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Abstract

We consider the existence and spectral stability of periodic multi-pulse solutions in Hamiltonian systems 
which are translation invariant and reversible, for which the fifth-order Korteweg-de Vries equation is a 
prototypical example. We use Lin’s method to construct multi-pulses on a periodic domain, and in par-
ticular demonstrate a pitchfork bifurcation structure for periodic double pulses. We also use Lin’s method 
to reduce the spectral problem for periodic multi-pulses to computing the determinant of a block matrix, 
which encodes both eigenvalues resulting from interactions between neighboring pulses and eigenvalues 
associated with the essential spectrum. We then use this matrix to compute the spectrum associated with 
periodic single and double pulses. Most notably, we prove that brief instability bubbles form when eigen-
values collide on the imaginary axis as the periodic domain size is altered. These analytical results are all 
in good agreement with numerical computations, and numerical timestepping experiments demonstrate that 
these instability bubbles correspond to oscillatory instabilities.
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1. Introduction

Solitary waves, localized disturbances that maintain their shape as they propagate at a constant 
velocity, have been an object of mathematical and experimental interest since the nineteenth cen-
tury [1] and have applications not only in fluid mechanics but also nonlinear optics [2], molecular 
systems [3], Bose-Einstein condensates [4], and ferromagnetics [5]. Of more recent interest are 
multi-pulses, which are multi-modal solitary waves resembling multiple, well-separated copies 
of a single solitary wave. The entire multi-pulse travels as a unit, and it maintains its shape un-
less perturbed. The study of multi-pulses goes back to at least the early 1980s, where Evans, 
Fenichel, and Faroe proved the existence of a double pulse traveling wave in nerve axon equa-
tions [6]. The stability of these double pulses was shown in [7], and the existence result was 
extended to arbitrary multi-pulses in [8]. The existence of multi-pulse traveling wave solutions 
to semilinear parabolic equations, which includes reaction-diffusion systems, was established in 
[9], and the stability of these solutions was determined using the Evans function, an analytic 
function whose zeros coincide with the point spectrum of a linear operator [10]. Existence of 
multi-pulse solutions to a family of Hamiltonian equations was shown in [11] using the dynam-
ics on the Smale horseshoe set, and a spatial dynamics approach to the same problem is found 
in [12]. Multi-pulses have since been studied in diverse systems, including a pair of nonlinearly 
coupled Schrödinger equations [13,14], coupled nonlinear Schrödinger equations [15,16], the 
vector nonlinear Schrödinger equation [17], and lattice systems such as the discrete nonlinear 
Schrödinger equation [18] and the discrete sine-Gordon equation [19]. In general, the spectrum 
of the linearization of the underlying PDE about a multi-pulse contains a finite set of eigenvalues 
close to 0 [20,21]. Since these result from nonlinear interactions between the tails of neighboring 
pulses, we call them interaction eigenvalues. Under the assumption that the essential spectrum 
lies in the left half plane, spectral stability of multi-pulses depends on these interaction eigenval-
ues. For semilinear parabolic equations, these eigenvalues are computed in [21] by using Lin’s 
method, an implementation of the Lyapunov-Schmidt technique, to reduce the eigenvalue prob-
lem to a matrix equation. An extension of this technique was used to study the existence and 
spectral stability of multi-pulses in systems with both reflection and phase symmetries, such as 
the complex cubic-quintic Ginzburg-Landau equation [22]. This was further adapted to multi-
pulses in certain Hamiltonian systems with two continuous symmetries, such as a fourth order 
nonlinear Schrödinger equation [23].

A much more difficult problem concerns the spectral stability of multi-pulses in Hamilto-
nian PDEs in the case where the essential spectrum consists of the entire imaginary axis. (If 
the essential spectrum is imaginary but bounded away from the origin, the spectral problem is 
considerably easier; see, for example, applications to a fourth-order beam equation [24, Section
6] and a fourth-order nonlinear Schrödinger equation [23].) As a concrete example, we consider 
solitary wave solutions to the fifth-order Korteweg-de Vries equation (KdV5)

ut = ∂x

(
uxxxx − uxx + cu − u2

)
c > 1/4, (1.1)

which is the equation studied in [25] written in a moving frame with speed c. For the remain-
der of this paper, we will consider the wavespeed c to be a fixed parameter. For c > 1/4, the 
solitary wave solutions will have oscillatory, exponentially decaying tails (see Hypothesis 3.5
and Remark 3.6 below). A double pulse solution resembles two well-separated copies of the pri-
mary solitary wave which are joined together in such a way that the tail oscillations “match up” 
(Fig. 1, left panel). The distance between the two peaks takes values in a discrete set (Fig. 1, 
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Fig. 1. Left panel is schematic of construction of double pulse solution (solid line) from two single pulses (dotted lines). 
Oscillatory tails are exaggerated. Right panel shows the first four double pulse solutions to (1.1) for c = 10.

right panel) [25,12]. This constraint is a consequence of a specific alignment of the stable and 
unstable manifolds which is a necessary condition for multi-pulses to occur, and these discrete 
values represent the number of twists made by the manifolds near the equilibrium at the origin 
[21]. For the spectral problem, the essential spectrum is the entire imaginary axis, and depends 
only on the background state. In addition, there is a pair of interaction eigenvalues which is sym-
metric about the origin and alternates between real (corresponding to double pulses with dashed 
lines in the right panel of Fig. 1) and imaginary with negative Krein signature (corresponding to 
double pulses with solid lines in the right panel of Fig. 1) [25]. Numerical timestepping verifies 
that double pulses with real eigenvalues are unstable; when perturbed, the two peaks move away 
from each other with equal and opposite velocities (Fig. 2, left panel). For the remaining double 
pulses, numerical timestepping suggests that the two peaks exhibit oscillatory behavior when 
perturbed (Fig. 2, right panel). Similar timestepping results can be seen in [25, Fig. 9], as well as 
a reduction of the system to a two-dimensional phase plane [25, Fig. 10]. A different argument 
that half of the double pulses are stable can be found in [26], which uses the asymptotic method 
of [27]. Stability of double pulses in KdV5 is also discussed in terms of the Maslov index, an 
integer-valued topological invariant associated with homoclinic orbits in a finite-dimensional 
Hamiltonian system, in [28, Section 15.1]. The methods in [28] are extended to Hamiltonian 
systems with phase space of dimension greater than four in [29]; a specific example is the 7th 
order KdV model considered in [29, Section 8].

Although these numerical results suggest that every other double pulse is neutrally stable, this 
remains an open question, since the imaginary eigenvalues are embedded in the essential spec-
trum. Furthermore, the timestepping simulation in Fig. 2 was performed with separated boundary 
conditions, which shifts the essential spectrum into the left half plane, and thus could fundamen-
tally alter the behavior of the system. As an alternative, we will look at multi-pulse solutions on 
a periodic domain subject to co-periodic perturbations. The advantage is that the essential spec-
trum becomes a discrete set of points on the imaginary axis; by analogy to the problem on the real 
line, we will refer to this set as essential spectrum eigenvalues, even though they are elements 
of the point spectrum. Purely imaginary interaction eigenvalues can then lie between essential 
spectrum eigenvalues. Periodic traveling waves were described by Korteweg and de Vries in their 
1895 paper [1], and the stability of these cnoidal waves is shown in [30,31]. Since then, stability 
of periodic solutions has been investigated for many other systems, including the generalized 
KdV equation [32], the generalized Kuramoto-Sivashinsky equation [33], the Boussinesq equa-
tion [34], the Klein-Gordon equation [35], a generalized class of nonlinear dispersive equations 
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Fig. 2. Results of numerical timestepping simulations for perturbations of double pulse solutions to (1.1) with real eigen-
values (left panel) and imaginary eigenvalues (right panel). Crank-Nicolson/Adams-Bashforth 2 IMEX scheme in time 
with Chebyshev spectral discretization, Dirichlet and Neumann boundary conditions.

[36], the regularized short pulse and Ostrovsky equations [37], and the Lugiato-Lefever model 
of optical fibers [38–40].

As in [12,21], we will use a spatial dynamics approach. We note that since the wavespeed 
c is a fixed parameter, all solutions obtained this way will be traveling waves with speed c. 
From this perspective, the primary solitary wave is a homoclinic orbit connecting the unstable 
and stable manifolds of a saddle equilibrium point at the origin. A multi-pulse is a multi-loop 
homoclinic orbit which remains close to the primary homoclinic orbit, and a periodic multi-
pulse is a multi-loop periodic orbit. Unlike multi-pulses on the real line, which exist in discrete 
families (see Fig. 1, right panel), periodic multi-pulses exist in continuous families, since there is 
an additional degree of freedom in their construction. Consider, for example, a 2-pulse. Whereas 
a 2-pulse on the real line can be described by a single length parameter representing the distance 
between the two peaks, the characterization of a periodic 2-pulse requires two length parameters 
X0 and X1 (Fig. 3, left panel). The length of the periodic domain is 2X = 2X0 + 2X1. Double 
pulse solutions on the real line correspond to the formal limit X1 → ∞. The length parameter X0

(represented by the red solid and blue dotted horizontal lines in Fig. 3) formally converges to the 
distance between the two peaks in the double pulse solution on the real line (these solutions are 
shown in the right panel of Fig. 1). As a consequence of this additional degree of freedom and the 
reversibility of the system, symmetric periodic 2-pulses (X0 = X1) exist for all sufficiently large 
X0, and asymmetric periodic 2-pulses (X0 �= X1) bifurcate from these symmetric periodic 2-
pulses in a series of pitchfork bifurcations (Fig. 3, center panel). The symmetric periodic 2-pulse 
solutions (X0 = X1) correspond to periodic single-pulse solutions with the period 2X0 repeated 
twice on the period 2X.

To compute the spectrum of the linearization of the underlying PDE about a periodic multi-
pulse, we use Lin’s method to reduce the eigenvalue problem to a block matrix equation; the 
block matrix encodes the interaction eigenvalues, the essential spectrum eigenvalues, and the 
translational eigenvalues (which are in the kernel of the linearization). For a periodic 2-pulse, the 
block matrix is 4 × 4, and the resulting equation can be solved. This yields the interaction eigen-
value pattern in the center panel of Fig. 3, which corresponds exactly to the pitchfork bifurcation 
structure. The arms of the pitchforks alternate between solutions with a pair of real interaction 
eigenvalues and solutions with a pair of imaginary interaction eigenvalues; stability changes at 
the pitchfork bifurcation points, when the interaction eigenvalues collide at the origin.
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Fig. 3. Left panel is an illustration of a periodic 2-pulse showing the two length parameters X0 and X1. Center panel 
shows the pitchfork bifurcation structure for periodic 2-pulses as these length parameters are varied. Pitchfork bifurcation 
points are indicated with black dots. Blue dotted lines correspond to solutions with real interaction eigenvalues, and red 
solid lines correspond to solutions with imaginary interaction eigenvalues. Right panel is a schematic of the eigenvalue 
pattern for a periodic 2-pulse with a pair of imaginary interaction eigenvalues, corresponding to the solid red line in the 
center panel. The spectrum comprises an imaginary pair of interaction eigenvalues (red dots), a double eigenvalue at the 
origin from translation invariance (black square), and essential spectrum eigenvalues (blue open circles). The wavespeed 
c is fixed. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

The right panel of Fig. 3 is a schematic of the eigenvalue pattern of a periodic double pulse 
with imaginary interaction eigenvalues. The schematic also shows the first two essential spec-
trum eigenvalues. The essential spectrum eigenvalues are approximately equally spaced on the 
imaginary axis, and, to leading order, their location depends only on the domain length param-
eter X. As long as the interaction eigenvalues and the essential spectrum eigenvalues do not get 
too close, which we can guarantee by choosing the length parameters X0 and X1 sufficiently 
large, the interaction eigenvalue pattern is as shown in Fig. 3. As the domain size X is increased 
(moving to the right along the arm of the pitchfork corresponding to the red solid line in Fig. 3), 
however, the essential spectrum eigenvalues move along the imaginary axis towards the origin. 
At a critical value of X, there is a collision between one of the essential spectrum eigenvalues 
and a purely imaginary interaction eigenvalue. Since the two eigenvalues have opposite Krein 
signatures, we expect them to leave the imaginary axis upon collision. In fact, what occurs is that 
a brief instability bubble is formed, where the two eigenvalues collide, move off the imaginary 
axis, trace an approximate circle in the complex plane, and recombine on the imaginary axis in 
a “reverse” Krein collision. This brief instability bubble, which we call a Krein bubble, is also a 
consequence of the block matrix reduction, and is shown in schematic form in Fig. 4. The radius 
of the Krein bubble in the complex plane and the value of X at which the Krein bubble occurs can 
be computed using the block matrix reduction. Similar instability bubbles have been observed in 
other systems. As one example, they are found for dark soliton solutions of the discrete nonlin-
ear Schrödinger equation on a finite lattice as the coupling parameter is increased [41]; in that 
case, however, the instability bubbles disappear after a critical value of the coupling parameter is 
reached ([41, Fig. 2]).

This paper is organized as follows. In section 2, we introduce a generalization of KdV5 as our 
motivating example. In section 3, we set up the problem of interest in general terms as a Hamil-
tonian system in 2m dimensions which is reversible and translation invariant, for which KdV5 
(corresponding to m = 2) is a special case. We also comment on extensions to higher order mod-
els, for which m > 2. We then present the main results of this paper, which concern the existence 
(section 4) and spectrum (section 5) of periodic multi-pulse solutions. This is then applied to the 
periodic single pulse and the periodic double pulse. In particular, we prove that Krein bubbles 
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Fig. 4. Schematic showing brief instability bubble which forms as the imaginary interaction eigenvalue and the first 
essential spectrum eigenvalue collide on the imaginary axis. Domain size X increases from left to right, and top to 
bottom. Eigenvalues are shown in red dots, Krein bubble is dotted circle, and center of instability bubble is marked with 
blue X.

occur, and we give a formula for their radius in terms of fundamental constants associated with 
the system. In section 6, we present numerical results which provide verification for our theoret-
ical work, including timestepping simulations to demonstrate the dynamical consequence of the 
Krein bubble. The next sections contain proofs of the main results, after which we discuss our 
findings in section 12 and offer some directions for future work.

2. Background and motivation

The Kawahara equation, also known as a fifth-order KdV-type equation, is used as a model 
for water waves, magneto-acoustic waves, plasma waves, and other dispersive phenomena. This 
equation takes the general form

ut + αuxxx + βuxxxxx = ∂

∂x
f (u,ux,uxxx), (2.1)

where u(x, t) is a real-valued function, the parameters α and β are real with β �= 0, and f is 
a smooth function [42,43]. If f is a variational derivative, then (2.1) is the Hamiltonian system 
∂tu = J E ′(u), where J = ∂x is skew-Hermitian,

E(u) = −1

2

∞∫
−∞

(
1

2
u2

xx − 1

2
αu2

x + h(u,ux,uxx)

)
dx (2.2)

is the energy, and f in (2.1) is the variational derivative of the term involving h in (2.2) [42]. A 
prototypical example is

ut + 2

15
uxxxxx − buxxx + 3uux + 2uxuxx + uuxxx = 0,

which is a weakly nonlinear long-wave approximation for capillary-gravity water waves [44,45]. 
We will consider instead the simpler equation
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ut = uxxxxx + puxxx − 2uux, (2.3)

which is a general form of the equation studied in [25]. Writing (2.3) in a co-moving frame with 
speed c by letting ξ = x − ct , equation (2.3) becomes

ut = ∂x(uxxxx + puxx + cu − u2), (2.4)

where we have renamed the independent variable back to x. Localized traveling pulse solutions 
satisfy the 4th order ODE

uxxxx + puxx + cu − u2 = 0, (2.5)

which is obtained from (2.4) by integrating once. Equation (2.5) is Hamiltonian, with conserved 
quantity

H(u,ux,uxx, uxxx) = uxuxxx − 1

2
u2

xx + p

2
u2

x + c

2
u2 − 1

3
u3, (2.6)

which is obtained by multiplying (2.5) by ux and integrating once. Letting

U = (q1, q2,p1,p2) = (u,ux,−uxxx + ux,uxx), (2.7)

we can also write (2.5) in standard Hamiltonian form as the first order system

U ′ = F(U) = J∇H̃ (U), (2.8)

where J is the standard 4 × 4 symplectic matrix and

H̃ (q1, q2,p1,p2) = 1

3
q3

1 − 1

2
cq2

1 + p1q2 + p

2
q2

2 + 1

2
p2

2. (2.9)

We have the following theorem concerning the existence of localized solutions to (2.5), which is 
a direct consequence of [46], reversibility, and the stable manifold theorem.

Theorem 2.1. If p < 2
√

c, then there exists a single-pulse solution q(x) to (2.5) which is an even 
function and decays exponentially to 0 at ±∞.

Linearization of (2.5) about a solution u(x) is the self-adjoint linear operator

E ′′(u) = ∂4
x + p∂2

x + c − 2u∗, (2.10)

where E ′′(u) is the Hessian of the energy. The rest state u = 0 corresponds to the equilibrium 
point U = 0 of the first order system (2.8). When p < 2

√
c, this equilibrium is a hyperbolic 

saddle with 2-dimensional stable and unstable manifolds. The single pulse q(x) corresponds 
to a homoclinic orbit connecting the stable and unstable manifolds of this equilibrium. If 
−2

√
c < p < 2

√
c, the eigenvalues of DF(0) are a complex quartet ±α0 ± βi0, and multi-

modal homoclinic and periodic orbits exist which lie close to the primary homoclinic orbit [12]. 
We adapt Lin’s method as in [47,12] to construct periodic multi-pulses (n-periodic solutions) 
374



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
by gluing together consecutive copies of the primary pulse end-to-end in a loop using small re-
mainder functions. This provides not only an existence result but also estimates for these small 
remainder functions. As opposed to n-homoclinic solutions, for which the pulse tails are spliced 
together at n − 1 locations, these n-periodic solutions require n splices at the pulse tails, which 
provides an additional degree of freedom. For spectral stability, as in [21], we reduce the compu-
tation of the spectrum of the linearization of the PDE (2.4) about a periodic n-pulse to a matrix 
equation. In contrast to [21], we obtain a 2n × 2n block matrix, which encodes both the interac-
tion eigenvalues and the essential spectrum eigenvalues near the origin.

3. Mathematical setup

3.1. Hamiltonian PDE

First, we define a Hamiltonian PDE which is reversible and translation invariant. This analysis 
follows Grillakis, Shatah, and Strauss [48]. Let X = H 2m(R) for m ≥ 2, and Y = L2(R), and 
consider the PDE

ut = ∂xE ′(u), (3.1)

where u ∈ X and E : X ⊂ Y → R is a smooth functional representing the conserved energy of 
the system. We take the following hypothesis regarding the energy E(u).

Hypothesis 3.1. The energy E(u) has the following properties:

(i) E(0) = 0 and E ′(0) = 0.
(ii) E(u) = E(ρ(u)), where ρ : X → X is the reversor operator [ρ(u)](x) = u(−x).

(iii) E(T (s)u) = E(u) for all s ∈ R, where {T (s) : s ∈ R} is the one parameter group of unitary 
translation operators on X defined by [T (s)]u(·) = u(· − s).

(iv) E ′(u) : X → X is a differential operator of the form

E ′(u) = ∂2m
x u − f (u, ∂xu, . . . , ∂2m−1

x u), (3.2)

where f :R2m →R is smooth.

Hypothesis 3.1(ii) is reversibility, and Hypothesis 3.1(iii) is translation invariance. Hypothe-
sis 3.1(iv) holds in applications such as KdV5, and lets us write the 2m-th order ODE E ′(u) = 0
as a first order system in R2m.

Remark 3.2. Although we are most interested in the case where m = 2, for which the Kawahara 
equation (2.1) and the fifth-order KdV model (1.1) are specific examples, the theory is developed 
for general m ≥ 2 so that it applies to higher order models as well. An example for m = 3 is the 
seventh-order KdV equation ([49, Chapter 15.10] and [29, Section 8])

ut = ∂x

(
−auxxxxxx + uxxxx − uxx + cu − 3u2

)
, (3.3)

which was introduced to study the KdV equation under singular perturbations (see also equation 
(24) in [50]). The ninth-order KdV equation [49, Chapter 15.10] corresponds to m = 4. There has 
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also been recent interest in nonlinear Schrödinger models incorporating higher order dispersion 
terms [51].

Differentiating the reversibility relation E(u) = E(ρ(u)) with respect to u,

E ′(u) = ρ∗(E ′(ρ(u))) = ρ(E ′(ρ(u))),

since ρ is self-adjoint. Differentiating the symmetry relation E(T (s)u) = E(u) with respect to u,

E ′(u) = T (s)∗E ′(T (s)u) (3.4)

E ′′(u) = T (s)∗E ′′(T (s)u)T (s). (3.5)

Differentiating the symmetry relation E(T (s)u) = E(u) with respect to s at s = 0,

0 = 〈E ′(u), T ′(s)u〉|s=0 = 〈E ′(u), T ′(0)u〉 = 〈E ′(u), ∂xu〉

for all u ∈ X, since T ′(0) = ∂x is the infinitesimal generator of the translation group T (s). There 
is an additional conserved quantity Q : L2(R) → R, given by

Q(u) = −1

2

∞∫
−∞

u2dx, (3.6)

which represents charge in some applications. Traveling waves are solutions of (3.1) of the form 
u(x, t) = T (ct)φ(x) = φ(x − ct). If φ satisfies the equilibrium equation E ′(φ) = cQ′(φ), then 
T (ct)φ(x) is a traveling wave [48]. Since Q′(φ) = −φ, the equilibrium equation becomes

E ′(φ) + cφ = 0. (3.7)

Without loss of generality, we will assume that E ′(φ) does not contain any terms of the form bφ

for b constant, since that is accounted for by the cφ term in (3.7).
We take the following hypothesis concerning the existence of traveling waves, which is similar 

to [48, Assumption 2]. In the next section, we will give a condition under which this hypothesis 
is satisfied.

Hypothesis 3.3. There exists an open interval (c1, c2) ⊂ R and a C1 map c �→ φc such that for 
every c ∈ (c1, c2), E ′(φc) + cφc = 0, i.e. φc is a traveling wave solution to (3.1).

