 5, we present two VH approaches: the energy-based shrinking horizon
method and the force-based partial stress method. For each method, we provide a mathe-
matical formulation and describe its properties. We also report relevant numerical results
available in the literature with the purpose of illustrating theoretical properties and showing
applicability to realistic settings. In Section 6, we draw conclusions and present guidelines
for an appropriate choice of LtN coupling methods based on necessities and constraints.
The chart in Fig. 1 summarizes the classes of LtN coupling approaches and corresponding
methods.

2 Notation, Coupling Configurations, and Mathematical Models

In this section, we introduce the notation and coupling configurations used in this paper (see
Section 2.1) and describe the nonlocal models and recall relevant results (see Section 2.2)
that will be useful throughout the following sections.

2.1 Nonlocal Variables and Nonlocal Domains

Let 2 c R", n = 1,2,3, be a bounded open domain. We are interested in functions
u:82 — Randu: 2 — R", n =1, 2,3, solutions of nonlocal diffusion and nonlocal

mechanics problems, respectively. Specifically, in diffusion, u represents the concentration
of a diffusive quantity and, in mechanics, u represents the displacement in n dimensions.
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Fig.2 Domain £2, nonlocal
boundary 542, and nonlocal
neighborhood Bs(x)

In nonlocal settings, every point in a domain interacts with a neighborhood of points.
Usually, such neighborhood is an Euclidean ball surrounding points in the domain, i.e.,

Bs(x) = {x e R" : [x' —x|| <8}, ey

where § is the horizon. This fact has implications on the concept of boundary conditions
that are no longer prescribed on 942, but on a collar of thickness of at least § surrounding
the domain? that we refer to as the nonlocal volumetric boundary domain, BS2, or simply
nonlocal boundary. This set, by definition, consists of all points outside the domain that
interact with points inside the domain. Here, prescription of volume constraints guarantees
the well-posedness of the problem [54]. Figure 2 provides a two-dimensional configuration.

We denote the union of 2 and B2 by 2 := £2 U B£2, where the overline notation indicates
closure in a mathematical sense.

2.1.1 Coupling Configurations

In a general LtN coupling scenario, the domain Qs decomposed into a purely local sub-
domain (described by the local model), a purely nonlocal sub-domain (described by the
nonlocal model), and a transition region connecting those two sub-domains. An illustration
is provided in Fig. 3. In the figure, we report both a one-dimensional (left) and a two-
dimensional (right) configuration. In the former, the sub-domains are adjacent, whereas, in
the latter, the nonlocal sub-domain and transition region are embedded in the local sub-
domain.

The way the transition between the purely nonlocal sub-domain and the purely local
sub-domain is performed is method-dependent. For instance, in the CH class, we may have
either co-existing local and nonlocal models or a hybrid model in the transition region.
On the other hand, in the VH class, the transition region could be identified with the
region of varying horizon. To provide a better understanding of the differences between the
coupling configurations corresponding to the different methods, we illustrate various con-
figurations in Figs. 4, 5, 6, and 7. While any LtN coupling method can be implemented, in

2In many nonlocal models, such as bond-based peridynamic models [131], a collar of thickness 8 is normally
sufficient as nonlocal boundary. However, more general nonlocal models, such as state-based peridynamic
models [135], may require a collar of thickness 25 (see, e.g., [122]).
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one-dimensional two-dimensional
i nonlocal
volume local
| constraints L.
transition
. nonlocal local
transition nonlocal

N J

Fig.3 Illustration of a coupling configuration: the domain is decomposed into a purely nonlocal sub-domain,
a transition region, and a purely local sub-domain

general, both on adjacent and embedded configurations, we provide below only the specific
configurations used in the following sections.

Domain Decomposition with Overlap We refer to Fig. 4: we report a one-dimensional
configuration (top), a two-dimensional configuration with adjacent sub-domains (center),
and a two-dimensional configuration with embedded sub-domains (bottom). Here, the tran-
sition region is the overlap between the nonlocal and local sub-domains, €2,; and SZ],
respectively, where both operators are defined and the solutions co-exist. The domain Qs
decomposed as Q= 2,U .Q,,l, where Qn; =2, U Bin is the union of the nonlocal sub—
domain and its nonlocal boundary. The overlapping region is defined as 2, := £2; N .Q,,l
and includes the local virtual boundary I, and the nonlocal virtual boundary .QU. We also
introduce the “physical” local and nonlocal boundaries I',, = 8§2;\I', and 2, = B£2,,;\$2,,
respectively, where we assume that conditions coming from the physics of the problem are
provided.
This configuration is used in Sections 3.1, 3.2 (for the overlapping case), and 4.1.

Domain Decomposition without Overlap and with Blending We refer to Fig. 5: we report
a one-dimensional configuration (top) and a two-dimensional configuration with embed-
ded sub-domains (bottom). In this decomposition, the nonlocal and local sub-domains do
not overlap, but are separated by the transition region, §2;. A blending function is used as a
partition-of-unity function, which changes in the blending region, §2),. Due to nonlocal con-
tributions, £2; = Qp UBQy. In the 1e top flgure the domain is decomposed into four disjoint
sub-domains: 2 = .Q U2,y U2 U2, ie., the physical nonlocal boundary, the nonlo-
cal sub-domain, the transition region, and the local sub-domain. In the bottom figure, the
nonlocal sub-domain is embedded in the local sub-domain and 2 is decomposed into three
disjoint sub-domains: 2= U2, U2
This configuration is used in Sections 4.2 and 4.4.

Domain Decomposition without Overlap and No Blending We refer to Fig. 6: we report
a one-dimensional configuration (top) and a two-dimensional configuration with embed-
ded sub-domains (bottom). In the top figure, the domain is decomposed into four disjoint
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Qp in Fv Q0 Qv Ql FP
6, - )
( rf )%
in Q0 Ql

in Qo Ql

\I, S 7

Fig. 4 Coupling configuration in one dimension (top), two dimensions with adjacent sub-domains (center),
and two dimensions with embedded sub-domains (bottom). This is a domain decomposition setting with
overlap (the green region), where both nonlocal and local solutions co-exist

sub-domains: 2 = 2, U £, U 2, U £2, i.e., the physical nonlocal boundary, the nonlo-
cal sub-domain, the transition region, and the local sub-domain. In the bottom figure, the
nonlocal sub-domain is embedded in the local sub-domain and £2 is decomposed into three
disjoint sub-domains: Q= Q2 URUR.

This configuration is used in Sections 3.2 (for the non-overlapping case), 4.3, 4.5 (with
an empty transition region), and 5.2.

Domain Decomposition with Smooth Transition from a Nonlocal to a Local Sub-domain
In the case of VH coupling methods, we consider the configurations in Fig. 7 for one-
dimensional (top) and two-dimensional (bottom) settings. In these configurations, the
domain is decomposed by means of a sharp interface I" between the nonlocal sub-domain,
2,1, and the local sub-domain, §2;. The extent of the nonlocal interactions decreases as
points in the nonlocal sub-domain approach I'. The same holds true for the nonlocal
boundary, that approaches 382, in the area surrounding the interface.
This configuration is used in Section 5.1.
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Fig. 5 Coupling configuration in one dimension (top) and two dimensions with embedded sub-domains
(bottom) for a setting with a transition region £2; (green and yellow) and a blending region £2;, (yellow). The
blending region is part of the transition region and it is §-apart from the local and nonlocal sub-domains

2.1.2 lllustration of Blending Functions

In various LtN coupling methods, such as Arlequin, morphing, and blending, the idea of a
partition of unity is used by means of a blending function, 8(x), such that

1 in the purely nonlocal sub-domain,
B(x) = prtey @

0 in the purely local sub-domain,

Q, Q. QO T, o T,

( D)

Q| Qp

. J

Fig. 6 Coupling configuration in one dimension (top) and two dimensions with embedded sub-domains
(bottom) for a setting with a transition region
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o Iy

( 6
)
e
e

N\ N Y,

Fig. 7 Coupling configuration in one dimension (top) and two dimensions (bottom) for a variable horizon
setting: as X € §2,,; approaches I” the nonlocal neighborhood linearly shrinks and never crosses the interface

which takes values in the range [0, 1] in the transition region (see Fig. 3). In the Arlequin
method, the transition region coincides with the overlapping region, £2,, (see Fig. 4), and
the blending function is chosen as a polynomial, normally constant, linear, or cubic, in
that region, as illustrated in one dimension in Fig. 8a. In contrast, in the morphing and
blending methods, the polynomial choice of the blending function normally occurs within
a sub-region of the transition region referred to as the blending region, £2;, (see Fig. 5), as
illustrated in one dimension in Fig. 8b.

1 . 1 Y
\\ | —P.W. Constant “\‘-\ —P.W. Constant
\\‘.\‘ - - P.W. Linear “"‘. - - P.W. Linear
\\\\ ——-P.W. Cubic ‘\"'. ----P.W. Cubic
W W
ik
= L " [ S——
s ! = a
‘\“\ 5 :\ 5
\\ < Vo
~ N _ 1
Qu \ Q, Qa\‘\‘\\ ] \ Q, Qg 2 "\‘\ Y
Ay W
0 \“ 0 W
€T X
(@) Arlequin (b) Morphing/Blending

Fig. 8 TIllustration of blending functions in one dimension. a Domain decomposition with overlap for the
Arlequin method. b Domain decomposition without overlap and with blending for the morphing and blending
methods. Three choices of blending function are shown: piece-wise (P.W.) constant (black solid line), linear
(blue dashed line), and cubic (red dashed-dotted line)
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2.2 Nonlocal Models

We describe two nonlocal models: nonlocal diffusion and nonlocal mechanics, specifically
peridynamics. We recall that in the case of diffusion the unknown is the scalar-valued
function u, whereas for mechanics the unknown is the vector-valued function u.

2.2.1 Nonlocal Diffusion

Nonlocal diffusion models have been used in many applications such as describing complex
turbulence [10] and nonlocal heat conduction [19] when the classical Fick’s first law or
standard Brownian motion fail to delineate the underlying phenomena [25, 52, 99, 101].

