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Abstract

Nonlocal models, including peridynamics, often use integral operators that embed length-

scales in their definition. However, the integrands in these operators are difficult to define

from the data that are typically available for a given physical system, such as laboratory

mechanical property tests. In contrast, molecular dynamics (MD) does not require these

integrands, but it suffers from computational limitations in the length and time scales it

can address. To combine the strengths of both methods and to obtain a coarse-grained,

homogenized continuum model that efficiently and accurately captures materials’ behavior,

we propose a learning framework to extract, from MD data, an optimal Linear Peridynamic

Solid (LPS) model as a surrogate for MD displacements. To maximize the accuracy of the

learnt model we allow the peridynamic influence function to be partially negative, while

preserving the well-posedness of the resulting model. To achieve this, we provide sufficient

well-posedness conditions for discretized LPS models with sign-changing influence functions

and develop a constrained optimization algorithm that minimizes the equation residual while

enforcing such solvability conditions. This framework guarantees that the resulting model is

mathematically well-posed, physically consistent, and that it generalizes well to settings that

are different from the ones used during training. We illustrate the efficacy of the proposed

approach with several numerical tests for single layer graphene. Our two-dimensional tests

show the robustness of the proposed algorithm on validation data sets that include ther-

mal noise, different domain shapes and external loadings, and discretizations substantially

different from the ones used for training.
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1. Introduction

Complex systems where small-scale dynamics and interactions affect the global behavior

are ubiquitous in scientific and engineering applications. In disciplines ranging from climate

forecasts to material design, heterogeneities in materials and media at the micro or molecu-

lar scales need to be accurately captured to guarantee reliable and trustworthy predictions.

However, higher degrees of complexity and heterogeneity require numerical simulations of

classical mathematical models at small scales that cannot be afforded, despite recent ad-

vances in computational power. This fact creates the need for new mathematical models

that act at larger scales and that, combined with new advanced architectures, allow for fast

predictions [1–11]. The process of upscaling models or data hides several pitfalls that may

compromise the reliability of the resulting surrogates.

In the presence of heterogeneities, it is often the case that to adequately reproduce

the large-scale behavior of a system, a homogenized model must follow different governing
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laws, as well as different constitutive properties, than the ones that apply at the small scale.

Homogenization theory addresses the approximate treatment of a partial differential equation

(PDE) that contains small-scale oscillations in its coefficients [12]. It seeks to replace these

coefficients with constant or slowly-varying coefficients such that the resulting solutions

closely approximate solutions to the original problem in an averaged sense. The resulting

parameters are called effective properties . In many theoretical treatments, the effective

properties are valid only in the limiting case of a very small length scale in the oscillatory

behavior of the original parameters. The classical notion of effective properties therefore

“washes out” the length scale in the original problem, causing important information to be

lost.

Nonlocality in the spatial dependence of a continuum model has long been recognized as

a consequence of homogenization [13, 14]. For example, in continuum mechanics, nonlocal-

ity arises from taking the ensemble average of the displacement field in a family of random

linear elastic heterogeneous materials [15–20]. To some extent, this nonlocality can be incor-

porated in homogenized weakly nonlocal PDEs that embed length scales in their coefficients.

However, weakly nonlocal PDEs are generally insufficient to fully reproduce coarse-grained

data because of the limited spectrum of processes that they can describe [21]. In general,

increasing the accuracy of weakly nonlocal PDEs to match small-scale data involves using

higher and higher order partial derivatives, resulting in practical challenges in numerical

implementations.

As pointed out in [21], nonlocal operators [22, 23] are among the best candidates as model

descriptions that can circumvent these limitations. Theoretical and numerical techniques for

nonlocal models are not as advanced as for classical PDEs. This is one of the main reasons

why integral operators historically have not received a broader adoption in the context of

numerical homogenization. However, current advances in nonlocal theory, computer power,

and solution algorithms are making nonlocal equations viable as practical modeling tools.

While integral operators have proved to be successful in several contexts such as mechanics

[24, 25] and turbulence [26, 27], they have not been systematically explored for coarse grain-

ing, or upscaling, of molecular dynamics (MD) models, for which we propose a new rigorous

modeling paradigm.

We stress the fact that with nonlocal operators, constitutive laws take the form of kernels

(integrand functions), whose functional form cannot be established a priori. Although the

integral constitutive laws must be consistent with the classical effective properties, they

contain information about the small-scale response of the system and must be chosen to

reproduce this response with the greatest fidelity. In a few cases, certain forms of nonlocal

kernels have been adopted in the engineering community because experimental evidence
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confirms the efficacy of the model, or because a closed form of integrand that matches desired

physical properties can be analytically determined. An example of the former situation

is fracture mechanics, where peridynamic models have been demonstrated to be accurate

[24, 25, 28]. Examples of the latter case include those diffusion processes in which the mean

square displacement does not exhibit the linear, classical behavior, but instead exhibits

an anomalous fractional behavior [29]. However, at present, only a few preliminary works

address the problem of finding an optimal form for the kernel function [30–33].

In view of the growing importance of MD as a tool for designing materials with reduced

reliance on laboratory testing, we propose to use nonlocal operators as upscaled continuous

models for MD displacements. We seek nonlocal models that capture important aspects of

the small-scale behavior better than classical homogenization theory. Building on our previ-

ous works [32, 33] we address the question of how to obtain large-scale nonlocal descriptions

that capture MD behavior that would remain hidden in classical approaches to homoge-

nization. To accomplish this, we use machine learning to identify optimal nonlocal kernel

functions. The machine learning method is required to perform well with small datasets that

may include thermal noise.

We summarize below our main contributions.

� We identify the best upscaled nonlocal model, without prior knowledge of the material

properties, that accurately describes the material’s global behavior based on a small

set of possibly noisy data.

� The optimal nonlocal model is guaranteed to be well-posed and generalizes well to set-

tings that are substantially different from the ones used for training. The optimal

model is equally accurate for different sources and geometries, so that it enables gen-

eralization.

While our ultimate goal is to learn a general integrand for the nonlocal operator, in this

work we consider a specific nonlocal model, the Linear Peridynamic Solid (LPS) model [34]

as a first step towards a more general learning tool. We focus our experiments on single

layered graphene for which we identify optimal two-dimensional nonlocal models.

Outline of the paper. Section 2 shows how to obtain, via smoothing functions, a nonlocal

model for MD displacements. In Section 3 summarizes the peridynamic theory, the LPS

model, and the discretization technique used in this work. Section 4 presents our learning

approach including the well-posedness of the learned model by construction. It also provides

the algorithmic workflow and implementation details. Section 5 illustrates the consistency

of the proposed method on manufactured solutions. Section 6 demonstrates the effectiveness
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of the learning technique for MD displacements. We illustrate several properties including

generalization with respect to loadings, domain size and shape. The effect of thermal noise

and the sensitivity of the algorithm to noise intensity are considered. Section 7 summarizes

our contributions and provides future research ideas.

2. Coarse-Graining of Molecular Dynamics Displacements

In this section it is shown how to define an integral, continuous model for a system

of particles. More details can be found in [35]. Similar results obtained with statistical

mechanics can be found in [36].

Consider an assembly of mutually interacting particles in a crystal with particle mass Mε,

ε = 1, 2, . . . , N . Let the reference positions of these particles be Xε and their displacement

vectors Uε(t).

Suppose that any particle γ exerts a force Fεγ(t) on particle ε, and set Fεε = 0. These

forces are assumed to be antisymmetric: Fγε(t) = −Fεγ(t), for all ε, γ, and t. It is also

assumed that there is a cutoff distance d for the atomic interactions such that Fεγ = 0 if

|Xγ −Xε| > d. Each particle ε is subjected to a prescribed external force Bε(t).

For any continuum material point x ∈ Rn, define a smoothing function ω(x, ·) such that

the following normalization holds: ∫
Rn
ω(x,Xε) dx = 1 (2.1)

for any ε. For convenience, assume that at any x, ω(x, ·) has compact support over the ball

BR(x), for R > 0. Define the smoothed mass density and body force density fields by

ρ(x) =
N∑
ε=1

ω(x,Xε)Mε, b(x, t) =
N∑
ε=1

ω(x,Xε)Bε(t), (2.2)

and the smoothed displacement field by

u(x, t) =
1

ρ(x)

N∑
ε=1

ω(x,Xε)MεUε(t). (2.3)

The evolution equation for the smoothed displacements will now be derived. Newton’s second

law for the particles has the following form: for any ε

MεÜε(t) =
N∑
γ=1

Fεγ(t) + Bε(t). (2.4)
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Differentiating (2.3) twice with respect to time yields

ρ(x)ü(x, t) =
N∑
ε=1

ω(x,Xε)MεÜε(t). (2.5)

From (2.2), (2.4), and (2.5),

ρ(x)ü(x, t) =
N∑
ε=1

ω(x,Xε)

[
N∑
γ=1

Fεγ(t) + Bε(t)

]

=
N∑
ε=1

N∑
γ=1

ω(x,Xε)Fεγ(t) + b(x, t).