The linearization of the PDE (3.1) about a traveling wave solution φc is the linear operator 
∂xL(φc), where L(φc) is the self-adjoint operator

L(φc) = E ′′(φc) + c, (3.8)

and E ′′(φc) is the Hessian of the energy E(φc). Differentiating (3.7) with respect to x and with 
respect to c,
376
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L(φc)∂xφc = 0

L(φc)(−∂cφc) = φc.
(3.9)

Differentiating again with respect to x,

[∂xL(φc)]∂xφc = 0

[∂xL(φc)](−∂cφc) = ∂xφc,
(3.10)

thus the kernel of ∂xE ′′(φc) has algebraic multiplicity at least 2 and geometric multiplicity at 
least 1.

3.2. Spatial dynamics formulation

We reformulate the equilibrium equation (3.7) using a spatial dynamics approach by rewriting 
it as a first-order dynamical system in R2m evolving in the spatial variable x. From this viewpoint, 
an exponentially localized traveling wave is a homoclinic orbit connecting a saddle point equi-
librium at the origin to itself. Let U = (u, ∂xu, . . . , ∂2m−1

x u)T ∈ R2m. Using Hypothesis 3.1(iv), 
equation (3.7) is equivalent to the first order system

U ′(x) = F(U(x); c), (3.11)

where F : R2m ×R → R2m is smooth and is given by

F(u1, u2, . . . , u2m; c) =

⎛
⎜⎜⎜⎝

u2
u3
...

f (u1, u2, . . . , u2m) − cu1

⎞
⎟⎟⎟⎠ . (3.12)

By reversibility,

F(RU ; c) = −RF(U ; c)
DF(RU ; c) = −RDF(U ; c)R,

(3.13)

where R : R2m → R2m is the standard reversor operator on R2m

R(u1, u2, . . . , u2m−1, u2m) = (u1,−u2, . . . , u2m−1,−u2m). (3.14)

First, we assume that (3.11) is a conservative system.

Hypothesis 3.4. There exists a smooth function H : R2m ×R → R such that

(i) H(0; c) = 0 for all c.
(ii) ∇UH(U ; c) = 0 if and only if F(U ; c) = 0.

(iii) For all U ∈R2m and all c, 〈F(U ; c), ∇UH(U ; c)〉 = 0.
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Fig. 5. Eigenvalue pattern of DF(0; c) as the wavespeed c and the parameter a are varied for the 7th order KdV equation
(3.3).

It follows from Hypothesis 3.4 that H is conserved along solutions to (3.11). Since F(0; c) =
0 for all c, the rest state U = 0 is an equilibrium of (3.11) for all c. The next hypothesis addresses 
the hyperbolicity of this equilibrium. Although the eigenvalue pattern described in Hypothe-
sis 3.5 is not necessary for the existence of a homoclinic orbit solution, it is a sufficient condition 
for the existence of multi-pulse and periodic multi-pulse solutions.

Hypothesis 3.5. For a specific c0 > 0, U = 0 is a hyperbolic equilibrium of (3.11). Furthermore, 
the spectrum of DF(0; c0) contains a quartet of simple eigenvalues ±α0 ±β0i, where α0, β0 > 0, 
and for any other eigenvalue ν of DF(0; c0), |Re ν| > α0.

We note that localized pulse solutions will have tails which are exponentially decaying with 
approximate rate α0, and are oscillatory with approximate frequency β0.

Remark 3.6. For the 5th order KdV equation (1.1), corresponding to m = 2, the spectrum of 
DF(0; c) is the quartet of eigenvalues

λ = ±
√

1 ± √
1 − 4c

2
.

For c > 1/4, this is a complex quartet ±α0 ± β0i, thus Hypothesis 3.5 is satisfied. For the 7th 
order KdV equation (3.3), corresponding to m = 3, the spectrum of DF(0; c) comprises six 
eigenvalues, one pair of which is always real (see Fig. 5, as well as the first quadrant of [29, 
Fig. 3]). Hypothesis 3.5 is satisfied in the upper region of Fig. 5. Note that in the lower right 
region of Fig. 5, there is a complex quartet of eigenvalues, but since the real pair of eigenvalues 
lies inside this complex quartet, Hypothesis 3.5 is not satisfied.

We now address the existence of a primary pulse solution, which is a symmetric homoclinic 
orbit connecting the unstable manifold W̃u(0; c0) and the stable manifold W̃ s(0; c0) of the rest 
state equilibrium U = 0. Both of these manifolds have dimension m by reversibility. Since, in 
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general, the existence of such a solution is unknown, we take the existence of a primary pulse 
solution for a specific wavespeed c0 as a hypothesis. For specific systems, such as KdV5, the 
existence of a primary pulse solution has been proved (see, for example, Theorem 2.1 above).

Hypothesis 3.7. For the same c0 as in Hypothesis 3.5, there exists a homoclinic orbit solution 
Q1(x; c0) = (q(x; c0), ∂xq(x; c0), . . . , ∂2m−1

x q(x; c0))
T ∈ W̃ s(0; c0) ∩ W̃u(0; c0) ⊂ H−1(0; c0)

to (3.11). In addition,

(i) Q1(0; c0) �= 0.
(ii) ∇UH(Q1(0; c0); c0) �= 0.

(iii) Q1(x; c0) is symmetric with respect to the reversor operator (3.14), i.e. Q1(−x; c0) =
RQ1(x; c0).

It follows from Hypothesis 3.7 that the first component q(x; c0) is a symmetric, exponentially 
localized traveling wave solution to (3.1). In order to prove the existence of homoclinic orbits 
Q1(x; c) for c near c0, we take the following additional hypothesis.

Hypothesis 3.8. The stable manifold W̃ s(0; c0) and the unstable manifold W̃u(0; c0) intersect 
transversely in H−1(0; c0) at Q1(0; c0).

Using Hypothesis 3.8 and a dimension-counting argument, we obtain the nondegeneracy con-
dition

TQ1(0;c0)W̃
s(0; c0) ∩ TQ1(0;c0)W̃

u(0; c0) =RQ′
1(0; c0). (3.15)

We then have the following existence theorem. The proof is given in section 7.

Theorem 3.9. Assume Hypothesis 3.4, Hypothesis 3.5, and Hypothesis 3.8. Then there exists 
δ0 > 0 such that for c ∈ (c0 − δ0, c0 + δ0), the stable and unstable manifolds W̃ s(0; c) and 
W̃u(0; c) have a one-dimensional transverse intersection in H−1(0; c), which is a homoclinic 
orbit Q1(x; c). Furthermore, Q1(−x; c) = RQ1(x; c), the map c → Q1(x; c) is smooth, and 
∂cQ1(x; c) is exponentially localized, i.e. for any ε > 0 there exists δ1 > 0 with δ1 ≤ δ0 such that 
for c ∈ (c0 − δ1, c0 + δ1),

|∂cQ1(x; c)| ≤ Ce−(α0−ε)|x|, (3.16)

where α0 is defined in Hypothesis 3.5.

Finally, as in [48], we define the scalar

d(c) = E(q(x, c)) − ωQ(q(x, c)).

By [52,48], the traveling wave q(x, c) is orbitally stable if d ′′(c) > 0, where

d ′′(c) = 〈Q′(q(x, c)), ∂cq(x, c)〉 =
∞∫

−∞
q(x, c)∂cq(x, c)dx. (3.17)
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This can be computed numerically, and we take this stability criterion as a hypothesis.

Hypothesis 3.10. For each c ∈ (c0 − δ0, c0 + δ0), where δ0 is defined in Theorem 3.9, d ′′(c) > 0.

From this point on, we will fix a speed c ∈ (c0 − δ0, c0 + δ0) and suppress the dependence on 
c for simplicity of notation.

3.3. Eigenvalue problem

Let U∗(x) = (u∗(x), ∂xu
∗(x), . . . , ∂2m−1

x u∗(x))T be any solution to (3.11), so that u∗(x) is a 
traveling wave solution to (3.1). Then u∗(x) also solves the equation ∂x(E ′(u) + cu) = 0, which 
is equivalent to the system

E ′(u) + cu = k

∂xk = 0.
(3.18)

Using a spatial dynamics approach, we rewrite (3.18) as the first order dynamical system in 
R2m+1

(
U

k

)′
(x) =

(
F(U(x)) + ke2m

0

)
, (3.19)

where e2m = (0, . . . , 0, 1)T ∈ R2m is the standard unit vector. We similarly reformulate the PDE 
eigenvalue problem ∂xL(u∗)v = λv as the system

L(u∗)v = k

∂xk = λv.
(3.20)

This is equivalent to the first order dynamical system in C2m+1

V ′(x) = A(U∗(x))V (x) + λBV (x), (3.21)

where V (x) ∈ C0(R, C2m+1), and A(U∗(x)) and B are the (2m + 1) × (2m + 1) matrices

A(U∗(x)) =
(

DF(U∗(x)) e2m

0 0

)
, B =

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

...

0 0 · · · 0
1 0 · · · 0

⎞
⎟⎟⎟⎠ . (3.22)

A(0) has a one-dimensional kernel, which is characterized in the following lemma.

Lemma 3.11. The matrix A(0) has a simple eigenvalue at 0 and a quartet of eigenvalues ±α0 ±
β0i. For any other eigenvalue ν of A(0), |Re ν| > α0. The kernel of A(0) is spanned by V0 and 
the kernel of A(0)∗ is spanned by W0, where
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V0 =
(

1

c
,0, . . . ,0,1

)T

, W0 = (0,0, . . . ,0,1)T , (3.23)

and 〈V0, W0〉 = 1. The projection on RV0 is given by PV0 = 〈W0, ·〉.

Proof. Let p1(ν) and p2(ν) be the characteristic polynomials of DF(0) and A(0). Since

p2(ν) = det(A(0) − νI) = −ν det(DF(0) − νI) = −νp1(ν),

A(0) has the same eigenvalues as DF(0) as well as an additional eigenvalue at 0, thus part (i) 
follows from Hypothesis 3.5. The kernel eigenvectors V0 and W0 and the projection PV0 can be 
verified directly. �

Since A(0) is non-hyperbolic, the rest state at the origin (U, k) = (0, 0) is a non-hyperbolic 
equilibrium of (3.19), and the results of [21] do not apply. Let Ws(0), Wu(0), and Wc(0)

be the stable, unstable, and center manifolds of the equilibrium at the origin. By reversibility, 
dimWs(0) = m, dimWu(0) = m, and dimWc(0) = 1. Let Q1(x) be the primary pulse solution 
from Theorem 3.9, and define

Q(x) = (Q1(x),0). (3.24)

The associated variational and adjoint variational equations are

V ′(x) = A(Q(x))V (x) (3.25)

W ′(x) = −A(Q(x))∗W(x), (3.26)

and Q′(x) is an exponentially localized solution to (3.25). Since Q(x) is exponentially localized, 
RQ′(0) ⊂ TQ(0)W

s(0) ∩TQ(0)W
u(0). It follows from Hypothesis 3.8 that these are in fact equal.

Lemma 3.12. We have the nondegeneracy condition

TQ(0)W
s(0) ∩ TQ(0)W

u(0) =RQ′(0). (3.27)

Proof. If the intersection were more than one-dimensional, there would exist another exponen-
tially localized solution V (x) = (v1, . . . , v2m, v2m+1)

T to (3.25). By the definition of A(Q(x)), 
v2m+1 is a constant, which must be 0 since V (x) is exponentially localized. Then (v1, . . . , v2m)T

would be an exponentially localized solution to V ′(x) = DF(Q(x))V (x), which contradicts the 
nondegeneracy condition (3.15). �

Using (3.27), we can decompose the tangent spaces of the stable and unstable manifolds at 
Q(0) as

TQ(0)W
s(0) =RQ′(0) ⊕ Y+

TQ(0)W
u(0) =RQ′(0) ⊕ Y−.

(3.28)

Since dimRQ′(0) ⊕Y+ ⊕Y− = 2m −1, we need two more directions to span R2m+1. We obtain 
these from the following lemma.
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Lemma 3.13. Let Q(x) be defined by (3.24). Then we have the following bounded solutions to 
the variational equation (3.25) and the adjoint variational equation (3.26):

(i) There are two linearly independent, bounded solutions to the variational equation (3.25), 
which are given by Q′(x) and V c(x). V c(x) → V0 as |x| → ∞, where V0 is defined by
(3.23), and V c(−x) = RV c(x), where R is the standard reversor operator. Furthermore, 
V c = (Ṽ c, 1), where Ṽ c solves the equation Ṽ c(x)′ = DF(Q(x))Ṽ c(x) + e2m. Any other 
bounded solution to (3.25) is a linear combination of these.

(ii) There are two linearly independent, bounded solutions to the adjoint variational equation
(3.26), which are given by 
(x) and W0. 
(x) is the exponentially localized solution


(x) = (∇H(Q(x)), q(x))T , (3.29)

where the conserved quantity H is defined in Hypothesis 3.4, and 
(−x) = R
(x). The 
constant solution W0 is defined by (3.23). Any other bounded solution to (3.26) is a linear 
combination of these.

Proof. For part (i), the existence of V c(x) is a consequence of the geometry of the system, and 
will be proved below after Lemma 9.4. The equation V c(x)′ = A(Q(x))V c(x) then reduces to 
Ṽ c(x)′ = DF(Q(x))Ṽ c(x) + e2m. For part (ii), equation (3.26) can be written in block form as

W ′(x) = −
(

DF(Q(x))∗ 0
eT

2m 0

)
W(x),

for which W0 = (0, . . . , 0, 1)T is a constant solution. Using Lemma 8.1 below, 
(x) =
(∇H(Q(x)), q(x))T is an exponentially localized solution to (3.26). �
Remark 3.14. Let vc(x) be the first component of V c(x). Then vc is a formal solution to 
L(q)vc = 1, which provides a convenient way of computing V c(x) numerically.

By Lemma 8.2 below, 
(0) and W0 are perpendicular to RQ′(0) ⊕ Y+ ⊕ Y− at x = 0, thus 
we can decompose R2m+1 as

R2m+1 =RQ′(0) ⊕ Y+ ⊕ Y− ⊕R
(0) ⊕RW0. (3.30)

4. Existence of periodic multi-pulses

In this section, we prove the existence of periodic multi-pulse solutions to (3.11), which are 
multi-modal periodic orbits that remain close to the primary homoclinic orbit. Heuristically, we 
construct a periodic multi-pulse by gluing together multiple copies of the primary pulse end-to-
end in a loop (Fig. 6).

A periodic n-pulse can be described by the n pulse distances X0, X1, . . . , Xn−1. The distances 
between consecutive pulses are 2Xi , as shown in Fig. 6. The period of the orbit is 2X, where 
X = X0 + · · · + Xn−1. A periodic n-pulse requires one more length parameter than an n-pulse 
on the real line, since we need one more connection to “close the loop”. Rather than describing a 
periodic multi-pulse by the “physical” pulse distances Xi , we will use a parameterization which 
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Fig. 6. Schematic showing the construction of a periodic n-pulse solution from the primary pulse.

is more mathematically convenient and captures the underlying geometry necessary for a periodic 
n-pulse to exist. This parameterization is an adaptation of that in [12,21] to the periodic case. Let

ρ = β0

α0
, p∗ = arctanρ, (4.1)

where α0 and β0 are defined in Hypothesis 3.5. Define the set

R=
{

exp

(
−2mπ

ρ

)
: m ∈N0

}
∪ {0}, (4.2)

which is a complete metric space. We will use r ∈ R as a scaling parameter. The parameterization 
is defined as follows.

Definition 4.1. For n ≥ 2, a periodic parameterization of a periodic n-pulse is a sequence of 
n + 1 parameters (m0, m1, . . . , mn−1, θ), where θ ∈ (−π + p∗, p∗] and the mi are nonnegative 
integers which are chosen so that

(i) at least one of the mi ∈ {0, 1}.
(ii) mn−1 ≥ mi for i = 0, . . . , n − 2.

The selection of mn−1 as the largest of the nonnegative integers mi is made for convenience 
of notation, and to allow the periodic parameterization to be unique. Since we are on a periodic 
domain, there is no loss of generality. The physical pulse distances Xi are determined by the 

periodic parameterization and by the scaling parameter r . If r = exp
(
− 2mπ

ρ

)
, then

Xi = 1

2β0

(
(2m + mi)π + θ∗(θ;mn−1 − mi)

)+ L̃ i = 0, . . . , n − 2

Xn−1 = 1

2β0

(
(2m + mn−1)π + θ

)+ L̃,

where L̃ is a constant. The functions θ∗(θ; m) : [−π + p∗, p∗] → R are defined for all nonneg-
ative integers m, are continuous in θ , and have the following properties:

(i) θ∗(0; m) = 0 for all m.
(ii) |θ∗(θ; m)| ≤ |θ |.
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Fig. 7. Schematic showing the first four functions θ∗(θ; m) plotted consecutively. The region between each pair of blue 
dots corresponds to the domain θ = [−π + p∗, p∗].

(iii) |θ∗(θ; m)| ≤ C exp
(
−mπ

ρ

)
.

(iv) θ∗(θ; 0) = θ .
(v) θ∗(p∗; m) = θ∗(−π + p∗; m + 1).

The last property is a matching condition which “links up” the parameterizations corresponding 
to adjacent mi . Fig. 7 shows a schematic of the first four functions θ∗(θ; m) plotted consecutively 
to illustrate these properties. Together with the restriction of θ to the half-open interval θ ∈
(−π +p∗, p∗] in Definition 4.1, these guarantee that each periodic parameterization corresponds 
to a unique periodic multi-pulse. The proof that the functions θ∗(θ; m) exist and have these 
properties is given in Lemma 8.14 below.

We can now state the main theorem of this section, which gives conditions for the existence of 
periodic multi-pulses. The requirement that the scaling parameter r be sufficiently small means 
that the individual pulses must be well-separated. The proof is given in section 8.

Theorem 4.2 (Existence of n-periodic solutions). Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8. 
Let Q1(x) be the transversely constructed, symmetric primary pulse solution to (3.11) from The-
orem 3.9. For any periodic parameterization (m0, . . . , mn−1, θ) with θ /∈ {−π + p∗, p∗}, there 
exists r∗ = r∗(m0, . . . , mn−1, θ) > 0 with the following property. For any r ∈R with r ≤ r∗, there 
exists a periodic n-pulse solution U(x) = U(x; m0, . . . , mn−1, θ, r) to (3.11). The distances be-
tween consecutive copies of Q1(x) in U(x) are given by 2Xi , where the pulse distances Xi are

Xi(r;mi,mn−1, θ) = 1

2α0
| log r| + 1

2β0
ti (r;mi,mn−1, θ) + L̃ i = 0, . . . , n − 2

Xn−1(r;mn−1, θ) = 1

2α0
| log r| + 1

2β0
(mn−1π + θ) + L̃.

(4.3)

The functions ti(r; mi, mn−1, θ) : R → R are continuous in r with

ti (0;mi, θ) = miπ + θ∗(θ;mn−1 − mi) = miπ +O
(
e
− π

ρ
(mn−1−mi)

)
,

and L̃ is a constant. Estimates for U(x) in terms of the primary pulse Q1(x) are given below in 
Lemma 8.8.

Remark 4.3. It follows from the proof of Theorem 4.4 that periodic single pulse solutions exist 
on the periodic domain [−X, X] for all sufficiently large X (see Corollary 8.10). These are single-
loop periodic orbits which lie close to the primary homoclinic orbit.
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Fig. 8. Parameterization for periodic 2-pulses. Red dashed line represents symmetric periodic 2-pulses, and blue solid 
line represents asymmetric periodic 2-pulses. Parameters s0 and s1 increase in the direction of the arrow.

The condition that θ /∈ {−π + p∗, p∗} in Theorem 4.2 is used to avoid bifurcation points 
which arise in the construction. For periodic 2-pulses, we can use the symmetry of the solutions 
and the reversibility of the system to give a complete bifurcation picture. In the next theorem, 
we show that for periodic 2-pulses, asymmetric solutions (X0 �= X1) bifurcate from symmetric 
solutions (X0 = X1) in a series of pitchfork bifurcations (Fig. 3, center panel). The symmetric 
2-pulse solutions (X0 = X1) correspond to periodic single-pulse solutions with the period 2X0
repeated twice. The parameterization in Theorem 4.4, which is shown in Fig. 8, is different from 
that in Theorem 4.2. The proof is given in section 8.

Theorem 4.4. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8. Let Q1(x) be the transversely 
constructed, symmetric primary pulse solution to (3.11) from Hypothesis 3.7. Then there exists 
r∗ > 0 such that for all r ∈R with r ≤ r∗ and m0 ∈ {0, 1},

(i) There exists a family of symmetric periodic 2-pulses Q̃2(x; m0, s0, r) parameterized by 
s0 ∈ [0, π). The pulse distances X̃i are given by

X̃0(r, s0) = X̃1(r, s0) = 1

2α0
| log r| + 1

2β0
(m0π + s0) + L̃. (4.4)

(ii) There exists a family of asymmetric periodic 2-pulses Q2(x; m0, s1, r) with pulse distances 
X1 > X0 parameterized by s1 ∈ [p∗, ∞). The pulse distances Xi are given by

X0(r,m0, s1) = 1

2α0
| log r| + 1

2β0
t0(r;m0, s1) + L̃

X1(r, s1) = 1

2α0
| log r| + 1

2β0
s1 + L̃,

(4.5)

where L̃ is a constant, t0(r; m0, s1) is continuous in r and s1, t0(0; m0, kπ) = m0π for all 
nonnegative integers k, and

t0(0;m0, s1) = m0π +O
(
e
− 1

ρ
s1
)

. (4.6)

(iii) The two families meet at a pitchfork bifurcation when s0 = p∗(m0; r) and s1 = p∗, where 
p∗ is defined in (4.1). The function p∗(m0; r) is continuous in r , and p∗(m0; r) → p∗ as 
r → 0.
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We note that in Theorem 4.4(ii), X1 > X0, which gives us the lower arms of the pitchforks in 
Fig. 8. For the upper arms, we swap X0 and X1, which we can do by symmetry.