Given a domain £2 C R”", the time-dependent nonlocal diffusion equation for a point
x € 2 attimet > 0is

ou ND / / /
E(X’ H=Lux, 1)+ f(x, 1) = /1;{” y(X,x)(ux',t) —ulx,1)dx + f(x,t), (3)

where y : R” x R" — R is a symmetric kernel® and f is a source. In accordance with the
definition of the nonlocal neighborhood, we consider localized kernels of the form

y (X, x) = Xp; (X' —0k(X, x), C))
where
1 XeB
XB(X) M { 0 else (5)
is the characteristic function of a domain B, and we used the notation Bs := Bs(0) (see

(1)). Since, by definition, the nonlocal boundary consists of those points outside of £2 that
interact with points inside of £2, (4) implies that the nonlocal boundary is defined as

B2 :={x eR"\ 2:|x —x| <4, for any x € 2}. (6)
As a consequence of (4), for x € £2 the nonlocal operator in (3) reads
LNy (x, 1) = / k(x', x)(u(x', 1) — u(x, 1)) dx’. (7)
Bs(x)

In this work, we mainly focus on static problems, where u depends only on x; we thus omit
the time dependence in the remaining of this section. Also, we consider nonlocal diffusion
operators that, in the limit of vanishing nonlocality, i.e., as § — 0, under suitable regularity
assumptions, converge to the classical Laplacian or div-grad operator, A or V - (V), respec-
tively. It is possible to show that, when the kernel function k(X, x) is properly scaled, we
have the following property (see, e.g., [40, 139, 156]):

LNy (x) = Au(x) + OGHDPu(x), 8)

where D™ is a combination of the fourth-order derivatives of u.

Remark 1 Property (8) implies that LNP and A are equivalent for polynomials up to the
third order, i.e., LNP p(x) = Ap(x), for p € P3(RM). Examples of properly scaled kernels,
in one dimension, include

3 2 1
’ /
k(x',x) = s and k(x',x) = ) 7|x’ ot

(€))

3This discussion could be generalized to non-symmetric [37] or sign-changing [95] kernels.
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Note that (8) also implies that the classical Poisson problem is a §2-approximation of a
nonlocal diffusion problem and, as such, it should be used as the reference local problem
in the design of LtN coupling methods. Furthermore, the equivalence property implies that
polynomials up to order three are good candidates for patch tests.

We consider nonlocal diffusion problems in the configuration of Fig. 2 and, without loss
of generality, we limit our description to the static case. Specifically, given a forcing term
f : £2 — R and a volume constraint g : B2 — R, we solve

LNy = f xeg,
(10)
u=g x¢c B2,

where the second condition is the nonlocal counterpart of a Dirichlet boundary condition
for PDEs. For this reason, we refer to it as Dirichlet volume constraint.*

2.2.2 Nonlocal Mechanics

In this paper, the nonlocal mechanics models are provided by the peridynamic theory of
solid mechanics. Peridynamics has been applied for material failure and damage simula-
tion (see, e.g., [20, 44]) and seems to provide robust modeling capabilities for analysis of
complex crack propagation phenomena, such as branching [23, 70].

Given a domain 2 C R", the state-based peridynamic equation of motion for a point
x € 2 attime ¢t > 01is [135]

82
P(975 (x.1) = LPu(x, 1) +b(x., 1), (11
where the nonlocal operator in (11) is the peridynamic internal force density,
LPu(x, 1) = / {TIx, 11(x" = %) = TIx', 1](x — x') } dx, (12)
Bs(x)

p is the mass density, T is the force vector state, and b is a prescribed body force density.
Note that, as for the nonlocal diffusion operator (7), the nonlocal interactions in (12) are
restricted to the nonlocal neighborhood. The force vector state T[x, t](€) is an operator
defined at a given point x at time ¢ that maps a peridynamic bond § := x' — x to force
per unit volume squared; this operator contains the constitutive relation characterizing the
specific material under consideration. It is sometimes convenient to explicitly indicate the
dependence of the force vector state on the deformation. In the case of simple (possibly
non-homogeneous) materials, such dependence is expressed as

T(x, 1](£) = T(Y[x, 1], %) (§). (13)
where the deformation vector state is defined as

with y(x, 1) = x+u(x, t) representing the position of point x in the deformed configuration
at time ¢. Similar to the case of nonlocal diffusion, in this work, we mainly consider static
problems, where u depends only on x; we thus omit the time dependence in the remaining of
this section. In addition, it has been shown for elastic materials that, under suitable regularity

4Nonlocal Neumann volume constraints are also an option. However, for the sake of clarity and without loss
of generality, we do not discuss them.
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assumptions, the peridynamic internal force density convergences, in the limit as § — 0, to
the classical elasticity operator [136], i.e.,

élirrg) LPPux) = V- v (x), (15)

where v is the collapsed peridynamic stress tensor, which is an admissible Piola-Kirchhoff
stress tensor defined as [136]

W) = / TEXX. %)(8) ® £, (16)
Bs(0)

where F := 0y/0x is the standard deformation gradient tensor and X(&) := & is the
reference position vector state.

A special case of state-based peridynamics is when the material response of any bond is
independent of other bonds. This is referred to as bond-based peridynamics [131] for which
the force vector state is given by [135]

1
T[x](§) = . §). a7

where f is the pairwise force function and  := u(x+ &) — u(x) is the relative displacement.
In this case,
£Pu = [t )t ()
Bs(0)
We observe that (18) implies that a nonlocal boundary, as in (6), is required to inform points
near the domain boundary 942.
For small deformations, i.e., ||| < 1, we can linearize the pairwise force function as

f(n. &) = 1) E @ &), 19)

where A is a scalar-valued micromodulus function, which in the case of isotropy A(§) =
A(J|E]]). In this case, under a smooth deformation, in the limit as § — 0, we have the
following property for (18) (similar to (8)) [121]:

5

2, .
LPPu(x) = Ciju 8i(x)ei +0HDWu(x), (20)
0X0X]

where we used Einstein summation convention for repeated indices and the orthonormal
basis {ej, >, €3}, and C; ki are the components of a fully symmetric fourth-order elasticity
tensor, which is related to the micromodulus function by

1
C— 5/35(0)“%”)& ®&®E®EdE. @1

In the limit as § — 0, (20) reduces to the classical linear elasticity operator
% [%Vzu(x) +V® Vu(x)] in three dimensions,
LFu(x) = 3TE [%Vzu(x) +V® Vu(x)] in two dimensions, (22)

2 . . .
E % (x) in one dimension,

SWe assume a pairwise equilibrated reference configuration, i.e., (0, £) = 0 for all § € R” and neglect terms
of order O(||5]3).

@ Springer



Journal of Peridynamics and Nonlocal Modeling

where E is Young’s modulus. Note that the resulting Poisson’s ratio is constrained to v =
1/4 (in three dimensions) [131] and v = 1/3 (in two dimensions) [148]; this restriction is
characteristic of bond-based peridynamics and is removed in state-based peridynamics.

We consider peridynamic problems in the configuration of Fig. 2 and, without loss of
generality, we limit our description to the static case. Specifically, given an external body
force density b : 2 — R" and a volume constraint g : B2 — R", we solve

—LPPu(x) =b(x) x€ £2,
(23)
ux) =gx) xe B,

where the second condition is, as in the nonlocal diffusion case, a Dirichlet volume
constraint.

2.2.3 Nonlocal Vector Calculus

In this section, we reformulate nonlocal diffusion and peridynamic operators in terms of the
nonlocal vector calculus developed in [66]. This theory is the nonlocal counterpart of the
classical calculus for differential operators and, by providing a variational setting, allows
one to analyze nonlocal problems in a very similar way as for PDEs. Such calculus is nec-
essary to analyze several LtN coupling methods described in this review; as such, we report
relevant results and refer the reader to [53, 54, 66, 96] for more details.

Following the notations in [54], the nonlocal divergence operator D acting on a two-
point function v(x, x) : R” x R"” — R”" is defined as

Dv)(x) := / (x, x)+rvX,x) - ax x)dx ,
Rfl

where a(x, x’) is anti-symmetric, i.e., (X, X') = —a(x’, x). Without loss of generality, we
assume
, x —x
a(x,x) = ——. 24)
X" — x|l

The adjoint operator of D, D*, acting on a one-point function u(x) : R” — R is defined by
D*u)(x, X)) == —(u(x) — u(x)a(x,x).

Using the notations of nonlocal divergence and gradient operators, the nonlocal diffusion
operator LNP in (3) is then written as

LNPu(x) = —%D(yD*u)(xy

where y = y(x/,x) is the kernel defined in Section 2.2.1. We next define the energy
functional associated with the problem (10):

E;P(u, f.g) = }1 /5 /ﬁy(x/,x)((D*u)(xﬁx))zdx/dx

_/f(X)M(X)dX—/ g(xX)u(x)dx.
Q BR

SWe point out that in (22) the operator in two dimensions corresponds to a pure two-dimensional model,
which coincides with a plane stress formulation [147]. Peridynamic isotropic plane stress models are
restricted by a Poisson’s ratio of v = 1/3, whereas peridynamic isotropic plane strain models are restricted
by a Poisson’s ratio of v = 1/4 [59, 148].
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The corresponding energy norm, energy space, and constrained energy space are then given,
respectively, by
lulinp = (E5 @, 0,00/,

SN(2) = {u € L*(2) : |lullnp < 00},
SNP(2) = {u e SNP(2) : ulpge = 0}.

Given the two-point function ¥ : R” x R” — R"*" and the one-point function u : R" —
R", we can similarly define the nonlocal divergence operator D and its adjoint D* by

D¥)(x) = (WX, x)+ V(X X)) - ax x)dx,
Rn

D*u)(x,X) = —(ux) —u®X) Q a(x,x),

where « is given by (24). The linear bond-based peridynamic operator £FP in (18) with
(19) is then written as

1
L (x) = —5D<y<D*u>T)<x>,

where y = y(x',x) := Xp,(x' — x)A(|X' — x|)||x — x||>. We can also define the energy
functional for problem (23):

EfP(u,b,g) = % /6 /6 y (X, X)(Tr(D*u) (x, X)) ?dxdx

—/ b(x)u(x)dx—/ g(x)u(x)dx,
Q B

where Tr(D*u) is the trace of D*u. The corresponding energy norm, energy space, and
constrained energy space are given, respectively, by
lullpp = (E5°(u,0,0))'2,
SPP(2) = (ue L2, R") : |uflpp < oo},
SP(2) = (ue SP(Q) :ulpe =0}.
Note that L?(2) = L*(£2, R) is the space of R-valued square-integrable functions on £2
under our notation. R _

The nonlocal energy spaces SNP (£2) and STP(£2) defined above are Hilbert spaces, as
shown in [95, 96]. Moreover, the nonlocal diffusion problem (10) and the nonlocal mechan-
ics problem (23) are well-posed as a result of nonlocal Poincaré type inequalities. Here we
state the inequalities without proof, and more details can be found in [52, 95, 96].

Lemma 1 (Nonlocal Poincaré inequalities) There exists a positive constant C such that
the following Poincaré type inequalities hold:

flu < Cllullnp, Vu € SNP(Q),

L2(Q)

] J < Clullpp,  Yue SP(£2).