(2.6)

From (2.1) and (2.6), for any x,

ρ(x)ü(x, t) =
N∑
ε=1

N∑
γ=1

ω(x,Xε)Fεγ(t)

[∫
ω(y,Xγ) dy

]
+ b(x, t),

or, equivalently,

ρ(x)ü(x, t) =

∫
f(y,x, t) dy + b(x, t) (2.7)

where

f(y,x, t) =
N∑
ε=1

N∑
γ=1

ω(x,Xε)ω(y,Xγ)Fεγ(t) (2.8)

and b is given by (2.2). The properties of F guarantee that the integrand f is antisymmetric.

Since, by assumption, the smoothing functions have support radius R and the interatomic

forces have cutoff distance d, it follows that

|y − x| > δ =⇒ f(y,x, t) = 0

for all t, where the horizon δ is given by

δ = 2R + d. (2.9)

In summary, defining the displacements and other fields in the continuum description using

the smoothing function ω, leads directly the nonlocal (or integral) equation of motion (2.7).

However, the derivation does not provide a material model, that is, the dependence of f on

the deformation in terms of the continuum displacement field u is not yet determined. The

goal of the present work is to identify an optimal form of the integrand function f in (2.7)
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such that the corresponding nonlocal model faithfully represents given MD displacements

under a given set of loading conditions on the MD grid.

At finite temperature, thermal oscillations in displacement are present in any MD simula-

tion. The details of these oscillations are of no interest for purposes of continuum modeling.

However, their net effect on the bulk material properties must be included. To smooth out

the thermal motions while retaining their net effect, a time-smoothing method is applied. In

this method, the following expression is applied to obtain the time-smoothed displacement

Uε(t
n) of atom ε:

Uε(0) = 0, Uε(t
n) = (1− ι)Uε(t

n−1) + ιŨε(t
n), n > 0 (2.10)

where Ũε is the unsmoothed displacement of atom ε and ι is a positive constant, typically

on the order of 0.01. The value of ι is chosen so that in effect the time-smoothing has a time

scale (100 time steps) that is much larger than that of the thermal oscillations of the atoms

(<10 time steps). The value of ι does not depend on the size scale h of the coarse-grained

mesh. To obtain displacements that are smoothed in both space and time, the displacement

given by (2.10) is used in (2.3):

u(x) =
1

ρ(x)

N∑
ε=1

ω(x,Xε)MεUε(t
F ), (2.11)

where tF is the final time of the MD simulation. The displacements u(x) contain noise in the

form of spatial fluctuations due to the impossibility of completely smoothing out all of the

thermal oscillations in an MD simulation within a finite simulation time tF , regardless of the

value of ι. The machine learning algorithm described below attempts to extract continuum

material properties from the training data even in the presence of this noise. In Section 6,

we will present results on the effectiveness of this machine learning algorithm in treating this

type of noisy training data.

Our present objective is to derive the static continuum properties of a crystal from MD.

This entails the assumption that the time scale of motions in the MD mesh are much smaller

than any intended application of the continuum model. This assumption is justified in the

case of the bulk deformation of a perfect graphene sheet, since the relevant time scale of

the atomic motions in this material is on the order of femtoseconds. However, if the MD

system involves more slowly evolving events such as the motion of dislocations and voids, an

acceleration technique that accounts for this longer time scale would need to be used [37].

Even with this modification to the MD simulation, the coarse graining strategy would be

essentially the same as described above.
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3. Peridynamics

3.1. Peridynamics Background

In the previous section, a coarse-grained continuum momentum balance was derived,

given by (2.7). This momentum balance has a fundamentally nonlocal character, since the

pairwise bond force densities given by (2.8) can be nonzero whenever the material points in

the continuum x and y are separated by a finite distance up to the horizon δ (Figure 1).

This form of the momentum balance is known as the peridynamic equation of motion [38].

In peridynamics, each x interacts through bond forces with other material points y within

a neighborhood with radius δ known as the family of x, denoted by Bδ(x). The equation of

motion for material point x is then

ρ(x)ü(x, t) =

∫
Bδ(x)

f(y,x, t) dy + b(x, t). (3.1)

A material model in peridynamics supplies values of f(y,x, t) in terms of the deformations

of the families of x and y and any other relevant variables such as temperature. In general,

material models in peridynamics are specified using operators called states that are nonlocal

analogues of second order tensors [34]. Many material models have been developed for peri-

dynamics, and any material model from the local theory can be translated into peridynamic

form [39]. The most widely used capability that peridynamics offers that is not available

in the local theory is the direct modeling of fracture within the basic field equations. Peri-

dynamics can model fracture because the equation of motion (3.1) is an integro-differential

equation that does not involve the partial derivatives of displacement with respect to posi-

tion. However, the present paper concerns only small deformations in the linear regime of

material response and does not address fracture. The extension of the methods described

here to determine a linear peridynamic material model to the nonlinear regime, including

fracture, is under investigation in separate work. The remainder of this paper deals with a

specific material model described in the next section. Note that even though MD displace-

ments are dynamic, we smooth them in time as described in (2.10) and (2.11) so that the

time-space smoothed MD data can be described by the static counterpart of the nonlocal

equation (2.7),

−
∫
Bδ(x)

f(y,x,u) dy = b(x), (3.2)

where f is to be determined (see the following section) and where we introduced the nonlocal

interaction region Bδ(x). The horizon δ determines the extent of the nonlocal interactions.

Although, according to Section 2, δ could be determined by the cutoff distance d associated

with F and the radius of the smoothing function R, in the following discussion it is treated as
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Figure 1: Left: the family of a point x in a peridynamic body. Right: typical bond and bond force vector.

a learned parameter (Section 6.2). This approach allows for a finite value of δ to be obtained

even if d =∞, as would be the case with the Lennard-Jones potential.

3.2. The Linear Peridynamic Solid (LPS) Model

The main application considered in this work is the simulation of displacements in single-

layered graphene. The graphene sheet is treated using a two-dimensional nonlocal model

under the assumption of plane stress, which is appropriate for a thin sheet. The pairwise

bond force density f is determined using the state-based linear peridynamic solid (LPS)

model. The LPS model is a prototypical state-based model appropriate for isotropic elastic

materials. It may be regarded as a nonlocal generalization of the local model for an isotropic

solid, which contains contributions from shear and dilatation. The LPS model has advantages

over the previously developed bond-based peridynamic models in that it is not restricted to

a Poisson’s ratio of 1/4. The LPS model has known well-posedness properties under certain

assumptions [24]. This section summarizes the mathematical formulation for the LPS model

and illustrates a meshfree discretization [40–45].

Consider a 2D body occupying the domain Ω ⊂ R2, and let θ be the nonlocal dilatation,

generalizing the local divergence of the displacement. Let K(r) be the influence function [46]

which modulates nonlocal effects within a peridynamic model. In this work, we assume K

to be a radial function compactly supported on the δ-ball Bδ(x) with α-th order singularity:

K(x,y) := K(|x− y|) =
P (|x− y|)
|x− y|α

(3.3)

where P (r) is a bounded function in [0, δ]. The momentum balance and nonlocal dilatation
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are given by

LKu(x) :=− C1

m(δ)

∫
Bδ(x)

(λ− µ)K(|y − x|) (y − x) (θ(x) + θ(y)) dy

− C2

m(δ)

∫
Bδ(x)

µK(|y − x|)(y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy = b(x),

(3.4)

θ(x) :=
2

m(δ)

∫
Bδ(x)

K(|y − x|)(y − x) · (u(y)− u(x)) dy,

where u ∈ R2 denotes the displacement, b ∈ R2 the prescribed body force density, and

m(δ) :=
∫
Bδ(0)

K(|z|)|z|2dz the weighted volume. Here we note that m(δ) is independent of

x, and it is determined by the horizon size δ and the influence function K. In the present

notation, the nonlocal operator LK [u](x) in (3.4) has the subscript K to emphasize its

dependence on the influence function K. This operator corresponds to the integral term

−
∫

f(y,x,u)dy in (2.7), or, equivalently, (3.2).