5. Spectrum of periodic multi-pulses

We now locate the spectrum of the periodic multi-pulses which we constructed in the pre-
vious section. Let Qn(x) = (qn(x), ∂xqn(x), . . . , ∂2m

x qn(x), 0) be any periodic n-pulse solution 
constructed according to Theorem 4.2 on periodic domain [−X, X]. It is natural to pose the PDE 
eigenvalue problem (3.20) on the space of periodic functions H 2m

per [−X, X], where

H 2m
per [−X,X] =

{
f ∈ H 2m(R) : f (k)(−X) = f (k)(X) for k = 0,1, . . . ,2m

}
,

although we note that in doing so, we are restricting ourselves to co-periodic perturbations. By
(3.10), the linear operator ∂xL(qn) has a kernel with algebraic multiplicity at least 2 and ge-
ometric multiplicity at least 1. In the next lemma, we show that ∂xL(qn) has another kernel 
eigenfunction on H 2m

per [−X, X].

Lemma 5.1. The linear operator ∂xL(qn) posed on H 2m
per [−X, X] has a kernel eigenfunction vc

n, 
which is a solution to L(qn)v

c
n = 1.

Proof. Since 1 ∈ H 2m
per [−X, X], L(qn)1 = c �= 0. Since L(qn) is self-adjoint, for any v ∈

kerL(qn),

〈1, v〉 = 1

c
〈L(qn)1, v〉 = 1

c
〈1,L(qn)

∗v〉 = 1

c
〈1,L(qn)v〉 = 0,

thus 1 ⊥ kerL(qn)
∗. By the Fredholm alternative, the equation L(qn)v

c
n = 1 has a solution vc

n ∈
H 2m

per [−X, X]. Differentiating with respect to x, ∂xL(qn)v
c
n = 0. �

Using the same formulation as in section 3.3, the PDE eigenvalue problem (3.20) on 
H 2m

per [−X, X] is equivalent to the first order system with periodic boundary conditions

V ′(x) = A(Qn(x))V (x) + λBV (x)

V (−X) = V (X),
(5.1)

where V (x) ∈ C0(R, C2m+1). In next lemma, we show that for small λ, the constant matrix 
A(0) + λB has a simple eigenvalue ν(λ) near 0.

Lemma 5.2. There exists δ1 > 0 such that for |λ| < δ1, the matrix A(0) + λB has a simple 
eigenvalue ν(λ). Furthermore, ν(λ) is smooth in λ, ν(0) = 0, ν′(0) = 1/c, and for |λ| < δ1,

ν(λ) = 1

c
λ +O(|λ|3). (5.2)

In addition, ν(−λ) = −ν(λ) and ν(λ) = ν(λ).
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Proof. Let p(ν; λ) be the characteristic polynomial of A(0) + λB . Since p(0; 0) = 0 and 
∂νp(0; 0) = −c �= 0, by the implicit function theorem, there exists δ1 > 0 and a smooth func-
tion ν(λ) with ν(0) = 0 such that for |λ| < δ1, ν(λ) is the unique solution to p(ν; λ) = 0. The 
derivative ν′(0) = 1/c also follows from the implicit function theorem. By reversibility, p(ν; λ)

only involves odd powers of ν, thus p(ν; λ) = 0 if and only if p(−ν; −λ) = 0. Since the solu-
tion ν(λ) is unique, ν(−λ) = −ν(λ). Conjugate symmetry follows similarly since p(ν; λ) = 0
if and only if p(ν; λ) = 0. Equation (5.2) follows from a Taylor expansion of ν(λ) about 
λ = 0. �

We can now state the main theorem of this section, which provides a condition for (5.1) to 
have a solution. Since the spatial dynamics formulation (5.1) is equivalent to the PDE eigenvalue 
problem, this allows us to find the PDE eigenvalues near the origin. This theorem is analogous to 
[21, Theorem 2], with the n × n matrix in that theorem replaced by a 2n × 2n block matrix. The 
proof is given in section 9.

Theorem 5.3. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let Q1(x) be the trans-
versely constructed, symmetric primary pulse solution to (3.11) from Hypothesis 3.7, and let 
Q(x) = (Q1(x), 0). Let 
(x) and V c(x) be defined as in Lemma 3.13. Choose any periodic pa-
rameterization (m0, . . . , mn−1, θ) with θ /∈ {−π + p∗, p∗}. Let r∗ be defined as in Theorem 4.2, 
and for r ≤ r∗, let Qn(x; r) be the corresponding periodic n-pulse solution. Then there exists 
r1 ≤ r∗ and δ > 0 with the following property. For r ≤ r1, there exists a bounded, nonzero solu-
tion V (x) of (5.1) for |λ| < δ and | Reλ| < r1/4 if and only if

detE(λ) = 0, (5.3)

where E(λ) is the 2n × 2n block matrix

E(λ) =
(

K(λ) − 1
2λM̃K+(λ) λ2McI

− 1
2λMcK

+(λ) S − λ2MI

)
+
(

C1 D1
C2 D2

)
. (5.4)

The individual terms in E(λ) are as follows:

(i) K(λ) is the periodic, bi-diagonal matrix

K(λ) =
(

e−ν(λ)X1 −eν(λ)X0

−eν(λ)X1 e−ν(λ)X0

)
n = 2

K(λ) =

⎛
⎜⎜⎜⎜⎜⎝

e−ν(λ)X1 −eν(λ)X0

−eν(λ)X1 e−ν(λ)X2

−eν(λ)X2 e−ν(λ)X3

. . .

−eν(λ)Xn−1 e−ν(λ)X0

⎞
⎟⎟⎟⎟⎟⎠ n > 2,

where ν(λ) is defined in Lemma 5.2. K+(λ) is the same matrix with all terms positive.
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(ii) S is the symmetric banded matrix

S =
(−a1 − a0 a1 + a0

a1 + a0 −a1 − a0

)
n = 2

(5.5)

S =

⎛
⎜⎜⎜⎜⎜⎝

−an−1 − a0 a0 an−1
a0 −a0 − a1 a1

a1 −a1 − a2 a2
. . .

. . .
. . .

an−1 an−2 −an−2 − an−1

⎞
⎟⎟⎟⎟⎟⎠ n > 2,

(5.6)

where ai = 〈
(Xi), Q′(−Xi)〉.
(iii) M , Mc, and M̃ are the Melnikov-type integrals

M =
∞∫

−∞
q(y)∂cq(y)dy, Mc =

∞∫
−∞

∂cq(y)dy, M̃ =
∞∫

−∞

(
vc(y) − 1

c

)
dy,

where vc(y) is the first component of V c(y), and q(y) is the first component of Q(y).
(iv) The remainder matrices Ci and Di are analytic in λ and have uniform bounds

|C1| ≤ C(|λ| + r1/2)2, |D1| ≤ C|λ|(|λ| + r1/2)2

|C2| ≤ C(|λ| + r1/2)2, |D2| ≤ C(|λ| + r1/2)3.

The condition | Reλ| < r1/4 is used to simplify the analysis. We will see when we apply the 
theorem in the following sections that this condition is satisfied for sufficiently small r .

5.1. Spectrum of periodic single pulse

The simplest case is the periodic single pulse. There is a only single length parameter X0, 
which is the same as the domain length X, and the block matrix E(λ) is a 2 × 2 matrix. The 
form of E(λ) is given in the following lemma. Proofs of all results in this section are given in 
section 10.

Lemma 5.4. For a periodic single pulse, the block matrix E(λ) from Theorem 5.3 is the 2 × 2
matrix

E(λ) =
(−2 sinh(ν(λ)X) − M̃λ cosh(ν(λ)X) Mcλ

2

−Mcλ cosh(ν(λ)X) −Mλ2

)
+
(

c1 d1
c2 d2

)
, (5.7)

where the remainder terms are scalars with bounds

|c1|, |c2| ≤ C|λ|(|λ| + r1/2), |d1|, |d2| ≤ C|λ|2(|λ| + r1/2).

In addition, detE(−λ) = − detE(λ), and
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detE(λ) = λ2
(

2M sinh(ν(λ)X)(1 +O(|λ| + r1/2)) + λ(MM̃ + M2
c ) cosh(ν(λ)X)

+O(|λ|(|λ| + r1/2))
)
.

(5.8)

Using this lemma, we can compute the nonzero essential spectrum eigenvalues close to the 
origin for the periodic single pulse. We emphasize that this does not locate all of the essential 
spectrum eigenvalues, but only those near the origin, i.e. those of sufficiently small magnitude.

Theorem 5.5. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let r1 and δ be as in 
Theorem 5.3. Then there exists r2 ≤ r1 such that for any r ∈ R with r ≤ r2, the following holds 
regarding the nonzero essential spectrum eigenvalues. Let N be any positive integer such that 
Ncπ/X < δ. Then the first 2N nonzero essential spectrum eigenvalues are given by λ = {±λess

m :
m = 1, . . . , N}, where

λess
m (r) = c

mπi

X

⎛
⎝ 1

1 + c
MM̃+M2

c

2MX

⎞
⎠+O

(
m3

| log r|3
)

(5.9)

is on the imaginary axis.

5.2. Spectrum of periodic double pulse

For the next application, we consider the periodic double pulse. In this case, the block matrix 
E(λ) is a 4 × 4 matrix, the form of which is given in the following lemma. Proofs of all results 
in this section are given in section 11.

Lemma 5.6. For a periodic 2-pulse, the block matrix E(λ) from Theorem 5.3 is the 4 × 4 matrix

E(λ) =⎛
⎜⎜⎝

e−ν(λ)X1 − 1
2λM̃e−ν(λ)X1 −eν(λ)X0 − 1

2λM̃eν(λ)X0 Mcλ
2 0

−eν(λ)X1 − 1
2λM̃eν(λ)X1 e−ν(λ)X0 − 1

2λM̃e−ν(λ)X0 0 Mcλ
2

− 1
2λMce

−ν(λ)X1 − 1
2λMce

ν(λ)X0 −a − λ2M a

− 1
2λMce

ν(λ)X1 − 1
2λMce

−ν(λ)X0 a −a − λ2M

⎞
⎟⎟⎠+ R(λ),

(5.10)
where

a = 〈
(X0),Q
′(−X0)〉 + 〈
(X1),Q

′(−X1)〉. (5.11)

The remainder matrix is a 4 × 4 matrix of the form

R(λ) =

⎛
⎜⎜⎝

c1(λ) c̃1(λ) λd1(λ) λd̃1(λ)

−c1(−λ) −c̃1(−λ) −λd̃1(−λ) −λd1(−λ)

c2(λ) c̃2(λ) d0 + λd2(λ) −d0 + λd̃2(λ)

−c2(−λ) −c̃2(−λ) −d0 − λd̃2(−λ) d0 − λd2(−λ)

⎞
⎟⎟⎠ , (5.12)

where the individual entries are scalars with bounds
389



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
|d0| ≤ Cr3/2

|ci |, |c̃i |, |di |, |d̃i | ≤ C(|λ| + r1/2)2 i = 1,2.

In addition, detE(−λ) = − detE(λ), and

detE(λ) = −2λ2(2a + λ2M + R1)
(
M sinh(ν(λ)X) + λ(MM̃ + M2

c ) cosh(ν(λ)X)
)

+ 4aλ3M2
c sinh(ν(λ)X1) sinh(ν(λ)X0) + R2λ

2 sinh(ν(λ)(X1 − X0))

+ λ2R3 sinh(ν(λ)X) + λ3R4,

(5.13)

where the Ri are scalars with bounds

|R1| ≤ Cr3/2, |R2|, |R3|, |R4| ≤ C(|λ| + r1/2)4.

We will first consider the case where the interaction eigenvalues are “out of the way” of the 
essential spectrum eigenvalues. Since the interaction eigenvalues scale as r1/2 and the essential 
spectrum eigenvalues scale as 1/| log r|, we can always choose r sufficiently small so that this is 
the case. Provided we do this, the interaction eigenvalue pattern for asymmetric periodic 2-pulses 
is determined by the parameter m0 used in the construction of the solution.

Theorem 5.7. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let r1 and δ be as in 
Theorem 5.3. Then for every m0 ∈ {0, 1} and s1 > p∗ there exists r2 = r2(m0, s1) ≤ r1 such 
that for any r ∈ R with r ≤ r2, the following hold regarding the spectrum associated with the 
asymmetric periodic 2-pulse Q2(x; m0, s1, r).

(i) Let N be any positive integer such that Ncπ/X < δ. Then the first 2N nonzero essential 
spectrum eigenvalues are given by λ = {±λess

m : m = 1, . . . , N}, where

λess
m (r) = c

mπi

X

⎛
⎝ 1

1 + c
MM̃+M2

c

MX

⎞
⎠+O

(
m3

| log r|3
)

(5.14)

is on the imaginary axis.
(ii) There is a pair of interaction eigenvalues located at λ = ±λint(r), where

λint(r) =
√

−2a

M
+O (r) ,

a is defined in (5.11), and |λint(r)| < 1
2 |λess

1 (r)|. These are real when m0 = 0 and purely 
imaginary when m0 = 1.

(iii) There is an eigenvalue at 0 with algebraic multiplicity 3.

We note that since the interaction eigenvalues scale as r1/2, and the essential spectrum eigen-
values are purely imaginary, the condition | Reλ| < r1/4 is satisfied for sufficiently small r .

Remark 5.8. The essential spectrum eigenvalues are not identical for the periodic single pulse 
and the periodic double pulse. In particular, note the additional factor of 2 in the denominator 
of the term in parentheses in (5.9). To leading order, however, the nonzero essential spectrum 
eigenvalues are located at cmπi for nonzero integer m in both cases.
X
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Next, we consider the symmetric periodic 2-pulse. As long as we are away from the pitchfork 
bifurcation points (i.e. as long as a �= 0) the results of Theorem 5.7 hold; the only difference is 
that the eigenvalue pattern is determined by the sign of a rather than by m0 (see Lemma 11.2
below). Thus we only need to consider what happens at the pitchfork bifurcation point, which is 
given by the following theorem.

Theorem 5.9. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10, and let r1 be defined 
as in Theorem 5.3. Then there exists r2 ≤ r1 such that for all r ∈ R with r ≤ r2 and for 
m0 ∈ {0, 1}, there is eigenvalue at 0 with algebraic multiplicity 5 for the symmetric periodic 
2-pulse Q̃2(x; m0, p∗(m0; r), r), where p∗(m0; r) is the pitchfork bifurcation point defined in 
Theorem 4.4.

Finally, we consider what happens when an essential spectrum eigenvalue collides with an 
interaction eigenvalue on the imaginary axis. For simplicity, we will only prove the result for the 
first collision. The existence of the first Krein bubble is given in the following theorem, which 
also provides numerically verifiable estimates for its size and location.

Theorem 5.10. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Choose m0 = 1, and let 
r1 be as in Theorem 5.3. Let

λ∗(r) =
√−2a(r) − R1

M
=
√−2a(r)

M
+O(r), (5.15)

where R1 is defined in Lemma 5.6, and let Q∗
2(x; r) be the periodic 2-pulse solution from Theo-

rem 4.4 with domain size X = X∗(r), where

X∗(r) = c

(
πi

λ∗(r)
− MM̃ + M2

c

M

)
. (5.16)

Define T1(r) > 0 by

T1(r) = M2
c

2πM2c
|λ∗|5X2

0. (5.17)

For s ∈ [−2
√

T1(r),2
√

T1(r)
]
, let Q2(x; s, r) be the periodic 2-pulse solution with domain size 

X = X(s, r), where

X(s, r) = X∗(r) + 2cπs

|λ∗(r)|2 +O(s2). (5.18)

Then there exists r2 ≤ r1 such that for all r ∈R with r ≤ r2, the following holds for the lineariza-
tion of the PDE about Q2(x; s, r).

(i) There is a pair of eigenvalues located at

λ = λ∗(r) − si ±
√

T1(r) − s2 +O
(
r5/4| log r|1/2

)
. (5.19)
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(ii) For

s = s±(r) = ±√T1(r)

(
1 +O

(
1

| log r|
))

,

there is a double eigenvalue on the imaginary axis at

λ = λ∗(r) + s±(r)i +O
(

1

| log r|
)

,

which occurs when

X(s, r) = X∗(r) ± �X(r) +O(s2), �X(r) = 2cπ

|λ∗(r)|2
√

T1(r). (5.20)

(iii) For s ∈ (s−, s+), equation (5.19) describes, to leading order, a circle of radius 
√

T1(r) in 
the complex plane, which is the Krein bubble. The pair of eigenvalues is symmetric across 
the imaginary axis.

(iv) For s ∈
[

− 2
√

T1(r), s−
)

∪
(
s+, 2

√
T1(r)

]
, the eigenvalues (5.19) are on the imaginary 

axis.

We note that maximum real part of the Krein bubble is order r5/4| log r|, thus the condition 
| Reλ| < r1/4 is satisfied for sufficiently small r .

Remark 5.11. It is straightforward to adapt Theorem 5.10 to locate subsequent Krein bubbles. 
For any positive integer N , there exists r2 = r2(N) with r2 ≤ r1 such that for r ≤ r2 and m =
1, . . . , N , a Krein bubble occurs when the m-th essential spectrum eigenvalue collides with the 
interaction eigenvalue on the imaginary axis. The radius of m-th Krein bubble in the complex 
plane is approximately 

√
T1(r)/m, and the Krein collisions occur at approximately X = Xm∗ (r) ±

�Xm(r), where

Xm∗ (r) = c

(
mπi

λ∗(r)
− MM̃ + M2

c

M

)
, �Xm(r) = √

m�X(r). (5.21)

Note that this requires N to be chosen first, and r2 depends on N . See section 12 for a discussion 
on what occurs with subsequent Krein bubbles when r is fixed.

6. Numerical results

In this section, we present numerical results for the existence and spectrum of periodic multi-
pulse solutions to KdV5. We start with the construction of the primary pulse solution. For p = −1
and c = 36/169, the exact solution to (2.5) is known [25]

q(x) = 105
sech4

(
x√

)
. (6.1)
338 2 13
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Fig. 9. Spectrum of periodic 2-pulse solutions for KdV5, showing the interaction eigenvalues (red dots), essential spec-
trum eigenvalues (blue open circles), and double eigenvalue at origin (black square). Left panel (m0 = 0) has real 
interaction eigenvalues, right panel (m0 = 1) has imaginary eigenvalues. Fourier spectral methods with N = 1024 grid 
points, p = −1, c = 20, X = 30.

We use AUTO [53] for parameter continuation in c and p until −2
√

c < p < 2
√

c, so that 
Hypothesis 3.5 is satisfied. Following the AUTO demo kdv, we formulate the problem using 
equation (2.8), and use a small parameter ε to break the Hamiltonian structure. We impose peri-
odic boundary conditions and rescale the domain from [−X, X] to [0, 1], using the domain size 
X as a parameter.

To construct a periodic double pulse q2(x), we discretize equation (2.5) using Fourier spectral 
differentiation matrices to enforce periodic boundary conditions. As an initial ansatz, we take 
two copies of the primary pulse joined together at the distances predicted by Theorem 4.4. We 
then solve for the periodic double pulse using Matlab’s fsolve function. This same procedure 
can also be used to construct arbitrary periodic multi-pulses. We can also vary the domain size 
X by parameter continuation in AUTO. Using this, we verify that asymmetric periodic 2-pulses 
bifurcate from symmetric periodic 2-pulses in a series of pitchfork bifurcations (Fig. 3, center 
panel).

Next, we compute the spectrum of ∂xE ′′(q2) by discretizing the linear operator using Fourier 
spectral differentiation matrices and using Matlab’s eig function (Fig. 9). For asymmetric peri-
odic 2-pulses (X0 �= X1), the interaction eigenvalue pattern depends only on the integer m0 from 
the periodic parameterization. For m0 = 0, the interaction eigenvalues are real, and for m0 = 1, 
the interaction eigenvalues are purely imaginary (the real part of the eigenvalues computed with
eig is less than 10−9). We can also compute the interaction eigenvalues for symmetric peri-
odic 2-pulses (Fig. 10, left panel). At each pitchfork bifurcation point, an eigenvalue bifurcation 
occurs, where a pair of interaction eigenvalues collides at 0 and switches from real to purely 
imaginary (or vice versa). The full interaction eigenvalue pattern (up to the first Krein bubble) is 
shown in the center panel of Fig. 3.

We then compute the essential spectrum eigenvalues for periodic single pulses using eig, and 
compare the results to the leading order formula from Theorem 5.5. Plotting the log of absolute 
value of the error versus logm and constructing a least squares linear regression line (Fig. 10, 
right panel), the absolute error is proportional to m3, with a relative error in the exponent of less 
than 0.02, as predicted by Theorem 5.5. The results are similar for periodic double pulses using 
the leading order formula from Theorem 5.7.

Next, we look at what happens when we increase the periodic domain parameter X using 
parameter continuation with AUTO. As predicted by Theorem 5.10, there is a brief instabil-
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Fig. 10. Left panel: real part (blue solid line) and imaginary part (red dashed line) of interaction eigenvalues vs. pulse 
distance for symmetric periodic 2-pulses (X0 = X1). Parameters are p = −1 and c = 20. Right panel: log of absolute 
error vs. logm for the first 15 essential spectrum eigenvalues with least squares linear regression line for periodic single 
pulse. Slope of regression line is 3.05. Parameters p = −1, c = 10, and X = 200.

Fig. 11. Left panel shows collision of first essential spectrum eigenvalue with purely imaginary interaction eigenvalue as 
X is increased. Imaginary part of eigenvalues in top panel (red), real part of eigenvalues in bottom panel (blue). Right 
panel plots the imaginary part vs. the real part of the eigenvalues in the Krein bubble as X varies. Parameter continuation 
with AUTO in periodic domain length X, p = −1, c = 20.

ity bubble when the first essential spectrum eigenvalue collides with the imaginary interaction 
eigenvalue (Fig. 11). If p and c in (2.5) are related by

p = −2(a − b), c = (a + b)2 a, b > 0, (6.2)

then the eigenvalues of DF(0) are the quartet ±√
a ±√

bi. Choosing a = 0.25 and b = 3, so that 
the tail oscillations of the primary pulse are sufficiently rapid but do not decay too quickly, we 
can construct the first four periodic double pulses with m0 = 1, together with the eigenfunctions 
corresponding to the imaginary interaction eigenvalue, to a sufficient degree of accuracy so that
AUTO converges for both the existence and eigenvalue problems. Fig. 12 plots the log of the 
absolute error of the Krein bubble radius in the complex plane (

√
T1 from (5.17)) and the log of 
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Fig. 12. Plot of log of absolute error for Krein bubble radius in the complex plane (left panel) and Krein bubble size in 
X (right panel) vs. α0X0, with least squares linear regression lines for first four periodic double pulses with m0 = 1. 
Slopes of regression lines -3.0319 (left) and -1.0332 (right). Parameters a = 0.25 and b = 3 in (6.2), which corresponds 
to p = 5.5 and c = 10.5625.

the absolute error of the Krein bubble size in X (�X from (5.20)) versus α0X0. The slopes of the 
least squares linear regression lines suggest that the Krein bubble radius in the complex plane is 
given by 

√
T1 +O(e−3α0X0) and that the Krein bubble radius in X is given by �X +O(e−α0X0), 

with relative errors in the exponent less than 0.01 and 0.03 (respectively). The leading order 
terms agree with Theorem 5.10, while the error term is higher order than predicted. The results 
for subsequent Krein bubbles discussed in Remark 5.11 can similarly be verified numerically.