L2(Q Rn

We only presented the reformulation of nonlocal diffusion and bond-based peridynam-
ics in the above. However, state-based peridynamics can also be reformulated using the
nonlocal vector calculus and details can be found in [50, 53, 97].
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3 Generalized Domain Decomposition Methods
3.1 Optimization-Based Methods

In optimization-based methods (OBMs) the coupling of local and nonlocal models is
effected by couching the LtN coupling into an optimization problem. This approach is
inspired by GDD methods for PDEs [45, 49, 55, 60, 67-69] and it has also been applied
to AtC coupling in [105, 106]. A main feature of OBMs is that numerical solutions only
require the implementation of the optimization strategy as the local and nonlocal solvers
can be used as black boxes. For this reason, OB couplings (OBCs) are considered non-
intrusive as opposed to other methods whose implementation requires modification of the
basic governing equations in the transition region between local and nonlocal sub-domains.

3.1.1 Mathematical Formulation

We provide a very general formulation of an OBM. Let £N* be a nonlocal operator that
accurately describes the system in a bounded domain £2 and let £" be a corresponding local
operator that describes the system well enough where nonlocal effects are negligible. OBMs
tackle the LtN coupling by solving a minimization problem where the difference between
the local and nonlocal solutions is minimized in the overlap between local and nonlocal sub-
domains, tuning their values on the virtual boundaries induced by the domain decomposition
(see Fig. 4). Here, we state the LtN OBC in a very general form for vector functions:

. 1
min - |[u® —u ||§ o such that
wi ul il oyl 2 el

— LNl = b x € 2y —Llul=b xe (25)
=g x€ 2, and =g xerl,,
wl =y x e 2, o =vxerl,
where b is a forcing term over £2,; U £2;, g is a boundary data over §2, and I'),, || - [+, 2, iS a

suitable norm in the overlapping region §2,, and (v, v') € C (an appropriate control space)
are the control variables. The goal of OBC is to find optimal values for the virtual controls
v and v’ such that the nonlocal and local solutions, u” and u’, respectively, are as close
as possible in the overlapping region, while still satisfying their corresponding governing
equations. We denote the optimal controls and corresponding nonlocal and local solutions
by (v"*, v'*) and (u™*, u*), respectively. The global coupled solution is then defined as

u*(x) = u"*(x) X, (x) + 0¥ (x) Xop0,(x)  forallx € 2, (26)

where X, (-) and X, (-) are the characteristic functions of £2,; and £2;, respectively (see
5).

Applications of this technique to nonlocal diffusion can be found in [34, 35] in one
dimension and in [39] in three dimensions, whereas applications to nonlocal mechanics can
be found in [20].

We now present a more rigorous formulation of OBC for a nonlocal diffusion problem,
following [35]. In this case, the unknowns are the scalar-valued functions u™ € SNP(£2,,/)
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and u' € H}p (£21)7 such that

—LNDyh = f x e Ry —Aul = f xe s
u =0 xef, and ul =0 xerl, , 27)
'l = vl x e 2, ul =vlxer,

where £NP is the nonlocal diffusion operator introduced in Section 2.2.1 and W vhy e
C:= 8NPy HZ(T,), where SNP — (y] g, :v € SNP(2,1)} and v| g, denotes a restriction of
v to £2,, are the undetermined Dirichlet volume constraint for the nonlocal problem and the
undetermined Dirichlet boundary condition for the PDE. Thus, the OBC can be formulated
as the following constrained optimization problem:

min  lu" — ul|? subjected to Eq. (27). (28)

M”I,Lll,vnl,vl LZ(QO)

nlx

Given the optimal controls (v"**, ), the global coupled solution is defined as in (26).

Properties OBC approaches such as (28) have several desirable properties:

— Provided that the nonlocal and local problems are well-posed (see Section 2.2.3), the
optimal control problem is well-posed, i.e., (28) has a unique solution. In particular,
it is possible to show that the Euler-Lagrange equations associated with the reduced

functional J (v, v!) = %Hu"l(v"[) — ul(vl)||2Lz(Q ) define a coercive variational form
o

in the control space C [35, 39], where the notations u™ vy and u!(v!) denote the
solutions u™ and u' given the virtual controls v and v/, respectively.

—  When £NP is properly scaled (see Remark 1), the method passes the linear, quadratic,
and cubic patch tests. Furthermore, [35] shows that as § — 0 the coupled solution
approaches the solution of a global local problem, i.e., the method is asymptotically
compatible. However, this result can only be achieved as long as the overlapping region
£, is “large enough,” as convergence estimates depend on |§2,| ™!, where |£2,| denotes
the size of £2,,.

—  The numerical solution of nonlocal and local problems is completely uncoupled. As
a consequence, nonlocal and local governing equations can be discretized on sepa-
rate computational sub-domains with different discretization methods (e.g., meshfree
method for the nonlocal equation and the FEM for the local equation). This implies that
available software for the solution of each problem can be used as a black box.

—  The mathematical formulation presented in this section can be easily extended to the
peridynamic model presented in Section 2.2.2 by simply substituting £N- with £FP,
either in the state-based or bond-based forms, and £ with the corresponding classical
elasticity operator (e.g., £LCF in (22) for bond-based peridynamics), as demonstrated in
Section 3.1.2.

— The optimization does not affect the rate of convergence of the discretization method
used for the governing equations (e.g., a piece-wise linear FEM discretization preserves
second-order convergence of the solution in the L?-norm).

The Time-Dependent Problem The extension of this method to time-dependent problems
is straightforward. However, due to the high computational cost of the optimization prob-
lem, it still has limited applicability. Such extension consists in performing the optimization
at every time step of the time integration. Specifically, at every time step the objective

TWe denote by H }/) (£2;) the space of functions in H L(82) that vanish on I" -
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functional is the same as in (25), but the constraints are the semi-discrete (in time) nonlocal
and local problems. An even more expensive option is to formulate the time-dependent cou-
pling as a continuous global (in space and time) optimization problem, where the objective
functional is the norm of the misfits over the whole space-time domain and the constraints
are the time-dependent nonlocal and local problems. None of these approaches has been
rigorously analyzed nor implemented.

3.1.2 Applications and Results

As anticipated in the previous section, the abstract formulation in (25) can be easily
extended to state-based peridynamics. Here, we report results for the linearized version (see
[133]) of the linear peridynamic solid model introduced in [135]. This is an isotropic state-
based peridynamic model that converges, in the limit as § — 0 and under suitable regularity
assumptions, to classical linear elasticity without the Poisson’s ratio restriction discussed in
Section 2.2.2. We report linear and quadratic patch tests for a stainless steel bar as obtained
in [20] (where all the specifics are listed). In both tests, the nonlocal problem is discretized
using a meshfree method [134] (see also [85]) and the local problem is discretized using
piece-wise linear FEM. The computational domain is reproduced in Fig. 9. On the left, the
nonlocal problem is discretized with a meshfree method; on the right, the local problem is
discretized with FEM. Results are reproduced in Fig. 10, where displacement solutions in
the horizontal direction are reported along a horizontal line passing through the center of
the bar. The patch test results are in good agreement with the expected linear and quadratic
solutions for both the fully nonlocal and local problems.

Further results in [20] for stainless steel bars with cracks demonstrate the ability of OBC
to capture cracks in nonlocal regions as well as the ease of dealing with boundary condi-
tions that can be applied to local regions circumventing the non-trivial task of prescribing
nonlocal boundary conditions.

3.2 Partitioned Procedure

In this section we introduce another GDD type method, known as partitioned proce-
dure, which can be applied to heterogeneous domains such as those characterized by
multi-scale and multi-physics dynamics. In the partitioned procedure, the coupled prob-
lem is solved based on iterative solutions of sub-problems. The sub-problems are coupled
through transmission conditions on interfaces, which enforce the continuity of solutions and

T i
N

Fig.9 Computational domain for linear and quadratic patch tests for the optimization-based method. On the
right, a meshfree discretization; on the left, a FEM discretization. Blue nodes indicate the control variables
degrees of freedom
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(a) Linear Patch Test

0.1

0.05

wy(z) [mm]

e nonlocal _-.
= local -

37.5 62.5
x [mm]

(b) Quadratic Patch Test

Fig. 10 Patch tests for the optimization-based method: linear (left) and quadratic (right). The figures show
displacements along the horizontal line passing through the center of the bar presented in Fig. 9; u; stands
for the component of the displacement in the x-direction. Nodes in the nonlocal sub-domain are represented
by blue filled circles, whereas nodes in the (physical and virtual) nonlocal boundaries are represented by
empty blue circles. Nodes in the local sub-domain are represented by red filled squares, whereas nodes on
the (physical and virtual) local boundaries are represented by empty red squares

the energy balance of the whole system. One of the main features of this approach is soft-
ware modularity. In fact, since each sub-problem is solved separately, possibly with different
solvers, the partitioned procedure allows for the reuse of existing codes/discretization meth-
ods. Moreover, because only transmission conditions on the coupling interfaces are needed
and provided for each solver, the partitioned procedure is also generally non-intrusive,
similar to OBMs.

While the partitioned procedure can be applied to static and quasi-static problems, it is
more commonly used for dynamic problems. Therefore, we describe the partitioned for-
mulation for dynamic LtN coupling problems. The partitioned procedure can be broadly
classified as either explicit or implicit (in the literature these two approaches are some-
times referred to as loosely coupled strategy and strongly coupled strategy, respectively).
In explicit coupling strategies, the solution of each sub-problem and the exchange of inter-
face data are performed only once (or a small number of times) per time step. For reasons
pointed out below, this causes an information mismatch on the interface. As a consequence,
the coupled system does not satisfy exactly the coupling transmission conditions and the
energy exchanged between sub-problems is not perfectly balanced. In contrast, in implicit
coupling strategies, each sub-problem is solved iteratively until convergence is reached.
Thus, transmission conditions are always satisfied and the energy of the system is balanced.
This generally allows one to achieve numerical stability, even for highly nonlinear coupled
systems.

The partitioned procedure formulation for LtN coupling is introduced in [157] for non-
local diffusion problems and in [158] for nonlocal mechanics problems. In both works, the
authors use Robin transmission conditions since, compared with Dirichlet and Neumann
transmission conditions, are more flexible and often more robust.