Given a forcing term b, in order to guarantee the existence of a unique solution u,

“nonlocal boundary conditions”, or volume constraints, must be prescribed on an appropriate

interaction domain ΩI , so that the LPS problem becomes{
LK [u](x) = b(x) x ∈ Ω,

BIu(x) = q(x) x ∈ ΩI .
(3.5)

Here, BI is a nonlocal interaction operator specifying a volume constraint. In this work,

without loss of generality, we consider the Dirichlet condition BI = I, where I is the identity

operator. Other types of conditions, e.g., Neumann [41, 43, 47, 48], Robin [44, 49] or periodic

[32], are also compatible with our learning algorithm.

A meshfree discretization of the LPS model. Given a collection of material points X =

{xi}i=1,2,...,Np , we numerically evaluate LK(u) by employing the meshfree, particle discretiza-

tion introduced in [41], which features ease of implementation and efficiency. At each material

point xi, we adopt the following quadrature rule to approximate the integral in LK in (3.4),

which we now denote by LhK .

LhKu(xi) := − C1

mi(δ)

∑
xj∈Bδ(xi)

(λ− µ)Kij (xj − xi)
(
θh(xi) + θh(xj)

)
Wj,i

− C2

mi(δ)

∑
xj∈Bδ(xi)

µKij
(xj − xi)⊗ (xj − xi)

|xj − xi|2
(u(xj)− u(xi))Wj,i = b(xi),

(3.6)
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θh(xi) :=
2

mi(δ)

∑
xj∈Bδ(xi)

Kij(xj − xi) · (u(xj)− u(xi))Wj,i, (3.7)

where Kij := K(xj,xi) and mi(δ) :=
∑

xj∈Bδ(xi)
Kij|xj − xi|2Wj,i. The quadrature weights

Wj,i are obtained for material points on different subdomains Bδ(xi), from the following

optimization problem

argmin
{ωj,i}

∑
xj∈X∩Bδ(xi)\{xi}

W 2
j,i s. t.,

∑
xj∈Bδ(xi)

q(xi,xj)Wj,i =

∫
Bδ(xi)

q(xi,y)dy ∀ q ∈ V ,

where V denotes the space of functions which should be integrated exactly. Following [41],

in this work we take V :=
{
q(y) = p(y)

|y−x|3 | p ∈ P5(R2) such that
∫
Bδ(x)

q(y)dy <∞
}

and

P5(R2) denotes the space of quintic polynomials .

Although the developed learning approach as well as the meshfree quadrature rule can be

applied to the general collection of material points X , in this work we consider the uniform

Cartesian grid for simplicity:

X := {(p1h, p2h)|p = (p1, p2) ∈ Z2} ∩ (Ω ∩ ΩI),

where h is the spatial grid size. Note that, as we discuss in the next section and in Section

6.4, training and validation samples may be generated on different grids. Furthermore, to

emphasize the fact that each sample may be generated on a different grid, we denote the

grid corresponding to the s-th sample by X s.

Remark 1. Using the same arguments as in [42], it can be seen that the chosen quadrature

rule provides a consistent approximation of LK(u) when α < 3. Therefore, in the learning

algorithm, we require the fractional order α to be bounded by 3, and we note that this

requirement may be further relaxed by considering other discretization methods.

4. Operator Regression for the LPS Model

In this section we illustrate how to extend the data-driven approach developed in [32,

33], known as nonlocal operator regression, to the LPS model. Section 4.1 first describes

the regression algorithm under the assumption that coarse-grained MD displacements are

available at any material point. Then, Section 4.2 introduces solvability constraints that

guarantee that the optimal nonlocal model is well-posed by construction1. Lastly, Section 4.3

1The solvability conditions derived in [32] for 1D nonlocal diffusion problems are not applicable to the
more complex LPS model considered in the current work.
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summarizes the complete workflow of the data-driven nonlocal operator regression algorithm,

which is the process of going from high fidelity MD simulations to data-driven optimal kernels

via coarse graining and operator regression.

4.1. Operator Regression Algorithm

The foundation of the nonlocal operator regression algorithm is the fact that a coarse-

grained displacement u follows a nonlocal evolution law of the form (3.5). For this nonlocal

model, we seek to identify an optimal constitutive relation on the basis of MD data sets.

Let {us(xi,s),bs(xi,s)}, s = 1, · · · , S, be given pairs of displacement and body force fields

available at xi,s ∈ X s, and let LK be the LPS operator defined in (3.4) parametrized by the

material properties λ and µ and by the influence function K. We aim to learn an optimal

nonlocal operator LK . This optimal operator consists of the influence function K, which

may be sign-changing, and parameters λ and µ, such that the action of LK most closely

maps us(x) to bs(x) for all s. Formally, the optimal influence function and parameters,

(λ∗, µ∗, K∗), are the solution of the following optimization problem:

(λ∗, µ∗, K∗) = argmin
λ,µ,K

1

S

S∑
s=1

∥∥LhK [us](xi,s)− bs(xi,s)
∥∥2

`2(X s).

To increase the flexibility of the algorithm, each sample can be available on different point

sets X s.

The influence function K(x,y) will now be parameterized. Following [32], assume that

K has the form of (3.3), and represent its numerator P as a linear combination of Bernstein

polynomials evaluated at |x− y|:

K(x,y) =
M∑
k=0

Dk

|x− y|α
Bk,M

(
|x− y|
δ

)
.

Here the Bernstein polynomials are defined as

Bk,M(r) =

(
M

k

)
rk(1− r)M−k, for 0 ≤ r ≤ 1.

To allow the learning of nonlocal models whose kernels may be partially negative, we allow

Dk ∈ R, for all k. This generality, however, might compromise the well-posedness of the

resulting optimal model, since known well-posedness results on LPS models only apply to

positive kernels [50]. To guarantee that the LPS model associated with (λ∗, µ∗, K∗) is solv-

able by construction, we embed in our algorithm sufficient well-posedness conditions for the
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discretized operator; these are described in detail in the next section.

The formulation of the constrained optimization problem is as follows. Given a collection

of training samples {us(xi,s),bs(xi,s)}, s = 1, · · · , S, we seek to learn the parameters λ and µ,

the Bernstein polynomial coefficients D = [D0, · · · , DM ] ∈ RM+1, the order α, the horizon δ,

and the polynomial order M by minimizing the mean square loss (MSL) of the LPS equation:
(λ∗, µ∗,D∗, α∗, δ∗,M∗) = argmin

λ,µ,D,α,δ,M

1

S

S∑
s=1

||LhKus(xi,s)− bs(xi,s)||2`2(X s)

subject to solvability constraints.

(4.1)

4.2. Solvability Constraints for the Discretized LPS Model

When the influence function K as described in (3.3) is nonnegative and α < 4, the

LPS model is well-posed, as shown, for example, in [50]. However, several works have

indicated the practical need for sign-changing kernels [30, 31, 33, 51, 52]. While it is unclear

whether multiscale physics inherently leads to sign-changing kernels or if equally descriptive

positive kernels could be derived, in [32] the authors found that allowing for sign-changing

kernels provides a significant increase in accuracy when modeling high-frequency material

response. Therefore, in this work we seek a well-posed LPS model with possibly sign-changing

influence functions K. As there is no available theory on sufficient conditions for the well-

posedness of LPS models with sign-changing K, we impose well-posedness conditions on the

discretized system directly; as a result, well-posedness of the learnt model is guaranteed for

the discretization method used during training.

An inequality constraint for the well-posedness of the meshfree discretization approach

(3.6)-(3.7) that allows for sign-changing influence functions will now be derived. For simplic-

ity of analysis, and without loss of generality, assume homogeneous Dirichlet-type boundary

conditions: u(x) = 0 in ΩI .

For the derivation of the solvability constraints that will be employed in our algorithm

to ensure the well-posedness of the discretized LPS model, first write the discretized LPS

model (3.6)-(3.7) as the following linear system:(
µΓ (Φ)t

Φ − 1
λ−µI

)(
U

Θ

)
=

(
−B

0

)
. (4.2)

Here, U ∈ R2Np and 1
λ−µΘ ∈ RNp are the vectors of the degrees of freedom (DOFs) of the

displacement u and the nonlocal dilatation θ:

U = [(u(x1))t, · · · , (u(xNp))
t]t, Θ = [(λ− µ)θ(x1), · · · , (λ− µ)θ(xNp)]

t.

13



B is the vector of DOFs of the body load and has the same length and ordering of indices

as U. I is an Np×Np identity matrix, and Γ and Φ are the matrices that correspond to the

deviatoric and dilatation contributions of the deformation:

ΓU = [(fdev(x1))t, · · · , (fdev(xNp))t]t, ΦtU = [fdil(x1), · · · , fdil(xNp)]t,

where

fdev(xi) = − C2

mi(δ)

∑
xj∈Bδ(xi)

Kij
(xj − xi)⊗ (xj − xi)

|xj − xi|2
(u(xj)− u(xi))Wj,i

fdil(xi) =
2

mi(δ)

∑
xj∈Bδ(xi)

Kij(xj − xi) · (u(xj)− u(xi))Wj,i.