Finally, we present results of numerical timestepping experiments to illustrate the effects of 
the Krein bubble on the PDE dynamics of perturbations of periodic double pulses. Let u1(x) be 
the periodic single pulse solution to (2.5). The initial condition for the timestepping is the sum 
of two well-separated copies of the periodic single pulse,

u(x) = u1(x − L) + u1(x + L). (6.3)

The two pulses are separated by a distance 2L, which is chosen to be close to the pulse separa-
tion distance for a periodic double pulse. Timestepping was performed using a pseudo-spectral 
method for spatial discretization and a fourth-order Runge-Kutta method for time evolution, as 
in [25]. High frequency oscillations resulting from large essential spectrum eigenmodes were 
damped using a lowpass filter.

The top panel of Fig. 13 plots phase portraits (L, dL/dt) for two different parameter config-
urations (see [25, Fig. 10] for similar phase portraits). Neutrally stable periodic double pulses 
(m0 odd) are marked with a black dot, and unstable periodic double pulses (m0 even) are marked 
with black X. The top left panel of Fig. 13 is the phase portrait corresponding to a parameter 
configuration outside the Krein bubble. The interaction eigenvalues for both periodic doubles 
pulses with m0 odd are purely imaginary. These correspond to neutrally stable centers in the 
phase portrait, and the frequency of oscillation about these equilibria is within 5% of the imagi-
nary part of the corresponding interaction eigenvalue. The interaction eigenvalue for the periodic 
double pulse with m0 even is real, which corresponds to an unstable saddle equilibrium in the 
phase portrait. The top right panel of Fig. 13 is the phase portrait corresponding to a parameter 
configuration inside the Krein bubble. Since the interaction eigenvalue for the first periodic dou-
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Fig. 13. Phase plane showing dL/dt vs. L for timestepping simulations, where the two peaks are separated by a distance 
2L. Top left (outside Krein bubble): parameters p = 1.1 and c = 2.1025, domain size X = 40, and interaction eigenvalues 
0.1120i, 0.0384, and 0.0134i (from left to right). Top right (inside Krein bubble), parameters p = 1.7 and c = 2.7225, 
domain size X = 36, and interaction eigenvalues 0.0124 + 0.2498i, 0.0968, and 0.0398i (from left to right). Bottom left: 
L − L0 vs. t for solution starting near leftmost equilibrium point in top right phase portrait, where the two peaks in the 
unperturbed periodic double pulse are separated by a distance 2L0. Bottom right: log(L − L0) vs. t at maxima of this 
solution.

ble pulse (leftmost equilibrium point) has a small, positive real part, trajectories starting near this 
unstable equilibrium slowly spiral outward (Fig. 13, bottom left). The average frequency of these 
oscillations is 0.2380, which is within 5% of the imaginary part of the Krein bubble eigenvalue, 
and the exponential growth rate of the maxima of this solution (Fig. 13, bottom right) is 0.0119, 
which is within 5% of the real part of the Krein bubble eigenvalue.

7. Proof of Theorem 3.9

The proof is similar to that of [24, Lemma 6.2 and Lemma 6.4]. By Hypothesis 3.7, Q(0; c0) �=
0, H(Q(0; c0); c0) = 0, and ∇UH(Q(0; c0); c0) �= 0. By the implicit function theorem, there 
exists δ0 > 0 such that for c ∈ (c0 − δ0, c0 + δ0), the 0-level set H−1(0; c) contains a smooth 
(2m − 1)-dimensional manifold K(c), with K(c0) containing Q(0; c0). The existence result and 
the smoothness of the map c �→ Q(x; c) for c ∈ (c0 − δ0, c0 + δ0) follow from the transverse 
intersection of W̃ s(0; c0) and W̃u(0; c0) in K(c0) ⊂ H−1(0; c0), the implicit function theorem, 
and the smoothness of F . Symmetry with respect to the reversor R follows from the symmetry 
of Q(0; c0) and H .
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Fix c ∈ (c0 − δ0, c0 + δ0). Since Q(x; c) solves (3.11), Q(x; c) ∈ C1(R, R2m). By the stable 
manifold theorem, Q(x; c) is exponentially localized, i.e. for every ε > 0 there exists a con-
stant C such that for all x ∈ R, |Q(x; c)| ≤ Ce−(α0−ε)|x|. Substituting Q(x; c) into (3.11) and 
differentiating with respect to c, ∂cQ(x; c) satisfies

[∂cQ(x; c)]′ = DUF(Q(x; c); c)∂cQ(x; c) − BQ(x; c), (7.1)

where B is defined in (3.22). Define the linear operator L : C1(R, R2m) → C0(R, R2m) by

L = d

dx
− DUF(Q(x; c); c). (7.2)

By equation (7.1), BQ(x; c) ∈ ranL and is exponentially localized. Since DF(0; c) is hyper-
bolic, it follows from [54, Lemma 4.2] and the roughness theorem for exponential dichotomies 
[55] that L is Fredholm with index 0. By Hypothesis 3.7, kerL = RQ′(x; c), thus the set of all 
bounded solutions to (7.1) is given by {∂cQ(x; c) +RQ′(x; c)}.

To show that ∂cQ(x; c) is exponentially localized, we reformulate equation (7.1) in an expo-
nentially weighted space. Choose ε ∈ (0, α0) and let η(x) be a standard mollifier function [56, 
Section C.5]. Let

Q(x; c) = Z(x; c)e−(α0−ε)r(x), (7.3)

where r(x) = η(x) ∗ |x| is smooth, and for |x| > 1, r(x) = |x| and r ′(x) = ±1. Substituting (7.3)
into (7.1) and simplifying, we obtain the weighted equation

[∂cZ(x; c)]′ = [DUF(Q(x; c); c) + (α0 − ε)r ′(x)]Z(x; c) − e(α0−ε)r(x)BQ(x; c), (7.4)

where the last term on the RHS is bounded. Define the weighted linear operator Lα0−ε :
C1(R, R2m) → C0(R, R2m) by

Lα0−ε = d

dx
− DUF(Q(x; c); c) − (α0 − ε)r ′(x)I. (7.5)

Since BQ(x; c) ∈ ranL, e(α0−ε)r(x)BQ(x; c) ∈ ranLα0−ε . Since DUF(0; c) − (α0 − ε)I is 
still hyperbolic with the same unstable dimension as DUF(0; c), it follows again from [54, 
Lemma 4.2] that Lα0−ε is Fredholm with index 0. Since Q′(x; c) is exponentially localized 
by the stable manifold theorem, e(α0−ε)r(x)Q′(x; c) is bounded, thus since Q′(x; c) ∈ kerL, 
e(α0−ε)r(x)Q′(x; c) ∈ kerLα0−ε . Since any element in kerLα0−ε gives an element of kerL via
(7.3), kerLα0−ε = Re(α0−ε)r(x)Q′(x; c). Since e(α0−ε)r(x)BQ(x; c) ∈ ranLα0−ε , the set of all 
bounded solutions to (7.4) is given by {∂cZ(x; c) + Re(α0−ε)r(x)Q′(x; c)}, which implies that 
∂cQ(x; c) = ∂cZ(x; c)e−(α0−ε)r(x) is exponentially localized.

8. Proof of existence results

We will construct a periodic n-pulse U(x) using Lin’s method. For convenience of notation, 
we will denote the primary pulse by Q(x) instead of Q1(x). Rather than taking U(x) to be a 
piecewise perturbation of Q(x), we adapt the technique in [57] and instead take a piecewise 
ansatz of the form
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U±
i (x) = Q±(x;β±

i ) + Q̃±
i (x),

where β±
i parameterize the stable and unstable manifolds W̃ s(0) and W̃u(0) near Q(0). The 

functions Q±(x; β±
i ) lie in these manifolds, and the Q̃±

i are small remainder functions. In 
essence, we use the parameters β±

i to break the homoclinic orbit Q(x), and the remainder func-
tions Q̃±

i to glue the pieces back together. We will show that we can find a unique piecewise 
solution which generically has n jumps in a specified direction. A periodic multi-pulse solution 
exists if and only if these n jumps are all 0.

8.1. Setup

Using (3.15), we decompose the tangent spaces of the stable and unstable manifolds at Q(0)

as

TQ(0)W̃
u(0) =RQ′(0) ⊕ Y−

TQ(0)W̃
s(0) =RQ′(0) ⊕ Y+.

It follows from (3.15) that Q′(x) is the unique bounded solution to the variational equation

V ′ = DF(Q(x))V, (8.1)

and that there exists a unique bounded solution 
(x) to the adjoint variational equation

W ′ = −DF(Q(x))∗W. (8.2)

(In both cases, uniqueness is up to scalar multiple.) Since we have a conserved quantity H , the 
following lemma gives the exact form of 
(x).

Lemma 8.1. 
(x) = ∇H(Q(x)), where H is the conserved quantity from Hypothesis 3.4. In 
addition, 
(−x) = R
(x), where R is the standard reversor operator, and the last component 
of 
(x) is q ′(x).

Proof. Differentiating 〈F(U ; c), ∇UH(U ; c)〉 = 0,

0 = DF(Q(x))∗∇H(Q(x)) + D2H(Q(x))∗F(Q(x)).

Using standard vector calculus identities, equation (3.7), and the fact that the Hessian is self-
adjoint,

−DF(Q(x))∗∇H(Q(x)) = D2H(Q(x))Q′(x) = d

dx
∇H(Q(x)),

thus ∇H(Q(x)) is a solution to (8.2). Since ∇H is continuous and Q(x) is exponentially local-
ized, ∇H(Q(x)) is bounded, thus by uniqueness we can take 
(x) = ∇H(Q(x)). Using (3.13)
and the symmetry relation Q(−x) = RQ(x),

[R
(−x)]′ = −RDF(Q(−x))
(−x) = −R[−RDF(Q(x))R]
(−x) = DF(Q(x))[R
(−x)],
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thus 
(−x) = R
(x) by uniqueness. By the definition of F , if 
(x) = (ψ1(x), . . . , ψ2m(x)) is 
a solution to (8.2), then ψ2m(x) solves L(q)∗w = [E ′′(q) + c]∗w = 0. Since L(q) is self-adjoint 
and L(q)q ′ = 0, ψ2m(x) = q ′(x). �

In the next lemma, we collect a few important results about solutions to (8.1) and (8.2).

Lemma 8.2. Consider the linear ODE V ′ = A(x)V and the corresponding adjoint equation 
W ′ = −A(x)∗W , where A(x) is a smooth n × n matrix. Then

(i)
d

dx
〈V (x), W(x)〉 = 0, thus the inner product is constant in x.

(ii) If W(x) is bounded, and V (x) → 0 as x → ∞ or x → −∞, then 〈V (x), W(x)〉 = 0 for all 
x ∈R. The same holds if we reverse the roles of W and V .

(iii) If �(y, x) is the evolution operator for V ′(x) = A(x)V (x), then �(x, y)∗ is the evolution 
operator for the adjoint equation W ′(y) = −A(y)∗W(y).

Proof. For part (i),

d

dx
〈V (x),W(x)〉 = 〈V ′(x),W(x)〉 + 〈V (x),W ′(x)〉

= 〈A(x)V (x),W(x)〉 + 〈V (x),−A(x)∗W(x)〉 = 0.

Part (ii) follows from part (i), the Cauchy-Schwartz inequality and the continuity of the inner 
product. For part (iii), take the derivative of �(y, x)�(x, y) = I with respect to y to get

0 =
(

d

dy
�(y, x)

)
�(x,y) + �(y,x)

(
d

dy
�(x, y)

)
= A(y) + �(y,x)

(
d

dy
�(x, y)

)
.

Rearranging and taking the transpose of both sides yields

d

dy
�(x, y)∗ = −A(y)∗�(x,y)∗. �

By Lemma 8.2(ii), 
(0) ⊥ RQ′(0) ⊕ Y+ ⊕ Y−, thus we can decompose R2m as

R2m =RQ′(0) ⊕ Y+ ⊕ Y− ⊕R
(0). (8.3)

8.2. Piecewise ansatz

First, we write the unstable and stable manifolds as graphs over their tangent spaces. Fol-
lowing [57], we can parameterize W̃ u(0) and W̃ s(0) near Q(0) by the smooth functions 
Q−(γ, β−) and Q+(γ, β+), where γ ∈ R and β± ∈ Y±. These functions are chosen so that 
Q+(γ, 0) − Q−(γ, 0) ∈ R
(0), and Q+(0, 0) = Q−(0, 0) = Q(0). We will always take γ = 0. 
Let Q±(x; β±) be the unique solutions to (3.11) on R± with initial conditions Q±(0, β±) at 
x = 0. Q−(x; β−) lies in the unstable manifold W̃u(0) and Q+(x; β+) lies in the stable mani-
fold W̃ s(0).
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We will look for a n−periodic solution U(n) to (3.11) which is piecewise of the form

U−
i (x) = Q−(x;β−

i ) + Q̃−
i (x) x ∈ [−Xi−1,0]

U+
i (x) = Q+(x;β+

i ) + Q̃+
i (x) x ∈ [0,Xi]

(8.4)

for i = 0, . . . , n − 1, where U−
i : [−Xi−1, 0] → R and U+

i : [0, Xi] → R are continuous. The 
subscripts i are taken modn since we are on a periodic domain, and the pieces are glued together 
end-to-end as in [21], with one additional join needed to “close the loop”. Since Q±(0; β±

i ) ∈
RQ′(0) ⊕ Y±, we are free to choose Q̃±

i (x) so that

Q̃−
i (0) ∈ R
(0) ⊕ Y−

Q̃+
i (0) ∈ R
(0) ⊕ Y+.

To construct a periodic n-pulse, we will solve the following system of equations

(U±
i (x))′ − F(U±

i (x)) = 0 (8.5)

U+
i (Xi) − U−

i+1(−Xi) = 0 (8.6)

U+
i (0) − U−

i (0) = 0 (8.7)

for i = 0, . . . , n − 1. Equation (8.6) is a matching condition at the pulse tails, and equation (8.7)
is a matching condition at the pulse centers.

8.3. Exponential dichotomy

Let �±(x, y; β±) be the family of evolution operators for

[V ±(x)]′ = DF
(
Q±(x,β±)

)
V ±(x) x ∈ R±. (8.8)

Choose any α slightly less than α0. In the next lemma, we decompose these evolution operators 
in exponential dichotomies on R+ and R−.

Lemma 8.3. There exist projections

P s+(y;β+), P u+(y;β+) = I − P s+(y;β+) y ≥ 0

P u−(y;β−), P s−(y;β−) = I − P u−(y;β−) y ≤ 0

on R± such that the evolution operators �±(x, y; β±) can be decomposed as �±(x, y; β±) =
�s±(x, y; β±) + �u±(x, y; β±), where

�s±(x, y;β±) = �±(x, y;β±)P s±(y;β±)

�u±(x, y;β±) = �±(x, y;β±)P u±(y;β±).

We have the estimates
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|�s+(x, y,β+)| ≤ Ce−α(x−y) 0 ≤ y ≤ x

|�u+(x, y,β+)| ≤ Ce−α(y−x) 0 ≤ x ≤ y

|�u−(x, y,β−)| ≤ Ce−α(y−x) 0 ≥ y ≥ x

|�s−(x, y,β−)| ≤ Ce−α(x−y) 0 ≥ x ≥ y,

which also hold for derivatives with respect to the initial conditions β±. In addition, the projec-
tions satisfy the commuting relations

�±(x, y;β±)P
s/u
± (y;β±) = P

s/u
± (x;β±)�±(x, y;β±).

The projections can be chosen so that at y = 0 we have, independent of β+ and β−,

kerP s+(0;β+) =R
(0) ⊕ Y−, kerP u−(0;β−) =R
(0) ⊕ Y+

ranP u+(0;β+) =R
(0) ⊕ Y−, ranP s−(0;β−) =R
(0) ⊕ Y+.

Let Es
0 and Eu

0 be the stable and unstable eigenspaces of DF(0), and let P s
0 and P u

0 be the 
corresponding eigenprojections. For any α with 0 < α < α0, we have the following estimates, 
which are independent of β±

i .

|P u+(x;β+) − P u
0 | ≤ Ce−αx, |P s+(x;β+) − P s

0 | ≤ Ce−αx

|P u−(x;β−) − P u
0 | ≤ Ceαx, |P s−(x;β−) − P s

0 | ≤ Ceαx.
(8.9)

Proof. Since DF(0) is hyperbolic by Hypothesis 3.5, and | Reν| ≥ α0 for all eigenvalues ν of 
DF(0), the exponential dichotomy results follow from [57, Lemma 5.1], which follows from 
[47, Lemma 1.1]. The estimates (8.9) follow from [47, Lemma 1.1] and [47, Lemma 2.1]. �
8.4. Fixed point formulation

Next, we formulate equation (8.5) as a fixed point problem. Substituting the piecewise ansatz
(8.4) into (8.5), and using the fact that Q±(x; β±

i ) solves (8.5) on R±,

(Q̃±
i (x))′ = F(Q±(x;β±

i ) + Q̃±
i (x)) − F(Q±(x;β±

i )) i = 0, . . . , n − 1.

Expanding the RHS in a Taylor series about Q±(x; β±
i ), this becomes

(Q̃±
i (x))′ = DF(Q±(x;β±

i ))Q̃±
i (x) + G±

i (x;β±
i ) i = 0, . . . , n − 1, (8.10)

where G±
i (x; β±

i ) = O(|Q̃±
i (x)|2). As in [57], derivatives of G±

i with respect to the parameters 
β±

i are also quadratic in Q̃±
i . Using the exponential dichotomy, we rewrite (8.10) in integrated 

form as the fixed point equations
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Q̃+
i (x) = �u+(x,Xi;β+

i )a+
i

+
x∫

Xi

�u+(x, y;β+
i )G+

i (y;β+
i )dy +

x∫
0

�s+(x, y;β+
i )G+

i (y;β+
i )dy

Q̃−
i (x) = �s−(x,−Xi−1;β−

i )a−
i−1

+
x∫

−Xi−1

�s−(x, y;β−
i )G−

i (y;β−
i )dy +

x∫
0

�u−(x, y;β−
i )G−

i (y;β−
i )dy,

(8.11)

for i = 0, . . . , n − 1, where a+
i ∈ Eu

0 and a−
i ∈ Es

0. Define the exponentially weighted norms

‖V ‖X,+ = sup
x∈[0,X]

eα(X−x)|V (x)|

‖V ‖X,− = sup
x∈[−X,0]

eα(X+x)|V (x)|,
(8.12)

and let KX,± be the Banach spaces of continuous functions on [0, X] and [−X, 0] equipped with 
these norms. Let BX,±(ρ) be the ball of radius ρ about 0 in KX,±.

8.5. Inversion

As in [57], we will solve for the remainder functions Q̃±
i and parameters β±

i in a series of 
lemmas. First, we will solve equation (8.11) for Q̃±

i .

Lemma 8.4. There exist δ, ρ > 0 such that for Xi > 1/δ and |a±
i |, |β±

i | < δ, where i = 0, . . . , n −
1, there exist unique solutions Q̃−

i ∈ BXi−1,−(ρ) and Q̃+
i ∈ BXi,+(ρ) to (8.11). These depend 

smoothly on (a−
i−1, β

−
i ) and (a+

i , β+
i ), respectively, and we have the estimates

‖Q̃−
i ‖Xi−1,− ≤ C|a−

i−1|
‖Q̃+

i ‖Xi,+ ≤ C|a+
i |,

(8.13)

where the constant C depends only on δ. The estimates hold for derivatives of Q̃±
i with respect 

to β±
i .

Proof. The proof follows [57, Lemma 5.2]. For the first term on the RHS of (8.11),

eα(Xi−x)|�u+(x,Xi;β+
i )a+

i | ≤ Ceα(Xi−x)e−α(Xi−x)|a+
i | = C|a+

i |,

and for the second term, since G+
i is quadratic in Q̃+

i and Q̃+
i ∈ KXi,+,

eα(Xi−x)

∣∣∣∣∣∣∣
x∫
�u+(x, y;β+

i )G+
i (y;β+

i )dy

∣∣∣∣∣∣∣≤ Ceα(Xi−x)

Xi∫
x

e−α(y−x)|Q̃+
i (y)|2dy
Xi
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≤ Ceα(Xi−x)

Xi∫
x

e−α(y−x)(e−α(Xi−y))2|eα(Xi−y)Q̃+
i (y)|2dy ≤ C.

The third term is similarly bounded. Thus the RHS of the fixed point equation (8.11) is a smooth 
map KXi,+ �→ KXi,+. Define H+

i : KXi,+ × Es
0 × Y+ → KXi,+ by

H+
i (Q̃+

i (x),a+
i , β+

i ) = Q̃+
i (x) − �u+(x,Xi;β+

i )a+
i −

x∫
Xi

�u+(x, y;β+
i )G+

i (y;β+
i )dy

−
x∫

0

�s+(x, y;β+
i )G+

i (y;β+
i )dy.

Since Q(x) satisfies (3.11), H+
i (0, 0, 0) = 0, and since G+

i is quadratic in Q̃+
i (x), the Fréchet 

derivative of H+
i with respect to Q̃+

i (x) at (Q̃+
i (x), a+

i , β+
i ) = (0, 0, 0) is the identity. Using the 

implicit function theorem, we can solve for Q̃+
i (x) in terms of (a+

i , β+
i ) for sufficiently small 

|a+
i | and |β+

i |. Since the map H+
i is smooth, this dependence is smooth. The estimate on Q̃+

i

comes from the first term on the RHS of (8.11), since the remaining terms are quadratic in Q̃+
i . 

