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Abstract

Nonlocal models, including peridynamics, often use integral operators that embed length-
scales in their definition. However, the integrands in these operators are difficult to define
from the data that are typically available for a given physical system, such as laboratory
mechanical property tests. In contrast, molecular dynamics (MD) does not require these
integrands, but it suffers from computational limitations in the length and time scales it
can address. To combine the strengths of both methods and to obtain a coarse-grained,
homogenized continuum model that efficiently and accurately captures materials’ behavior,
we propose a learning framework to extract, from MD data, an optimal Linear Peridynamic
Solid (LPS) model as a surrogate for MD displacements. To maximize the accuracy of the
learnt model we allow the peridynamic influence function to be partially negative, while
preserving the well-posedness of the resulting model. To achieve this, we provide sufficient
well-posedness conditions for discretized LPS models with sign-changing influence functions
and develop a constrained optimization algorithm that minimizes the equation residual while
enforcing such solvability conditions. This framework guarantees that the resulting model is
mathematically well-posed, physically consistent, and that it generalizes well to settings that
are different from the ones used during training. We illustrate the efficacy of the proposed
approach with several numerical tests for single layer graphene. Our two-dimensional tests
show the robustness of the proposed algorithm on validation data sets that include ther-
mal noise, different domain shapes and external loadings, and discretizations substantially

different from the ones used for training.
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1. Introduction

Complex systems where small-scale dynamics and interactions affect the global behavior
are ubiquitous in scientific and engineering applications. In disciplines ranging from climate
forecasts to material design, heterogeneities in materials and media at the micro or molecu-
lar scales need to be accurately captured to guarantee reliable and trustworthy predictions.
However, higher degrees of complexity and heterogeneity require numerical simulations of
classical mathematical models at small scales that cannot be afforded, despite recent ad-
vances in computational power. This fact creates the need for new mathematical models
that act at larger scales and that, combined with new advanced architectures, allow for fast
predictions [IHIT]. The process of upscaling models or data hides several pitfalls that may
compromise the reliability of the resulting surrogates.

In the presence of heterogeneities, it is often the case that to adequately reproduce

the large-scale behavior of a system, a homogenized model must follow different governing



laws, as well as different constitutive properties, than the ones that apply at the small scale.
Homogenization theory addresses the approximate treatment of a partial differential equation
(PDE) that contains small-scale oscillations in its coefficients [12]. It seeks to replace these
coefficients with constant or slowly-varying coefficients such that the resulting solutions
closely approximate solutions to the original problem in an averaged sense. The resulting
parameters are called effective properties. In many theoretical treatments, the effective
properties are valid only in the limiting case of a very small length scale in the oscillatory
behavior of the original parameters. The classical notion of effective properties therefore
“washes out” the length scale in the original problem, causing important information to be
lost.

Nonlocality in the spatial dependence of a continuum model has long been recognized as
a consequence of homogenization [I3] [14]. For example, in continuum mechanics, nonlocal-
ity arises from taking the ensemble average of the displacement field in a family of random
linear elastic heterogeneous materials [I5H20]. To some extent, this nonlocality can be incor-
porated in homogenized weakly nonlocal PDEs that embed length scales in their coefficients.
However, weakly nonlocal PDEs are generally insufficient to fully reproduce coarse-grained
data because of the limited spectrum of processes that they can describe [21]. In general,
increasing the accuracy of weakly nonlocal PDEs to match small-scale data involves using
higher and higher order partial derivatives, resulting in practical challenges in numerical
implementations.

As pointed out in [21], nonlocal operators [22], 23] are among the best candidates as model
descriptions that can circumvent these limitations. Theoretical and numerical techniques for
nonlocal models are not as advanced as for classical PDEs. This is one of the main reasons
why integral operators historically have not received a broader adoption in the context of
numerical homogenization. However, current advances in nonlocal theory, computer power,
and solution algorithms are making nonlocal equations viable as practical modeling tools.
While integral operators have proved to be successful in several contexts such as mechanics
[24, 25] and turbulence [26, 27], they have not been systematically explored for coarse grain-
ing, or upscaling, of molecular dynamics (MD) models, for which we propose a new rigorous
modeling paradigm.

We stress the fact that with nonlocal operators, constitutive laws take the form of kernels
(integrand functions), whose functional form cannot be established a priori. Although the
integral constitutive laws must be consistent with the classical effective properties, they
contain information about the small-scale response of the system and must be chosen to
reproduce this response with the greatest fidelity. In a few cases, certain forms of nonlocal

kernels have been adopted in the engineering community because experimental evidence



confirms the efficacy of the model, or because a closed form of integrand that matches desired
physical properties can be analytically determined. An example of the former situation
is fracture mechanics, where peridynamic models have been demonstrated to be accurate
[24, 25 28]. Examples of the latter case include those diffusion processes in which the mean
square displacement does not exhibit the linear, classical behavior, but instead exhibits
an anomalous fractional behavior [29]. However, at present, only a few preliminary works
address the problem of finding an optimal form for the kernel function [30H33].

In view of the growing importance of MD as a tool for designing materials with reduced
reliance on laboratory testing, we propose to use nonlocal operators as upscaled continuous
models for MD displacements. We seek nonlocal models that capture important aspects of
the small-scale behavior better than classical homogenization theory. Building on our previ-
ous works [32, B3] we address the question of how to obtain large-scale nonlocal descriptions
that capture MD behavior that would remain hidden in classical approaches to homoge-
nization. To accomplish this, we use machine learning to identify optimal nonlocal kernel
functions. The machine learning method is required to perform well with small datasets that
may include thermal noise.

We summarize below our main contributions.

e We identify the best upscaled nonlocal model, without prior knowledge of the material
properties, that accurately describes the material’s global behavior based on a small

set of possibly noisy data.

e The optimal nonlocal model is guaranteed to be well-posed and generalizes well to set-
tings that are substantially different from the ones used for training. The optimal
model is equally accurate for different sources and geometries, so that it enables gen-

eralization.

While our ultimate goal is to learn a general integrand for the nonlocal operator, in this
work we consider a specific nonlocal model, the Linear Peridynamic Solid (LPS) model [34]
as a first step towards a more general learning tool. We focus our experiments on single

layered graphene for which we identify optimal two-dimensional nonlocal models.

Outline of the paper. Section 2] shows how to obtain, via smoothing functions, a nonlocal
model for MD displacements. In Section [3| summarizes the peridynamic theory, the LPS
model, and the discretization technique used in this work. Section 4| presents our learning
approach including the well-posedness of the learned model by construction. It also provides
the algorithmic workflow and implementation details. Section [5| illustrates the consistency

of the proposed method on manufactured solutions. Section [6| demonstrates the effectiveness



of the learning technique for MD displacements. We illustrate several properties including
generalization with respect to loadings, domain size and shape. The effect of thermal noise
and the sensitivity of the algorithm to noise intensity are considered. Section [7| summarizes

our contributions and provides future research ideas.

2. Coarse-Graining of Molecular Dynamics Displacements

In this section it is shown how to define an integral, continuous model for a system
of particles. More details can be found in [35]. Similar results obtained with statistical
mechanics can be found in [36].

Consider an assembly of mutually interacting particles in a crystal with particle mass M.,
e=1,2,...,N. Let the reference positions of these particles be X, and their displacement
vectors U,(t).

Suppose that any particle v exerts a force F.,(t) on particle ¢, and set F.. = 0. These
forces are assumed to be antisymmetric: F..(t) = —F.,(t), for all €, v, and ¢t. It is also
assumed that there is a cutoff distance d for the atomic interactions such that F., = 0 if
|X., — X.| > d. Each particle ¢ is subjected to a prescribed external force B.(t).