In what follows, for each vector V ∈ R2Np , write V = [vt1, · · · ,vtNp ]
t with each vi ∈ R2.

C denotes a generic constant. The following theorem provides sufficient conditions that

guarantee the solvability of (4.2). Let the energy “norm” be defined as ||V||2E := VtΓV

for all V ∈ E \ 0, where E denotes the quotient space of R2Np by the discrete space of

infinitesimally rigid displacements:

ΠX = {[(Qx1 + d)t, · · · , (QxNp + d)t]t, Q ∈ R2×2, QT = −Q, d ∈ R2}.

Note that although we use the norm notation, ||·||, in general, ||·||E does not define a norm

unless Γ is symmetric and positive definite. In fact, ||·||E is indeed a norm only when the

discrete coercivity condition, reported in the following theorem, is satisfied.

Theorem 4.1 (Sufficient Conditions for Solvability). The discretized LPS formulation (4.2)

is solvable for any values of λ+µ > 0 and µ > 0, provided that the following conditions hold:

i. Discrete Continuity and Coercivity: ∃CΓ > 0, CΓ <∞ s.t.,

||V||2E ≥ CΓ||V||
2
`2 and ||V||2E ≤ CΓ||V||2`2 ∀V ∈ E\{0} (4.3)

ii. Discrete Inf-Sup: ∃CΦ > 0, s.t., inf
P∈RNp\{0}

sup
V∈E\{0}

VtΦtP

||V||E||P||`2
≥ CΦ, (4.4)

iii. Discrete, generalized Cauchy-Schwarz: ||V||2E ≥ 2||ΦV||2`2 , ∀V ∈ E. (4.5)

Remark 2. In the continuous case with K ≥ 0, the property (4.5) is an immediate re-

sult from the Cauchy-Schwarz inequality, see, for example, [50]. This property yields the

equivalence of the semi-norm from the deviatoric part of the deformation and the full strain
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energy.

Proof. Inequality (4.3) implies that the energy norm is a norm in E \ {0}. We consider two

scenarios: λ− µ ≥ 0 and λ− µ < 0.

Case 1: λ − µ ≥ 0. The symmetry property of the Cartesian grids implies that mi(δ) =

mj(δ) := m and Wj,i = Wi,j for all i, j ∈ {1, · · · , Np}. By taking the inner product of (4.2)

with (Vt,Ξt), component-wise, we reformulate the system as a general mixed formulation:

find U ∈ R2Np and Θ ∈ RNp such that

a(U,V) + b(V,Θ) = (−B,V), ∀V ∈ R2Np

b(U,Ξ)− c(Θ,Ξ) = 0, ∀Ξ ∈ RNp .

Here (·, ·) denotes the inner product, a(U,V) := µVtΓU, b(V,Ξ) := ΞtΦV, and c(Θ,Ξ) :=
1

λ−µΘtΞ. Firstly, note that when (4.3) is satisfied, the symmetric bilinear form a(·, ·) is

continuous and coercive. Similarly,

b(V,Ξ) =− C1

m

Np∑
i=1

 ∑
xj∈Bδ(xi)

(λ− µ)Kijv
t
i (xj − xi) (ξi + ξj)Wj,i


=
C1

2m

Np∑
i=1

 ∑
xj∈Bδ(xi)

(λ− µ)Kij(vj − vi)
t (xj − xi) (ξi + ξj)Wj,i


≤C||V||`2||Ξ||`2 ≤ C||V||E||Ξ||`2

so that b(·, ·) is also a continuous bilinear form. By combining (4.3) and (4.4) with the fact

that c(Θ,Ξ) = 1
λ−µΘtΞ ≤ C||Θ||`2||Ξ||`2 and c(Ξ,Ξ) = 1

λ−µ ||Ξ||
2
`2 ≥ 0, the well-posedness

of (4.2) follows using the same arguments of [53, Section 2.2].

Case 2: λ − µ < 0. In this case c(Ξ,Ξ) is not coercive with respect to the `2 norm and

therefore the theory in [53] does not apply. By reducing the discrete system (4.2) to ((λ −
µ)ΦtΦ + µΓ)U = −B, we note that (λ − µ)ΦtΦ + µΓ is not solvable, or, equivalently, non-

invertible, if and only if there exists V ∈ E\{0} such that ((λ − µ)ΦtΦ + µΓ)V = 0. We

prove that this is not possible by showing that

Vt((λ− µ)ΦtΦ + µΓ)V = 0⇔ V = 0.

We split the proof in two parts: λ ≥ 0 and λ < 0, respectively. First, for λ ≥ 0, (4.3) and
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(4.5) yield

0 =Vt((λ− µ)ΦtΦ + µΓ)V = λVtΦtΦV + µ(||V||2E − ||ΦV||2`2)

≥λVtΦtΦV +
µ

2
||V||2E ≥

µ

2
||V||2`2 .

Hence V = 0, which contradicts our assumption. Similarly, when λ < 0, we assume that

||V||2E > 0. From the assumptions λ− µ < 0 and λ+ µ > 0 we have

0 =Vt((λ− µ)ΦtΦ + µΓ)V ≥ λ− µ
2

VtΓV + µ||V||2E =
λ+ µ

2
||V||2E,

which, again, implies V = 0, contradicting our assumption. Therefore, (λ − µ)ΦtΦ + µΓ is

invertible and (4.2) is solvable.

Remark 3. When the influence function K is nonnegative, the continuous LPS model

satisfies the ellipticity condition and the inf-sup condition. Moreover, the energy density as-

sociated with the dilatation part is bounded by energy density associated with the deviatoric

part of the deformation, as shown in [50]. These facts, intuitively, support our well-posedness

result, where the constraints (4.3), (4.4) and (4.5) are equivalent to requiring that the dis-

cretized LPS model associated with a sign-changing K satisfies the same three properties as

its nonnegative-kernel counterpart.

Therefore, we augment our learning problem (4.1) with the inequality (solvability) con-

straints corresponding to (4.3), (4.4) and (4.5). The constants CΓ, CΓ, and CΦ are only

related to the influence function K and are independent of the shear and Lamé parameters

λ and µ. We calculate the inf-sup constant CΦ in (4.4) by solving an eigenvalue problem, as

indicated by the following theorem.

Theorem 4.2. The inf-sup constant in (4.4) in Theorem 4.1 can be expressed as

CΦ = Λmin(ΦΓ†Φt)

where, for a given square matrix M , M † denotes its pseudoinverse and Λmin(M) denotes its

smallest nonzero eigenvalue.

Proof. The proof can be obtained following the same arguments as in [54, Proposition 3.1].

For any given K as in (3.3) and a fixed discretization method, the largest eigenvalue of

Γ is bounded by construction. Therefore CΓ is finite and, in practice, (4.3), (4.4) and (4.5)
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can be imposed as:

Λmin(Γ) ≥ ζ, (4.6)

Λmin(ΦΓ†Φt) ≥ ζ,

Λmin(Γ− 2ΦtΦ) ≥ 0,

where ζ > 0 is a given, small number.

We can now state the solvability-constrained optimization problem. Rename the matrices

Γ and Φ in (4.2) as Γ(α,D,δ,M) and Φ(α,D,δ,M) indicating that they are parameterized with the

Bernstein polynomial coefficients D, the fractional order α, the horizon δ, and the highest

Bernstein polynomial order M . Given the tolerance parameter ζ > 0, the learning problem

is stated as

(λ∗, µ∗,D∗, α∗, δ∗,M∗) = argmin
λ,µ,D,α,δ,M

1

S

S∑
s=1

||LhKus(xi,s)− bs(xi,s)||2`2(X s)

subject to: λ+ µ > 0, µ > 0, α < 3, Λmin(Γ(α,D,δ,M)) ≥ ζ,

Λmin(Φ(α,D,δ,M)Γ
†
(α,D,δ,M)Φ

t
(α,D,δ,M)) ≥ ζ,

Λmin(Γ(α,D,δ,M) − 2Φt
(α,D,δ,M)Φ(α,D,δ,M)) ≥ 0.

(4.7)

Remark 4. The constraints in (4.6) are sufficient to guarantee that the model associated

with the optimal influence function K is well-posed only when discretized with the same

technique and resolution utilized during training. Being only sufficient, these conditions

may yield an optimal influence function whose associated model is still well-posed when

discretized with different schemes or resolutions. More discussion and numerical tests on

this topic can be found in Section 6.4.