Since the exponential dichotomy estimates from Lemma 8.3 hold for derivatives with respect to 
β+

i , these estimates do as well. We can similarly solve for Q̃−
i in terms of (a−

i−1, β
−
i ). �

Next, we will solve equation (8.6) to match the pieces (8.4) at ±Xi and obtain the initial 
conditions a±

i .

Lemma 8.5. For Xi chosen as in Lemma 8.4, and for i = 0, . . . , n − 1, there is a unique pair of 
initial conditions (a+

i , a−
i ) ∈ Es

0 × Eu
0 such that U+

i (Xi) − U−
i+1(−Xi) = 0. The pair (a+

i , a−
i )

depends smoothly on (β+
i , β−

i+1), and we have the estimate

|a±
i | ≤ Ce−αXi , (8.14)

which holds as well for derivatives with respect to β±
i . In addition,

a+
i = −P u

0

(
Q+(Xi;β+

i ) − Q−(−Xi;β−
i+1)

)+O(e−2αXi )

a−
i = P s

0

(
Q+(Xi;β+

i ) − Q−(−Xi;β−
i+1)

)+O(e−2αXi ).
(8.15)

Proof. Evaluating the fixed point equations (8.11) at ±Xi and substituting them into (8.4), the 
matching condition (8.6) can be written as Hi(a

+
i , a−

i , β+
i , β−

i+1) = 0, where Hi : Es
0 × Eu

0 ×
Y+ × Y− → R2m is defined by

Hi(a
+
i ,a−

i , β+
i , β−

i+1) = a+
i − a−

i + (P u+(Xi;β+
i ) − P u

0 )a+
i − (P s−(−Xi;β−

i+1) − P s
0 )a−

i

+ Q+(Xi;β+) − Q−(−Xi;β− )
i i+1
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+
Xi∫

0

�s+(Xi, y;β+
i )G+

i (y,β+
i )dy −

−Xi∫
0

�u−(−Xi, y;β−
i+1)G

−
i+1(y,β−

i+1)dy,

where we have substituted Q̃±
i (x) from Lemma 8.4 into G±

i . Since Q(x) satisfies (3.11), 
Hi(0, 0, 0, 0) = 0. Since G±

i is quadratic in Q̃±
i , thus quadratic in a±

i by Lemma 8.4,

∂

∂a±
i

Hi(0,0,0,0) = ±1 +O(e−αXi ),

where we also used the estimate (8.9). For sufficiently large Xi , Da±
i
Hi(0, 0, 0, 0) is invertible 

in a neighborhood of (0, 0, 0, 0), thus we can use the implicit function theorem to solve for 
a±
i in terms of β±

i . The estimate (8.14) then comes from the stable manifold theorem, since 
Q±(±Xi; β±

i ) = O(e−αXi ). To obtain the expressions (8.15), we apply the eigenprojections P u
0

and P s
0 (respectively) to Hi(a

+
i , a−

i , β+
i , β−

i+1) = 0. The bound on the remainder term comes 
from the bound (8.14), together with the estimates from Lemma 8.4 and equation (8.9). �

It remains to solve equation (8.7), which is the matching condition at x = 0. Before doing that, 
we will use the flow-box method to make a smooth change of coordinates which will “straighten 
out” the stable and unstable manifolds near Q(0) so that their non-intersecting directions are Y+
and Y−.

Lemma 8.6. There exists a differentiable map S : R × Y− × Y+ × R
(0) → R2m such that 
S(0, 0, 0, 0) = Q(0), S is invertible in a neighborhood of Q(0), and for sufficiently small β±,

S−1(Q−(0;β−)) = β−

S−1(Q+(0;β+)) = β+.

Proof. Let �x(U0) be the solution operator which maps U0 ∈R2m to the point U(x), where U(·)
is the unique solution to (3.11) with U(0) = U0. Define the map S : R × Y− × Y+ ×R
(0) →
R2m by S(x; β−, β+, γ ) = �x

(
Q(0) + Q−(0;β−) + Q−(0;β+) + γ
(0)

)
. For small x and 

β±, the stable and unstable manifolds are the surfaces W̃ s = S(x; 0, β+, 0) and W̃u =
S(x; β−, 0, 0). Their one-dimensional intersection is the homoclinic orbit Q(x) = S(x; 0, 0, 0), 
and S(0, 0, 0, 0) = Q(0) �= 0. The partial derivatives of S are

Sx(0,0,0,0) = F(Q(0)) = Q′(0)

Sβ−(0,0,0,0) = (Q−)β−(0;0) = Y−

Sβ+(0,0,0,0) = (Q+)β+(0;0) = Y+

Sγ (0,0,0,0) = 
(0),

which span R2m by (8.3). Since the Jacobian of S is invertible at the origin, S is invertible near 
Q(0) by the inverse function theorem. �
404



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
After applying this coordinate change near Q(0), the matching condition (8.7) is equivalent 
to projecting U+

i (0) − U−
i (0) = 0 onto RQ′(0), Y+, Y−, and R
(0) and solving separately 

on each subspace. Since PRQ′(0)(Q
±(0; β±)) = 0 and Q̃±

i (0) ∈ R
(0) ⊕ Y+ ⊕ Y−, the equa-
tion PRQ′(0)(U

+
i (0) − U−

i (0)) = 0 is automatically satisfied. Since PY±(Q±(0; β±)) = β± and 
PR
(0)(Q

±(0; β±)) = 0 due to the change of coordinates, it remains to solve the equations

PY+(Q̃+
i (0) − Q̃−

i (0)) + β+
i = 0 (8.16)

PY−(Q̃+
i (0) − Q̃−

i (0)) − β−
i = 0 (8.17)

PR
(0)(Q̃
+
i (0) − Q̃−

i (0)) = 0. (8.18)

In the next lemma we solve (8.16) and (8.17) to obtain the parameters β±
i .

Lemma 8.7. For Xi chosen as in Lemma 8.4, and for i = 0, . . . , n − 1, there exist (β+
i , β−

i ) ∈
Y+ × Y− such that PY+⊕Y−(U+

i (0) − U−
i (0)) = 0. In addition,

|β+
i | ≤ Ce−2αXi−1

|β−
i | ≤ Ce−2αXi .

(8.19)

Proof. Evaluating the fixed point equations (8.11) at 0 and substituting them into (8.4), equations
(8.16) and (8.17) can be written as Hi(β

+
i , β−

i ) = 0, where Hi : Y+ ⊕Y− → Y+ ⊕Y− is defined 
by

Hi(β
+
i , β−

i ) =
⎛
⎝β+

i − PY+
(
�s−(0,−Xi−1, β

−
i )a−

i−1 − ∫ 0
−Xi−1

�s−(0, y,β−
i )G−

i (y;β−
i )dy

)
β−

i + PY−
(
�u+(0,Xi;β+

i )a+
i + ∫ 0

Xi
�u+(0, y;β+

i )G+
i (y;β+

i )dy
)

⎞
⎠ ,

(8.20)
where we have substituted our expressions for Q̃±

i and a±
i from Lemma 8.4 and Lemma 8.5. 

Using the estimates from these lemmas together with Lemma 8.3,

DHi(β
+
i , β−

i ) =
(

1 O(e−2αXi−1)

O(e−2αXi ) 1

)
, (8.21)

which is independent of β±
i , thus DHi(β

+
i , β−

i ) is invertible for sufficiently large Xi . By the 
inverse function theorem, (β+

i , β−
i ) = H−1

i (0, 0). The estimates (8.19) follow from (8.20) and 
Lemmas 8.3, 8.4, and 8.5. �

We have found a unique solution to (8.5) and (8.6) such that (8.7) is satisfied except for n
jumps in the direction of 
(0). We summarize what we have obtained so far in the following 
lemma.

Lemma 8.8. There exists δ > 0 such that for |Xi | ≥ 1/δ, where i = 0, . . . , n −1, there is a unique 
solution U(x) to equations (8.5), (8.6), and (8.7) which is continuous except for n jumps in the 
direction of 
(0). U(x) can be written piecewise in the form
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U−
i (x) = Q−(x;β−

i ) + Q̃−
i (x) x ∈ [−Xi−1,0]

U+
i (x) = Q+(x;β+

i ) + Q̃+
i (x) x ∈ [0,Xi],

(8.22)

where the pieces are glued together end-to-end in a loop, and we have the estimates

(i)

|Q̃−
i (x)| ≤ Ce−α(Xi−1+x)e−αXi−1

|Q̃+
i (x)| ≤ Ce−α(Xi−x)e−αXi .

(8.23)

(ii) |Q−(x;β−
i ) − Q(x)| ≤ Ce−2αXi eαx

|Q+(x;β+
i ) − Q(x)| ≤ Ce−2αXi−1e−αx.

(8.24)

(iii)
Q̃+

i (Xi) = Q−(−Xi;β−
i+1) +O(e−2αXi )

Q̃−
i+1(−Xi) = Q+(Xi;β+

i ) +O(e−2αXi ).
(8.25)

These estimates hold in addition for derivatives with respect to x.

Proof. Part (i) follows from the estimates (8.13) and (8.14) together with the definition of the ex-
ponentially weighted norm (8.12). Part (ii) follows from the estimate (8.19), smooth dependence 
on initial conditions, and the stable manifold theorem. For part (iii), we solved the matching 
condition Q+(Xi; β+

i ) + Q̃+
i (Xi) = Q−(−Xi; β−

i+1) + Q̃−
i (−Xi) in Lemma 8.5. Applying the 

projections P u−(−Xi, β
−
i+1) and P s+(Xi, β

+
i ) in turn to this and using (8.9), (8.11), and the esti-

mates from the previous lemmas in this section, we obtain the estimates (8.25). �
8.6. Jump conditions

Equation (8.18) gives us n jump conditions in the direction of 
(0). As in [12,21] these will 
only be satisfied for certain values of the pulse distances Xi . Since we have a conservative system, 
we only need to satisfy n − 1 of these jump conditions, which are given in the following lemma.

Lemma 8.9. A periodic n-pulse solution exists if and only if for i = 0, . . . , n − 2,

ξi = 〈
(−Xi),Q(Xi)〉 − 〈
(−Xi−1),Q(Xi−1)〉 + Ri = 0, (8.26)

where the remainder term has bound

|Ri | ≤ C(e−3αXi + e−3αXi−1).
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Proof. Evaluating the fixed point equations (8.11) at x = 0 and substituting them into (8.18),

〈
(0),Q̃+
i (0) − Q̃−

i (0)〉 = 〈
(0),�u+(0,Xi;β+
i )a+

i 〉 − 〈
(0),�s−(0,−Xi−1, β
−
i )a−

i−1〉

+
0∫

Xi

〈
(0),�u+(0, y;β+
i )G+

i (y;β+
i )〉dy −

0∫
−Xi−1

〈
(0),�s−(0, y,β−
i )G−

i (y;β−
i )〉dy,

(8.27)
where we have substituted our expressions for Q̃±

i , a±
i , and β±

i from Lemma 8.4, Lemma 8.5, 
and Lemma 8.7. Using Lemma 8.3, smooth dependence on initial conditions, and the bound
(8.19),

|�u+(0, x;β+
i ) − �u+(0, x;0)| ≤ Ce−2αXi−1e−αx x ≥ 0

|�s−(0, x;β−
i ) − �s−(0, x;0)| ≤ Ce−2αXi eαx x ≤ 0.

(8.28)

For the term involving a+
i in (8.27), we substitute (8.15) from Lemma 8.5 and use (8.28), the 

estimate (8.24), and Lemma 8.2(iii) to obtain

〈
(0),�u+(0,Xi;β+
i )a+

i 〉
= −〈
(0),�u+(0,Xi;β+

i )(P u
0 (Q+(Xi;β+

i ) − Q−(−Xi;β−
i+1)) +O(e−2αXi ))〉

= −〈
(0),�u+(0,Xi;0)P u
0 (Q+(Xi;β+

i ) − Q−(−Xi;β−
i+1))〉 +O(e−3αXi + e−2αXi−1e−αXi )

= −〈
(Xi),P
u+(Xi;0)P u

0 (Q(Xi) − Q(−Xi))〉 +O(e−3αXi + e−3αXi−1).

By (8.9), P u+(Xi; 0)P u
0 (Q(Xi) − Q(−Xi)) = Q(−Xi) + O(e−2αXi ), thus it follows from 

Lemma 8.2 that

〈
(0),�u+(0,Xi;β+
i )a+

i 〉 = 〈
(Xi),Q(−Xi)〉 +O(e−3αXi + e−3αXi−1).

Similarly, we have

〈
(0),�s−(0,−Xi−1, β
−
i )a−

i−1〉 = 〈
(−Xi−1),Q(−Xi−1)〉 +O(e−3αXi + e−3αXi−1).

For the integral terms, we use the estimates from Lemma 8.8 and the fact that G±
i is quadratic in 

Q̃±
i to obtain the estimate

∣∣∣∣∣∣∣
0∫

Xi

〈
(0),�u+(0, y;β+
i )G+

i (y;β+
i )〉dy

∣∣∣∣∣∣∣≤ Ce−3αXi .

The other integral term has a similar bound. By reversibility,

〈
(Xi),Q(−Xi)〉 = 〈R
(−Xi),RQ(Xi)〉 = 〈
(−Xi),Q(Xi)〉.
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Combining everything above, we obtain equation (8.26) and the remainder bound for Ri . As in 
[12, p. 2093], since (3.7) is a conservative system, if n − 1 of the jump conditions are satisfied, 
the final jump condition must automatically be satisfied. Since it does not matter which condition 
we eliminate, we choose to eliminate the last one. �

As a corollary, periodic single pulse solutions exist for sufficiently large X0, since in that case 
there are no jump conditions. These are unimodal periodic orbits which are close to the primary 
homoclinic orbit Q(x).

Corollary 8.10. Periodic single pulse solutions exist for sufficiently large X0.

8.7. Rescaling and parameterization

Following [21, Section 6], we will introduce a change of variables with a built-in scaling 
parameter to facilitate the analysis. Define the set

R=
{

exp

(
−2πm

ρ

)
: m ∈N0

}
∪ {0}, (8.29)

where ρ = β0/α0. Since R is closed and bounded, it is compact, thus complete. For r ∈R, define 
X∗ = X∗(r) by

X∗ = − 1

2α0
log r − φ

2β0
, (8.30)

so that

r = e−α0(2X∗+φ/β0). (8.31)

The constant φ comes from [21, Lemma 6.1] (see Lemma 8.11 below for details). We will use r
as a scaling parameter for the system. For i = 0, . . . n − 1, define

bi = e−2α0(Xi−X∗), (8.32)

where we have chosen Xi ≥ X∗ for i = 0, . . . , n − 1. The quantities bi are length parameters for 
the system. In terms of r and bi ,

Xi = − 1

2α0
log(bir) − φ

2β0
. (8.33)

In the next lemma, we rewrite the system (8.26) using this rescaling.

Lemma 8.11. A periodic multi-pulse solution exists if and only if for i = 0, . . . , n − 2,

Gi(b1, . . . , bn−1, r) = bi sin (−ρ logbi) − bn−1 sin (−ρ logbn−1) +O(rγ /2α) = 0, (8.34)

where r ∈ R and 0 < γ ≤ 1. All derivatives of the remainder term with respect to bi are also 
O(rγ /2α).
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Proof. Using [21, Lemma 6.1(i)], for x > 0 sufficiently large,

〈
(−x),Q(x)〉 = p0e
−2α0x sin(2β0x + φ) +O

(
e−(2α0+γ )x

)
, (8.35)

where 0 < γ ≤ 1, p0 > 0, and φ are constants which come from [21, Lemma 6.1] (note that 
we use p0 in place of s in that lemma, and that there is no dependence on a parameter μ). 
Substituting (8.35) into (8.26) and rescaling using (8.32) and (8.33),

p0e
α0φ/β0bir sin (−ρ log(bir)) − p0e

α0φ/β0bi−1r sin (−ρ log(bi−1r)) +O(r1+γ /2α) = 0.

(8.36)
Dividing both sides by rp0e

α0φ/β0 > 0 and simplifying, we obtain the jump conditions

ξi = bi sin (−ρ logbi) − bi−1 sin (−ρ logbi−1) +O(rγ /2α) = 0, (8.37)

since sin (−ρ log(bir)) = sin (−ρ logbi) for r ∈ R. For i = 0, . . . , n − 2, let

Gi(b1, . . . , bn−1, r) =
i∑

k=0

ξk. (8.38)

After canceling terms, we obtain the equations (8.34), which are equivalent to (8.26) via an 
invertible linear transformation. �
Remark 8.12. In Lemma 8.11, we rewrote (8.26) so that equation i involves bi and a common 
parameter bn−1. Since we are on a periodic domain, that choice was arbitrary; the final length 
parameter bn−1 was chosen for notational convenience.

When r = 0, the equations (8.34) all have the same form. Let

H(b0, b1) = b0 sin (−ρ logb0) − b1 sin (−ρ logb1) . (8.39)

In the next lemma, we will show that pitchfork bifurcations occur on the diagonal in the zero set 
of H(b0, b1).

Lemma 8.13. A discrete family of pitchfork bifurcations occurs along the diagonal in the zero 

set of H(b0, b1) at (b0, b1) = (b∗
k , b

∗
k ) for k ∈ Z, where b∗

k = e
− 1

ρ
(p∗+kπ) and p∗ = arctanρ. 

Locally, the arms of the pitchfork bifurcations open upwards along the diagonal.

Proof. First, we note that the partial derivative Hb0(b0, b1) = sin (−ρ logb0)−ρ cos (−ρ logb0)

is zero if and only if b0 = b∗
k for integer k, which gives the locations of the bifurcation points. 

Next, we change coordinates so that the pitchfork bifurcation will occur along the horizontal 
axis. Let b0 = y − x and b1 = y + x, which is a rotation by −π/4. Making this substitution, we 
obtain

H(x,y) = (y − x) sin (−ρ log(y − x)) − (y + x) sin (−ρ log(y + x)) . (8.40)
409



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
For all y, H(−x, y) = −H(x, y), which is the required odd symmetry for a pitchfork bifurcation. 
Let (x0, y0) =

(
0, b∗

k

)
. Evaluating the relevant partial derivatives of H at (x0, y0),

Hx(x0, y0) = 0, Hy(x0, y0) = 0, Hxx(x0, y0) = 0, Hyy(x0, y0) = 0

Hxy(x0, y0) = (−1)k2ρ

√
1 + ρ2 exp

(
1

ρ
(arctanρ − kπ)

)
�= 0

Hxxx(x0, y0) = −(−1)k2ρ

√
1 + ρ2 exp

(
2

ρ
(arctanρ − kπ)

)
�= 0,

thus a pitchfork bifurcation occurs at (0, b∗
k) for all k ∈ Z. To leading order, near the bifurcation 

points (0, b∗
k ), the arms of the pitchforks are upwards-opening parabolas of the form y = b∗

k +
ckx

2, where ck = 1
6 exp

(
1
ρ
(arctanρ − kπ)

)
> 0. The result follows upon reverting to the (b0, b1)

coordinate system. �
Now that we have located the pitchfork bifurcations, we will construct a natural parameter-

ization for the zero set of H(b0, b1). We only need to consider b0 ≥ b1 since the zero set is 
symmetric across the diagonal. For any nonnegative integers m1 ≥ m0, the point

(b0, b1) =
(

exp

(
− 1

ρ
m0π

)
, exp

(
− 1

ρ
m1π

))

is in the zero set of H . We will use these points to anchor our parameterization, and will use a 
phase parameter θ to connect these anchor points.

Lemma 8.14. For any nonnegative integers m0 and m1 with m1 ≥ m0, there is a smooth family 
of solutions

(b0(m0,m1, θ), b1(m0,m1, θ)) θ ∈ [−π + p∗,p∗]

to H(b0, b1) = 0. This parameterization is given explicitly by

b0(m0,m1, θ) = exp

(
− 1

ρ

(
m0π + θ∗(θ;m1 − m0)

))

b1(m0,m1, θ) = exp

(
− 1

ρ
(m1π + θ)

)
,

(8.41)

where the functions θ∗(θ; m) : [−π + p∗, p∗] → R are smooth in θ for all nonnegative integers 
m and have the following properties:

(i) θ∗(θ; 0) = θ .
(ii) θ∗(0; m) = 0 for all m.

(iii) |θ∗(θ; m)| ≤ |θ |.
(iv) θ∗(p∗; m) = θ∗(−π + p∗; m + 1).

(v) |θ∗(θ; m)| ≤ C exp
(
−mπ

)
.

ρ
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In particular, θ∗(p∗; 0) = θ∗(π − p∗; 1) = p∗.

Proof. We substitute (8.41) into H(b0, b1) = 0 and solve for θ∗ in terms of θ .

1. First, we show that θ∗ only depends on the difference m1 − m0. Substituting (8.41) into 
H(b0, b1) = 0 and simplifying, we obtain the equation

e
− 1

ρ
θ∗

sin θ∗ = e
− 1

ρ
(m1−m0)π (−1)m1−m0e

− 1
ρ
θ sin θ = 0, (8.42)

which only depends on m1 − m0. Letting m = m1 − m0, it suffices to solve

g(θ∗) = t (m)g(θ) (8.43)

for all nonnegative integers m, where g(θ) = e
− 1

ρ
θ sin θ and t (m) = (−1)me

− 1
ρ
mπ .

2. For m = 0, t (0) = 1, thus θ∗(θ; 0) = θ .
3. Let I = [−π + p∗,p∗]. For m ≥ 1, we first show that g(θ) is invertible on I . Since

g′(θ) = e
− 1

ρ
θ

(
cos θ − 1

ρ
sin θ

)
, (8.44)

g′(p∗) = 0, g′(−π + p∗) = 0, and the only critical point of g′(θ) on I is a local maximum at 
θ = −π + 2p∗, g(θ) is strictly increasing, thus invertible, on I . Let

g(I) =
[
−e

1
ρ
π
T ,T

]
, T = e

− 1
ρ
p∗

sinp∗ = ρ√
1 + ρ2

e
− 1

ρ
arctanρ

.