For any continuum material point x € R™, define a smoothing function w(x, -) such that

the following normalization holds:

/ w(x, X.) dx = 1 2.1)

for any e. For convenience, assume that at any x, w(x,-) has compact support over the ball

Br(x), for R > 0. Define the smoothed mass density and body force density fields by

N N

p(x) = wx X )M,  b(xt) =) w(x X.)B.(t), (2.2)

e=1 e=1

and the smoothed displacement field by

u(x,t) = (L Zw U.(t). (2.3)

e=1

The evolution equation for the smoothed displacements will now be derived. Newton’s second

law for the particles has the following form: for any e

N

MU () = > Fey(t) + Be(t). (2.4)

=1



Differentiating (12.3)) twice with respect to time yields

p(x)i(x,t) = Y w(x, X )M U.(t). (2.5)
From , , and ,
p(x)i(x,1) = > w(x,Xo) [ Y Fo(t) + B.(1)
B i (2.6)
= ) wxX)F(t) +b(x,1).
From and (2.6)), for any x,
p(x)(x, 1) =) > w(x, X )Fey (1) { / wly, X,) dy} + b(x, 1),
or, equivalently,
p(x)ii(x, £) = / £y, %, 1) dy + b(x, 1) (2.7)

where
N N
fly.x.t) =) Y wx X)w(y,X,)Fey(t) (2.8)
e=1 vy=1
and b is given by (12.2)). The properties of F guarantee that the integrand f is antisymmetric.
Since, by assumption, the smoothing functions have support radius R and the interatomic

forces have cutoff distance d, it follows that
ly—x|>¢0 = f(y,x,t)=0
for all t, where the horizon ¢ is given by
=2R+d. (2.9)

In summary, defining the displacements and other fields in the continuum description using
the smoothing function w, leads directly the nonlocal (or integral) equation of motion ({2.7).
However, the derivation does not provide a material model, that is, the dependence of f on
the deformation in terms of the continuum displacement field u is not yet determined. The

goal of the present work is to identify an optimal form of the integrand function f in (2.7



such that the corresponding nonlocal model faithfully represents given MD displacements
under a given set of loading conditions on the MD grid.

At finite temperature, thermal oscillations in displacement are present in any MD simula-
tion. The details of these oscillations are of no interest for purposes of continuum modeling.
However, their net effect on the bulk material properties must be included. To smooth out
the thermal motions while retaining their net effect, a time-smoothing method is applied. In
this method, the following expression is applied to obtain the time-smoothed displacement
U.(t") of atom e:

U.(0)=0, U.(t") =(1-0)U(t" ") +.U.(t"), n>0 (2.10)

where fjg is the unsmoothed displacement of atom ¢ and ¢ is a positive constant, typically
on the order of 0.01. The value of ¢ is chosen so that in effect the time-smoothing has a time
scale (100 time steps) that is much larger than that of the thermal oscillations of the atoms
(<10 time steps). The value of ¢ does not depend on the size scale h of the coarse-grained

mesh. To obtain displacements that are smoothed in both space and time, the displacement

given by (2.10) is used in (2.3):

- %Zw x, X.)M.UL(tF), (2.11)

e=1

where ¢! is the final time of the MD simulation. The displacements u(x) contain noise in the
form of spatial fluctuations due to the impossibility of completely smoothing out all of the
thermal oscillations in an MD simulation within a finite simulation time ¥, regardless of the
value of . The machine learning algorithm described below attempts to extract continuum
material properties from the training data even in the presence of this noise. In Section [6]
we will present results on the effectiveness of this machine learning algorithm in treating this
type of noisy training data.

Our present objective is to derive the static continuum properties of a crystal from MD.
This entails the assumption that the time scale of motions in the MD mesh are much smaller
than any intended application of the continuum model. This assumption is justified in the
case of the bulk deformation of a perfect graphene sheet, since the relevant time scale of
the atomic motions in this material is on the order of femtoseconds. However, if the MD
system involves more slowly evolving events such as the motion of dislocations and voids, an
acceleration technique that accounts for this longer time scale would need to be used [37].
Even with this modification to the MD simulation, the coarse graining strategy would be

essentially the same as described above.



3. Peridynamics

3.1. Peridynamics Background

In the previous section, a coarse-grained continuum momentum balance was derived,
given by . This momentum balance has a fundamentally nonlocal character, since the
pairwise bond force densities given by can be nonzero whenever the material points in
the continuum x and y are separated by a finite distance up to the horizon ¢ (Figure [1f).
This form of the momentum balance is known as the peridynamic equation of motion [3§].
In peridynamics, each x interacts through bond forces with other material points y within
a neighborhood with radius ¢ known as the family of x, denoted by Bs(x). The equation of

motion for material point x is then

p(x)ii(x, £) = / £y, x,1) dy + b(x, t). (3.1)
Bs(x)
A material model in peridynamics supplies values of f(y, x,t) in terms of the deformations
of the families of x and y and any other relevant variables such as temperature. In general,
material models in peridynamics are specified using operators called states that are nonlocal
analogues of second order tensors [34]. Many material models have been developed for peri-
dynamics, and any material model from the local theory can be translated into peridynamic
form [39]. The most widely used capability that peridynamics offers that is not available
in the local theory is the direct modeling of fracture within the basic field equations. Peri-
dynamics can model fracture because the equation of motion is an integro-differential
equation that does not involve the partial derivatives of displacement with respect to posi-
tion. However, the present paper concerns only small deformations in the linear regime of
material response and does not address fracture. The extension of the methods described
here to determine a linear peridynamic material model to the nonlinear regime, including
fracture, is under investigation in separate work. The remainder of this paper deals with a
specific material model described in the next section. Note that even though MD displace-
ments are dynamic, we smooth them in time as described in and so that the
time-space smoothed MD data can be described by the static counterpart of the nonlocal

equation ([2.7]),
[ty = b, (3.2
Bs(x)

where f is to be determined (see the following section) and where we introduced the nonlocal
interaction region Bs(x). The horizon § determines the extent of the nonlocal interactions.
Although, according to Section [2], § could be determined by the cutoff distance d associated

with F' and the radius of the smoothing function R, in the following discussion it is treated as



Horizon §
Figure 1: Left: the family of a point x in a peridynamic body. Right: typical bond and bond force vector.

a learned parameter (Section . This approach allows for a finite value of d to be obtained

even if d = oo, as would be the case with the Lennard-Jones potential.

3.2. The Linear Peridynamic Solid (LPS) Model

The main application considered in this work is the simulation of displacements in single-
layered graphene. The graphene sheet is treated using a two-dimensional nonlocal model
under the assumption of plane stress, which is appropriate for a thin sheet. The pairwise
bond force density f is determined using the state-based linear peridynamic solid (LPS)
model. The LPS model is a prototypical state-based model appropriate for isotropic elastic
materials. It may be regarded as a nonlocal generalization of the local model for an isotropic
solid, which contains contributions from shear and dilatation. The LPS model has advantages
over the previously developed bond-based peridynamic models in that it is not restricted to
a Poisson’s ratio of 1/4. The LPS model has known well-posedness properties under certain
assumptions [24]. This section summarizes the mathematical formulation for the LPS model
and illustrates a meshfree discretization [40H45].