4.3. Algorithm and Workflow

In this section we describe the algorithmic details of our learning approach and describe

the learning workflow that, starting with MD displacements, delivers the optimal influence

function K and the material parameters.

Numerically, the constrained optimization problem (4.7) poses several challenges. Firstly,

the quadrature weights Wj,i generated in the preprocessing generally depend on the horizon

size δ, which hinders the application of a suite of continuous optimization techniques such

as gradient descent or Adam. A similar issue applies to M . Moreover, due to the solvability

constraints, (4.7) is expected to be nonconvex and likely to exhibit local minima. Lastly, the

numerical evaluations of the eigenvalues are time-consuming. For all these reasons, for the
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Algorithm 1 Two-stage strategy to solve (4.7) for (λ∗, µ∗, α∗,D∗).

1: With fixed δ and M , initialize λ, µ, α, D
(0)
k ∼ U (0, 1),where U (a, b) denotes the uniform

distribution on (a, b).
2: Obtain (λpre, µpre, αpre,Dpre) as a local minimum of Lpre(λ, µ, α,D), using the Adam

optimizer.
3: Update λpre ← ReLU(λpre+µpre)−ReLU(µpre), µpre ← ReLU(µpre), αpre ← 3−ReLU(3−
αpre) and Dpre ← ReLU(Dpre).

4: Initialize (λ(0), µ(0), α(0),D(0)) = (λpre, µpre, αpre,Dpre) and $
(0)
1 = $

(0)
2 = $

(0)
3 = 1.

5: Set STEP MAX = 100, φ1 = φ2 = φ3 = 0, ψ = 1, r1 = 5, r2 = 1/4, ε = 10−8.
6: while j ≤ STEP MAX: do . Perform Augmented Lagrangian Algorithm
7: Solve the unconstrained optimization problem

(λ(j), µ(j), α(j),D(j),$(j)) = argmin
λ,µ,α,D,$

Lcorr(λ, µ, α,D,$).

8: if Hp(α
(j),D(j),$(j)) ≤ ε for all p ∈ {1, 2, 3}, then

9: Stop.
10: else
11: if ∃ p ∈ {1, 2, 3} s.t. Hp(α

(j),D(j),$(j)) ≥ r2Hp(α
(j−1),D(j−1),$(j−1)) then

12: Update penalty ψ ← r1ψ.
13: if ψ ≥ 1020 then
14: Stop.

15: else
16: Update Lagrange multiplier φp ← φp + ψHp(α

(j),D(j),$(j)) for p = 1, 2, 3.

17: Update the iteration number j ← j + 1.

18: (λ∗, µ∗, α∗,D∗) = (ReLU(λ(j) +µ(j))−ReLU(µ(j)),ReLU(µ(j)), 3−ReLU(3−α(j)),D(j)).
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sake of numerical efficiency, we treat δ and M as hyperparameters to be separately tuned to

achieve the best learning accuracy without overfitting. As suggested by [32], the optimization

problem (4.7) is split into a prediction step (without constraints) and a correction step (with

constraints), and propose a “two-stage” strategy, whose key components are summarized in

Algorithm 1.

The prediction step of the algorithm relies on the fact that, as shown in [50], when α < 3,

λ+µ > 0, µ > 0 and K ≥ 0, the LPS problem is guaranteed to be well-posed, and therefore

no additional solvability constraint of K are required. Therefore, in the prediction step,

we find a set of nonnegative Bernstein coefficients that will be used as an initial guess for

the second, correction step. The nonnegative coefficients and the corresponding nonnegative

influence function are denoted by Dpre
k and Kpre, respectively. These are obtained by solving

the following, unconstrained problem, whose full solution is denoted by (λpre, µpre, αpre,Dpre).

Lpre(λ, µ, α,D):=
1

S

S∑
s=1

∑
xi∈X s

∣∣∣∣∣∣bsi +
M∑
k=0

ReLU(Dk)

mi(δ)

∑
xj∈Bδ(xi)

Bk,M

(
|xj−xi|

δ

)
Wj,i

|xj − xi|3−ReLU(3−α)[
C1 (ReLU(λ+ µ)− 2ReLU(µ)) (xj − xi)

(
θsi + θsj

)
+C2ReLU(µ)

(xj − xi)⊗ (xj − xi)

|xj − xi|2
(
usj − usi

)]∣∣∣∣∣
2

,

where

θsi :=
M∑
k=0

2ReLU(Dk)

mi(δ)

∑
xj∈Bδ(xi)

Bk,M

(
|xj−xi|

δ

)
Wj,i

|xj − xi|3−ReLU(3−α)
(xj − xi) ·

(
usj − usi

)
,

mi(δ) :=
M∑
k=0

ReLU(Dk)
∑

xj∈Bδ(xi)

Bk,M

(
|xj−xi|

δ

)
Wj,i

|xj − xi|3−ReLU(3−α)
|xj − xi|2.

We solve this unconstrained optimization problem via the Adam optimizer [55]. Here ReLU

denotes the rectified linear unit function:

ReLU(x) :=

{
0, for x ≤ 0;

x, for x > 0.

This operation ensures that ReLU(Dk) is nonnegative and we replace D by ReLU(D) at the

end of the prediction step, to guarantee that the learnt D ≥ 0. Similar strategies are also
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applied to λ, µ and α 2:

µ 7→ ReLU(µ),

λ 7→ ReLU(λ+ µ)− ReLU(µ),

α 7→ 3− ReLU(3− α).

(4.8)

The second step of the algorithm corrects the prediction-step solution by solving for the

fully constrained optimization problem. Specifically, by employing (λpre, µpre, αpre,Dpre) as

the initial guess, we apply the augmented Lagrangian method [56, 57] and treat the inequality

constraints via slack variables. To do this, introduce the functions
H1(α,D, $1) =Λ(Γ(α,D,δ,M))− ζ −$2

1,

H2(α,D, $2) =Λ(Φ(α,D,δ,M)Γ
+
(α,D,δ,M)Φ

t
(α,D,δ,M))− ζ −$2

2,

H3(α,D, $3) =Λ(Γ(α,D,δ,M) − 2Φt
(α,D,δ,M)Φ(α,D,δ,M))−$2

3.

Here, $ = [$1, $2, $3] is the vector of slack variables arising from the inequality constraints.

Then, minimize the following penalized loss function:

Lcorr(λ, µ, α,D,$):=
1

S

S∑
s=1

∑
xi∈X s

∣∣∣∣∣∣bsi +
M∑
k=0

Dk

mi(δ)

∑
xj∈Bδ(xi)

Bk,M

(
|xj−xi|

δ

)
Wj,i

|xj − xi|3−ReLU(3−α)[
C1 (ReLU(λ+ µ)− 2ReLU(µ)) (xj − xi)

(
θsi + θsj

)
+C2ReLU(µ)

(xj − xi)⊗ (xj − xi)

|xj − xi|2
(
usj − usi

)]∣∣∣∣∣
2

+
3∑
p=1

φpHp(3− ReLU(3− α),D,$) +
ψ

2

3∑
p=1

H2
p (3− ReLU(3− α),D,$),

where φp, p = 1, 2, 3 are the Lagrange multipliers and ψ is a penalty parameter. At this

stage, the Adam optimizer is used. An iterative procedure updates the Lagrange multipliers

by 1) solving the unconstrained optimization problem, 2) updating φp via dual gradient

ascent

φp 7→ φp + ψHp(α,D,$),

2Note that although we require λ + µ > 0, µ > 0 and α < 3 for the well-posedness analysis in Theorem
4.1, for numerical simplicity we employ strategy (4.8) which only guarantees λ + µ ≥ 0, µ ≥ 0 and α ≤ 3.
However, in all numerical tests we observed that the predicted λ, µ, α satisfies the well-posedness conditions,
as will be shown in Section 6.
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and 3) increasing ψ when the decreasing ratio of Hp(α,D,$) (with respect to the last

iteration) does not reach 4 for at least one p ∈ {1, 2, 3}. As done in the prediction step, at

the end of the correction step, we replace µ by ReLU(µ), λ by ReLU(λ+µ)−ReLU(µ), and

α by 3−ReLU(3− α). Further details on parameter updates are described in Algorithm 1.

The optimal solution is denoted by (λ∗, µ∗, α∗,D∗).

In applying Algorithm 1, in all our tests, we run the Adam optimizer in PyTorch using

a batch size of 70, the inequality constraint tolerance is set to ε=1E-5 and the learning rate

to 1E-3. The algorithm runs until the loss stagnates, indicating that a stationary point has

been reached. Stagnation typically happens between 1000 and 2000 epochs for the first stage

of the algorithm and at ∼500 epochs for the second stage at each iteration of the augmented

Lagrangian method.