Then g : I → g(I) is a bijection, and g−1 : g(I) → I is also strictly increasing. Since the only 
zero of g(θ) on I occurs at θ = 0, g−1(0) = 0. We can now solve (8.43) for θ∗. For all θ ∈ I ,

t (m)g(θ) ∈
{

[−e
− 1

ρ
(m−1)π

T , e
− 1

ρ
mπ

T ] m even

[−e
− 1

ρ
mπ

T , e
− 1

ρ
(m−1)π

T ] m odd.
(8.45)

Since t (m)g(θ) ⊂ g(I) for all θ ∈ I , define

θ∗(θ;m) = g−1 (t (m)g(θ)) θ ∈ I,m ≥ 1. (8.46)

Since g(0) = 0, θ∗(0, m) = 0 for all m.
4. Next, we show that |θ∗(θ; m)| ≤ |θ |. For m = 0, we have equality. For m = 1 and θ = −π +

p∗, t (−π + p∗)g(−π + p∗) = T , thus θ∗(−π + p∗; 1) = −π + p∗. For any other m and θ , 

it follows from (8.45) that t (m)g(θ) ∈ [e− 1
ρ
π
T , T ), which is strictly contained in g(I). Since 

g−1 is strictly increasing and g(0) = 0, |θ∗(θ; m) ≤ |θ |.
5. We now show that consecutive parameterizations match up at the endpoints. For m ≥ 0,

θ∗(p∗;m) = g−1
(
e
− 1

ρ
mπ

(−1)me
− 1

ρ
p∗

sinp∗)
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and

θ∗(−π + p∗;m + 1) = g−1
(
e
− 1

ρ
(m+1)π

(−1)m+1e
− 1

ρ
(−π+p∗) sin(−π + p∗)

)
= g−1

(
e
− 1

ρ
mπ

(−1)me
− 1

ρ
p∗

sinp∗) ,

which are equal. In particular, θ∗(p∗; 0) = θ∗(π − p∗; 1) = p∗.
6. Finally, we obtain a bound on θ∗(θ; m). For m ≥ 2 and θ ∈ I , it follows from (8.45) that 

t (m)g(θ) is contained in an interval Ĩ , which is strictly contained in I . Since g′(0) = 0 only 
at the endpoints of I and is positive in the interior of I , g′(θ) is bounded below on Ĩ , thus 

[g−1]′(θ) is bounded for θ ∈ g(Ĩ ). Since |t (m)g(θ)| ≤ e
− 1

ρ
(m−1)π

T by (8.45) and g(0) = 0, 
we obtain the bound (v), which is independent of θ . �

8.8. Proof of Theorem 4.2

By Lemma 8.11, a periodic n-pulse exists if and only if Gi(b0, . . . , bn−1, r) = 0 for i =
0, . . . , n − 2. When r = 0, Gi(b0, . . . , bn−1, 0) = H(bi, bn−1), and we can use the parameteriza-
tion from Lemma 8.14. Choose any periodic parameterization (m0, . . . , mn−1, θ) and define

bi(mi,mn−1, θ) = exp

(
− 1

ρ

(
miπ + θ∗(θ;mn−1 − mi)

))
i = 0, . . . , n − 2

bn−1(mn−1, θ) = exp

(
− 1

ρ
(mn−1π + θ)

)
,

(8.47)

so that by Lemma 8.14,

H(bi(mi,mn−1, θ), bn−1(mn−1, θ)) = 0 i = 0, . . . , n − 2.

Substituting bn−1(mn−1, θ) for bn−1 in (8.34), define b = (b0, . . . , bn−1) ∈ Rn−1 and G :Rn−1 ×
R → Rn−1 by G = (G0, . . . , Gn−2)

T , where

Gi(b, r) = bi sin (−ρ logbi) − bn−1(mn−1, θ) sin (−ρ logbn−1(mn−1, θ)) +O(rγ /2α).

Let b∗ = (b0(m0, mn−1, θ), . . . , bn−2(mn−2, mn−1, θ)). Then G(b∗, 0) = 0, and the Jacobian 
matrix DbG(b∗, 0) is diagonal, with

∂bi
Gi(b

∗,0) = sin (−ρ logbi(mi, θ)) − ρ cos (−ρ logbi(mi, θ)) .

From Lemma 8.13, ∂bi
Gi(b, 0) = 0 if and only if bi is one of the pitchfork bifurcation points 

b∗
k . By Lemma 8.14, if we exclude θ ∈ {−π + p∗, p∗}, the Jacobian DbG(b∗, 0) is invertible, 

thus we can use the implicit function theorem to solve for b in terms of r near b∗. Specifi-
cally, there exists r∗ > 0 and a unique continuous function b : R ∩ [0, r∗] → Rn−1 given by 
b(r) = (b0(r), . . . , bn−2(r)) such that b(0) = b∗ and G(b, r) = 0 if and only if b = b(r). For 
i = 0, . . . , n − 2, define ti(r; mi, θ) : R → R by

ti (r;mi,mn−1, θ) = −ρ logbi(r), (8.48)
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which is continuous in r , and ti(0; mi, mn−1, θ) = miπ +θ∗(θ; mn−1 −mi) by (8.47). Equations
(4.3) are obtained by substituting bi(r), i = 0, . . . , n − 2, and bn−1(mn−1, θ) for bi in (8.33) and 
using (8.48).

8.9. Periodic 2-pulse

For the periodic 2-pulse, we have a single jump condition

G(b0, b1, r) = b0 sin (−ρ logb0) − b1 sin (−ρ logb1) +O(rγ /2α) = 0. (8.49)

First, we will show that the pitchfork bifurcations along the diagonal persist for small r . Recall 
that by Definition 4.1, m0 ∈ {0, 1} for a periodic 2-pulse.

Lemma 8.15. There exists r2 > 0 such that for m0 ∈ {0, 1} and r ≤ r2, there is a non-degenerate 
pitchfork bifurcation in the zero set of G(b0, b1, r) at (b∗

m0
(r), b∗

m0
(r)), and

b∗
m0

(r) → b∗
m0

as r → 0.

Proof. Take m0 = 0. The proof is identical for m0 = 1. First, we show the required odd symme-
try relation. By Lemma 8.8, for an ordered pair of pulse distances (X0, X1) with Xi sufficiently 
large, there exists a unique piecewise solution (U−

0 (x), U+
0 (x), U−

1 (x), U+
1 (x)) which is contin-

uous except for two jumps

ξ0(X0,X1) = 〈
(0),U+
0 (0) − U−

0 (0)〉, ξ1(X0,X1) = 〈
(0),U+
1 (0) − U−

1 (0)〉 (8.50)

in the direction of 
(0). By symmetry, (U+
1 (−x), U−

1 (−x), U+
0 (−x), U−

0 (−x)) is also a solu-
tion for (X0, X1), thus it must be the same solution by uniqueness. In particular, U+

1 (0) = U−
0 (0)

and U−
1 (0) = U+

0 (0), thus ξ0(X0, X1) = −ξ1(X0, X1) = −ξ0(X1, X0). Since swapping X0 and 
X1 is equivalent to swapping b0 and b1 in (8.49), G(b0, b1, r) = −G(b1, b0, r) for sufficiently 
small r .

Making the change of coordinates (b0, b1) �→ (x, y) as in Lemma 8.13, G(−x, y, r) =
−G(x, y, r) for sufficiently small r . The persistence of the pitchfork bifurcation follows from a 
Lyapunov-Schmidt reduction. By Lemma 8.13, Gx(0, b∗

0, 0) = 0 and Gxy(0, b∗
0, 0) �= 0, thus by 

the implicit function theorem there exists r2 > 0, an open interval (−a, a), and a unique smooth 
function y = y∗(x, r) such that y∗(0, 0) = b∗

0 and Gx(x, y∗(x, r), r) = 0 for all x ∈ (−a, a) and 
r < r2. It follows that a pitchfork bifurcation occurs at (x, y, r) = (0, y∗(0, r), r) by evaluating 
the appropriate partial derivatives of G as in Lemma 8.13. Letting b∗

0(r) = y∗(0, r), the result 
follows upon reverting to the original (b0, b1) coordinates. �

Next, we show that the arms of the pitchfork persist for sufficiently small r . By symmetry, it 
suffices to show this for the lower arm.

Lemma 8.16. Choose any δ > 0. Then there exists r3 > 0 such that for m0 ∈ {0, 1} and r ≤
r3, the portion of the zero set of G(b0, b1, r) corresponding to lower arm of the pitchfork at 
(b∗

m (r), b∗
m (r)) is parameterized by
0 0
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(b0, b1) = (b0(s;m0, r), b1(s)) s ∈ [p∗ + δ,∞),

where

b1(s) = e
− 1

ρ
s
. (8.51)

Proof. As in the previous lemma, take m0 = 0. The proof is identical for m0 = 1. For every 
positive integer m1 with m1 ≥ 1, let

b̃0(m1, θ) = exp

(
− 1

ρ
θ∗(θ;m1)

)
, b̃1(m1, θ) = exp

(
− 1

ρ
(m1π + θ)

)
, (8.52)

where θ∗ is defined in Lemma 8.14. Since these families connect at their endpoints, define b1(s)

by (8.51). For s > p∗, let m(s) =
⌈

s−p∗
π

⌉
and θ(s) = s − m(s)π , and define b̃0(s) by

b̃0(s) = b0(m(s), θ(s)), (8.53)

so that the continuous curve (b̃0(s), b1(s)) for s > p∗ parameterizes the lower arm of the pitch-
fork when r = 0. Define the Banach space X = Cb([p∗ + δ, ∞), R) of bounded continuous 
functions equipped with the uniform norm. For b ∈ X, define G̃ : X ×R → X by

[
G̃(b, r)

]
(s) = G(b(s), b1(s), r) = b(s) sin(− logb(s)) − e

− 1
ρ
s sin s +O(rγ /2α).

Then G̃(b̃0(s), r) = 0, and Db0G̃(b, 0) = Gb0(b(s), b1(s), 0).
By Lemma 8.13, Gb0(b0, b1, 0) = 0 if and only if (b0, b1) is one of the pitchfork bifurcation 

points; by Lemma 8.14, these occur on the curve (b̃0(s), b1(s)) only when s = p∗. From the 
proof of Lemma 8.14, |Gb0(b̃0(s), b1(s), 0)| is bounded below for s ≥ p∗ + δ, thus Db0G̃(b̃0, 0)

is invertible with bounded inverse. Using the implicit function theorem for Banach spaces, there 
exists r3 > 0 and a unique smooth function b : R → X with b(0) = b̃0 such that for all r ≤ r3, 
G̃(b(r), r) = 0. It follows from the definition of G̃ that G([b(r)](s), b1(s), r) = 0 for all r ≤ r3
and s ∈ [p∗ + δ, ∞). The result follows by taking b0(s; m0, r) = [b(r)](s). �

Finally, we show that for sufficiently small r , the lower arm of the pitchfork connects to the 
pitchfork bifurcation point, which extends the parameterization in Lemma 8.16 to s ∈ [p∗, ∞).

Lemma 8.17. There exists r4 > 0 such that for m0 ∈ {0, 1} and r ≤ r4, the parameterization in 
Lemma 8.16 can be extended to s ∈ [p∗, ∞), and

(
b0(p

∗;m0, r), b1(p
∗)
)= (

b∗
m0

(r), b∗
m0

(r)
)
,

which is the pitchfork bifurcation point from Lemma 8.15.

Proof. For simplicity, take m0 = 0. The proof is identical for m0 = 1. Change variables 
(b0, b1) �→ (x, y) as in Lemma 8.13, so that the pitchfork bifurcation takes place on the hori-
zontal axis. Let r2 be as in Lemma 8.15. Then there is a nondegenerate pitchfork bifurcation 
at (x, y) = (b∗(r), 0), and there exists y1 ≥ 0 such that for r ≤ r2, the arm of the pitchfork is 
0
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uniquely parameterized by (x, y) = (x0(y, r), y) for y ∈ [0, y1], where x0(0, r) = b∗
0(r). Take 

δ = y1/2, and let r3 be as in Lemma 8.16. In the (x, y) coordinate system, the lower arm of 
the pitchfork is uniquely parameterized by (x, y) = (x1(y, r), y) for y ∈ [y1/2, ∞) for r < r3. 
Let r4 = min{r2, r3}. Then by the uniqueness of the two parameterizations, (x1(y, r), y) =
(x0(y, r), y) for y ∈ [y1/2, y1] and r ≤ r4. Since the two parameterizations overlap on an in-
terval, the lower arm of the pitchfork connects to the pitchfork bifurcation point. Returning to 
the (b0, b1) coordinate system, we can extend the parameterization in Lemma 8.16 to the pitch-
fork bifurcation point, which occurs when s = p∗. �
8.10. Proof of Theorem 4.4

Let r∗ = r4, where r4 is defined in Lemma 8.17. From the proof of Lemma 8.15, 
G(b0, b0, r) = −G(b0, b0, r), thus symmetric solutions with b0 = b1 exist for sufficiently small 
r . To parameterize these, for m0 ∈ {0, 1} and s0 ∈ [0, π), let

b0(m0, s0) = b1(m0, s0) = exp

(
− 1

ρ
(m0π + s0)

)
.

The pulse distances (4.4) are obtained by substituting this into (8.33). Let p∗(m0; r) =
−ρ log(b∗

m0
(r)), where b∗

m0
(r) is the pitchfork bifurcation point defined in Lemma 8.15. Then 

the pitchfork bifurcation occurs when s0 = p∗(m0; r), and p∗(m0; r) → p∗ as r → 0.
For asymmetric periodic 2-pulses, taking s1 = s in Lemma 8.17, the lower arms of the 

pitchforks are parameterized by (b0, b1) = (b0(s1; m0, r), b1(s1)) for s1 ∈ [p∗, ∞). The for-
mula for X1(r, s1) in (4.5) follows by substituting (8.51) into (8.33). Let t0(r; m0, s1) =
−ρ log (b0(s1;m0, r)), which is continuous in r and s1. Using this together with (8.33) we 
obtain the formula for X0(r; m0, s1) in (4.5). From Lemma 8.16, t0(0; m0, s1) = m0π +
θ∗(θ(s1); m(s1) − m0), where m(s1) = � s1−p∗

π
� and θ(s1) = s1 − m(s1)π . Using the estimate 

for θ∗(θ; m) from Lemma 8.14,

θ∗(θ(s1);m(s1) − m0) ≤ C exp

(
− 1

ρ
(m(s1) − m0)π

)
≤ C exp

(
− 1

ρ
s1

)
,

from which the estimate (4.6) follows. By Lemma 8.17, the pitchfork bifurcation point is reached 
when s1 = p∗.

9. Proof of Theorem 5.3

We will use Lin’s method as in [21] to construct eigenfunctions which are solutions to (5.1). 
To do this, we will take a piecewise linear combination of the kernel eigenfunctions ∂xQn(x) and 
∂cQn(x) and a “center” eigenfunction as our ansatz, and we will join these together using small 
remainder functions. As long as the individual pulses in Qn(x) are well-separated, Lin’s method 
will yield a unique solution which solves (5.1) but which has n discontinuities. In contrast to 
[21], these n jumps line in the two-dimensional subspace spanned by 
(0) and W0, which gives 
us 2n jump conditions. Finding the eigenvalues near 0 amounts to solving these jump conditions, 
which will give us both the interaction eigenvalues and the essential spectrum eigenvalues.
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9.1. Preliminaries

For convenience, we define

A(Q(x);λ) = A(Q(x)) + λB,

and note that A(0; λ) = A(0) +λB is a constant matrix. It follows from (3.22) and the symmetry 
relations (3.13) that

A(Q(x);λ) = −RA(Q(−x);−λ)R, (9.1)

where R is standard reversor operator. Let α0 and β0 be defined as in Hypothesis 3.5. Choose 
any η > 0 with 2η < α0, and let α = α0 − η. Let δ1 be as in Lemma 5.2, and choose δ2 ≤ δ1
sufficiently small so that for all |λ| < δ2, |ν(λ)| < η, where ν(λ) is the simple eigenvalue of 
A(0; λ) close to 0 which is defined in Lemma 5.2, and | Reν| > α for any other eigenvalue ν of 
A(0; λ). To greatly simplify our analysis, we place the additional assumption on the real part of 
λ

|Reλ| ≤ r1/4 = Ce− 1
2 αX∗

, (9.2)

where the scaling parameter r is defined in (8.31) and X∗ is defined in (8.30). We will verify that 
this assumption is satisfied for sufficiently small r when we consider applications of the theorem. 
It then follows from (9.2) and Lemma 5.2 that

|eν(λ)X∗ | ≤ e|Reν(λ)|X∗ ≤ exp
(
CX∗e− 1

2 α0X
∗)≤ C. (9.3)

Since the periodic parameterization (m0, . . . , mn−1, θ) is fixed,

|eν(λ)Xi | ≤ C i = 0, . . . , n − 1. (9.4)

9.2. Conjugation lemma

The conjugation lemma allows us to make a smooth change of coordinates to convert certain 
linear ODEs of the form W ′(x) = A(x)W(x) into a constant coefficient system. The statement of 
the lemma is identical to that in [58], except that the parameter vector � here lives in an arbitrary 
Banach space. The proofs of Lemma 9.1 and Corollary 9.2 are straightforward modifications of 
the proof of [58, Corollary 2.3].

Lemma 9.1 (Conjugation lemma). Let V ∈CN , and consider the family of ODEs on R

V (x)′ = A(x;�)V (x) + F(x), (9.5)

where � ∈ � is a parameter vector and � is a Banach space. Assume that

(i) The map � �→ A(·; �) is analytic in �.
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(ii) A(x; �) → A±(λ) (independent of �) as x → ±∞, and there exists δ > 0 such that for 
|�| < δ, we have the uniform exponential decay estimates

∣∣∣∣ ∂k

∂xk
A(x;�) − A±(�)

∣∣∣∣≤ Ce−θ |x| 0 ≤ k ≤ K, (9.6)

where α > 0, C > 0, and K is a nonnegative integer.

Then in a neighborhood of any �0 ∈ � there exist invertible linear transformations

P +(x,�) = I + �+(x,�)

P −(x,�) = I + �−(x,�)
(9.7)

defined on R+ and R−, respectively, such that

(i) The change of coordinates V = P ±Z reduces (9.5) to the equations on R±

Z′(x) = A±(�)Z(x) + P ±(x,�)−1F(x). (9.8)

(ii) For any fixed 0 < θ̃ < θ , 0 ≤ k ≤ K + 1, and j ≥ 0 we have the decay rates∣∣∣∂j
�∂k

x�±
∣∣∣≤ C(j, k)e−θ̃ |x|. (9.9)

Corollary 9.2. Take the same hypotheses as in Lemma 9.1, and let P ±(x; �) be the con-
jugation operators for V (x)′ = A(x; �)V (x) on R±. Then the change of coordinates W =
[(P ±)−1]∗Z on R± reduces the adjoint equation W ′(x) = −A(x; �)∗W(x) to the equation 
Z′(x) = −A±(�)∗Z(x).

9.3. Solutions in center subspace

First, we apply the conjugation lemma to

V ′(x) = A(Q(x);λ)V ′(x). (9.10)

For all λ, A(Q(x); λ) decays exponentially to the constant-coefficient matrix A(0; λ). Since 
DF(0) is hyperbolic, |A(Q(x); λ) − A(0; λ)| ≤ Ce−(α0+ε)|x| for small ε; the price to pay is a 
larger constant C. Using the conjugation lemma on R+ with � = λ and �0 = 0, there exists 
δ3 ≤ δ2 and an invertible linear transformation

P +(x;λ) = I + �+(x;�), (9.11)

such that for all |λ| < δ3, the change of coordinates V (x) = P +(x; λ)Z+(x) conjugates (9.10)
into the constant-coefficient equation (Z+)′(x) = A(0; λ)Z+(x). The function �+(x; λ) has the 
uniform decay rate

|�+(x;λ)| ≤ Ce−α0|x|, (9.12)
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which holds for derivatives with respect to x and λ.
For x ∈R− and |λ| < δ3, define P −(x; λ) by

P −(x;λ) = RP +(−x;−λ)R. (9.13)

By a straightforward adaptation of the proof of the conjugation lemma in [58] and the symme-
try relation (9.1), the change of coordinates V (x) = P −(x; λ)Z−(x) conjugates (9.10) into the 
constant-coefficient equation (Z−)′(x) = A(0; λ)Z−(x) on R−.

Let Eu/s/c(0) be the stable, unstable, and center eigenspaces of A(0), and P u/s/c(0) be their 
respective eigenprojections. Let Eu/s/c(λ) and P u/s/c(λ) be the corresponding eigenspaces and 
eigenprojections for A(0; λ), which are smooth in λ. Es(λ) and Eu(λ) are m-dimensional, and 
Ec(λ) is 1-dimensional. In the next lemma, we collect some useful results about A(0; λ).

Lemma 9.3. We have the following results concerning A(0; λ).

(i) A(0; −λ) = −RA(0; λ)R, where R is the standard reversor operator. In particular, A(0) =
−RA(0)R.

(ii) If V is an eigenvector of A(0) corresponding to eigenvalue μ, then RV is an eigenvector 
of A(0) corresponding to eigenvalue −μ, and V is an eigenvector of A(0) corresponding 
to eigenvalue μ.

(iii) Let P c,∗(0) be the center eigenprojection of −A(0)∗. Then P c,∗(0) = [P c(0)]∗.
(iv) Let P s,∗(0) and P u,∗(0) be the stable and unstable eigenprojections of −A(0)∗. Then 

P s,∗(0) = [P u(0)]∗ and P u,∗(0) = [P s(0)]∗.

Proof. Part (i) can be verified by multiplying out RA(0; λ)R. For part (ii), A(0)V = μV

implies A(0)V = μV since A(0) is real. Using part (i), −RA(0)RV = μV , which rear-
ranges to A(0)(RV ) = −μ(RV ). For part (iii), ker[P c(0)]∗ = (ranP c(0))⊥ = span{V0}⊥ and 
ran[P c(0)]∗ = (kerP c(0))⊥. For any eigenvector W of −A(0)∗ with nonzero eigenvalue μ,

〈W,V0〉 = 1

μ
〈μW,V0〉 = 1

μ
〈−A(0)∗W,V0〉 = − 1

μ
〈W,A(0)V0〉 = 0,

thus ker[P c(0)]∗ is the direct sum of the stable and unstable eigenspaces of −A(0)∗. Similarly, 
for any eigenvector V of A(0) with nonzero eigenvalue μ, 〈W0, V 〉 = 0, thus ran[P c(0)]∗ =
span{W0}, which proves (iii).