3.2.1 Mathematical Formulation
To introduce the partitioned procedure formulation for LtN coupling with Robin transmis-

sion conditions, we consider a general time-dependent LtN coupling problem. At time step
k and sub-iteration j, we solve for uZl j and uf( j using the solutions at the previous time
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step, uzl { and ui |» and the solutions at the previous sub-iteration, uzl . and “i - |- Note

that uk o and u"l are taken as the solutions from the previous time step, uf{ 1 and uk 1

respectlvely We frrst describe the partitioned procedure for the overlapping case, i.e., with
a configuration corresponding to Fig. 4:

L
Dt“k, — [N ukj Sk X € 24,
I
qu =g X € £2),
1 NL /1l 1 Lyl
Rluz’j +T (UZ,J’) = Rluk,jf1 +T (uk’jil) X € 2y,
(29)
! L
Dy ; — L “k/ Sk X € £,
I _
;= 8 x €I},
L nl NL /,,nl
Rzuk gt T (uk J) = Rou. it T (uk’j) x € I,

where s is a forcing term over £2,; U §2; and g is a boundary data over §2), and I',. For
diffusion problems, u is a scalar-valued function, LNV = LNP Ll = A ands = f
(see Section 2.2.1). For mechanics problems, u is a vector-valued function, LN u(x, 1) =
p(x) LPPu(x, 1), Llu(x, 1) = (X) V - v9(x, 1), and s(x, 1) = b;’&t)) (see Section 2.2.2). TT
is a flux operator in diffusion problems or a normal stress operator in mechanics problems,
and TNT is a corresponding nonlocal operator to be defined. D; is the appropriate finite-
difference operator that approximates a first-order time derivative (in diffusion problems) or
a second-order time derivative (in mechanics problems) of u. R} and R, are constant Robin
coefficients. Note that when R; = 0,i = 1, 2, the Robin transmission condition is equiv-
alent to a Neumann-type transmission condition, whereas when R; — oo, i = 1,2, the
Dirichlet transmission condition is obtained In the explicit partitioned procedure, the solu-
tions are updated as uZl = uzl and uk = uk after one or a few sub-iterations. Note that
in the explicit partitioned procedure the Robm transmission condition in the nonlocal sub-
problem becomes R Zl + TNL (uzl) —Rluk_] + TL(uk_l), so the transmission condition
Ry + TNEy = Ryu! + TE (') is not exactly satisfied, and therefore the energy of the
system is not balanced. In the implicit partitioned procedure, the sub-iterations stop only
when a prescribed stopping criterion is reached, and as a consequence the energy exchanged
on the interface is balanced. To apply Robin transmission conditions in LtN coupling prob-
lems, one of the challenges is to provide a well-defined nonlocal operator TN, In the
overlapping case, both local and nonlocal solutions exist in £2,. In [158], the authors pro-
posed to employ the local operator 7% (u"’) as an approximation of the nonlocal operator
TNL (unl).

In [157], the authors considered a coupling configuration for the non-overlapping case
as in Fig. 6; here, the transition region, §2;, corresponds to the nonlocal Neumann bound-
ary and the sharp interface, I, is where local and nonlocal models interact. For the local
sub-problem, a Dirichlet transmission condition uf( = u}:[ . is employed on I7,. For the
nonlocal sub-problem, instead of explicitly defmmg the nonlocal Neumann-type operator
TNL, the authors developed a nonlocal formulation which converts the local flux to a cor-
rection term in the nonlocal model and provides an estimate for the nonlocal interactions
across I',. For x € §2;, where £2; is a collar of thickness § adjacent to the LtN coupling
interface (see Fig. 6), a modified nonlocal formulation is employed:

Qs(x) D! (x, 1) — Lysup! (x, 1) + R Vs(ug!; (P(x), 1)
= QsM)sk(x, 1) + V(O T (u) ;_(P(), 1)) + RiVs(0w ;_ (P(X), 1),
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where Qs and V; are functions of x, P is the projection operator onto I, and L’%Ig is a mod-
ified nonlocal operator as proposed in [157]. This formulation provides a generalization of
the classical local Robin transmission condition, such that the nonlocal problem converges
to the corresponding local problem with local Robin transmission condition, as § — 0,
under suitable regularity assumptions.

Properties To achieve a stable and/or fast convergent LtN coupling algorithm, one needs
to choose optimal Robin coefficients, R; and R»; see next section. With proper Robin
coefficients, the partitioned procedure has several properties:

— The partitioned procedure is not tied to any particular discretization. Actually, it
provides a flexible coupling framework which enables software modularity: differ-
ent discretization methods, including different spatial and time resolutions, can be
employed for the two sub-problems.

—  When the nonlocal sub-problem with Robin transmission condition is asymptotically
compatible, the coupling framework preserves the asymptotic compatibility.

—  The partitioned procedure passes the patch tests as long as the solution satisfies the cho-
sen Robin transmission condition. In particular, when taking TNl as the corresponding
local operator T in the partitioned procedure for the overlapping case, the coupling
framework passes up to cubic patch tests. On the contrary, in the partitioned procedure
for the non-overlapping case, as in [157], the coupling framework simply passes the
linear and quadratic patch tests only when the interface is flat.

— The partitioned procedure with the implicit coupling approach is energy preserv-
ing. However, the explicit coupling approach does not necessarily guarantee energy
preservation.

—  The partitioned procedure for the non-overlapping case can also be applied to general
heterogeneous LtN coupling problems, i.e., where the local and nonlocal problems have
different physical properties.

3.2.2 Applications and Results

In applications, the optimal Robin coefficients can be estimated either theoretically or
numerically. In problems with relatively simple and/or structured domain settings, one can
perform a Fourier decomposition of the solution and define an analytical reduction factor as
the ratio between the semi-discretized solution errors of the current and previous iterations
in the frequency space. Then, the optimal Robin coefficients can be obtained by minimiz-
ing the analytical reduction factor, as shown in [158]. There, the authors consider a LtN
coupling for two-dimensional static/quasi-static mechanics problems, involving a nonlinear
bond-based peridynamic model given by the prototype microelastic brittle (PMB) model
[134] discretized with a meshfree method, coupled to a classical linear elasticity model (see
(22)) discretized with the FEM. On a simple problem setting representing a plate under uni-
axial tension, the optimal Robin coefficients are provided by reducing the coupling problem
to a one-dimensional model problem and obtaining expressions for the reduction factor of
the solution. The developed optimal Robin transmission condition is also applied to capture
crack initiation and growth on a plate with a hole loaded with increasing tension.

For LtN coupling problems with general geometry and heterogeneous material proper-
ties, deriving the analytical expression of the reduction factor is generally not straightfor-
ward, and typically a numerical approximation has to be considered. In [157], LtN coupling
in a diffusion problem for the non-overlapping case is studied. Using Robin transmission
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conditions, the authors developed a stable explicit partitioned procedure, where the optimal
Robin coefficients are obtained by minimizing the magnitude of the maximum eigenvalue of
the discretized coupled system. When the time step satisfies the CFL condition At < C h2,
where £ is the spatial discretization size and C is a constant, the resulting partitioned pro-
cedure with optimal Robin coefficients is robust and capable of handling sub-domains with
complicated geometries, as shown in Fig. 11. The numerical results on patch tests are shown
in Fig. 12, where both the local and nonlocal sub-domains are two-dimensional squares and
the interface I', is a straight line segment. In Fig. 12, solutions along the domain center line
are reported.

4 Atomistic-to-Continuum Type Coupling
4.1 Arlequin Method

The Arlequin method [14, 15] is a general energy-based engineering design tool for multi-
scale modeling which superimposes multiple models and glues them to each other while
partitioning and weighting the energies. In this section, we review the Arlequin approach for
LtN coupling, following [71]. In that work, the authors employ the nonlocal elasticity model
developed in [42, 43]. Here, for consistency with the rest of the paper, we adapt the formu-
lation from [71] to couple the bond-based peridynamic model (18) (with the linear pairwise
force function (19)) and classical linear elasticity (see (22)). For state-based peridynamics,
the Arlequin method has been applied in [149].

4.1.1 Mathematical Formulation

We refer to Fig. 4 (bottom): the domain Q2 is decomposed into £2; and 5,,1 with an overlap-
ping region 2, := £2; N £2,;, whose volume has to be sufficiently large to ensure stability
[12, 71]. The strain energy density of the system is defined in the following way: it equals
the nonlocal strain energy density in £2,,; \ §2, and the local strain energy density in £2; \ £2,,.
In the overlapping region, §2,, the strain energy density is defined as a weighted combina-
tion of the strain energy densities of the two models using complementary weight functions.
We introduce below, in a three-dimensional setting, the weak form of the system for the
Arlequin formulation.

Local

Nonlocal

Fig. 11 Non-overlapping partitioned procedure for LtN coupling. Left: problem setting. Right: simulation
result, where the blue spheres represent the nonlocal solution obtained with a meshfree solver and the
triangular mesh represents the local solution obtained via a FEM solver
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Fig. 12 Patch tests for the non-overlapping partitioned procedure: linear (left) and quadratic (right). Nodes in
the nonlocal sub-domain are represented by blue filled circles, whereas nodes in the nonlocal boundary (left
physical nonlocal boundary and local-nonlocal interface) are represented by empty blue circles. Nodes in the
local sub-domain are represented by red filled squares, whereas nodes on the local boundary (right physical
local boundary and local-nonlocal interface) are represented by empty red squares

The functional spaces for the local model are defined as

Wy :={ue H' (2)):ux) =gx) onl,},
WY :={ve H'(2;):vx) =00nT},}.

Given a function pair (ug, vi) € W x Wl0 , we define a local weighted bilinear form:
4E
av) = [ @ (7w ()
2
1
+§ (Vul(x) + VulT(x)) : (Vvl(x) + VVIT(X)) }dx. (30)

For the nonlocal model, we define the functional spaces W, := SPD(?Z,,I) and Wg =

SED(S/Z\HZ). Given a function pair (uz, vo) € W, x WY, we define a nonlocal weighted
bilinear form:

1
az(up, v) = I / / a2 (x, xX)A(IX = x|) (wp(x) — UZ(X))T
$2n1 Y Bs(X)
(& =% @ ' —x)) (v2(x) — v2(x)) dX'dx. 31)

Here, a1 (x) and a;(x, x’) are complementary (see below) scalar-valued weight functions,
which can be defined via a blending function B(x) such as the one introduced in (2) and
illustrated in Fig. 8a. We take o1 (x) = 1 — B(x). In contrast to 1 (x), which is a one-point
function, e (x, X) is a two-point function so that its definition is not unique. Nevertheless,
as discussed in [12, 29], to reduce spurious effects a;(x, X’) can be chosen as a symmetric
function (see [71]):

x+x
2

ar(x,x)=p ( > vx, X € 2. (32)

Another standard choice of a, can be defined in an average sense [29, 111].
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Next, we define the weak formulation of the local and nonlocal body forces, respectively.
Forv, € W?, the local term is defined as

Lv) = /Q o1 (D) - vi(x) dx, (33)
1

and, for v, € W20 , the nonlocal term is defined as

h(v2) = /Q (I — a1 (x)b(x) - v2(x) dx. (34)
nl

In order to couple the displacements of the local and nonlocal models in £2,, a weak com-
patibility between the kinematics of both models using Lagrange multipliers is enforced.
The result is the following saddle point problem:

Find (u;, w2, §) € W) x Wo x H'(£2,) such that

aj(ar, vy) + C(@, vi) = [1(v1), (35)
ax(uz, v2) — C(@, v2) = [r(v2), (36)
C('/,a u; — u2) = 07 (37)

for all (vi, va,¥) € Wl0 X W20 x H'(£2,).