Algorithm 2 Workflow for learning the operator LK from MD displacements.

1: Generate MD displacements on fine grids {Xs
ε} using different external forcings and

domains configurations and group the samples in three data sets:

MDtrain/val/test := {M s
ε,s,U

s
ε,s(t),B

s
ε,s(t)}, s = 1, · · · , Strain/val/test.

2: Coarse grain in space and smooth in time the data sets MDtrain/val/test, then evaluate
the coarse grained data at coarser grids X s to obtain the sets

Strain/val/test := {us(xi,s),bs(xi,s)}, s = 1, · · · , Strain/val/test.

3: for M ∈M: do
4: for δ ∈ D: do
5: Perform the two-stage optimization strategy for fixed (δ,M) to obtain

(λ∗(δ,M), µ
∗
(δ,M), α

∗
(δ,M),D

∗
(δ,M)).

6: Find δ∗M that minimizes Res(δ,M ;Strain).
7: Calculate and store Etrain

Res (δ∗M ,M), Etrain
u (δ∗M ,M), Eval

Res(δ
∗
M ,M) and Eval

u (δ∗M ,M).

8: Find M∗ that minimizes the average of the normalized errors in step 7 and set

(λ∗, µ∗, α∗,D∗, δ∗,M∗) = (λ∗(δ∗
M∗ ,M∗), µ

∗
(δ∗
M∗ ,M∗), α

∗
(δ∗
M∗ ,M∗),D

∗
(δ∗
M∗ ,M∗), δ

∗
M∗ ,M∗)

L∗K = LK(δ∗
M∗ ,M∗)

We now discuss how to tune δ and M , which are treated as hyperparameters. Divide the

sample set into two sub-sets: the set of training samples Strain := {us(xi,s),bs(xi,s)}, s =

1, · · · , Strain, and the set of validation samples Sval := {ũs(xi,s), b̃s(xi,s)}, s = 1, · · · , Sval.
While all samples correspond to the same material, the problem setting of training and

validation samples can be substantially different. For example, they could be generated with
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different grids X s, loading scenarios, boundary conditions, and geometric configuration. For

M ∈ M, we perform Algorithm 1 using the training set Strain with different values of δ ∈ D
and denote the corresponding nonlocal operator by LK(δ,M). Then, for each M , define the

optimal horizon δ∗M as the one that minimizes the average residual of the LPS equation,

denoted by Etrain
Res . Formally,

δ∗M = argmin
δ∈D

Etrain
Res (δ,M) = argmin

δ∈D
Res(δ,M ;Strain),

where

Res(δ,M ; Strain) :=
1

Strain

∑
{us(xi,s),bs(xi,s)}∈Strain

||LhK(δ,M)u
s(xi,s)− bs(xi,s)||2`2(X s).

Denote the corresponding nonlocal operator by LK(δ∗M ,M). Next, to determine the optimal

M that allows for accurate representation of the training samples without overfitting, we

test, for each M , the optimal operator LK(δ∗M ,M) on the validation set Sval by evaluating the

average residual of the LPS equation; the latter, denoted by Eval
Res, is defined as

Eval
Res(M) = Res(δ∗M ,M ;Sval).

In principle, small training and validation losses indicate that the model performs well on

the training set and generalizes well to other data sets. As an additional metric of accuracy

on both the training and validation sets, also consider the displacement mean square error

(MSE), denoted by Etrain
u and Eval

u , respectively. Formally,

Etrain
u (M) :=

1

Strain

∑
{us(xi,s),bs(xi,s)}∈Strain

||us(xi,s)− (LhK(δ∗M ,M))
−1bs(xi,s)||2`2(X s),

and Eval
u is defined similarly by taking the average over the validation set Sval. Based on these

metrics, we select M such that the average of the normalized Etrain
Res (δ∗M ,M), Etrain

u (δ∗M ,M),

Eval
Res(δ

∗
M ,M) and Eval

u (δ∗M ,M) is minimized. Here the normalization is taken with respect to

the same quantities evaluated at the baseline, which is the case with M = 0 (the constant

Bernstein polynomial). In particular, take M∗ = argmin
M

AvgE(M) where

AvgE(M) :=
1

4

(
Etrain

Res (δ∗M ,M)

Etrain
Res (δ∗0, 0)

,
Etrain

u (δ∗M ,M)

Etrain
u (δ∗0, 0)

,
Eval

Res(δ
∗
M ,M)

Eval
Res(δ

∗
0, 0)

,
Eval

u (δ∗M ,M)

Eval
u (δ∗0, 0)

)
.

A summary of the above strategy can be found in Algorithm 2 where we report the overall
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Figure 2: Consistency tests for Algorithm 1 with fixed α = 1 and positive influence function. Left: The
training loss versus basis order M when using different grid size; the dashed lines indicate the values of the
loss functions when the manufactured kernel is used, colors reflect the values of h used for discretization.
Right: The comparison of learned influence functions and the manufactured influence function Kman = 1

r .
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Figure 3: Consistency tests for Algorithm 1 and positive influence function, while learning α. Left: The
training loss versus basis order M when using different grid size; the dashed lines indicate the values of the
loss functions when the manufactured kernel is used, colors reflect the values of h used for discretization.
Right: The comparison of learned influence functions and the manufactured influence function Kman = 1

r .

workflow of our learning procedure.

5. Consistency Tests for Manufactured Solutions

In this section, we test our operator regression algorithm by considering analytic training

pairs {us(x),bs(x)} satisfying (3.4) for the manufactured influence function

Kman(x,y) =
1

|x− y|
.

In particular, data sets are considered with different spatial resolutions X s := {(p1h, p2h)|p =

(p1, p2) ∈ Z2} ∩ (Ω ∩ ΩI) and different Bernstein polynomial orders M with the purpose of

validating Algorithm 1 before employing it on MD data sets.

For the computational domain Ω = [0, 100]2, the training data pairs {us(x),bs(x)}70
s=1
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are generated by setting

u(x1, x2) = (0.1 cos(2k1πx1) cos(2k2πx2), 0), or

u(x1, x2) = (0, 0.1 cos(2k1πx1) cos(2k2πx2)),

with k1, k2 ∈ {0, 1, 2, 3, 4, 5}. Then, for each displacement field us(x), the corresponding

forcing field bs is computed from (3.4) with λ = 0.1010, µ = 0.4545, and δ = 0.125. By

evaluating us and bs on different grid sets Xh with h = 5, h = 2.5 and h = 1.25, respectively,

three training sets of size 70 are then obtained. These are denoted by Sh=5
train, Sh=2.5

train and

Sh=1.25
train .

To verify the consistency of the prediction step in Algorithm 1 and its behavior with

respect to increasing resolution and polynomial order, first consider a positive influence

function K with prescribed fractional order α = 1. Then choose the Bernstein basis order

M in [0, 20]. The prediction step involves the solution of a convex optimization problem

with a non-empty feasible set. Therefore, every local minimum is a global minimum.

For different training sets, the training losses Eval
Res(M) are plotted with respect to in-

creasing polynomial orders M in Figure 2, left. These results suggest that the training loss

improves as the basis order M is increased and as the grid size h decreases. Furthermore,

the manufactured ground-truth kernels have a higher training losses compared to the learned

kernels due to the discretization error, which suggests that the learning algorithm is able to

obtain better kernels on each grid set. Figure 2, right, shows a comparison of the learned

influence functions for a fixed polynomial order M = 10. The learned influence function

gets closer to the manufactured influence function Kman as h → 0. This illustrates the

consistency of the learning algorithm for a given α.

To investigate the effects of the fractional order α, we now consider a positive influence

function with unknown fractional order and use, again, the prediction step of Algorithm 1. In

this case, the convergence of the optimal kernel to the manufactured one is not guaranteed,

since the fractional order is a tunable parameter. The training losses and learnt influence

functions are provided in Figure 3. Although the algorithm does not recover exactly the

influence function Kman, low values of Etrain
Res can be achieved as M increases.

6. Application to graphene using MD

To illustrate the efficacy of our method in obtaining an optimal peridynamic model from

coarse-grained MD displacements, we consider graphene sheets as the application. Graphene

is a two-dimensional form of carbon with a hexagonal structure. Because of its high stiffness

and strength, as well as other unusual physical properties, graphene is being studied for
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Figure 4: Left: hexagonal graphene atomic structure. Center: full MD grid. Right: coarse grained node
positions.

possible use in a number of applications, including as a structural material. For the present

study, an MD model was created using the Tersoff interatomic potential [58]. This potential is

widely used in the MD community for graphene because it incorporates the relative rotation

angle between covalent bonds, which strongly affects the mechanical response. A thermostat

is included in the MD model in the present study to control the temperature and periodic

boundary conditions are applied. The MD grid is shown in Figure 4, center. The grid has

3588 atoms. The corresponding coarse-grained node positions are shown in Figure 4, right.