Consider a 2D body occupying the domain Q C R?, and let § be the nonlocal dilatation,
generalizing the local divergence of the displacement. Let K (r) be the influence function [46]
which modulates nonlocal effects within a peridynamic model. In this work, we assume K

to be a radial function compactly supported on the §-ball Bs(x) with a-th order singularity:

P(x—yl)

K(x,y) =K(x-y|) = x — y|*

(3.3)

where P(r) is a bounded function in [0,4]. The momentum balance and nonlocal dilatation



are given by

Ch
m(9) /B(;(x) (A=) K(ly = x]) (y = x) (6(x) +6(y)) dy

LKU(X> = —

(3.4)
- Co —X (y—x)@(y—x) u —u(x = b(x
m(o) /Ba(x)ﬂK(\y S T () —ub)dy = b,
2
0(x) = —= K(ly —x|)(y —x) - (u(y) —u(x)) dy,
00 = 257 Lo KO¥ =XD6 =) - (uly) —ue0) dy

where u € R? denotes the displacement, b € R? the prescribed body force density, and
= 50 5500 K (12])]2| |?dz the weighted volume. Here we note that m(d) is independent of
X, and it is deterrmned by the horizon size ¢ and the influence function K. In the present
notation, the nonlocal operator Lx[u](x) in (3.4) has the subscript K to emphasize its
dependence on the influence function K . This operator corresponds to the integral term
— [f(y,x,u)dy in (2.7), or, equivalently, (3.2).
Given a forcing term b, in order to guarantee the existence of a unique solution u,
“nonlocal boundary conditions”, or volume constraints, must be prescribed on an appropriate

interaction domain {27, so that the LPS problem becomes

{EK[U](X) b(x) xe, (3.5)

Bru(x) =q(x) x€ Q.

Here, B; is a nonlocal interaction operator specifying a volume constraint. In this work,
without loss of generality, we consider the Dirichlet condition By = Z, where Z is the identity
operator. Other types of conditions, e.g., Neumann [41] 43} [47] 48], Robin [44] 49] or periodic

[32], are also compatible with our learning algorithm.

A meshfree discretization of the LPS model. Given a collection of material points X' =
{xi}i=1,2...n,, we numerically evaluate Lx(u) by employing the meshfree, particle discretiza-
tion introduced in [41], which features ease of implementation and efficiency. At each material
point x;, we adopt the following quadrature rule to approximate the integral in Lx in (3.4)),

which we now denote by L.

Ch

Lhu(x;) == - Z (A= ) Ky (x5 = %) (0"(x3) + 0" (x;)) W

10



2

0" (x;) = — > Ki(x—xi) - (ulxg) — u(xi) Wy, (3.7)
m;(0)
x;j€B5(x;)
where K;; := K(x;,%;) and m;(6) = %:( )Kij|xj — x;|°W,,;. The quadrature weights
x;€65(X;

W;,; are obtained for material points on different subdomains Bj(x;), from the following

optimization problem

argmin Z sz s. t., Z q(xi,xj)Wj,iZ/( )Q(Xz‘,}’)d}’ VgevV,
Bgs(x;

{wi.i} x;€XNBs (x:)\{x:} x; €85 (xi)

where V' denotes the space of functions which should be integrated exactly. Following [41],
in this work we take V' := {q(y) = 20| p e P5(R?) such that fBé(x) q(y)dy < oo} and

T ly—=x[®

P;5(R?) denotes the space of quintic polynomials .
Although the developed learning approach as well as the meshfree quadrature rule can be
applied to the general collection of material points X, in this work we consider the uniform

Cartesian grid for simplicity:

X := {(p1h, p2h)|p = (p1,p2) € Z°} N (2N Q),

where h is the spatial grid size. Note that, as we discuss in the next section and in Section
[6.4], training and validation samples may be generated on different grids. Furthermore, to
emphasize the fact that each sample may be generated on a different grid, we denote the

grid corresponding to the s-th sample by X’°.

Remark 1. Using the same arguments as in [42], it can be seen that the chosen quadrature
rule provides a consistent approximation of Lx(u) when o < 3. Therefore, in the learning
algorithm, we require the fractional order a to be bounded by 3, and we note that this

requirement may be further relaxed by considering other discretization methods.

4. Operator Regression for the LPS Model

In this section we illustrate how to extend the data-driven approach developed in [32,
33], known as nonlocal operator regression, to the LPS model. Section first describes
the regression algorithm under the assumption that coarse-grained MD displacements are
available at any material point. Then, Section introduces solvability constraints that
guarantee that the optimal nonlocal model is well-posed by construction]l] Lastly, Section

!The solvability conditions derived in [32] for 1D nonlocal diffusion problems are not applicable to the
more complex LPS model considered in the current work.
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summarizes the complete workflow of the data-driven nonlocal operator regression algorithm,
which is the process of going from high fidelity MD simulations to data-driven optimal kernels

via coarse graining and operator regression.

4.1. Operator Regression Algorithm

The foundation of the nonlocal operator regression algorithm is the fact that a coarse-
grained displacement u follows a nonlocal evolution law of the form . For this nonlocal
model, we seek to identify an optimal constitutive relation on the basis of MD data sets.

Let {u’(x;,),b*(xis)}, s =1,---, 5, be given pairs of displacement and body force fields
available at x; ;, € X, and let L be the LPS operator defined in parametrized by the
material properties A and g and by the influence function K. We aim to learn an optimal
nonlocal operator Lx. This optimal operator consists of the influence function K, which
may be sign-changing, and parameters A\ and g, such that the action of Lx most closely
maps u®(x) to b*(x) for all s. Formally, the optimal influence function and parameters,

(A", ¥, K*), are the solution of the following optimization problem:

S
(", K7 = aajgf;(in% Zl | £lu) ) = B e
To increase the flexibility of the algorithm, each sample can be available on different point
sets X'%.

The influence function K(x,y) will now be parameterized. Following [32], assume that
K has the form of , and represent its numerator P as a linear combination of Bernstein

polynomials evaluated at |x — y/:

(&W—Zm k,M 5 .

k=0

Here the Bernstein polynomials are defined as
M
Prnlr) = ( k:) (L= r)MR for 0 << 1

To allow the learning of nonlocal models whose kernels may be partially negative, we allow
D, € R, for all k. This generality, however, might compromise the well-posedness of the
resulting optimal model, since known well-posedness results on LPS models only apply to
positive kernels [50]. To guarantee that the LPS model associated with (A*, p*, K*) is solv-

able by construction, we embed in our algorithm sufficient well-posedness conditions for the

12



discretized operator; these are described in detail in the next section.

The formulation of the constrained optimization problem is as follows. Given a collection
of training samples {u®(x; ), b*(x;5)}, s = 1,--- , S, we seek to learn the parameters A and y,
the Bernstein polynomial coefficients D = [Dy, - -+ , Dy;] € RM*1 the order a, the horizon 6,

and the polynomial order M by minimizing the mean square loss (MSL) of the LPS equation:

S
* % * % ok * : 1 § s s
()\ ) aD y O 75 7M ) = argmin § ||‘C}Il(u (Xi75) —b (X@S)H?Q(Xs)
s=1

A, D,a,8,M (4.1)

subject to solvability constraints.

4.2. Solvability Constraints for the Discretized LPS Model
When the influence function K as described in (3.3) is nonnegative and o < 4, the

LPS model is well-posed, as shown, for example, in [50]. However, several works have
indicated the practical need for sign-changing kernels [30], 3], 33], 51), 52]. While it is unclear
whether multiscale physics inherently leads to sign-changing kernels or if equally descriptive
positive kernels could be derived, in [32] the authors found that allowing for sign-changing
kernels provides a significant increase in accuracy when modeling high-frequency material
response. Therefore, in this work we seek a well-posed LPS model with possibly sign-changing
influence functions K. As there is no available theory on sufficient conditions for the well-
posedness of LPS models with sign-changing K, we impose well-posedness conditions on the
discretized system directly; as a result, well-posedness of the learnt model is guaranteed for
the discretization method used during training.

An inequality constraint for the well-posedness of the meshfree discretization approach
(3-6)-(3.7) that allows for sign-changing influence functions will now be derived. For simplic-
ity of analysis, and without loss of generality, assume homogeneous Dirichlet-type boundary
conditions: u(x) = 0 in Q.