For part (iv), let W be an eigenvector of −A(0)∗ with nonzero eigenvalue μ. Then for all 
eigenvectors of A(0) with eigenvalue μ̃, we have

〈W,V 〉 = 1

μ
〈μW,V 〉 = 1

μ
〈−A(0)∗W,V 〉 = − 1

μ
〈W,A(0)V 〉 = − 1

μ
〈W,μ̃V0〉 = − μ̃

μ
〈W,V 〉,

thus 〈W, V 〉 = 0 unless μ̃ = −μ. For the stable eigenprojection, ker[P s(0)]∗ = (ranP s(0))⊥
and ran[P s(0)]∗ = (kerP s(0))⊥ = (Eu(0) ⊕ Ec(0))⊥. Let W be in the unstable eigenspace of 
−A(0)∗, and let μ be the corresponding eigenvalue with Reμ > 0. Then W is perpendicular to 
all eigenvectors in Ec(0) ⊕ Eu(0), thus W ∈ ran[P s(0)]∗. Similarly, if W is in the unstable or 
center eigenspace of −A(0)∗, then W ∈ ker[P s(0)]∗. This proves (iv) for P u,∗(0). The result for 
P s,∗(0) is similar. �
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Let �(x, y; λ) = eA(0;λ)(x−y) be the evolution operator of the constant-coefficient equation 
Z′(x) = A(0; λ)Z(x). Then the evolution operator of the unconjugated equation (9.10) on R± is 
given by

�̃±(x, y;λ) = P ±(x;λ)�(x, y;λ)P +(y;λ)−1 x, y ∈R±. (9.14)

We can decompose (9.14) in exponential trichotomies on R± via the operators

�̃s/u/c,±(x, y;λ) = P ±(x;λ)�(x, y;λ)P s/u/c(λ)P ±(x;λ)−1 x, y ∈R±, (9.15)

where we have estimates

|�̃s,±(x, y;λ)| ≤ Ce−α(x−y) y ≤ x

|�̃u,±(x, y;λ)| ≤ Ce−α(y−x) x ≤ y

|�̃c,±(x, y;λ)| ≤ Ceη|x−y|,

(9.16)

which are uniform in λ.
The equation Z′(x) = A(0; λ)Z(x) has a solution Z(x) = V0(λ)eν(λ)x which lies in the one-

dimensional eigenspace Ec(λ) spanned by V0(λ). In the next lemma, we show that equation
(9.10) has solutions V ±(x; λ) on R± which approach V0(λ)eν(λ)x as x → ±∞.

Lemma 9.4. For sufficiently small |λ|, equation (9.10) has solutions

V ±(x;λ) = eν(λ)x(V0(λ) + V ±
1 (x;λ)) x ∈ R±, (9.17)

where |V ±
1 (x; λ)| ≤ Ce−α0|x| and V −(x; λ) = RV +(−x; −λ).

Proof. Let Z(x) = eν(λ)xV0(λ), and define

V +(x;λ) = P +(x;λ)Z(x) = eν(λ)xP +(x;λ)V0(λ). (9.18)

By (9.7), V +(x; λ) = eν(λ)x(V0(λ) + V +
1 (x; λ)), where we define V +

1 (x; λ) = �+(x; λ)V0(λ). 
Similarly, define

V −(x;λ) = P −(x;λ)Z(x) = RP +(−x;−λ)Reν(λ)xV0(λ)

= eν(λ)xR(I + �+(−x;−λ))RV0(λ) = eν(λ)x(V0(λ) + R�+(−x;−λ)V0(−λ)),

and let V −
1 (x; λ) = R�+(−x; −λ)V0(−λ). The decay rate for V ±

1 (x; λ) comes from the conju-
gation lemma. �

We use this result to prove the existence of V c(x) in part (i) of Lemma 3.13. Using a dimension 
counting argument, dimWcs(0) = m +1 and dimWcu(0) = m +1. Since 
(0) ⊥ TQ(0)W

cs(0) +
TQ(0)W

cu(0), dimTQ(0)W
cs(0) + TQ(0)W

cu(0) ≤ 2m, which implies that dimTQ(0)W
cs(0) ∩

TQ(0)W
cu(0) = 2. Since dimTQ(0)W

s(0) ∩ TQ(0)W
s(0) = 1 by Lemma 3.12, there exists Y 0 ∈

TQ(0)W
cs(0) ∩ TQ(0)W

cu(0) which is linearly independent from Q′(0) with Y 0 /∈ TQ(0)W
s(0) ∩
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TQ(0)W
s(0). Define V ±(x; 0) as in Lemma 9.4. Since V −(0; 0) = RV +(0; 0) and V ±(0; 0) ∈

span{Y 0}, V +(0; 0) = V −(0; 0), thus we define

V c(x) =
{

V +(x;0) x ≥ 0

V −(−x;0) x ≤ 0,

from which it follows that V c(−x) = RV c(x). In addition, by reversibility, Y− = RY+, thus 
since Y+ and Y− only have trivial intersection, V c(0) can contain no component in Y+ ⊕ Y−.

The next lemma evaluates two important inner products involving V ±(0; λ).

Lemma 9.5. We have the following inner products

〈W0,V
±(0;λ)〉 = 1 ∓ 1

2
M̃λ +O(|λ|2)

〈
(0),V ±(0;λ)〉 = ∓1

2
Mcλ +O(|λ|2),

(9.19)

where

M̃ =
∞∫

−∞

(
vc(y) − 1

c

)
dy < ∞, Mc =

∞∫
−∞

∂cq(y)dy,

q(y) is the first component of Q(y), and vc(y) is the first component of V c(y).

Proof. Define Ṽ +(x; λ) by

V +(x;λ) = eν(λ)xṼ +(x;λ), (9.20)

so that Ṽ +(x, λ) → V0(λ) as x → ∞. Differentiating with respect to λ at λ = 0,

∂λV
+(x;0) = ∂λṼ

+(x;0) + 1

c
xV c(x), (9.21)

since Ṽ +(x; 0) = V c(x) and ν′(0) = 1/c. Substituting (9.20) into (9.10), differentiating with 
respect to λ at λ = 0, and simplifying,

[∂λṼ
+(x;0)]′ = A(Q(x))∂λṼ

+(x;0) +
(

B − 1

c
I

)
V c(x). (9.22)

For convenience, let Y(x) = ∂λṼ
+(x; 0). Using the exponential trichotomy (9.15) for λ = 0

and noting that �̃c,+(x, y; 0) = 〈W0, ·〉V c(x), we can formally write Y(x) in integrated form as
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Y(x) = �̃s,+(x,0;0)Y s
0 +

x∫
0

�̃s,+(x, y;0)

(
B − 1

c
I

)
V c(y)dy

+
x∫

∞
�̃u,+(x, y;0)

(
B − 1

c
I

)
V c(y)dy + V c(x)

x∫
∞

〈
W0,

(
B − 1

c
I

)
V c(y)

〉
dy.

(9.23)

Using the estimates (9.16), the first and second integrals are finite for all x since V c(x) is 
bounded. To prove that (9.23) is a valid expression for Y(x), it remains to show that the third 
integral is finite for all x. Using the expression for V c(x) from Lemma 3.13,

〈
W0,

(
B − 1

c
I

)
V c(y)

〉
= vc(y) − 1

c
,

where vc(x) is the first component of V c(y). Since |V c(y) − V0| ≤ Ce−αy , and the first compo-
nent of V0 is 1/c,

∣∣∣∣∣∣
x∫

∞

〈
W0,

(
B − 1

c
I

)
V c(y)

〉
dy

∣∣∣∣∣∣≤ C

∞∫
x

e−αydy = C
e−αx

α
,

which is finite, thus the formal expression (9.23) is valid.
Evaluating (9.23) at x = 0 and taking the inner product with W0,

〈W0, ∂λṼ
+(x;0)〉 = 〈W0,V

c(0)〉
0∫

∞

(
vc(y) − 1

c

)
dy = −1

2
M̃, (9.24)

since vc(y) is an even function and 〈W0, V c(0)〉 = 1. Expanding V +(0; λ) in a Taylor series 
about λ = 0 and using (9.21), (9.24), and 〈W0, V c(0)〉 = 1, we obtain the first equation in (9.19).

Evaluating (9.23) at x = 0 and taking the inner product with 
(0),

〈
(0), ∂λṼ
+(x;0)〉 =

0∫
∞

〈
(0), �̃u,+(0, y;0)BV c(y)〉dy

=
0∫

∞
〈
(0), �̃u,+(0,0;0)�̃(0, y;0)BV c(y)〉dy,

since �̃u,+(0, y; 0)V c(y) = 0. For the projection �̃u,+(0, 0; 0), since ker �̃u,+(0, 0; 0)∗ ⊥
ran �̃u,+(0, 0; 0), ran �̃u,+(0, 0; 0)∗ ⊥ ker �̃u,+(0, 0; 0), and ker �̃u,+(0, 0; 0) = TQ(0)W

s(0) ⊕
TQ(0)W

c(0), �̃u,+(0, 0; 0)∗ acts as the identity on (TQ(0)W
s(0) ⊕ TQ(0)W

c(0))⊥. Since 
(0) ⊥
TQ(0)W

s(0), 
(0) ∈ ran �̃u,+(0, 0; 0)∗, thus �̃u,+(0, 0; 0)∗
(0) = 
(0). It follows that
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〈
(0), ∂λṼ
+(x;0)〉 =

0∫
∞

〈�̃(0, y;0)∗�̃u,+(0,0;0)∗
(0),BV c(y)〉dy = −
∞∫

0

〈
(y),BV c(y)〉dy

=
∞∫

0

q(y)vc(y)dy = 1

2

∞∫
−∞

q(y)vc(y)dy,

since the last component of 
(y) is −q(y), and both vc(y) and q(y) are even functions. Since 
L(q)vc = 1 and L(q) is self-adjoint, it follows from (3.9) that

〈
(0), ∂λṼ
+(x;0)〉 = −1

2

∞∫
−∞

L(q)∂cq(y)vc(y)dy = −1

2

∞∫
−∞

∂cq(y)L(q)vc(y)dy

= −1

2

∞∫
−∞

∂cq(y)dy = −1

2
Mc.

Expanding V +(0; λ) in a Taylor series about λ = 0 and using (9.21), (9.24), and 〈
(0), V c(0)〉 =
0, we obtain the second equation in (9.19). The formulas for V −(0; λ) are similarly obtained. �
9.4. Piecewise formulation

As in [21], we will write the eigenvalue problem (5.1) as a piecewise system of equations. 
From Theorem 4.2 and Lemma 8.8, the periodic n-pulse Qn(x) can be written piecewise as

Q−
i (x) = Q−(x;β−

i ) + Q̃−
i (x) x ∈ [−Xi−1,0]

Q+
i (x) = Q+(x;β+

i ) + Q̃+
i (x) x ∈ [0,Xi],

(9.25)

where Q−
i : [−Xi−1, 0] → R2m+1 and Q+

i : [0, Xi] → R2m+1 are continuous, and the pieces 
are joined together end-to-end in a loop. We extend Q−

i (x) smoothly to (−∞, 0] and Q+
i (x)

smoothly to [0, ∞), so that |Q±
i (x)| ≤ Ce−α0|x|. Next, we use the conjugation lemma to simplify

(5.1) and to construct our piecewise ansatz. We will apply the conjugation lemma on R± to the 
equation

V (x)′ = (A(U(x)) + λB)V (x), (9.26)

where U(x) ∈ Cb([0, ∞), R2m+1) or U(x) ∈ Cb((−∞, 0], R2m+1). Let � = (U(x), λ) and 
�0 = (Q(x), 0). Using the conjugation lemma, there exists δ4 ≤ δ3 and invertible linear trans-
formations P ±(x; U(x), λ) = I + �±(x; U(x), λ) such that for all |λ| < δ4 and U(x) with 
‖U(x) − Q(x)‖ < δ4, the change of coordinates V = P ±(x; U(x), λ) on R± conjugates (9.26)
into the constant-coefficient equation Z′(x) = A(0; λ)Z(x). By Lemma 8.8, ‖Q±

i (x) −Q(x)‖ ≤
Ce−α0X

∗
, thus we can choose X∗ sufficiently large so that ‖Q±

i (x) − Q(x)‖ ≤ δ4 for i =
0, . . . , n − 1. Define

P ±(x;λ) = I + �±(x;λ) = I + �±(x;Q±(x), λ). (9.27)
i i i
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Expanding (9.27) in a Taylor series about Q(x), and using (9.9) and the estimates from 
Lemma 8.8, �±

i (x; λ) = �±(x; λ) +O(e−2α0X
∗
), thus we have the uniform estimates

P ±
i (x;λ) = P ±(x;λ) +O(e−2α0X

∗
), (9.28)

where P ±(x; λ) are the conjugation operators (9.11) and (9.13).
Next, we note that when λ = 0, W0 is a constant solution to W ′(x) = −A(Q±

i (x); 0)∗W(x)

for all i, thus by Corollary 9.2, [P ±
i (x; λ)−1]∗W0 is a solution to the constant coefficient 

equation Z′(x) = −A(0)∗Z(x) for all i. Since W0 is also a solution to this equation, and 
[P ±

i (x; λ)−1]∗W0 → W0 as x → ±∞,

[P ±
i (x;λ)−1]∗W0 = W0 (9.29)

for i = 0, . . . , n − 1 and all x ∈R±.
Similarly to Lemma 9.4, define

V ±
i (x;λ) = eν(λ)xP ±

i (x;λ)V0(λ) x ∈R±, (9.30)

so that V ±
i (x; λ) solves the equation

[V ±
i (x;λ)]′(x) = A(Q±

i (x);λ)V ±
i (x;λ) x ∈ R±. (9.31)

Using (9.30) and (9.28), we have the estimate

V ±
i (x;λ) = V ±(x;λ) +O(e−2α0X

∗
). (9.32)

Finally, for i = 0, . . . , n − 1 define the constants

k±
i (λ) = 〈Q′(0),V ±

i (0, λ)〉
〈Q′(0),Q′(0)〉 , (9.33)

which are chosen so that for i = 0, . . . , n − 1 and all |λ| < δ4,

〈Q′(0),V +
i (0;λ) − k+

i (λ)Q′(0)〉 = 〈Q′(0),V −
i (0;λ) − k−

i (λ)Q′(0)〉 = 0. (9.34)

We can now construct our ansatz. It follows from (3.10) and (3.22) that

[∂xQn]′(x) = A(Qn(x))∂xQn(x)

[∂cQn]′(x) = A(Qn(x))∂cQn(x) − B∂xQn(x).
(9.35)

To exploit (9.35) and (9.31), we take the piecewise ansatz for the eigenfunction V (x)

di(∂xQ
−
i (x)−λ∂cQ

−
i (x))+ci−1e

ν(λ)Xi−1(V −
i (x;λ)−k−

i (λ)Q′(x))+W−
i (x) x ∈ [−Xi−1,0]

di(∂xQ
+
i (x) − λ∂cQ

+
i (x)) + cie

−ν(λ)Xi (V +
i (x;λ) − k+

i (λ)Q′(x)) + W+
i (x) x ∈ [0,Xi],

(9.36)
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for i = 0, . . . , n − 1, where W−
i (x) ∈ C([−Xi−1, 0], C2m+1), W+

i (x) ∈ C([0, Xi], C2m+1), and 
ci, di ∈ C. The subscripts are taken modn, and the pieces are joined together end-to-end as in 
[21]. The factors e−ν(λ)Xi and eν(λ)Xi−1 are chosen to facilitate joining the pieces at ±Xi . Next, 
we substitute (9.36) into (5.1). Since the eigenfunction V (x) must be continuous, the 2n pieces
(9.36) must satisfy n matching conditions at x = ±Xi and n matching conditions at x = 0. The 
remainder functions W±

i (x) must then satisfy the system of equations

(W−
i )′(x) = A(Q−

i (x);λ)W−
i (x) + ci−1e

ν(λ)Xi−1G−
i (x;λ) + diλ

2H̃−
i (x)

(W+
i )′(x) = A(Q+

i (x);λ)W+
i (x) + cie

−ν(λ)Xi G+
i (x;λ) + diλ

2H̃+
i (x)

W+
i (Xi) − W−

i+1(−Xi) = Did + Cic

W+
i (0) − W+

i (0) + cie
−ν(λ)Xi (V +

i (0;λ) − k+
i (λ)Q′(0))

− ci−1e
ν(λ)Xi−1(V −

i (0;λ) − k−
i (λ)Q′(0)) = 0,

(9.37)

for i = 0, . . . , n − 1, where

G±
i (x;λ) = k±

i (λ)
(
A(Q±

i (x)) − A(Q(x)) − λB
)
Q′(x)

H̃±
i (x) = −B∂cQ

±
i (x)

H(x) = −B∂cQ(x)

(9.38)

and

Did = di+1
(
∂xQ

−
i+1(−Xi) − λ∂cQ

−
i+1(−Xi)

)− di

(
∂xQ

+
i (Xi) − λ∂cQ

+
i (Xi)

)
(9.39)

Cic = ci

(
eν(λ)Xi (V −

i+1(−Xi;λ) − k−
i (λ)Q′(−Xi)) − e−ν(λ)Xi (V +

i (Xi;λ) − k+
i (λ)Q′(Xi))

)
.

(9.40)

As in [21], we will not be able to find a solution to this system for arbitrary λ. We will instead 
consider the system

(W−
i )′(x) = A(Q−

i (x);λ)W−
i (x) + ci−1e

ν(λ)Xi−1G−
i (x;λ) + diλ

2H̃−
i (x)

(W+
i )′(x) = A(Q+

i (x);λ)W+
i (x) + cie

−ν(λ)Xi G+
i (x;λ) + diλ

2H̃+
i (x)

W+
i (Xi) − W−

i+1(−Xi) = Did + Cic

W±
i (0) ∈ C
(0) ⊕CW0 ⊕ Y+ ⊕ Y−

W+
i (0) − W−

i (0) + cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ) ∈ C
(0) ⊕CW0,

(9.41)

for i = 0, . . . , n − 1. The fourth equation states that the remainder functions W±
i (x) have no 

component in CQ′(0). The other terms in the ansatz do not appear in this equation by (9.34). 
The final equation states that the jumps can only be in the directions of W0 and 
(0). The terms 
involving Q′(0) in the ansatz do not appear in this equation since Q′(0) ⊥ W0 ⊕
(0). A solution 
to (9.41) solves (9.37) if and only if n jump conditions at x = 0 in the direction of C
(0) ⊕CW0
are satisfied, i.e.
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ξi = 〈
(0),W+
i (0) − W−

i (0) + cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉 = 0

ξc
i = 〈W0,W

+
i (0) − W−

i (0) + cie
−ν(λ)XiV +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉 = 0,
(9.42)

for i = 0, . . . , n − 1, where the terms involving Q′(0) in the ansatz again do not appear.
Finally, we apply the conjugation operators (9.27) to the system (9.41). Making the substitu-

tion W±
i (x) = P ±

i (x; λ)Z±
i (x), we obtain the equations

(Z−
i )′(x) = A(0;λ)Z−

i (x) + ci−1e
ν(λ)Xi−1P −

i (x;λ)−1G−
i (x;λ) + λ2diP

−
i (x;λ)−1H̃−

i (x)

(Z+
i )′(x) = A(0;λ)Z+

i (x) + cie
−ν(λ)Xi P +

i (x;λ)−1G+
i (x;λ) + λ2diP

+
i (x;λ)−1H̃+

i (x),

(9.43)
with matching conditions at x = ±Xi

P +
i (Xi;λ)Z+

i (Xi) − P −
i+1(−Xi;λ)Z−

i+1(−Xi;λ) = Did + Cic, (9.44)

and matching conditions at x = 0

P ±
i (0;λ)Z±

i (0) ∈ Y+ ⊕ Y− ⊕C
(0) ⊕CW0

P +
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0)

+ cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ) ∈ C
(0) ⊕CW0.

(9.45)

The jump conditions become

ξi = 〈
(0),P +
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0)

+ cie
−ν(λ)XiV +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉 = 0

ξc
i = 〈W0,P

+
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0)

+ cie
−ν(λ)XiV +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉 = 0.

(9.46)

To conclude this section, we collect some important estimates in the following lemma.

Lemma 9.6. We have the estimates

(i) |H(x)|, |H̃±
i (x)| ≤ Ce−α0|x|.

(ii) |H̃−
i (x) − H(x)| ≤ Ce−α0Xi−1e−α0(Xi−1+x) + e−2α0Xi eα0x .

(iii) |H̃+
i (x) − H(x)| ≤ Ce−α0Xi e−α0(Xi−x) + e−2α0Xi−1e−α0x .

(iv) |G±
i (x; λ)| ≤ C|λ|(e−α0Xi + |λ|)e−α0|x|.

(v) Did = (Q′(Xi) + Q′(−Xi))(di+1 − di) +O(e−α0Xi (e−α0X
∗ + |λ|)|d|).

(vi) |Cic| ≤ C(e−α0Xi + |λ|)|c|.

Proof. Since H(x) = −∂cQ(x), it follows from Theorem 3.9 that |H(x)| ≤ Ce−α0|x|, where we 
can use α0 in place of α0 − ε since DF(0) is hyperbolic. The result for H̃ (x) = −∂cQ

±
i (x) can 

be similarly obtained by using Lin’s method as in [12,47]. The bounds (ii) and (iii) follow from 
Lin’s method and an adaptation of Lemma 8.8 to derivatives with respect to c. For the estimates 
on G±(x; λ), by reversibility, 〈Q′(0), V ±(0, 0)〉 = 〈Q′(0), V c(0)〉 = 0, thus k±(λ) = O(|λ|). 
i i
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Using this together with the estimates from Lemma 8.8 gives us (iv). For the estimate (v), we use
(8.25) and (8.24) with the derivative with respect to x to get

(Q−
i+1)

′(−Xi) = (Q−)′(−Xi;β−
i+1) + (Q̃−

i+1)
′(−Xi)

= (Q−)′(−Xi;β−
i+1) + (Q+)′(Xi;β+

i ) +O(e−2α0Xi )

= Q′(−Xi) + Q′(Xi) +O(e−α0Xi e−α0X
∗
).