To simplify the analysis, out-of-plane motions were not considered in this study, although

they would occur in a real material.

Unstressed graphene nominally has an interatomic spacing of 1.46Å. In this study, values

of the coarse-grained quantities ui and bi are evaluated on a square lattice of nodes indexed

by i with spacing h=5.0Å. We also consider an additional, finer data set generated for

validation purposes with spacing 2.5Å.

For any coarse grained node position xi and any atomic position Xε, define the smoothing

function by

ω(xi,Xε) =
τ(xi,Xε)∑
j τ(xj,Xε)

(6.1)

where the cone-shaped function τ(x,X) = max
{

0, R − |X− x|
}

induces a coarse-graining

radius of R=10.0Å. Note that (6.1) satisfies the normalization requirement (2.1).

In all cases, external loading is applied to the atoms in the MD grid in addition to the

random loads applied by the thermostat. The external loading for each atom Bε is constant

over time. The magnitude of the loading is chosen so that the bond strains are no larger

than 2%, which is less than the strains at which nonlinear effects appear. As described in

Section 6.3, the magnitude of the loading is varied relative to the forces on the atoms that

sustain the thermal oscillations. This variation helps to test the robustness of the machine

learning method in extracting the continuum material properties in the presence of thermal
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Figure 5: Contours of U1 displacement in typical MD simulations at zero temperature for the three types of
datasets. Left: training. Center: validation. Right: testing.

oscillations that create noise.

6.1. Data Sets and Metrics of Accuracy

Three sets of data are generated from the MD simulations for each of two values of

temperature, 0K and 300K. In all MD experiments, the atoms are initialized with positions

on a hexagonal lattice in the x1-x2 plane with an interatomic spacing of 1.46Å. The mass

of each atom is 2.0E-26kg, or 12amu. For purposes of computing stresses, the thickness of

the lattice is set to 3.35Å, which is the approximate distance between layers in multilayer

graphene. The MD time step size is 5.0E-16s, or 5.0fs.

Two types of samples are generated for each data set: the standard samples with spacing

h=5.0Å which will be denoted by S0K/300K
train/val/test, and the samples with finer grids h=2.5Å ,

denoted by S0K/300K,fine
train/val/test. Unless stated otherwise, the h=5.0Å data sets are used in the

learning tasks. The finer grid data sets are employed to assess the generalization properties of

the proposed learning approach to different grids (further details and discussions are provided

in Section 6.4). Images showing contours of U1, the component of atomic displacement in

the x1 direction, for the training, validation, and testing samples are provided in Figure 5.

1) Training data set (70 samples): The MD domain is a 100Å×100Å square, and, for

k1, k2 ∈ {0, π50
, 2π

50
, . . . , 5π

50
}, the prescribed external loadings are given by

b(x1, x2) = (C1
k1,k2

cos(k1x1) cos(k2x2), 0), or b(x1, x2) = (0, C2
k1,k2

cos(k1x1) cos(k2x2)).

(6.2)

As mentioned above, the constant C1
k1,k2

and C2
k1,k2

are adjusted so that the bond strains are

no larger than 2%, so the deformation remains in the linear range of material response.

2) Validation data set (10 samples). For the same MD grid and coarse-grained nodes as in
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k C1
k C2

k pk Rk

1 0.001 0 0 25
2 0 0.001 0 25
3 0.001 0 0 15
4 0 0.001 0 15
5 0.001 0 0 10
6 0.001 0 1 25
7 0 0.001 1 25
8 0.001 0 1 15
9 0 0.001 1 15
10 0.001 0 1 10

Table 1: Parameters used in the MD loading in the 10 validation tests.

the training data set, the applied loads in the validation data set are as follows:

b(x1, x2) = (C1
k , C

2
k)

1∑
j=−1

(−1)j cos

(
π

2
min

{
1,
rj,k
Rk

})

where

rj,k =
√

(x1 − (1− pk)Lj)2 + (x2 − pkLj)2

where L=50 and the values of the parameters C1
k , C2

k , pk and Rk are given in Table 1. In

each case, loads are applied to the atoms within three disks of radius Rk with centers at the

center of the grid and at the left and right boundaries (if pk = 0) or the upper and lower

boundaries (if pk = 1). The direction of the load vectors is either in the x1 or x2 directions.

The loads in all cases are self-equilibrated and periodic.

3) Test data set (4 samples). To demonstrate that the learned material model applies

to geometries different from the original square geometry, four additional test cases are

considered. Here, the MD region is a disk of radius 100Å. Within this disk loading is applied

as listed in Table 2 to the exterior of a circle with radius 50Å, with the interior unloaded.

The equilibrium displacements, with smoothing as described previously, are computed at the

coarse-grained nodes, which are spaced 5Å or 2.5Å, apart on a square lattice. All of these

cases have loadings that are discontinuous functions of the radius and therefore are more

challenging from a modeling perspective than the validation cases described above. In cases

2 and 4 the loading is also a discontinuous function of the angle because of the sign function

(sgn).

As metrics of accuracy on the training, validation and test sets, in this section we calculate

the averaged mean square loss (MSL) and displacement mean square error (MSE) for each
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Case b1 b2

1 C cos 4θ cos θ C cos 4θ sin θ
2 C sgn(cos 4θ) cos θ C sgn(cos 4θ) sin θ
3 0 C sgn(sin θ) sin θ
4 C sin 3θ sin θ C sin 3θ cos θ

Table 2: Loading applied to the exterior of a disk of radius 50Å in the four tests. In all cases, C=0.0005.
b1 and b2 are components of b along the x1 and x2 directions, respectively, and θ is the polar angle in the
plane.

learnt kernel on these three sets, which will be referred to as E
train/val/test
Res/u , respectively. To

provide a fair comparison between different sets, all these accuracy metrics except Etest
Res are

normalized with respect to either the force loading or the displacement fields. Specifically,

E
train/val
Res is normalized by ||bs||2l2(X s) and E

train/val/test
u is normalized by ||us||2l2(X s). For Etest

Res

we report the absolute value instead since on the test samples the loading is only applied

outside the computational domain and we have bs = 0 on Ω. Therefore, we can not normalize

Etest
Res with respect to the force loading field.

Changing the shape of the smoothing functions, while holding the radius R constant, has

only a small effect on the results. For example, replacing the cone-shaped function τ used in

(6.1) with a paraboloid changes the coarse-grained displacements by about 0.3% in a typical

MD simulation used to generate the training data. Changing the radius R affects the horizon

δ and therefore affects the dispersion properties of waves with wavelengths comparable to or

less than the horizon given by (2.9) [38].

6.2. Learning Results

We first tune the hyperparameters (δ,M) following the procedure described in Algorithm

2. The optimal δ∗M for each fixed polynomial order M and the corresponding Etrain
Res , Etrain

u ,

Eval
Res, E

val
u , and AvgE are reported in Table 3 and Figure 6. Based on these results, we

set (δ∗M ,M) = (20Å, 10) for the 0K tasks, and (δ∗M ,M) = (20Å, 15) for the 300K tasks.

For both data sets the optimal horizon size is δ = 20Å , which is twice the support radius

R. This value is very close to the horizon that would be predicted by (2.9), because the

MD cutoff distance d = 1.46Å� R, and there are very few interatomic interactions that

connect the smoothing functions with centers separated by 2R. Compared to the data set at

0K, the 300K data set requires a higher polynomial order M and therefore a more complex

influence function. This is possibly due to the occurrence of thermal oscillations in the MD

simulations at 300K. We use these optimal pairs (δ∗M ,M) as the default choices in all tests

below (unless stated otherwise).