For the derivation of the solvability constraints that will be employed in our algorithm

to ensure the well-posedness of the discretized LPS model, first write the discretized LPS
model (3.6)-(3.7)) as the following linear system:

(v )60 -
o _EI C) 0

Here, U € R*» and ﬁ@ € R are the vectors of the degrees of freedom (DOFs) of the

displacement u and the nonlocal dilatation 6:
U= [(u(x)), -, (uxn,)]s ©=[(A— i), -, (A= w)f(xn,)]"

13



B is the vector of DOFs of the body load and has the same length and ordering of indices
as U. [ is an N, x N, identity matrix, and I' and ® are the matrices that correspond to the

deviatoric and dilatation contributions of the deformation:

I'U = [(fie0(x1))", -, (Faew(xn,)' ] U = [faa(xa), -, faa(xn,)]’,

where
Cy (% — xi) ® (x5 — %)
A xj€Bs(x) Ix; — xil
2
Jain(xi) = (@) D Kk —xi) - (ulxg) —ulx) Wi
) x,€Bs(x))
In what follows, for each vector V € R*», write V = [v{,---, v} |* with each v; € R*.

C denotes a generic constant. The following theorem provides sufficient conditions that
guarantee the solvability of (£2). Let the energy “norm” be defined as ||V} := V'V
for all V € E\ 0, where E denotes the quotient space of R*» by the discrete space of

infinitesimally rigid displacements:
My = {[(Qx; +d), -, (Qxn, +d)']", Q€ R**, Q" = -Q, d e R?}.

Note that although we use the norm notation, ||-||, in general, ||-||; does not define a norm
unless I' is symmetric and positive definite. In fact, ||-||; is indeed a norm only when the

discrete coercivity condition, reported in the following theorem, is satisfied.

Theorem 4.1 (Sufficient Conditions for Solvability). The discretized LPS formulation (4.2))
1s solvable for any values of A\+p > 0 and p > 0, provided that the following conditions hold:

i. Discrete Continuity and Coercivity: 3Cp > 0, Cp < 00 s.t.,

IVIIz 2 CrlIVIle and |IVI[; < Crl[V][z ¥V e E\{0} (4.3)

Viotp
i1. Discrete Inf-Sup: 3Ce > 0, s.t., inf sup ——— > Cop, (4.4)
per™r\{0} ver\{o} || V|5l |[P]|p

iii. Discrete, generalized Cauchy-Schwarz: |[V||3, > 2||®V||%, VV € E. (4.5)

Remark 2. In the continuous case with K > 0, the property (4.5 is an immediate re-
sult from the Cauchy-Schwarz inequality, see, for example, [50]. This property yields the

equivalence of the semi-norm from the deviatoric part of the deformation and the full strain

14



energy.

Proof. Inequality implies that the energy norm is a norm in E \ {0}. We consider two
scenarios: A —p >0 and A — pu < 0.

Case 1: A — u > 0. The symmetry property of the Cartesian grids implies that m;(0) =
m;(0) :==m and W, = W, ; for all i, 5 € {1,--- , N,,}. By taking the inner product of
with (V! B"), component-wise, we reformulate the system as a general mixed formulation:

find U € R*M» and © € R» such that

a(U, V) +b(V,0) = (-B, V), VV e R
(U, =) — ¢(©,F) =0, VE e R,

Here (-, -) denotes the inner product, a(U, V) := pV'TU, b(V,E) := E'®V, and ¢(0, E) :=
/\—iM@tE. Firstly, note that when (4.3) is satisfied, the symmetric bilinear form a(-,-) is

continuous and coercive. Similarly,

N,
b(V,E)=— El Y A=) Kiyvi (x5 —x) (& + &) W
i=1 \x;€Bs(xi)
O &
:ﬁ Y A=) Ki(vy = vi) (5 — %) (& + &) W

i=1 \ x;€B5(x;)

<C|IVlellElle < ClIVIIElIE]

so that b(-,-) is also a continuous bilinear form. By combining and with the fact
that ¢(©,E) = /\Tlu(-)tE < C||®||2||E]],2 and ¢(B,E) = ﬁHEH?Q > 0, the well-posedness
of follows using the same arguments of [53], Section 2.2].

Case 2: A — pu < 0. In this case ¢(E,E) is not coercive with respect to the £2 norm and
therefore the theory in [53] does not apply. By reducing the discrete system to (A —
w)®'® + ul'U = —B, we note that (A — p)®'® + ul' is not solvable, or, equivalently, non-
invertible, if and only if there exists V € E\{0} such that (A — p)®'® + uI')V = 0. We
prove that this is not possible by showing that

V(A= )@@+ ul')V=0sV =0.

We split the proof in two parts: A > 0 and A\ < 0, respectively. First, for A > 0, (4.3) and
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[@3) yield
0=V (A — )@@ + u[)V = AVIS'DV + p(|[V][2 — |V [2)

>SAVIPIPV + gHVH% > gHVH?z-

Hence V = 0, which contradicts our assumption. Similarly, when A\ < 0, we assume that

[V||% > 0. From the assumptions A — < 0 and A + g > 0 we have

A— A+
0 =V'(A= @'+ ul)V = “EVIV 44l [V[} = ZE VI,
which, again, implies V = 0, contradicting our assumption. Therefore, (A — p)®'® + ul’ is

invertible and (4.2)) is solvable. O

Remark 3. When the influence function K is nonnegative, the continuous LPS model
satisfies the ellipticity condition and the inf-sup condition. Moreover, the energy density as-
sociated with the dilatation part is bounded by energy density associated with the deviatoric
part of the deformation, as shown in [50]. These facts, intuitively, support our well-posedness
result, where the constraints , and are equivalent to requiring that the dis-
cretized LPS model associated with a sign-changing K satisfies the same three properties as

its nonnegative-kernel counterpart.

Therefore, we augment our learning problem (4.1) with the inequality (solvability) con-
straints corresponding to (£.3)), (#.4) and (£.5). The constants Cp, Cr, and Cy are only

related to the influence function K and are independent of the shear and Lamé parameters
A and p. We calculate the inf-sup constant Cg in (4.4)) by solving an eigenvalue problem, as
indicated by the following theorem.

Theorem 4.2. The inf-sup constant in (4.4]) in Theorem can be expressed as
Cp = Nppin (PTT DY)

where, for a given square matriz M, M' denotes its pseudoinverse and A, (M) denotes its

smallest nonzero eigenvalue.

Proof. The proof can be obtained following the same arguments as in [54, Proposition 3.1].

]

For any given K as in (3.3) and a fixed discretization method, the largest eigenvalue of
I' is bounded by construction. Therefore Ct is finite and, in practice, (4.3), ([#.4) and (4.5))
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can be imposed as:

Amin(r) > Ca (4-6>
Appin (T — 2<I>t<1>) >0,

where ¢ > 0 is a given, small number.

We can now state the solvability-constrained optimization problem. Rename the matrices
I'and ® in as I'(o,p.5,0) and @, p s ) indicating that they are parameterized with the
Bernstein polynomial coefficients D, the fractional order «, the horizon ¢, and the highest
Bernstein polynomial order M. Given the tolerance parameter ¢ > 0, the learning problem

is stated as

(

1
(N, 1, D" a*, 0%, M*) = argmin  —
ApD.asM S

S
D Lhut (i) = b7 (%) o ey
=1

S

subject to: A+ >0, 1 >0, a <3, Apin(Ta.p o) > ¢, (4.7)

Amz‘n((I)(a,D,é,M)FJ(ra,D,é,M)(I)ga,D,cS,M)) > ¢,

L Amin(r(a,D,(S,M) - 2¢€Q,D,6,M)¢)(O‘7D767M)> > 0.

Remark 4. The constraints in are sufficient to guarantee that the model associated
with the optimal influence function K is well-posed only when discretized with the same
technique and resolution utilized during training. Being only sufficient, these conditions
may yield an optimal influence function whose associated model is still well-posed when

discretized with different schemes or resolutions. More discussion and numerical tests on
this topic can be found in Section [6.4]

4.8. Algorithm and Workflow

In this section we describe the algorithmic details of our learning approach and describe
the learning workflow that, starting with MD displacements, delivers the optimal influence
function K and the material parameters.