The bilinear form C(:, -) describes the coupling and is defined, for any (¢, v) € H 1(82,) x
SPP(2,) N H', as

C.v) = /Q (koW -V + K16(¥) : £(¥)) dx, (38)

where €(-) denotes the infinitesimal strain tensor €(v) := % (VV + VVT). The coefficients
0 < ko,k1 < 1 are non-negative coupling parameters. For example, (ko, k1) = (1,0)
defines the L2-norm coupling; (ko, x1) = (0, 1) defines the H'-seminorm coupling; and
(kg, k1) = (1, 1) is the H'-norm coupling [17, 64, 65, 71].

Once the mixed formulation (35)—(37) is solved, we need to reconstruct a displacement
u for the entire domain 2, because u; and u; are only defined in £2; and £2,.1, respectively.
One convenient reconstruction option is given as follows:

up (x) X € 8\ 82,
u(x) = 1w (x) X € 2\ $2,, (39)
a;(x)uy(x) + (1 — o (x)uz(x) X € £2,.

Properties Even though a mathematical analysis and a rigorous study of the influence of
modeling choices of the Arlequin method (such as weight functions or size of the over-
lapping region) on the coupling quality are not available for LtN coupling in nonlocal
mechanics, several references in the literature address properties of this technique when
applied to other coupling problems (see, e.g., [12, 16, 29, 64]). Based on these references,
we list here some general properties:

— If the coupling parameters defined in (38) satisfy ko > 0 and «; > 0, and the over-
lapping region §2, is sufficiently large, then the corresponding saddle point problem
(35)-(38) is well-posed. However, for the L?*-norm coupling (ko, k1) = (1,0), the
well-posedness is unclear.

—  Since the condition for passing the linear patch test is only weakly imposed via (37), ghost
forces cannot be completely removed in the overlapping region.
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— The energy equivalence of this formulation depends on the choice of the weight func-
tions o1 and a», the size of the overlapping region £2,, and the choice of the Lagrange
multiplier space [29, 64]. In some cases, the Arlequin model is not equivalent neither
to the local model nor to the nonlocal model, even when homogeneous deformations
are assumed. In fact, as pointed out in [29], with inappropriate choices of «, §2,, and
(x0, k1), the Arlequin formulation may be not coercive.

The Time-Dependent Problem The Arlequin method has been used in many time-
dependent applications, and the extension is straightforward (see, e.g., [12, 109, 149]). In
particular, applications to dynamic LtN coupling in mechanics problems appear in [149].
However, such extension consists in solving the saddle point problem (35)-(37) at every
time step, which limits its applicability due to high computational cost.

4.1.2 Applications and Results

In this section, as done in others below, we simply provide references to applications of the
Arlequin method as the reproduction of numerical results is non-trivial.

In [71], the authors first apply the H'-norm coupling with piece-wise linear weight func-
tions to study a two-dimensional cantilever beam of isotropic homogeneous material. Their
results show that the accuracy of Arlequin solutions is comparable with that of a fully non-
local elasticity model. Next, they test a static cracked square plate using various options of
(k0, k1). When the H!'-norm coupling with piece-wise linear weight functions is used, the
strain distribution from the Arlequin approach agrees with the strain field, especially near
the crack-tip, computed with the fully nonlocal model.

In [110], the authors use the Arlequin method to investigate a one-dimensional prob-
lem that consists of a collection of springs that exhibit a localized defect, resulting in
a sudden change in the spring properties. They test the method and study its accuracy
for several choices of coupling parameters. They prove that the Arlequin formulation is
well-posed with both H'-seminorm and H'-norm couplings. Their numerical results also
indicate that the method is sensitive to the location and size of the overlapping region,
and they propose to utilize adaptive strategies, based on a posteriori error estimates, to
identify them.

4.2 Morphing Method

The morphing method for LtN coupling was developed in [5, 6, 72, 90] based on a blending
approach to morph the material properties of local and nonlocal sub-domains. The cou-
pling formulation consists of a single unified model obtained by a transition (morphing)
from local to nonlocal descriptions. More specifically, a hybrid model is introduced in the
transition region or morphing zone, £2; (see Fig. 5), whose constitutive law changes gradu-
ally from a local to a nonlocal response. As a result, a single model with evolving material
properties is defined on the whole domain and the equivalence of the energy of the sys-
tem with the fully nonlocal energy is enforced in the morphing zone under homogeneous
deformations [90].

4.2.1 Mathematical Formulation

We describe the morphing method for the coupling of the bond-based peridynamic
model (18) (with the linear pairwise force function (19)) and the corresponding classical
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linear elasticity model (22), following [90]. We note, however, that this technique has also
been applied to more complex material models, including linear anisotropic bond-based
peridynamic models [5] and a state-based peridynamic model [72].

The strain energy density of the linear bond-based peridynamic model is given by

W) = § [ 0 MIEDOE+ &) —u@)T ¢ @ H)(ux+§) —ux)dE.  (40)

whereas the corresponding local strain energy density is given by

/ 4E
Wix) = ?{(V ~u(x)) (V- u(x))
1 T . T
+5 (Vu(x) 4 Vu (x)) : (Vu(x) + Vu (x))}
1
= 56 Ce(x), (41)
where C! is the fourth-order elasticity tensor and & := %(Vu + vu7) is the infinitesimal

strain tensor. When considering an infinitesimal homogeneous deformation, we can define
a local stiffness tensor C° using (40) such that the strain energy density of the resultant local
model is equal to the strain energy density of the nonlocal model, i.e.,

W (x) ~ %s(x) CY: e(x),

where CY is given by (21). To define the morphing model, due to consistency requirements
on the energy densities, we assume C° = C'.

Given a blending or morphing function 8, such as the one introduced in (2) and illustrated
in Fig. 8b, the morphing model is fully defined by the following strain energy density:

1
W"(x) = Es(x) C(x) : e(x)

1
41 f 2(1EnPEFDTP® (ot gy ) € @ & + ) — e,
4 JBs) 2

where

Cw) = (1 = B)C' +/ , rag PO =D

Bs(

EREQERES.

Note that, similar to (21), C(x) is a fully symmetric fourth-order tensor.

Properties The morphing method has the following properties:

— Forx e 2;,C(x) =Cl and W"(x) = W!(x).

— Forx € 2,,C(x) =0and W"(x) = W" (x).

—  This method does not pass the linear patch test. In fact, '™ (see Definition 1) does
not satisfy the equilibrium equation throughout the morphing zone and nonzero ghost
forces arise [90]. However, these ghost forces can be approximately corrected using
exactly the same deadload correction approach used in AtC coupling methods [126].
Besides, the ghost force intensity decreases when using smoother morphing functions
B or sufficiently large morphing zones. Moreover, ghost forces are localized to the
morphing zone and vanish when § — 0.
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—  For homogeneous deformations, the strain energy density of the morphing method is
equivalent to both strain energy densities of the local and nonlocal models. Therefore,
this method is considered energy preserving under homogeneous deformations [90].

—  Even though there are a few theoretical studies regarding the morphing method for LtN
coupling, this method has been studied as a type of blending for AtC coupling [83].
The corresponding operator is coercive with respect to the nonlocal energy norm with
smooth morphing function 8 and sufficiently large morphing zone £2; [83].

The Time-Dependent Problem The extension of the morphing method to time-dependent
problems is straightforward, even though the implementation of the model has been only
demonstrated in static/quasi-static problems.

4.2.2 Applications and Results

In this section, we simply provide references to applications of the morphing method as
the reproduction of numerical results is non-trivial. In [90] this strategy is applied to cou-
ple linear bond-based peridynamics with classical linear elasticity for isotropic materials.
The authors investigate the ghost force intensity when using different morphing functions.
They perform a one-dimensional analysis followed by numerical studies in one and two
dimensions. The results suggest that the ghost forces are localized to the morphing zone and
a smoother morphing function B reduces the maximum relative ghost force [90]. Follow-
on two-dimensional simulations for a cracked square plate under both traction and shear
demonstrate the effectiveness of the method, compared with a fully peridynamic simulation.
Later on, in [6], the morphing method is combined with an adaptive algorithm that updates
the nonlocal sub-domain based on damage progression. The resulting coupling framework is
applied to three-dimensional quasi-static problems. In [72], the method is further extended
to couple a linearized state-based peridynamic model and the corresponding classical linear
elasticity model. For anisotropic materials, in [5], the authors introduce anisotropic nonlocal
models based on spherical harmonic descriptions and present three-dimensional results.

4.3 Quasi-Nonlocal Method

The quasi-nonlocal (QNL) method is an energy-based coupling approach introduced in
the context of AtC coupling. This method redefines the nonlocal energy via a “geo-
metric reconstruction” scheme in the transition region and local sub-domain of a LtN
coupling configuration, in such a way that the method is linearly patch-test consistent
[91, 127, 150]. We point out that the idea of “geometric reconstruction” is not limited
to AtC coupling of solids; similar coupling strategies in the literature have been applied,
for example, in computational fluid dynamics (see, e.g., the review papers [2, 81]). Here,
we focus on the QNL method for LtN coupling of one-dimensional diffusion models,
following [56, 82].

4.3.1 Mathematical Formulation

We refer to Fig. 6 (top): without loss of generality, consider the domain Q= [-1 =46, 1]
The domain is decomposed into four disjoint sub-domains: 2 = 2, U 2, U £2, U £2,
which include the left physical nonlocal boundary £2, = (=1 — §, —1), the nonlocal sub-
domain £2,; = (—1, x¥), the transition region £2; = (x*, x*+4§), and the local sub-domain
§£2; = (x* + 8, 1). The right physical local boundary is I, = {1}. Note that the interface
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between the nonlocal sub-domain and the transition region occurs at x* satisfying x* €
(=1 428,1— 26), and the transition region, £2;, has thickness 6.

The crucial step in the QNL formulation is the “geometric reconstruction” [124, 127,
150] of the directional distance u(x") — u(x) in the definition of the energy. Because of
difficulties arising from reconstructing geometries with corners in high dimensions, we limit
the discussion to the one-dimensional case.