The learning results are provided in the left plot of Figure 7 and in Table 4. For both the

0K and the 300K data sets, the Young’s modulus is estimated to be around 1TPa, which is
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data set M δ∗M Etrain
Res Etrain

u Eval
Res Eval

u AvgE

0K

0 12.5Å 13.91% 17.54% 16.31% 14.49% 1
5 12.5Å 10.42% 12.19% 13.02% 7.69% 0.6933

10 20Å 9.81% 11.72% 13.28% 7.16% 0.6704
15 22.5Å 9.80% 11.61% 13.50% 7.22% 0.6731
20 25Å 9.75% 11.89% 13.53% 7.00% 0.6729

300K

0 12.5Å 13.46% 31.33% 20.15% 14.86% 1
5 12.5Å 10.50% 13.80% 17.83% 9.66% 0.6784
10 20Å 9.79% 13.32% 18.11% 9.08% 0.6549
15 20Å 9.82% 13.16% 18.08% 8.88% 0.6505
20 25Å 9.81% 13.36% 18.34% 9.23% 0.6609

Table 3: Losses from the optimal δ∗(M) for each values of M , where the optimal cases and the corresponding
average of the normalized errors are highlighted with bold.
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Figure 6: Optimal relative mean square loss (MSL) and relative mean square error (MSE) for each polynomial
order M . Left: results at 0K. Right: results at 300K.

consistent with experimental evidence [59, 60] and computations via first principles [61] or

MD [62, 63]. The predicted Poisson ratio is negative, which results from graphene’s excep-

tionally high resistance to relative angle changes (shear) between the covalent bonds. The

predicted value ν = −0.4 is consistent with other MD and molecular statistics simulations

[64, 65]. As expected, the optimal influence functions shown in the left plot of Figure 7 are

partially negative for both data sets. This fact highlights the importance of allowing for

sign-changing influence functions.

6.3. Sensitivity to Thermal Oscillations

Recall from (2.4) that each atom in the MD simulation experiences internal forces Fγε

due to interaction with other atoms and external forces Bε due to prescribed loads. At finite

temperature, the internal forces consist largely of the random forces that produce thermal

oscillations. A convenient way to characterize the relative magnitude of the random and
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Figure 7: Left: Optimal influence functions K at 0K and 300K. Right: Optimal influence functions K at
300K with different level of noise.

data set M α λ (TPa) µ (TPa) E (TPa) ν

0K
10 2.8335 -0.4796 0.7978 0.91 -0.4297

Etrain
Res Etrain

u Eval
Res Eval

u Etest
Res Etest

u

9.81% 11.72% 13.28% 7.16% 2.03E-1 6.75%

data set M α λ (TPa) µ (TPa) E (TPa) ν

300K
15 2.5946 -0.4583 0.7753 0.90 -0.4196

Etrain
Res Etrain

u Eval
Res Eval

u Etest
Res Etest

u

9.82% 13.16% 18.08% 8.88% 2.08E-1 9.21%

Table 4: Optimal material parameters and MSL/MSE on training, validation and testing data sets at 0K
and 300K. Etest

Res shows the absolute `2 error as the inner circle in the test problem is unloaded.

prescribed forces is the signal-to-noise ratio (SNR) defined by

SNR =

√√√√ ∑
ε |Bε|2∑

ε

∣∣∣Bε +
∑

γ Fγε

∣∣∣2 .
At finite temperature with zero loading, SNR = 0, while at zero temperature but finite

loading in equilibrium, SNR =∞. Most, but not all, of the random forces and oscillations

are smoothed out by the coarse graining prior to application of the algorithm to learn the

kernel and material parameters. The effect of the random noise is also reduced by the

smoothing of displacements over time using (2.10).

Next, we investigate the robustness of the learning approach by applying Algorithm 2

to training data sets with different signal-to-noise ratios. With temperature 300K, three

training data sets are created by changing the relative magnitude of the loading described

in (6.2) to 1, 1/4 and 1/10, respectively. Due to the existence of thermal noise, the smaller

the loading magnitude is, the smaller the signal-to-noise ratio will be. Therefore, we denote

these three training data sets as the “Low noise” data set, “Med noise” data set and “High

noise” data set, respectively.
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StN ratio α λ (TPa) µ (TPa) E (TPa) ν
300K 0.1556 2.5946 -0.4583 0.7753 0.90 -0.4196

Low Noise Etrain
Res Etrain

u Eval
Res Eval

u Etest
Res Etest

u

9.82% 13.16% 18.08% 8.88% 2.08E-1 9.21%

StN ratio α λ (TPa) µ (TPa) E (TPa) ν
300K 0.0543 2.5197 -0.4782 0.7798 0.87 -0.4422

Med Noise Etrain
Res Etrain

u Eval
Res Eval

u Etest
Res Etest

u

14.52% 28.27% 18.34% 9.82% 2.11E-1 9.28%

StN ratio α λ (TPa) µ (TPa) E (TPa) ν
300K 0.0224 1.9365 -0.3266 0.6890 0.95 -0.3106

High Noise Etrain
Res Etrain

u Eval
Res Eval

u Etest
Res Etest

u

27.64% 48.86% 23.73% 17.54% 1.84E-1 7.95%

Table 5: Test of algorithm robustness on 300K data set with different noise levels. Etest
Res shows the absolute

`2 error as the inner circle in the test problem is unloaded.

To study the sensitivity of the learning algorithm with respect to decreasing SNRs, we

plot and compare the optimal influence function K in the right plot of Figure 7. It can be

seen that while the learnt influence function from the “Med noise” data set is almost the

same as the influence function from the “Low noise” data set, the learnt influence function

from “High noise” data set slightly differs. To provide a further quantitative comparison,

Table 5 provides the estimated material parameters as well as the loss and errors on the

validation and test data sets. The learnt influence functions from all training sets achieves

a similar level of accuracy on the test data set. On the validation set, the learnt model from

“Med noise” set achieves a similar accuracy as the model from “Low noise” set, while the

displacement mean square error increases for the learnt model from “High noise” set. Not

surprisingly, since the SNR decreases by 7 times in the “High noise” set, Eval
u doubles.

6.4. Generalization

This section discusses the generalization of the optimal influence function to different

loadings, domains and discretizations.

Different Loadings: The loadings in the validation and test data sets are substantially

different from those in training data sets. Therefore, these can be used to assess the perfor-

mance of the learnt models as reported in Table 4. The validation loss is consistently lower

than 20% and the solution error smaller than 10%, illustrating that the optimal models can

be generalized to problems with different loadings.

Different Domains: In the test data set the domain is a disk (as opposed to the square

domain used for training). The results of applying the optimal learnt model to this test

problem are provided in Table 4. Here the loss Etest
Res is presented as the absolute error
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Strain Sval and Stest Eval
Res Eval

u Etest
Res Etest

u

h = 5Å and h = 2.5Å h = 2.5Å 16.19% 8.01% 2.95E-0 8.44%

h = 5Å and h = 2.5Å h = 5Å 13.24% 9.29% 1.97E-1 7.80%

Table 6: Learning results from hybrid resolution datasets with fixed δ = 12.5Å.

because the interior circle is unloaded. For both 0K and 300K, the solution error is consis-

tently below 10%, showing that the optimal models can perform well with different domain

configurations3.

Hybrid Discretizations: Since the proposed approach learns a continuous nonlocal oper-

ator rather than a discrete surrogate for the solution, the learning approach can naturally

handle data sets with different resolutions or even different discretization methods. To pro-

vide initial studies on the generalization properties with respect to different resolutions, we

consider a hybrid data set with samples of different resolutions and investigate the perfor-

mance of the learning algorithm. In particular, the training data set is defined as the union

of S0K
train and S0K,fine

train . Table 6 reports the accuracy of the learnt model on both standard

and fine validation and test data sets. From the results in the table, the solution error is

consistently below 10%, which highlights the capability of the proposed algorithm to handle

data sets with different resolutions.

7. Conclusion

We introduced a new optimization-based, data-driven approach to extract an optimal

linear peridynamic solid model from MD data. The peridynamic constitutive law is learned

by optimizing the influence function and material parameters. The influence function is al-

lowed to be sign-changing, thus improving the descriptive power of the optimal model. The

nontrivial problem of learning well-posed models in the presence of sign-changing influence

functions was addressed by deriving new sufficient conditions for the discretized peridynamic

model, embedded in the learning procedure as inequality constraints. To assess the perfor-

mance of the proposed learning algorithm, we tested the robustness with respect to noise and

the ability of the optimal model to generalize to different domain configurations, external

loadings, and discretizations.

A fundamental aspect of the proposed procedure is the fact that we learn a continuous

operator rather than a discrete operator or a surrogate for the solution; this fact guaran-

tees generalization of the optimal model to settings that are different from the ones used

3Among all training samples, higher relative solution errors are observed from samples driven by high
frequency external loadings. Comparing with the training set, the test samples are all with relatively low
spatial frequency and therefore have smaller solution errors.
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during training. Furthermore, the continuous setting opens new research direction, such as

considering different discretization methods when validating the optimal model.

Although the present work focuses on single layered graphene, the results suggest that

this method may impact a broader range of materials and applications. As a follow-up

work we plan to extend our algorithm to more complex materials behaviors, such as large

deformation and/or damage.
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