Numerically, the constrained optimization problem (4.7 poses several challenges. Firstly,
the quadrature weights W}, generated in the preprocessing generally depend on the horizon
size 0, which hinders the application of a suite of continuous optimization techniques such
as gradient descent or Adam. A similar issue applies to M. Moreover, due to the solvability
constraints, is expected to be nonconvex and likely to exhibit local minima. Lastly, the

numerical evaluations of the eigenvalues are time-consuming. For all these reasons, for the

17



Algorithm 1 Two-stage strategy to solve (4.7) for (A\*, u*, o*, D*).

1:

10:
11:
12:
13:
14:
15:
16:

17:
18:

With fixed § and M, initialize A, u, «, D,go) ~ U (0,1),where U (a, b) denotes the uniform

distribution on (a, b).

Obtain (AP™¢, uP"e, o™ DP™¢) as a local minimum of LP™¢(\, u, «, D), using the Adam

optimizer.

Update AP"¢ <— ReLU (N4 pP"¢) —ReLU(pP™¢), p#"¢ <— ReLU(uP™), o™ < 3—ReLU(3—

aP™) and DP"¢ <— ReLU(DP").

Initialize (A®, 4@, a© DO = (\re ypre oPre DP€) and wgo) = wéo) = wéo) =1

Set STEP MAX = 100, ¢y = o =3 =0, =1, r; =5, 1y = 1/4, e = 1078.

while j < STEP MAX: do > Perform Augmented Lagrangian Algorithm
Solve the unconstrained optimization problem

(A 1D o) DV )y = argmin L (A, p, o, D, w0).
A p,oD o

if H,(aV), DV ) < e forall p € {1,2,3}, then
Stop.
else
if 3p € {1,2,3} s.t. Hy(aV, DV ) > ryH, (o= DU D) then
Update penalty ¢ < ry2).
if ¢ > 10% then
Stop.
else
Update Lagrange multiplier ¢, < ¢, + ¥ H,(a), DV ) for p = 1,2, 3.
Update the iteration number j < 7 + 1.
(N, w5, o, D*) = (ReLUAY + 1)) —ReLU (), ReLU(119)), 3 — ReLU(3 — o)), D)),
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sake of numerical efficiency, we treat 6 and M as hyperparameters to be separately tuned to
achieve the best learning accuracy without overfitting. As suggested by [32], the optimization
problem is split into a prediction step (without constraints) and a correction step (with
constraints), and propose a “two-stage” strategy, whose key components are summarized in
Algorithm [I]

The prediction step of the algorithm relies on the fact that, as shown in [50], when « < 3,
A4p >0, >0and K > 0, the LPS problem is guaranteed to be well-posed, and therefore
no additional solvability constraint of K are required. Therefore, in the prediction step,
we find a set of nonnegative Bernstein coefficients that will be used as an initial guess for
the second, correction step. The nonnegative coefficients and the corresponding nonnegative
influence function are denoted by DY and K77, respectively. These are obtained by solving

the following, unconstrained problem, whose full solution is denoted by (AP™¢, "¢, a?"¢ DP"®).

s M B (2l) W,

1 ReLU(Dy) k,M( 5 > K
pre e s R S

L (A,M,a,D).—S g E b7 + E ma(0) Z ) [x; — x;[3-ReLUB—a)

s=1 XzeXS k=0 XjEB(;(Xi

[Ch (ReLU(A + 1) — 2ReLU(n)) (x; — x;) (65 + 65)
T+ CyReLU () B X © B X ey

|Xj — X;

where

M

m.__E:iHhﬂiK[%) 3 fﬁm4(—7r*>V%n

o = )

|x; — x; |3~ ReLUB-a) (% —xi) - (uf —uf) .
) 1

x]'GB(;(xi

|x; — x;|3ReLUG—a

M B |x; —xi] W,
mi(8) = Y ReLU(D,) Y kM(5>Lwr&R
k=0

xJ'GB(;(xZ-)

We solve this unconstrained optimization problem via the Adam optimizer [55]. Here ReLLU

denotes the rectified linear unit function:

0, forax <O0;

x, foraxz >0.

R@Umy:{

This operation ensures that ReLU(Dy) is nonnegative and we replace D by ReLU(D) at the

end of the prediction step, to guarantee that the learnt D > 0. Similar strategies are also
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applied to A, p and « E|:
= ReLU(p),

A= ReLU(A + p) — ReLU(u), (4.8)

a— 3 —ReLU(3 — a).
The second step of the algorithm corrects the prediction-step solution by solving for the
fully constrained optimization problem. Specifically, by employing (AP™¢, "¢, a?"¢ DP™¢) as
the initial guess, we apply the augmented Lagrangian method [56], 57] and treat the inequality

constraints via slack variables. To do this, introduce the functions

Hl(aa Da wl)

AT ps)) — ¢ — @i,
HQ(aa Da wQ) :A((b(a,Dﬁ,M)FE;,D,J,M)(I)I(fa,D,(S,M)) - C - w%,
Hs(o, D, ws) =A(L(0,ps1) — 204 b 500 P(aD.s,ar)) — @5

Here, ©o = [w, we, ws) is the vector of slack variables arising from the inequality constraints.

Then, minimize the following penalized loss function:

s M B ol

corr 1 E § s E Dk kM ( 4 ) I

L ()\7/'1/7057D7w)-—§ b'L + ml<5) Z ’X _ Xi|37ReLU(3*C¥)
s=1 x;€X5 k=0 x;€Bs(x;)

[C4 (RELU(A + 1) — 2ReLU()) (x; — x) (6 + 7)

2

+CQ ReLU (M)

(Xj—Xi)®(Xj—Xi)( )

3 3
+3 " ¢H,(3 = ReLU(3 — a), D, @) + % > " HX(3—ReLU(3 —a),D,w),
p=1

p=1

where ¢,, p = 1,2,3 are the Lagrange multipliers and 1 is a penalty parameter. At this
stage, the Adam optimizer is used. An iterative procedure updates the Lagrange multipliers
by 1) solving the unconstrained optimization problem, 2) updating ¢, via dual gradient
ascent

bp > Op + VHp(a, D, ),

2Note that although we require A + p > 0, g > 0 and o < 3 for the well-posedness analysis in Theorem
for numerical simplicity we employ strategy which only guarantees A + 4 > 0, u > 0 and a < 3.
However, in all numerical tests we observed that the predicted A, u, « satisfies the well-posedness conditions,
as will be shown in Section @
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and 3) increasing ¢ when the decreasing ratio of H,(a,D,zo) (with respect to the last
iteration) does not reach 4 for at least one p € {1,2,3}. As done in the prediction step, at
the end of the correction step, we replace u by ReLU(u), A by ReLU(A + ) — ReLU (), and
a by 3 — ReLU(3 — «). Further details on parameter updates are described in Algorithm .
The optimal solution is denoted by (A*, u*, a*, D*).

In applying Algorithm [I} in all our tests, we run the Adam optimizer in PyTorch using
a batch size of 70, the inequality constraint tolerance is set to e=1E-5 and the learning rate
to 1E-3. The algorithm runs until the loss stagnates, indicating that a stationary point has
been reached. Stagnation typically happens between 1000 and 2000 epochs for the first stage
of the algorithm and at ~500 epochs for the second stage at each iteration of the augmented

Lagrangian method.

Algorithm 2 Workflow for learning the operator Lx from MD displacements.
1: Generate MD displacements on fine grids {X?} using different external forcings and
domains configurations and group the samples in three data sets:

M]Dtrain/val/test = {M;’s7 Uz,s(t)u Bg,s(t)}7 s = 17 T 7St7‘ain/val/test‘

N

: Coarse grain in space and smooth in time the data sets MID;,qin/vai/iest, then evaluate
the coarse grained data at coarser grids X® to obtain the sets

Strain/val/test = {us(xi,s)a bs(xi,s)}a s = 15 e 7Strain/val/test'

3: for M € M: do
4: for o € D: do
5: Perform the two-stage optimization strategy for fixed (§, M) to obtain

O\?&,M), /[(k(S,M)a Oézka,Mp fa,M))-

6: Find 63, that minimizes Res(d, M; S¢rqin)-
Calculate and store EZ%"(5%,, M), ETen (5%, M), EL(5%,, M) and EX (6%, M).