Note that the one-dimensional nonlocal diffusion energy density associated with the bond
E=x'"—xis

1
1 =) (ux) = u()’, 42)

where we assume a radially symmetric nonlocal diffusion kernel, i.e., ys(§) = ys(|&]),
which is also compactly supported. In the QNL method, such bond energy density is mod-
ified when the bond is entirely located outside the nonlocal sub-domain. Specifically, the
nonlocal energy is redefined by substituting the directional distance (u x") — u(x)) with a
path integral, such that the local energy density, %| % (x)|?, is equivalent to the nonlocal one
for sufficiently smooth u. Thus, we have that (42) is replaced by

2

x+t(x —x0)| I —x|*dr. (43)

The combined total energy of the QNL model with interface at x* is

f/ ys(lx' = x) (u(x) — u(@))’ dx'dx

E;)NL(M) Z
X

or x’ <x*

<x*
l (
4 // ys(Ix’

>x* and x'>x*

|x —x|?dtdx'dx. (44)

The definition of the QNL coupling operator L is obtained by taking the negative first
variation of the total energy (44). We split it into three parts [56]:

L. For x € £2,;:

LN u(x) = / _ (" = x]) (u(x) — u(x)) dx’
x'en (45)

IIL. For x € £2;:
LAy (x) = / yo(Ix' — x) (u(x) — u(x)) dx’ + di (m(x)d—”(x)), (46)
x/<x* X dx
where ws(x) is defined as
03 (x) —/ dr/ . EPy(EDde.
II1. For x € £2;:
LAy (x) = @( ) (47)
ux) = dx2 X).

Properties We summarize the properties of the QNL method, following [56]:

—  The QNL operator is self-adjoint (i.e., symmetric) as it is derived from a combined total
energy [27].
—  The method passes the linear patch test.
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—  The operator is positive-definite and, hence, it is energy stable with respect to the QNL
energy defined in (44) as well as L? stable with respect to the L?(£2) norm.

— The formulation satisfies the weak maximum principle and therefore it is mass-
conserving.

—  The method is asymptotically compatible and the coupled solution converges as O(8)
to the corresponding local solution.

— The combined total energy of the QNL model is equivalent to both the fully nonlocal
energy and the fully local energy up to linear functions.

The Time-Dependent Problem The extension of the QNL method to time-dependent prob-
lems is straightforward. This follows from the fact that the QNL operator LN is coercive

on the entire domain 2 and, hence, it is stable and monotonic.
4.3.2 Applications and Results

Consider the one-dimensional domain £ = [—8, 1] with interface at x* = 1/2. The
domain is decomposed into the sub-domains £, = (—4,0), £2,; = (0, 1/2), £, =
(1/2, 1/2 4 6), and £2; = (1/2 4+ 5, 1). Results are obtained with the first-order asymp-
totically compatible finite difference method introduced in [56]. We report results of linear
and quadratic patch tests. In this case, the horizon is taken as § = 1/50 and the grid size is
h = 1/200. Results are presented in Fig. 13 and demonstrate that, even though theoretically
the QNL method is only linearly path-test consistent, numerically both linear and quadratic
patch tests are well passed.

We now discuss the application of the QNL method in [56] to remove surface effects.
As mentioned in Section 1, volume constraints for nonlocal models have to be prescribed
in a layer surrounding the domain, where data are not available or are hard to access.
Consequently, an ad hoc treatment of nonlocal boundaries often causes unphysical surface
effects. In [56], the authors apply the QNL method to allow the prescription of classical
local boundary conditions in a nonlocal problem. Specifically, they address the nonlocal
boundary issue by coupling nonlocal and local models, being the latter placed in the non-
local boundary region. Figure 14b shows the solution of a local-nonlocal-local (L-N-L)

« nonlocal - nonlocal
0.8 transitional ‘ 0.8 transitional
- local . local
B O
04 0.4
0 1 0 /
0 0.5 1 0 0.5
xr T
(a) Linear Patch Test (b) Quadratic Patch Test

Fig. 13 Patch tests for the quasi-nonlocal (QNL) method: linear (left) and quadratic (right). Nodes in the non-
local sub-domain are represented by blue filled circles, whereas nodes in the left physical nonlocal boundary
are represented by empty blue circles. Nodes in the local sub-domain are represented by red filled squares,
whereas the node on the right physical local boundary is represented by an empty red square. Green diamonds
represent nodes in the transition region described by the QNL model
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Fig. 14 Application of the quasi-nonlocal method to impose classical local boundary conditions in a nonlocal
problem. Left: nonlocal-local (N-L) coupling with a classical Dirichlet boundary condition extended to the
left physical nonlocal boundary and a classical Dirichlet boundary condition imposed on the right physical
local boundary. Right: local-nonlocal-local (L-N-L) coupling with classical Dirichlet boundary conditions
imposed on both the left and right physical local boundaries

coupling with boundaries being treated in a fully classical way, whereas Fig. 14a shows the
solution of a nonlocal-local (N-L) coupling by simply imposing a Dirichlet volume con-
straint #(x) = 0 in the left physical nonlocal boundary £, = (—1 — §, —1). In those two
examples, the nonlocal diffusion kernel is chosen as y5(§) = 5% X(—s,51(§) and the source

is f = 1. The L-N-L coupling has two interfaces located at x¢ = —% and xb = %; the
N-L coupling has one interface at x* = 0. The horizon is § = 0.2 and the grid size is
h = 1/800. We observe that the N-L coupling displays unphysical surface effects on the
nonlocal side, whereas the L-N-L coupling eliminates those effects. Consequently, L-N-
L coupling provides a way of imposing classical local boundary conditions in a nonlocal
problem and helps avoiding the need of complicated extensions of local boundary conditions
to nonlocal boundaries.

Remark 2 Finding an analytic geometric reconstruction formula becomes more difficult in
higher dimensions. The nonlocal neighborhood, Bs(x), becomes a disk (in two dimensions)
or a ball (in three dimensions), making the intersections with the interface highly more
complex. As a result, it is difficult to identify an explicit expression for the QNL method
in a general setting (see discussions from [124]); even for a simple interface, such as a
rectangular one, the exact formula is not yet available. In [74], the authors propose to adopt
a least squares fitting procedure to find an approximation of this reconstruction; however,
due to the inexactness of the approximation, the properties listed above no longer hold.

4.4 Blending Method

In this section, we discuss a force-based blending approach originally presented for one-
dimensional linear bond-based peridynamic models in [118] and then extended to general
bond-based peridynamic models in higher dimensions in [121]. Force-based blending is
based on weighting governing equations via the introduction of a blending function. As
discussed in [9], external or internal blending is possible. The former does not change the
definitions of the reference models to be coupled, whereas the latter modifies their internal
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force operators. In comparison with the morphing method discussed in Section 4.2, force-
based blending does not necessarily have the physical interpretation of blending material
properties. Force-based blending has been proposed in AtC coupling (see, e.g., [7, 57,
83, 84]). These AtC coupling methods are based on external blending and simply weight
governing equations via the introduction of a blending function. In contrast, the approach
from [118] is based on internal blending and arrives at a blended model through deriva-
tion from a single reference peridynamic model by only resorting to assumptions on the
deformation. Here, as mentioned in Section 1.2, we employ the term “blending” to refer to
force-based blending, because related methods, such as Arlequin and morphing, are called
by their specific names.

4.4.1 Mathematical Formulation

We refer to Fig. 5: in this decomposition, the nonlocal sub-domain, £2,;;, and the local sub-
domain, £2;, do not overlap, but are separated by the transition region, £2;. A blending
function B(x), such as the one introduced in (2) and illustrated in Fig. 8b, is used to char-
acterize the different sub-domains. The change in the blending function occurs within the
so-called blending region, §2, C $2;, and normally takes a polynomial shape. Due to non-
locality, however, the influence of the variation in the blending function extends beyond the
blending region and affects the entire transition region, which is given by £2, = £2, U B£2;.

The force-based blending approach presented here begins with a single reference bond-
based peridynamic model given by (18) for all x € §2. Employing a symmetric combination
of the blending function (2), the operator is first split into two complementary contributions,
so that one of the two has nonzero support in regions of small smooth deformation. For
that contribution, a linearization of the pairwise force function is used followed by a Taylor
expansion of the displacement at any neighbor point X' € Bs(x) around x up to second
order, which leads to an expression connected to the local model. In the case of isotropy, the
resulting blended operator is given by:

Lhux) = / <w> £(y, £)d&
B;5(0)

2
1 auj
- B+ EA(IENEEEdE | — (X)e;
2 Bs(0) 8Xk
1 BX) + B(x + &) N Puj
—3 [/Bs(o) <f) k(ll&ll)&é,,ékézdé] B (x)e;
azuj
+Ciju Brdn (x)e;, (48)

where C;j; are the components of the fourth-order elasticity tensor given by (21). We further
used antisymmetry to simplify the term involving first-order derivatives of displacements.

Properties From (48), we have the following properties:

—  Forx € 2, LPu(x) = LEu(x) (see (22)).

—  Forx € 2., Llu(x) = LPPu(x) (see (18)).

— By construction, in the case of small deformations, the blended operator (48) is equiv-
alent to the reference bond-based peridynamic operator (18) and the classical linear
elasticity operator (22) for quadratic displacements. Therefore, the model automatically
passes the linear and quadratic patch tests. Employing a higher-order Taylor expansion
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up to third order instead would result in a blended model which also passes a cubic
patch test.

—  An error estimate provided in [121] shows that the blended operator (48) converges,
in the limit of § — 0 under suitable regularity assumptions, to the classical local
operator (22) with an order of convergence of O(8). Employing a higher-order Taylor
expansion up to third order in the derivation of the blended model would increase the
order of convergence to O5?).

The Time-Dependent Problem The extension of the blending method to time-dependent
problems is straightforward. In fact, in [118, 121] the blended model is presented based on
equations of motion, even though the implementation of the model is demonstrated in static
problems.

4.4.2 Applications and Results

Consider a one-dimensional domain £ = [—6, 1] decomposed as in Fig. 5 (top) with § =
0.05. The blending region is chosen as £2, = (0.4, 0.6). We then have 2, = (-0.05, 0),
2, = (0,0.35), £2; = (0.35,0.65), and £2; = (0.65, 1). We solve both linear and quadratic
patch tests. The modeling choices and numerical implementation follow [118]. Specifi-
cally, a linear bond-based peridynamic model is used in £2,; with a meshfree discretization;
classical linear elasticity is employed in £2; with a finite difference discretization; and
the corresponding blended model given by (48) is implemented in £2; with a hybrid dis-
cretization, which features a meshfree discretization for integrals and a finite difference
discretization for derivatives. A uniform grid with grid spacing Ax = §/4 is utilized.
A piece-wise constant blending function is employed to demonstrate that no regularity is
required for the blending function in this case; however, similar results are obtained for
piece-wise linear and cubic blending functions. A Dirichlet volume constraint is imposed
in the left physical nonlocal boundary §2,, for the peridynamic model, whereas a Dirichlet
boundary condition is imposed on the right physical local boundary I, = 1 for the local
model. The results are presented in Fig. 15 and demonstrate that the blended model passes
the linear and quadratic patch tests.