8: Find M* that minimizes the average of the normalized errors in step 7 and set

=

(/\*7/JJ*7O[*7D*75*7M*):(/\?5* M*)7u>(k(;* M*)Joj(ké* M*)uD?JRI*,M*V 7\4*7M*)

M*> M*? M*?

Ly = Lk, m)

We now discuss how to tune § and M, which are treated as hyperparameters. Divide the
sample set into two sub-sets: the set of training samples S;uin == {0*(x;5),b%(x;5)}, s =
1,- -+, Sirain, and the set of validation samples S,q; := {ﬁs(xiﬁs),gs(xiﬁs)}, s=1,---,5u.
While all samples correspond to the same material, the problem setting of training and

validation samples can be substantially different. For example, they could be generated with
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different grids X*, loading scenarios, boundary conditions, and geometric configuration. For
M € M, we perform Algorithm [I] using the training set S;,q;, with different values of 6 € D
and denote the corresponding nonlocal operator by L s ). Then, for each M, define the
optimal horizon 3, as the one that minimizes the average residual of the LPS equation,
denoted by EZ%". Formally,

8, = argmin  ER%™(5, M) = argmin Res(8, M; Sirain),
3eD 5eD

where

1

Res(0, M; Strain) = g— >, 1 L5 6000 (Xis) = b (%5)| |22 )
train {us(xi,s)vbs(xi,s)}egtrain

Denote the corresponding nonlocal operator by Lx(s: ar). Next, to determine the optimal

M that allows for accurate representation of the training samples without overfitting, we

test, for each M, the optimal operator £ K(63,,M) Ol the validation set S,, by evaluating the

val

average residual of the LPS equation; the latter, denoted by ER%, is defined as
Elzz){céls(M) = RGS((STW, M7 Sval)-

In principle, small training and validation losses indicate that the model performs well on
the training set and generalizes well to other data sets. As an additional metric of accuracy
on both the training and validation sets, also consider the displacement mean square error
(MSE), denoted by EIm and E% respectively. Formally,

rain 1 s —11.s
B¢ (M) = [ Z [[u®(xis) — (‘C}IL((cS}*V[,M)) 'b (Xi,S)Hg?(XS)a
frain {us(Xi,s)vbs(xi,s)}egtrain

and E¥% is defined similarly by taking the average over the validation set S,,;. Based on these
metrics, we select M such that the average of the normalized EX%"(8%,, M), Efr“n(5%,, M),
E3 (6%, M) and E¥*(8%,, M) is minimized. Here the normalization is taken with respect to
the same quantities evaluated at the baseline, which is the case with M = 0 (the constant

Bernstein polynomial). In particular, take M* = argmin AvgE(M) where
M

1 Etrain M Etrain M Eval M Eval M
AVgE(M) = ( Res ( M> ) u ( M> ) Res( M> ) u ( M> >>

4\ EFen(5;,0) T Eirain(5;,0) T Byl(55,0) T Euel(d5,0)

A summary of the above strategy can be found in Algorithm [2| where we report the overall
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Figure 2: Consistency tests for Algorithm [If with fixed @ = 1 and positive influence function. Left: The
training loss versus basis order M when using different grid size; the dashed lines indicate the values of the
loss functions when the manufactured kernel is used, colors reflect the values of h used for discretization.
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Figure 3: Consistency tests for Algorithm [I] and positive influence function, while learning a. Left: The
training loss versus basis order M when using different grid size; the dashed lines indicate the values of the
loss functions when the manufactured kernel is used, colors reflect the values of h used for discretization.

Right: The comparison of learned influence functions and the manufactured influence function K., = %

workflow of our learning procedure.

5. Consistency Tests for Manufactured Solutions

In this section, we test our operator regression algorithm by considering analytic training
pairs {u®(x), b*(x)} satisfying (3.4)) for the manufactured influence function

1
Kipan(x,y) = Xyl

In particular, data sets are considered with different spatial resolutions X'* := {(p1h, po2h)|p =
(p1,p2) € Z?} N (2N Q) and different Bernstein polynomial orders M with the purpose of
validating Algorithm (1| before employing it on MD data sets.

For the computational domain € = [0,100]?, the training data pairs {u®(x),b%(x)}72,

23



are generated by setting

u(zy, x9) = (0.1 cos(2kymxy) cos(2kemas), 0), or

u(xy, z9) = (0,0.1cos(2k 1) cos(2kemas)),

with k1, ke € {0,1,2,3,4,5}. Then, for each displacement field u®(x), the corresponding
forcing field b® is computed from (3.4) with A = 0.1010, p = 0.4545, and 6 = 0.125. By

evaluating u® and b® on different grid sets X} with h =5, h = 2.5 and h = 1.25, respectively,

h=>5 Sh:2'5

train’ train a’nd

three training sets of size 70 are then obtained. These are denoted by S

h=1.25
Strain :

To verify the consistency of the prediction step in Algorithm [If and its behavior with
respect to increasing resolution and polynomial order, first consider a positive influence
function K with prescribed fractional order @ = 1. Then choose the Bernstein basis order
M in [0,20]. The prediction step involves the solution of a convex optimization problem
with a non-empty feasible set. Therefore, every local minimum is a global minimum.

For different training sets, the training losses E32 (M) are plotted with respect to in-
creasing polynomial orders M in Figure [2] left. These results suggest that the training loss
improves as the basis order M is increased and as the grid size h decreases. Furthermore,
the manufactured ground-truth kernels have a higher training losses compared to the learned
kernels due to the discretization error, which suggests that the learning algorithm is able to
obtain better kernels on each grid set. Figure 2] right, shows a comparison of the learned
influence functions for a fixed polynomial order M = 10. The learned influence function
gets closer to the manufactured influence function K,,,, as h — 0. This illustrates the
consistency of the learning algorithm for a given a.

To investigate the effects of the fractional order «, we now consider a positive influence
function with unknown fractional order and use, again, the prediction step of Algorithm[I] In
this case, the convergence of the optimal kernel to the manufactured one is not guaranteed,
since the fractional order is a tunable parameter. The training losses and learnt influence
functions are provided in Figure [3] Although the algorithm does not recover exactly the

influence function K4y, low values of EF%" can be achieved as M increases.

6. Application to graphene using MD

To illustrate the efficacy of our method in obtaining an optimal peridynamic model from
coarse-grained MD displacements, we consider graphene sheets as the application. Graphene
is a two-dimensional form of carbon with a hexagonal structure. Because of its high stiffness

and strength, as well as other unusual physical properties, graphene is being studied for
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Figure 4: Left: hexagonal graphene atomic structure. Center: full MD grid. Right: coarse grained node
positions.

possible use in a number of applications, including as a structural material. For the present
study, an MD model was created using the Tersoff interatomic potential [58]. This potential is
widely used in the MD community for graphene because it incorporates the relative rotation
angle between covalent bonds, which strongly affects the mechanical response. A thermostat
is included in the MD model in the present study to control the temperature and periodic
boundary conditions are applied. The MD grid is shown in Figure |4, center. The grid has
3588 atoms. The corresponding coarse-grained node positions are shown in Figure [4] right.
To simplify the analysis, out-of-plane motions were not considered in this study, although
they would occur in a real material.

Unstressed graphene nominally has an interatomic spacing of 1.46A. In this study, values
of the coarse-grained quantities u; and b; are evaluated on a square lattice of nodes indexed
by i with spacing h=5.0A. We also consider an additional, finer data set generated for
validation purposes with spacing 2.5A.