0.1 ' " 0.1 - .
¢ nonlocal « nonlocal
transitional transitional
= Jocal = Jocal
Zo0s g 0.05'

065(‘ ! ! :ur./ I .
0 0.4 0.6 1 0 0.4 0.6 1
x x

(a) Linear Patch Test (b) Quadratic Patch Test

Fig. 15 Patch tests for the blending method: linear (left) and quadratic (right). Nodes in the nonlocal sub-
domain are represented by blue filled circles, whereas nodes in the left physical nonlocal boundary are
represented by empty blue circles. Nodes in the local sub-domain are represented by red filled squares,
whereas the node on the right physical local boundary is represented by an empty red square. Green filled
diamonds represent nodes in the transition region described by the blended model
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Additional static numerical examples demonstrating the performance of the blending
method appear for one-dimensional problems in [118] and for two-dimensional problems
in [121]. The one-dimensional studies include a point load case, where the sensitivity of the
numerical results on the modeling choices, including the size of the nonlocal sub-domain
where the point load is applied, the size of the blending region, the choice of blending
function, and the horizon size, is investigated. Moreover, additional studies are conducted to
quantify the effect of the location of the point load with respect to the coupling configuration
as well as the speedup attained by employing a coarse discretization in the local sub-domain.
Two-dimensional simulations include patch-test and point load examples as well as the
deformation of a square plate subjected to both tensile and shear loading.

4.5 Splice Method

The splice method was originally presented for state-based peridynamics in [132] as a
means to couple two peridynamic models with different horizons. Then, it was applied to
LtN coupling by taking the horizon in one of the two peridynamic models to zero, so that
the model can be effectively replaced by a classical local model. A methodology resem-
bling the splice approach, formulated instead at the discrete level, was proposed to couple
a discretized bond-based peridynamic model with a classical finite difference method
in [151], with classical meshless methods in [128—130], and with classical FEs in [58, 159,
160]; the last one was extended to state-based peridynamics in [102]. Conceptually, the
splice approach is probably the simplest LtN coupling method because each material point
is described with a reference fully local or fully nonlocal model without the need of special
coupling techniques.

4.5.1 Mathematical Formulation

Let a domain £2 be decomposed into two non-overlapping sub-domains £2,,; and £2;, such
that @ = Q,; U €. These two sub-domains are connected by the interface I,. This con-
figuration resembles the one used in the partitioned procedure for the non-overlapping case
and is illustrated in Fig. 6; here, however, the transition region £2; is empty.

We define the splice coupling operator as follows (see (15) and (12)):

. fBg(X) {I[X] (X/ - X) - I[X/] (X - X/) } dx’ Xe inv
LoPlicey(x) = (49)
vV - v0(x) X € £2;.

The basic idea is that each material point is represented by either a fully local or fully non-
local model. Near the interface I, a point in £2,; interacts with points in £2;. While such
points belong to a local sub-domain, from the perspective of a point in £2,; the interac-
tion is described by a fully nonlocal model. A similar but reversed situation occurs after
discretization for certain nodes in £2; that interact with some nodes in £2,;.

Properties

—  Because each material point in the splice method is described by either a fully local or
fully nonlocal model, and those models are consistent up to third-order polynomials,
the splice method passes the linear, quadratic, and cubic patch tests.

—  The asymptotic compatibility property of the splice method is inherited from the asymp-
totic compatibility of the reference nonlocal model with an order of convergence of O (8%).
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—  The numerical implementation of the splice method is generally non-intrusive and only
requires passing information about the deformation between the local and nonlocal
sub-domains across I5,.

The Time-Dependent Problem The splice method is directly applicable to time-dependent
problems, as demonstrated in [132].

4.5.2 Applications and Results

Consider a one-dimensional domain 2 = [—6, 1] with § = 0.05 decomposed into 2=
£2,U R, U2, where 2, = (—0.05, 0), £2,; = (0, 0.5), and £2; = (0.5, 1). We solve both
linear and quadratic patch tests. We employ a linear bond-based peridynamic model in £2,;
discretized with a meshfree method and a classical linear elasticity model in £2; discretized
with a finite difference method. A uniform grid with grid spacing Ax = §/4 is utilized.
A Dirichlet volume constraint is imposed in the left physical nonlocal boundary for the
peridynamic model, whereas a Dirichlet boundary condition is imposed on the right physical
local boundary for the local model. The results are presented in Fig. 16 and demonstrate
that the splice model passes the linear and quadratic patch tests.

Several numerical studies concerning the splice method have been carried out in the
aforementioned references. In [132], the performance of the splice method is studied for a
spall initiated by the impact of two brittle elastic plates. In [58], static numerical tests are
performed, including one-dimensional linear and quadratic patch tests as well as three sim-
ulations in two dimensions, which concern the deformation of a plate undergoing rigid body
motion, horizontal stretch, and shear. In [151], the method is proposed to mitigate wave dis-
persion in peridynamics, and crack propagation and branching in a pre-cracked plate under
traction is simulated. Wave propagation in one and two dimensions as well as crack propa-
gation in two and three dimensions are discussed in [159]; the crack propagation examples
in two dimensions include a three-point bending test, the Kalthoff—Winkler experiment, and
crack propagation and branching in a pre-cracked plate under traction, whereas in three
dimensions an example is provided for a double cantilever beam test. Additional dynamic
examples appear in [128] for a cantilever beam subjected to a periodic excitation as well as
crack propagation and branching in a pre-cracked plate under traction. Advanced numerical

0.1~ T 0.1~
¢ nonlocal ¢ nonlocal
= local = local
=005 =0.05
S s
0% ] 0=
0 0.5 1 0 0.5 1
x x
(a) Linear Patch Test (b) Quadratic Patch Test

Fig. 16 Patch tests for the splice method: linear (left) and quadratic (right). Nodes in the nonlocal sub-domain
are represented by blue filled circles, whereas nodes in the left physical nonlocal boundary are represented
by empty blue circles. Nodes in the local sub-domain are represented by red filled squares, whereas the node
on the right physical local boundary is represented by an empty red square
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examples concerning brittle failure analysis are given in [102], including the wedge-splitting
test and the Brokenshire torsion experiment. Finally, in [130] a switching nodal technique
that can be used for adaptivity is presented.

5 Varying Horizon Approaches

The concept of varying the horizon in a nonlocal model for LtN coupling purposes is moti-
vated by the convergence of nonlocal models to local counterparts in the limit as § — 0,
under suitable regularity assumptions, as discussed in Sections 2.2.1 and 2.2.2. Early stud-
ies with variable horizon for adaptive refinement in peridynamics are presented in [21, 22].
A formulation allowing a spatially dependent horizon is introduced for nonlocal diffusion
models in [120], where a LtN coupled problem is cast as a nonlocal interface problem and
obtained by vanishing the horizon in one of two coupled sub-domains. The concept of
smoothly varying the horizon is presented and analyzed in [132] and demonstrated for the
coupling of two peridynamic models with different horizons. Later on, the shrinking horizon
approach in nonlocal diffusion is analyzed for LtN coupling in [140, 144]. As demonstrated
below, the shrinking horizon method is not linearly patch-test consistent. To overcome this
issue, while allowing to spatially vary the horizon, the partial stress method is proposed in [132].

In this section, we begin by discussing the shrinking horizon method, which is related to
the formulation in [120], based on [132, 140] in Section 5.1 followed by a description of the
partial stress method presented in [132] in Section 5.2.

5.1 Shrinking Horizon Method

In [132] the idea of spatially varying the horizon in a peridynamic medium is discussed.
Specifically, the notion of material homogeneity under a change in horizon is presented,
resulting in the concept of variable scale homogeneous body. This provides an appropriate
rescaling of the peridynamic force vector state, so that the corresponding strain energy den-
sity remains invariant with respect to changes in the horizon, under uniform deformations.
In the related works in [140, 144], the authors discuss the validity of the nonlocal diffusion
models with a shrinking horizon as the material points approach an interface, where the
nonlocal models were localized and connected to local models on the other side, effectively
resulting in a LtN coupling. The coercivity and the trace space of the corresponding energy
functionals were discussed to guarantee the well-posedness of such nonlocal models with
localization on the interface. The coupled problem can be solved as a whole system or using
a classical non-overlapping domain decomposition method, where the nonlocal and local
models are treated separately with suitable transmission conditions on the interface. The
shrinking horizon method is an energy-based VH approach. This method does not pass the
patch tests; however, the errors can be controlled by choosing the horizon function properly.
Below, for brevity, we mainly discuss the formulation in the context of nonlocal diffusion,
but make connections, where appropriate, to the analogue peridynamic formulation.

5.1.1 Mathematical Formulation

Let £2,; and £2; be two open domains in R” that satisfy £2,,N2; = I'" C R~ as illustrated
in Fig. 7. In the shrinking horizon method, we generalize the kernel y in (4) as

)/(X/, X) = XB&(X) (X/ - X) k(X/, X)v (50)
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where the horizon is now a spatially dependent function, §(x), that decays to zero as x
approaches I'. The kernel k(x/, x) is then properly scaled. For instance, the properly scaled
kernels, in one dimension, in (9) now become

2 1

3 ;o
50) and k(x',x) = 5200) 7|x’ s (€28

k(x', x) =

LNPy by taking

Using properly scaled kernels, we can get Au as the limit operator of
8(x) — O for every x € £2,,;, under suitable regularity assumptions.
In peridynamics, a related scaling of the peridynamic force vector state, which models a

variable scale homogeneous body, is given by [132]

~ 1~ £
T(Y[x], x =—T, X xD{—), 52
T(Y[x], x)(§) (8(x))1+"*1(*1[ D<8(x)> (52)
where 7 is the spatial dimension, il is a reference material model with a unit horizon, Y
is the deformation vector state (see (14)), and Y is the reference deformation vector state
defined by Y (n) := 5~1Y (5n) with n a bond of length |n|| < 1.
A simple choice of the horizon function §(x) is given by

8(x) = min(é, dist(x, I")) (53)

with § being the maximum value of §(x). This choice of the horizon function is depicted in
Fig. 7. In one dimension, the horizon function §(x) given by (53) is a piece-wise linear func-
tion. However, numerical examples in Section 5.1.2 show that better horizon functions may
be used in order to attain optimal order of convergence to the local limit as maxx §(x) — O.