For any coarse grained node position x; and any atomic position X,, define the smoothing

function by
T (X’L ) XE)

> T(x5,Xe)
where the cone-shaped function 7(x,X) = max {0, R — |X — x|} induces a coarse-graining

radius of R=10.0A. Note that (6.1)) satisfies the normalization requirement (2.1]).

In all cases, external loading is applied to the atoms in the MD grid in addition to the

w(xi, Xe) = (6.1)

random loads applied by the thermostat. The external loading for each atom B, is constant
over time. The magnitude of the loading is chosen so that the bond strains are no larger
than 2%, which is less than the strains at which nonlinear effects appear. As described in
Section [6.3] the magnitude of the loading is varied relative to the forces on the atoms that
sustain the thermal oscillations. This variation helps to test the robustness of the machine

learning method in extracting the continuum material properties in the presence of thermal
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Figure 5: Contours of U; displacement in typical MD simulations at zero temperature for the three types of
datasets. Left: training. Center: validation. Right: testing.

oscillations that create noise.

6.1. Data Sets and Metrics of Accuracy

Three sets of data are generated from the MD simulations for each of two values of
temperature, 0K and 300K. In all MD experiments, the atoms are initialized with positions
on a hexagonal lattice in the z1-z, plane with an interatomic spacing of 1.46A. The mass
of each atom is 2.0E-26kg, or 12amu. For purposes of computing stresses, the thickness of
the lattice is set to 3.35A, which is the approximate distance between layers in multilayer
graphene. The MD time step size is 5.0E-16s, or 5.0fs.

Two types of samples are generated for each data set: the standard samples with spacing
h=5.0A which will be denoted by SPK/300K and the samples with finer grids h=2.5A

train/val [test
denoted by S?iﬁ%fliﬁt Unless stated otherwise, the h=5.0A data sets are used in the
learning tasks. The finer grid data sets are employed to assess the generalization properties of
the proposed learning approach to different grids (further details and discussions are provided
in Section . Images showing contours of Uy, the component of atomic displacement in

the z; direction, for the training, validation, and testing samples are provided in Figure [5

1) Training data set (70 samples): The MD domain is a 100Ax100A square, and, for

ki, ko € {0, 257 ?)—g, ce g—g}, the prescribed external loadings are given by

b(x1, 22) = (Cy, 1, cos(krx1) cos(kaa),0), or b(xy, x2) = (0,CF 4, cos(kixy) cos(kaxs)).
(6.2)
As mentioned above, the constant Cy . and Cf, ;. are adjusted so that the bond strains are

no larger than 2%, so the deformation remains in the linear range of material response.

2) Validation data set (10 samples). For the same MD grid and coarse-grained nodes as in
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k[ G | CF [pe| R
10001 0 |0]2
2 0 |0001| 025
310001 0 |0]15
40 |0001]0 |15
50001 0 | 010
6 0001 0 |12
71 0 [o001|1]2
S|0001| 0 |1]15
9 0 |0001] 1|15
100001 0 | 110

Table 1: Parameters used in the MD loading in the 10 validation tests.

the training data set, the applied loads in the validation data set are as follows:

b(x1,75) = (CF,C3) i (—=1)7 cos <g wmin {17 Té_:}>

j=-1

where

ik = (x1 — (1 — pi)Lj)? + (v2 — prLj)?

where L=50 and the values of the parameters C}, C?, py and Ry are given in Table . In
each case, loads are applied to the atoms within three disks of radius Rj with centers at the
center of the grid and at the left and right boundaries (if pr = 0) or the upper and lower
boundaries (if p, = 1). The direction of the load vectors is either in the x; or x5 directions.

The loads in all cases are self-equilibrated and periodic.

3) Test data set (4 samples). To demonstrate that the learned material model applies
to geometries different from the original square geometry, four additional test cases are
considered. Here, the MD region is a disk of radius 100A. Within this disk loading is applied
as listed in Table [2| to the exterior of a circle with radius 50A, with the interior unloaded.
The equilibrium displacements, with smoothing as described previously, are computed at the
coarse-grained nodes, which are spaced 5A or 2.5A, apart on a square lattice. All of these
cases have loadings that are discontinuous functions of the radius and therefore are more
challenging from a modeling perspective than the validation cases described above. In cases
2 and 4 the loading is also a discontinuous function of the angle because of the sign function
(sgn).

As metrics of accuracy on the training, validation and test sets, in this section we calculate

the averaged mean square loss (MSL) and displacement mean square error (MSE) for each
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’ Case ‘ by ‘ b ‘

1 C'cos 46 cos b C'cos40sind

2 | Csgn(cos46)cosf | Csgn(cos4f)sin b
3 10 C'sgn(sin ) sin @
4 | Csin30sinf C'sin 36 cos ¢

Table 2: Loading applied to the exterior of a disk of radius 50A in the four tests. In all cases, C=0.0005.
b1 and by are components of b along the x; and x5 directions, respectively, and 6 is the polar angle in the
plane.

learnt kernel on these three sets, which will be referred to as Egg;%”al/ test

provide a fair comparison between different sets, all these accuracy metrics except E%5! are

, respectively. To

normalized with respect to either the force loading or the displacement fields. Specifically,
Epe™ ! is normalized by ||b5H522( x5y and Eirem/vatfiest i pormalized by ||u5]|l22( o). For Bl
we report the absolute value instead since on the test samples the loading is only applied
outside the computational domain and we have b® = 0 on 2. Therefore, we can not normalize
E%st with respect to the force loading field.

Changing the shape of the smoothing functions, while holding the radius R constant, has
only a small effect on the results. For example, replacing the cone-shaped function 7 used in
(6.1)) with a paraboloid changes the coarse-grained displacements by about 0.3% in a typical
MD simulation used to generate the training data. Changing the radius R affects the horizon

0 and therefore affects the dispersion properties of waves with wavelengths comparable to or
less than the horizon given by (2.9) [38].

6.2. Learning Results
We first tune the hyperparameters (§, M) following the procedure described in Algorithm
2l The optimal 6}, for each fixed polynomial order M and the corresponding Ef ™, Efrem,

u

Epadl . Bl and AvgE are reported in Table [3| and Figure @ Based on these results, we
set (0%, M) = (20A,10) for the 0K tasks, and (63, M) = (20A,15) for the 300K tasks.
For both data sets the optimal horizon size is § = 20A , which is twice the support radius
R. This value is very close to the horizon that would be predicted by , because the
MD cutoff distance d = 1.46A< R, and there are very few interatomic interactions that
connect the smoothing functions with centers separated by 2R. Compared to the data set at
0K, the 300K data set requires a higher polynomial order M and therefore a more complex
influence function. This is possibly due to the occurrence of thermal oscillations in the MD
simulations at 300K. We use these optimal pairs (9}, M) as the default choices in all tests
below (unless stated otherwise).

The learning results are provided in the left plot of Figure[7]and in Table[dl For both the

0K and the 300K data sets, the Young’s modulus is estimated to be around 1TPa, which is
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dataset | M &%, Eirain ptrain | pral Ere AvgE
0 125A | 13.91% 17.54% | 16.31% 14.49% 1
5 12.5A | 10.42% 12.19% | 13.02% 7.69% | 0.6933

0K 10 20A | 981% 11.72% | 13.28% 7.16% | 0.6704
15 225A | 9.80% 11.61% | 13.50% 7.22% | 0.6731
20 25A | 9.75% 11.89% | 13.53% 7.00% | 0.6729
0 125A | 13.46% 31.33% | 20.15% 14.86% 1
5 12.5A | 10.50% 13.80% | 17.83% 9.66% | 0.6784

300K | 10 20A | 9.79% 13.32% | 18.11% 9.08% | 0.6549
15 20A | 9.82% 13.16% | 18.08% 8.88% | 0.6505
20 25A | 9.81% 13.36% | 18.34% 9.23% | 0.6609

Table 3: Losses from the optimal §*(M) for each values of M, where the optimal cases and the corresponding
average of the normalized errors are highlighted with bold.
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Figure 6: Optimal relative mean square loss (MSL) and relative mean square error (MSE) for each polynomial
order M. Left: results at 0K. Right: results at 300K.

consistent with experimental evidence [59, [60] and computations via first principles [61] or
MD [62, 63]. The predicted Poisson ratio is negative, which results from graphene’s excep-
tionally high resistance to relative angle changes (shear) between the covalent bonds. The
predicted value v = —0.4 is consistent with other MD and molecular statistics simulations
[64, 65]. As expected, the optimal influence functions shown in the left plot of Figure [7] are
partially negative for both data sets. This fact highlights the importance of allowing for

sign-changing influence functions.

6.3. Sensitivity to Thermal Oscillations
Recall from (2.4) that each atom in the MD simulation experiences internal forces F..

due to interaction with other atoms and external forces B, due to prescribed loads. At finite
temperature, the internal forces consist largely of the random forces that produce thermal

oscillations. A convenient way to characterize the relative magnitude of the random and
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Figure 7: Left: Optimal influence functions K at 0K and 300K. Right: Optimal influence functions K at
300K with different level of noise.

data set M a A (TPa) | u (TPa) | E (TPa) v
10 2.8335 | -0.4796 | 0.7978 0.91 -0.4297
ok [ B B | B | B | B | B
9.81% | 11.72% | 13.28% 7.16% 2.03E-1 | 6.75%
data set M a A (TPa) | u (TPa) | E (TPa) v
15 2.5946 | -0.4583 | 0.7753 0.90 -0.4196
w0k | PR | B B | B | B | E
9.82% | 13.16% | 18.08% 8.88% 2.08E-1 | 9.21%

Table 4: Optimal material parameters and MSL/MSE on training, validation and testing data sets at 0K
and 300K. ELst shows the absolute ¢2 error as the inner circle in the test problem is unloaded.

prescribed forces is the signal-to-noise ratio (SN R) defined by

2 |Bef?

SNR = .
Zs BE + Z'y F’YE

At finite temperature with zero loading, SNR = 0, while at zero temperature but finite
loading in equilibrium, SN R = co. Most, but not all, of the random forces and oscillations
are smoothed out by the coarse graining prior to application of the algorithm to learn the
kernel and material parameters. The effect of the random noise is also reduced by the
smoothing of displacements over time using .

Next, we investigate the robustness of the learning approach by applying Algorithm
to training data sets with different signal-to-noise ratios. With temperature 300K, three
training data sets are created by changing the relative magnitude of the loading described
in to 1, 1/4 and 1/10, respectively. Due to the existence of thermal noise, the smaller
the loading magnitude is, the smaller the signal-to-noise ratio will be. Therefore, we denote
these three training data sets as the “Low noise” data set, “Med noise” data set and “High

noise” data set, respectively.
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StN ratio a A (TPa) | u (TPa) | E (TPa) v

300K 0.1556 | 2.5046 | -0.4583 | 0.7753 | 0.90 | -0.4196
Low Noise | EGa™ | ET™ | Egl | B BT | Bl

9.82% | 13.16% | 18.08% 8.88% 2.08E-1 | 9.21%
StN ratio a A (TPa) | u (TPa) | E (TPa) v

300K 0.0543 | 2.5197 | 04782 | 0.7798 | 0.87 | -0.4422
Med Noise | ERe™ | BT | Byt | B BT | BN

14.52% | 28.27% | 18.34% 9.82% 2.11E-1 | 9.28%
StN ratio a A (TPa) | p (TPa) | E (TPa) v

300K 0.0224 | 1.9365 | -0.3266 | 0.6890 | 0.95 |-0.3106
High Noise | Eg@™ | ET™ | Ex | By BT | B

27.64% | 48.86% | 23.73% | 17.54% | 1.84E-1 | 7.95%

Table 5: Test of algorithm robustness on 300K data set with different noise levels. EfS! shows the absolute
£? error as the inner circle in the test problem is unloaded.

To study the sensitivity of the learning algorithm with respect to decreasing SN Rs, we
plot and compare the optimal influence function K in the right plot of Figure[7] It can be
seen that while the learnt influence function from the “Med noise” data set is almost the
same as the influence function from the “Low noise” data set, the learnt influence function
from “High noise” data set slightly differs. To provide a further quantitative comparison,
Table |b| provides the estimated material parameters as well as the loss and errors on the
validation and test data sets. The learnt influence functions from all training sets achieves
a similar level of accuracy on the test data set. On the validation set, the learnt model from
“Med noise” set achieves a similar accuracy as the model from “Low noise” set, while the
displacement mean square error increases for the learnt model from “High noise” set. Not

surprisingly, since the SN R decreases by 7 times in the “High noise” set, £ doubles.

6.4. Generalization

This section discusses the generalization of the optimal influence function to different
loadings, domains and discretizations.

Different Loadings: The loadings in the validation and test data sets are substantially
different from those in training data sets. Therefore, these can be used to assess the perfor-
mance of the learnt models as reported in Table [d The validation loss is consistently lower
than 20% and the solution error smaller than 10%, illustrating that the optimal models can
be generalized to problems with different loadings.

Different Domains: In the test data set the domain is a disk (as opposed to the square
domain used for training). The results of applying the optimal learnt model to this test

problem are provided in Table il Here the loss Ef is presented as the absolute error
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Strain Sval and Stest Eﬁ%i Eﬂal E])E{e:st E]ZeSt
h=5Aand h=25A| h=25A 16.19% | 8.01% | 2.95E-0 | 8.44%
h=5Aand h =25A h=5A 13.24% | 9.29% | 1.97E-1 | 7.80%

Table 6: Learning results from hybrid resolution datasets with fixed § = 12.5A.

because the interior circle is unloaded. For both 0K and 300K, the solution error is consis-
tently below 10%, showing that the optimal models can perform well with different domain
configurationg’|

Hybrid Discretizations: Since the proposed approach learns a continuous nonlocal oper-
ator rather than a discrete surrogate for the solution, the learning approach can naturally
handle data sets with different resolutions or even different discretization methods. To pro-
vide initial studies on the generalization properties with respect to different resolutions, we
consider a hybrid data set with samples of different resolutions and investigate the perfor-
mance of the learning algorithm. In particular, the training data set is defined as the union
of SPX, and SYSm Table 6] reports the accuracy of the learnt model on both standard
and fine validation and test data sets. From the results in the table, the solution error is
consistently below 10%, which highlights the capability of the proposed algorithm to handle

data sets with different resolutions.

7. Conclusion

We introduced a new optimization-based, data-driven approach to extract an optimal
linear peridynamic solid model from MD data. The peridynamic constitutive law is learned
by optimizing the influence function and material parameters. The influence function is al-
lowed to be sign-changing, thus improving the descriptive power of the optimal model. The
nontrivial problem of learning well-posed models in the presence of sign-changing influence
functions was addressed by deriving new sufficient conditions for the discretized peridynamic
model, embedded in the learning procedure as inequality constraints. To assess the perfor-
mance of the proposed learning algorithm, we tested the robustness with respect to noise and
the ability of the optimal model to generalize to different domain configurations, external
loadings, and discretizations.

A fundamental aspect of the proposed procedure is the fact that we learn a continuous
operator rather than a discrete operator or a surrogate for the solution; this fact guaran-

tees generalization of the optimal model to settings that are different from the ones used

3Among all training samples, higher relative solution errors are observed from samples driven by high
frequency external loadings. Comparing with the training set, the test samples are all with relatively low
spatial frequency and therefore have smaller solution errors.
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during training. Furthermore, the continuous setting opens new research direction, such as
considering different discretization methods when validating the optimal model.

Although the present work focuses on single layered graphene, the results suggest that
this method may impact a broader range of materials and applications. As a follow-up
work we plan to extend our algorithm to more complex materials behaviors, such as large

deformation and/or damage.
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