With the localization of the nonlocal interactions at the boundary I, it is shown in [144]
that the corresponding nonlocal energy space SN° (5,,[) has H'/2(I") as the trace space on
I, which is exactly the trace space of H' functions. As a consequence, we can define the
combined energy space

W(2) = {u € S(2u) NH' () : u_ =uyon T, ulpg =0},

where u_ (x) 1= limy_,x ye,, #(y) and u (X) := limy_,y yeg, u(y). The total energy of the
shrinking horizon method is a combination of the nonlocal and local contributions given by

Eu, f) = 31/5 /5 y (X, x)((D*u)(x, x))zdx/dx—i—%A |Vu(x)|2dx
nl nl 1

—/ f®ux)dx,
Q

forany u € W(§ ). The force balance equation is then the first variation of the total energy.
The well-posedness of the coupled problem is guaranteed by the extension of the nonlocal
Poincaré inequalities (Lemma 1) to the nonlocal space with variable horizon kernel y given
by (50).

Properties

—  The shrinking horizon method is well-posed and energy stable for diffusion problems
on general domains in all dimensions.

— There is no overlapping region between nonlocal and local sub-domains. Moreover,
since the nonlocal and local energy functionals have the same trace space on the inter-
face, one can use classical non-overlapping domain decomposition methods for solving
the coupled problem.
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—  The method does not pass the patch tests. However, ghost forces can be controlled by
using a smooth and slowly varying horizon function.

—  The order of convergence of the solution of the coupled problem to the solution of the
local problem as § — 0 depends on the choice of the horizon function. For a piece-wise
linear horizon function, the solution convergences at a rate of (J(8). In contrast, with
a smooth and slowly varying horizon function, e.g., the C? horizon function shown in
Fig. 17a, the optimal order ((82) can be achieved.

—  The total energy of the shrinking horizon method is equivalent to both the fully nonlocal
energy and the fully local energy up to linear functions.

The Time-Dependent Problem The extension of the method to time-dependent problems
is straightforward, even though the implementation has only been demonstrated in static
problems. It would be interesting to see how the smooth and slowly varying horizon function
can help reduce spurious effects, such as wave reflections, in a dynamic coupling problem.

5.1.2 Applications and Results

The shrinking horizon approach produces well-posed coupled models for a general horizon
function §(x) that gets localized at I", as shown in [140, 141]. However, the particu-
lar choices of the horizon function affect the convergence rate of the solutions as §(=
maxy §(x)) — 0. In [140], one-dimensional simulations are performed to illustrate that the
solutions converge only at the order O(8) when using a piece-wise linear horizon function,
as the one given by (53). The authors provide two remedies for increasing the order of con-
vergence. The first one uses a specific auxiliary function, whereas the second one employs
a smooth and slowly varying horizon function. Here, we only discuss the second approach;
this approach was also discussed in [132] as a means to reduce ghost forces.

Figure 17a shows two choices of the horizon function §(x) in one dimension, with one
being a piece-wise linear function and the other one being a C2 function. Since the method
does not pass the linear patch test exactly, it generates ghost forces when the solution is a
linear profile '™ (see Definition 1). Figure 17b shows the ghost forces over the domain
§£2 = (—1, 1) using each of the horizon functions. It is clear that the case of a piece-wise
linear horizon function generates a significantly larger magnitude of ghost forces around the

0.2 031
= =C? function = =C? function
— P.W. linear function 0.2 — P.W. linear function
0.15 04+
[0
<4 -
— S Of= ~ -
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«© 8-01}
S
-0.2 Q v
0.05
7
-0.3 |
0 .04t . i
- 0.5 1 -1 -0.5 0 0.5 1
xT
(a) Horizon functions (b) Ghost forces

Fig.17 Left: examples of §(x) in one dimension. The orange solid line represents a piece-wise linear horizon
function and the blue dashed line represents a C2 horizon function. Right: ghost forces in a linear patch test
for the shrinking horizon method with the horizon functions from the left plot
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Fig.18 Patch tests for the shrinking horizon method with C? horizon function & (x): linear (left) and quadratic
(right). Nodes in the nonlocal sub-domain are represented by blue filled circles, whereas nodes in the left
physical nonlocal boundary are represented by empty blue circles. Nodes in the local sub-domain are rep-
resented by red filled squares, whereas the node on the right physical local boundary is represented by an
empty red square

interface between £2,,; = (—1, 0) and £2; = (0, 1), compared with the case of a C? horizon
function for which the ghost forces are less prominent. Moreover, it is observed in [140] that
the ghost forces converge to zero everywhere as § — 0 if the C2 horizon function is used.
Figure 18 further shows the linear and quadratic patch tests using the C2 horizon function. In
these tests, the largest horizon is § = 0.1 and the spatial mesh size is Ax = 0.025. The FEM
with piece-wise linear basis functions is used for computing the numerical solution, since it
is known to be an asymptotically compatible scheme for nonlocal variational problems [143,
145]. Although the coupled model does not pass the patch tests in theory, Fig. 18 shows that
using the C? horizon function, the patch-test consistency could be attained approximately.

In addition to the above, numerical examples in [140] show that using the C? horizon
function, the optimal order of convergence to the local limit can be achieved. In particular,
the solution of the coupled problem converges to the solution of the local problem in the L2
norm at the rate @ (52). In contrast, using the piece-wise linear horizon function, one can
only observe first-order convergence in the solution.

5.2 Partial Stress Method

As discussed in Section 5.1, the shrinking horizon method is not patch-test consistent, even
though the ghost forces can be controlled by the regularity of the horizon function. In [132],
this consideration led to the development of an alternative strategy to spatially vary the
horizon, referred to as the partial stress method.

The proposition of the partial stress approach, which relates to Fig. 6, for LtN coupling
is to reformulate the operator (12) in the transition region connecting local and nonlocal
sub-domains, in a way that spatially varying the horizon in that region does not give rise to
ghost forces under uniform deformations.

5.2.1 Mathematical Formulation

This method introduces a new tensor-valued function called the partial stress tensor,

WP (x) = / Tx](€) ® & dE. (54)
Bs(0)
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where T is the force vector state from (12), and defines a corresponding partial internal
force density,
LPu(x) := V- vP(x). (55)

In the case of simple (possibly non-homogeneous) materials (see (13)), the partial stress
tensor can be expressed as

WP (x) = / T(YIx], %) (8) ® & dE. (56)
Bs(0)

It is apparent that the partial stress tensor coincides with the collapsed stress tensor (see (16))
for Y[x] = F(x)X.

We now refer to Fig. 6: the domain £2 is decomposed into three disjoint sub-domains:
2 = 2, UR, U 2, ie., the nonlocal sub-domain, the transition region, and the local
sub-domain. The partial stress coupled problem is given by

[ w0 - T X)) b xe 2
Bs(x)

-V P x) =bkx) xe 2, (7

-V 'x) =b(x) xe .

Properties Not many properties have been discussed for the partial stress method in the
literature. Here, we simply summarize two properties from [132]:

—  For a uniform deformation of a homogeneous body,

pPs = 0 and V.o =v.p'=0.

— The partial stress tensor (54) and partial internal force density (55) converge, under
suitable regularity assumptions, to the corresponding classical local counterparts, in the
limit as § — 0, as O(§), so the method is asymptotically compatible.

The Time-Dependent Problem The partial stress method was, in fact, only demonstrated
in a dynamic setting in [132], where in conjunction with the splice method was applied to
the study of a spall initiated by the impact of two brittle elastic plates.

5.2.2 Applications and Results

As described above, the partial stress method was only applied in [132] to a dynamic
problem. We therefore omit the details here and refer the reader to that work.

6 Conclusions

This paper presents a review of the state of the art of local-to-nonlocal (LtN) coupling
for nonlocal diffusion and nonlocal mechanics, specifically peridynamics, and provides a
classification of different LtN coupling approaches (see Fig. 1). Following a description
of various coupling configurations and a highlight of desired properties of a general LtN
coupling strategy, we report different LtN coupling methods from the literature. For each
method, we briefly present its mathematical formulation and properties, and we discuss
relevant applications and numerical results.
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Table 1 Summary of LtN coupling methods

Method References Section  Transition Linear patch test ~ Formulation
Optimization-based [34, 35, 39] 3.1 Overlap Exact Force-based
Partitioned procedure  [157, 158] 3.2 Overlap or Sharp  Exact* Force-based
Arlequin [71, 149] 4.1 Hybrid Approximate Energy-based
Morphing [72,90] 4.2 Hybrid Approximate Energy-based
Quasi-nonlocal [56] 43 Hybrid Exact Energy-based
Blending [118, 121] 44 Hybrid Exact Force-based
Splice [132] 4.5 Sharp Exact Force-based
Shrinking horizon [132, 140] 5.1 Variable horizon Approximate Energy-based
Partial stress [132] 5.2 Variable horizon Exact Force-based

with partial stress

The asterisk in the table indicates that the patch-test consistency for the partitioned procedure is exact up to
certain conditions (see Section 3.2)

We observe that, while many features and challenges are shared by all methods, there
exist some significant differences in the formulation and implementation of the different
methods. For instance, we find that even though a LtN coupling configuration can gener-
ally be divided into a local sub-domain, a transition region, and a nonlocal sub-domain (as
illustrated in Fig. 3), each coupling method treats the transition region in its own specific
way. Some methods overlap local and nonlocal descriptions, some employ a hybrid repre-
sentation, some reduce the transition region to a sharp interface, and some utilize a variable
horizon with or without changing the nonlocal operator. This variation in the treatment of the
transition region has both analytical and numerical implications. For instance, an overlap-
ping approach is normally non-intrusive, whereas a hybrid technique is typically intrusive;
the variable horizon method may or may not be intrusive, depending on the available non-
local implementation. Another important property largely emphasized in this review is the
ability of a coupling method to pass the patch test. Some coupling methods do pass it exactly
for up to a certain polynomial order, whereas others only pass it approximately; the linear
patch test is the most popular one. Finally, we recognize two major formulations for LtN
coupling, energy-based and force-based. The energy-based formulation provides a natural
setting to impose energy preservation; however, because such formulation requires energy
minimization, it is more native to static problems and the extension to dynamic settings may
not be practical. On the other hand, while force-based approaches normally equally apply
to static and dynamic problems, they not always carry a well-defined energy functional. In
Table 1, we outline the methods discussed in this review, indicating relevant references and
sections, and summarize some of these properties.

We conclude by stating that the goal of this review is not to provide a preferred way
to perform LtN coupling, but rather to broaden the perspective of the readers so that they
can use this review as a guide for selecting the most appropriate method based on the
characteristics of the problem at hand, available implementations, and accessible data.
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