Similarly, (Q+
i )′(Xi) = Q′(−Xi) +Q′(Xi) +O(e−α0Xi e−α0X

∗
). Substitute these into (9.39) and 

use (i) to get the estimate (v). For the estimate (vi), by Lemma 9.4, eν(λ)Xi V −(−Xi; λ) = V0(λ) +
O(e−α0Xi ) and e−ν(λ)XiV +(Xi; λ) = V0(λ) + O(e−α0Xi ). Subtracting these and using k±

i (λ) =
O(|λ|), we obtain the estimate (vi). �
9.5. Exponential trichotomy

We will now define exponential trichotomies on R± for the conjugated system. Since there is 
some freedom in choosing subspaces for the trichotomy, we will make a choice that allows us to 
best satisfy equation (9.44). The range of the stable projection on R+ is unique and is given by 
Es(λ), but we can choose any complement of Es(λ) to be the complement of the range of the 
stable projection at Xi . For sufficiently small λ, since the eigenvectors of A(0; λ) are smooth in 
λ, Eu(0) ⊕Ec(0) is a complement of Es(λ). Since P +

i (Xi; λ) = I +O(e−α0Xi ), for sufficiently 
small λ and sufficiently large Xi , P

+
i (Xi, λ)−1(Eu(0) ⊕ Ec(0))P +

i (Xi, λ) is a complement of 
Es(λ). A similar result holds for the complement of the unstable projection on R− at −Xi−1. 
Using these complements, there exists δ5 ≤ δ4 such that for all |λ| < δ5, we can decompose the 
evolution operator �(x, y; λ) on R± as

�(x,y;λ) = �
s,±
i (x, y;λ) + �

u,±
i (x, y;λ) + �

c,±
i (x, y;λ) i = 0, . . . , n − 1, (9.47)

where

�
s,+
i (x, y;λ) = �(x,y;λ)P s(λ)

�
u,+
i (x, y;λ) = �(x,Xi;λ)P +

i (Xi, λ)−1P u(0)P +
i (Xi, λ)�(Xi, y;λ)

�
c,+
i (x, y;λ) = �(x,Xi;λ)P +

i (Xi, λ)−1P c(0)P +
i (Xi, λ)�(Xi, y;λ)

�
s,−
i (x, y;λ) = �(x,−Xi−1;λ)P −

i (−Xi−1, λ)−1P s(0)P −
i (−Xi−1, λ)�(−Xi−1, y;λ)

�
u,−
i (x, y;λ) = �(x,y;λ)P u(λ)

�
c,−
i (x, y;λ) = �(x,−Xi−1;λ)P −

i (−Xi−1, λ)−1P c(0)P −
i (−Xi−1, λ)�(−Xi−1, y;λ),

(9.48)
and we have the estimates

|�s,±
i (x, y;λ)| ≤ Ce−α(x−y) y ≤ x

|�u,±
i (x, y;λ)| ≤ Ce−α(y−x) x ≤ y

|�c,±
(x, y;λ)| ≤ Ceη|x−y|,

(9.49)
i
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which are uniform in λ, and are the same as the estimates (9.16) but with possibly dif-
ferent constants C. The stable evolution �

s,+
i (x, y; λ) on R+ and the unstable evolution 

�
u,−
i (x, y; λ) on R− do not depend on Xi or i. The evolution of the unconjugated system 

W±
i (x) = A(Q±

i (x); λ)W±
i (x) on R± is given by

�̃±
i (x, y;λ) = P ±

i (y;λ)�(y, x;λ)P ±
i (x;λ)−1. (9.50)

For i = 0, . . . , n − 1, equations (9.48) induce an exponential trichotomy for the unconjugated 
system via the evolution operators

�̃
s/u/c,±
i (x, y;λ) = P ±

i (y;λ)�
s/u/c,±
i (y, x;λ)P ±

i (x;λ)−1. (9.51)

As a consequence of (9.48),

�̃
u,+
i (Xi,Xi;λ) = P u(0), �̃

c,+
i (Xi,Xi;λ) = P c(0)

�̃
s,−
i (−Xi−1,Xi−1;λ) = P s(0), �̃

c,−
i (−Xi−1,Xi−1;λ) = P c(0),

which are the eigenprojections for A(0) and are independent of λ.

9.6. Inversion

We will now solve the system (9.41). This follows the outline of the proof of [21, Theorem 
2], the main differences being the presence of a center subspace and the fact that we are on a 
periodic domain. Choose δ ≤ δ5. The result will hold for |λ| < δ, and we may need to decrease δ
as we proceed. Define the spaces

Va =
n−1⊕
i=0

Eu(0) ⊕ Es(0) ⊕ Ec(0)

Vb =
n−1⊕
i=0

(CQ′(0) ⊕ Y−) ⊕ (CQ′(0) ⊕ Y+)

Vc =
n−1⊕
i=0

C

Vd =
n−1⊕
i=0

C

Vλ = Bδ(0) ⊂C,

where the subscripts are taken modn, since we are on a periodic domain, and the product spaces 
are endowed with the maximum norm. Using the variation of constants formula and splitting the 
evolution operator via the exponential trichotomy (9.48), we write (9.43) in integrated form as
427



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
Z−
i (x) = �

s,−
i (x,−Xi−1;λ)P −

i (−Xi−1;λ)−1a−
i−1 + �

u,−
i (x,0;λ)P −

i (0;λ)−1b−
i

− �
c,−
i (x,−Xi−1;λ)P −

i (−Xi−1;λ)−1ac
i−1

+
x∫

0

�
u,−
i (x, y;λ)P −

i (y;λ)−1(ci−1e
ν(λ)Xi−1G−

i (y;λ) + λ2diH̃
−
i (y))dy

+
x∫

−Xi−1

�
s,−
i (x, y;λ)P −

i (y;λ)−1(ci−1e
ν(λ)Xi−1G−

i (y;λ) + λ2diH̃
−
i (y))dy

+
x∫

−Xi−1

�
c,−
i (x, y;λ)P −

i (y;λ)−1(ci−1e
ν(λ)Xi−1G−

i (y;λ) + λ2diH̃
−
i (y))dy

Z+
i (x) = �

u,+
i (x,Xi;λ)P +

i (Xi;λ)−1a+
i + �

s,+
i (x,0;λ)P +

i (0;λ)−1b+
i

+ �
c,+
i (x,Xi;λ)P +

i (Xi;λ)−1ac
i

+
x∫

0

�
s,+
i (x, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

+
x∫

Xi

�
u,+
i (x, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

+
x∫

Xi

�
c,+
i (x, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy.

(9.52)
As in [21], we will solve the eigenvalue problem in a series of inversion steps. Since the RHS of 
the fixed point equations (9.52) does not involve Z±

i , these equations solve equation (9.43). In 
the next lemma, we solve (9.44), which are the matching conditions at the tails.

Lemma 9.7. For i = 0, . . . , n − 1, there is a unique set of initial conditions (a+
i , a−

i , ac
i ) such 

that (9.44) is satisfied for any (b, c, d) and λ. These are given by

a+
i = P u

0 (λ)Did + A2(λ)+i (b, c, d)

a−
i = −P s

0 (λ)Did + A2(λ)−i (b, c, d)

ac
i = Ã2(λ)i(b, c, d),

(9.53)

where A2 and Ã2 are analytic in λ, linear in (b, c, d), and have bounds

|A2(λ)i(b, c, d)| ≤ C
(
e−αXi |b| + (e−α0Xi + |λ|)|ci | + |λ|2|d|

)
(9.54)

|Ã2(λ)i(b, c, d) ≤ C|λ|
(
e−αXi |b| + e−α0Xi |ci | + e−α0Xi |λ|2|d|

)
. (9.55)
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Proof. It follows from (9.48) that

P −
i+1(−Xi,λ)�

s/c,−
i+1 (−Xi,−Xi;λ)P −

i+1(−Xi,λ)−1 = P s/c(0)

P +
i (Xi, λ)�

u/c,+
i (Xi,Xi;λ)P +

i (Xi, λ)−1 = P u/c(0).
(9.56)

Substituting (9.52) into (9.44) and using (9.56), we have

Did + Cic = a+
i − a−

i + 2ac
i

+ P +
i (Xi;λ)�

s,+
i (Xi,0;λ)P +

i (0;λ)−1b+
i − P −

i+1(−Xi;λ)�
u,−
i (−Xi,0;λ)P −

i (0;λ)−1b−
i+1

+ P +
i (Xi;λ)

Xi∫
0

�
s,+
i (Xi, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

− P −
i+1(−Xi;λ)

−Xi∫
0

�
u,−
i (−Xi, y;λ)P −

i+1(y;λ)−1(cie
ν(λ)Xi G−

i+1(y;λ) + λ2di+1H̃
−
i+1(y))dy,

(9.57)
which is of the form

Did + Cic = a+
i − a−

i + 2ac
i + L3(λ)i(b, d). (9.58)

L3(λ)i(b, c, d) is defined by the RHS of (9.57), is linear in (b, c, d) and analytic in λ, and is 
independent of a. To obtain a bound on L3, we will bound the individual terms involved. For the 
terms involving b, we use trichotomy estimates (9.49) to get

|P +
i (Xi;λ)�s(Xi,0;λ)P +

i (0;λ)−1P +
i (0;λ)−1b+

i | ≤ Ce−αX∗ |b|.

The term involving b−
i+1 is similar. For the integral terms, using (9.49), the bound (9.4), and the 

estimates from Lemma 9.6,

∣∣∣∣∣∣P +
i (Xi;λ)

Xi∫
0

�
s,+
i (Xi, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

∣∣∣∣∣∣
≤ C

(
|λ|(e−α0X

∗ + |λ|)|c| + |λ|2|d|
) Xi∫

0

e−α(Xi−y)e−α0ydy

≤ Ce−α0Xi

(
|λ|(e−α0X

∗ + |λ|)|c| + |λ|2|d|
)

.

The other integral is similar. Combining these, we have the bound for L3

|L3(λ)i(b, c, d)| ≤ C
(
e−αXi |b| + e−α0Xi |λ|(e−α0Xi + |λ|)|c| + e−α0Xi |λ|2|d|

)
. (9.59)
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To solve for a+
i , a−

i , and ac
i , we apply the projections on P s/u/c(0) on the eigenspaces Es/u/c(0)

to (9.58). For a±
i , using the bound (9.59) for L3(λ)(b, c, d) and the estimate for Cic from 

Lemma 9.6,

a+
i = P u

0 (0)Did + A2(λ)+i (b, c, d)

a−
i = −P s

0 (0)Did + A2(λ)−i (b, c, d),

where A2(λ)±i (b, c, d) has bound (9.54). For ac
i , we apply the center projection P c(0) = 〈W0, ·〉

to (9.58), and note that 〈W0, Did〉 = 0. Since k±
i (λ)Q′(±Xi) = O(|λ|e−α0Xi ), and by reversibil-

ity

〈W0,e
ν(λ)Xi V −(−Xi;λ) − e−ν(λ)XiV +(Xi;λ)〉 = (

P −(−Xi;λ) − P +(Xi;λ)
)
V0(λ)

= 〈W0,R�+(Xi;0)R − �+(Xi;0),V0〉 +O(|λ|e−α0Xi ) =O(|λ|e−α0Xi ),

we have |〈W0, Cic〉| ≤ |λ|e−α0Xi |ci |. For a bound on 〈W0, L3(λ)i(b, c, d)〉, using (9.29) we ob-
tain

〈W0,P
+
i (Xi;λ)�s(Xi,0;λ)P +

i (0;λ)−1b+
i 〉

= 〈[P +
i (Xi;0)−1]∗W0,P

+
i (Xi;0)�s(Xi,0;0)P +

i (0;λ)−1b+
i 〉 +O(e−αXi |λ||b+

i |)
= 〈W0,�

s(Xi,0;0)P +
i (0;λ)−1b+

i 〉 +O(e−αXi |λ||b+
i |) =O(e−αXi |λ||b+

i |).

Bounding the other terms in L3(λ)i(b, c, d) in a similar fashion, we obtain the estimate

|〈W0,L3(λ)i(b, c, d)〉| ≤ C|λ|
(
e−αXi |b| + e−α0Xi |λ|(e−α0Xi + |λ|)|c| + e−α0Xi |λ|2|d|

)
.

(9.60)
Combining the above bounds and dividing by 2, ac

i = Ã2(λ)i(b, c, d), where Ã2(λ)i(b, c, d) has 
bound (9.55). �

In the next lemma, we solve equations (9.45), which are matching conditions at x = 0 in 
the directions other than C
(0) ⊕ CW0. Using the decomposition (3.30), equations (9.45) are 
equivalent to the three projections

P(CQ′(0))P −
i (0;λ)Z−

i (0) = 0

P(CQ′(0))P +
i (0;λ)Z+

i (0) = 0

P(Y+ ⊕ Y−)(P +
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0)

+ cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)) = 0,

(9.61)

where the kernel of each projection is the remaining spaces in the direct sum decomposition
(3.30). We do not need to include CQ′(0) in the third equation of (9.61) by (9.34) and since we 
eliminated any component of P ±(0; λ)Z±(0) in CQ′(0) in the first two equations.
i i
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Lemma 9.8. There is a unique set of initial conditions (a+
i , a−

i , ac
i ) for i = 0, . . . , n − 1, and an 

operator B1 : Vλ ×Vc ×Vd → Vb such that for a = (a+
i , a−

i , ac
i ) and b = B1(λ)(c, d), equations

(9.44) and (9.45) are satisfied for any (c, d). B1(λ)(c, d) is analytic in λ, linear in (c, d), and 
has uniform bound

|B1(λ)(c, d)| ≤ C
(
(e−α0X

∗ + |λ|)|c| + (|λ| + e−α0X
∗
)2|d|

)
. (9.62)

The initial conditions a+
i , a−

i , and ac
i are given by

a+
i = P u

0 (0)Did + A4(λ)+i (c, d)

a−
i = −P s

0 (0)Did + A4(λ)−i (c, d)

ac
i = Ã4(λ)i(c, d),

where A2 and Ã2 are analytic in λ, linear in (c, d), and have bounds

|A4(λ)i(b, c, d)| ≤ C
(
(e−α0Xi + |λ|)|ci | + |λ|2|d|

)
(9.63)

|Ã4(λ)i(b, c, d) ≤ C|λ|
(
e−α0Xi |ci | + e−α0Xi |λ|2|d|

)
. (9.64)

Proof. Using the decomposition (3.28), we can write b±
i uniquely as b±

i = x±
i + y±

i , where 
x±
i ∈CQ′(0) and y±

i ∈ Y±. Using this together with (9.48), we can write P ±
i (0; λ)Z±

i (0) as

P −
i (0;λ)Z−

i (0) = x−
i + y−

i + R−
i (λ)b−

i + P −
i (0;λ)�

s,−
i (0,−Xi−1;λ)P −

i (−Xi−1, λ)−1a−
i−1

− P −
i (0;λ)�

c,−
i (0,−Xi−1;λ)P −

i (−Xi−1, λ)−1ac
i−1

+ P −
i (0;λ)

0∫
−Xi−1

�
s,−
i (0, y;λ)P −

i (y;λ)−1(ci−1e
ν(λ)Xi−1G−

i (y;λ) + λ2diH̃
−
i (y))dy

+ P −
i (0;λ)

0∫
−Xi−1

�
c,−
i (0, y;λ)P −

i (y;λ)−1(ci−1e
ν(λ)Xi−1G−

i (y;λ) + λ2diH̃
−
i (y))dy

P +
i (0;λ)Z+

i (0) = x+
i + y+

i + R+
i (λ)b+

i + P +
i (0;λ)�

u,+
i (0,Xi;λ)P +

i (Xi, λ)−1a+
i

+ P +
i (0;λ)�

c,+
i (0,Xi;λ)P +

i (Xi, λ)−1ac
i

+ P +
i (0;λ)

0∫
Xi

�
u,+
i (0, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

+ P +
i (0;λ)

0∫
Xi

�
c,+
i (0, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy,

(9.65)
431



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
where

R−
i (λ) = P −

i (0;λ)P u(λ)P −
i (0;λ)−1 − P −(0;0)P u(0)P −(0;0)−1 =O(|λ| + e−2αX∗

)

R+
i (λ) = P +

i (0;λ)P s(λ)P +
i (0;λ)−1 − P +(0;0)P s(0)P +(0;0)−1 =O(|λ| + e−2αX∗

).
(9.66)

Applying the projections in (9.61), we obtain an expression of the form

⎛
⎝ x−

i

x+
i

y+
i − y−

i

⎞
⎠+ L4(λ)i(b, c, d) = 0, (9.67)

where L4(λ)i(b, c, d) consists of the projections in (9.61) applied to the remaining terms in
(9.65) as well as the term P(Y+ ⊕ Y−)(cie

−ν(λ)Xi V +
i (0; λ) − ci−1e

ν(λ)XiV −
i (0; λ)) in the final 

component. To obtain a bound on L4, we will bound the individual terms involved. For the a±
i

terms, we use the expression from Lemma 9.7, the estimate (9.54), and the trichotomy bounds
(9.49) to get

|P +
i (0;λ)�

u,+
i (0,Xi;λ)P +

i (Xi, λ)−1a+
i |

≤ Ce−αXi

(
e−αX∗ |b| + (e−α0X

∗ + |λ|)|c| + (|λ|2 + |D|)|d|
)

.

The a−
i term is similar. For the ac

i terms, we use (9.49), the estimate (9.4), and the expression 
from Lemma 9.7 to get

|P +
i (0;λ)�

c,+
i (0,Xi;λ)P +

i (Xi, λ)−1ac
i | ≤ C|λ|

(
e−αXi |b| + e−αXi |ci | + |λ|2|d|

)
.

For the remainder terms involving bi , we use (9.66) to get

|R+
i (λ)b+

i | ≤ C
(
|λ| + e−2αX∗) |b|.

The term involving b−
i is similar. For the terms involving c in the third equation in (9.61), it 

follows from (9.32) that V ±
i (0; λ) = V c(0) +O(|λ| + e−2α0X

∗
). From the discussion following 

Lemma 9.4, V c(0) contains no component in Y+ ⊕ Y−, thus we have

|P(Y+ ⊕ Y−)(cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ))| ≤ C(|λ| + e−2α0X
∗
)|c|,

where we also used the estimate (9.4). The bound on the integral terms is determined by the 
integral involving the center subspace, since the other integral has a stronger bound. Using the 
bounds from Lemma 9.6 together with the trichotomy bound (9.49) and the bound (9.4),

∣∣∣∣∣∣∣P
+
i (0;λ)

0∫
Xi

�
c,+
i (0, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

∣∣∣∣∣∣∣
≤ C

(
|λ|(e−α0X

∗ + |λ|)|c| + |λ|2|d|
)

.
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The integral terms from P −
i (0; λ)Z−

i (0) have similar bounds. Combining these and simplifying, 
we obtain the bound

|L4(λ)i(b, c, d)| ≤ C
(
(|λ| + e−αX∗

)|b| + (|λ| + e−α0X
∗
)|c| + (|λ| + e−α0X

∗
)2|d|

)
.

Since |λ| < δ and we can choose X∗ sufficiently large so that e−αX∗
< δ, this becomes

L4(λ)(b, c, d) ≤ C
(
δ|b| + (|λ| + e−α0X

∗
)|c| + (|λ| + e−α0X

∗
)2|d|

)
,

which is uniform in |b|. Define the map

J2 :
⎛
⎝ n⊕

j=1

CQ′(0) ⊕CQ′(0)

⎞
⎠⊕

⎛
⎝ n⊕

j=1

Y+ ⊕ Y−
⎞
⎠→

n⊕
j=1

CQ′(0) ⊕CQ′(0) ⊕ (Y+ ⊕ Y−)

by J2((x
+
i , x−

i ), (y+
i , y−

i ))i = (x+
i , x−

i , y+
i − y−

i ), which is an isomorphism by (3.30). Since 
bi = (x−

i + y−
i , x+

i + y+
i ), we can write (9.67) as

J2((x
+
i , x−

i ), (y+
i , y−

i ))i + L4(λ)i(bi,0,0) + L4(λ)i(0, c, d) = 0. (9.68)

Let S2(b)i = J2((x
+
i , x−

i ), (y+
i , y−

i ))i + L4(λ)i(bi, 0, 0). Substituting this into (9.68), we obtain 
the equation S2(b) = −L4(λ)(0, c, d). Decreasing δ if necessary, the operator S2(b) is invertible, 
thus we can solve for b by using

b = B1(λ)(c, d) = −S−1
2 L4(λ)(0, c, d), (9.69)

which has bound given by (9.62). Substituting (9.62) into the bounds (9.54), and (9.55) and using 
the estimates for Cic and Did from Lemma 9.6, we obtain the bounds (9.63) and (9.64). �
9.7. Jump conditions

We have constructed a unique solution to (9.37) which will have n jumps in the directions of 

(0) and W0. For this solution to be an eigenfunction, all n jumps must be 0. In the next two 
lemmas, we compute the jumps in the direction of W0 and 
(0).

Lemma 9.9. The jumps in the direction of W0 are given

ξc
i = e−ν(λ)Xi ci

(
1 − 1

2
λM̃

)
− eν(λ)Xi−1ci−1

(
1 + 1

2
λM̃

)

+O
(
(e−α0X

∗ + |λ|)2|c| + |λ|(|λ| + e−α0X
∗
)2|d|

)
,

(9.70)

for i = 0, . . . , n − 1, where

M̃ =
∞∫ (

vc(y) − 1

c

)
dy,
−∞
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and the remainder terms are analytic in λ.

Proof. The jumps in the center direction are given by

ξc
i = 〈W0,P

+
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0) + cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉.

Using Lemma 9.5 and the bound (9.4),

〈W0,cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉

= e−ν(λ)Xi ci

(
1 − 1

2
λM̃

)
− eν(λ)Xi−1ci−1

(
1 + 1

2
λM̃

)
+O

(
(e−α0X

∗ + |λ|)2|c|
)

.

The terms P ±
i (0; λ)Z±

i (0) are given by (9.65). The only leading order term involves the integral 
of H̃±

i in the center subspace. Using (9.48), (9.28), (9.14), and Lemma 9.3,

〈
W0,P

−
i (0;λ)λ2di

0∫
−Xi−1

�
c,−
i (0, y;λ)P −

i (y;λ)−1H̃−
i (y)dy

〉

= λ2di

0∫
−Xi−1

〈W0,P
−
i (0;λ)�(0,−Xi−1;λ)P −

i (−Xi−1, λ)−1

P c(0)P −
i (−Xi−1, λ)�(−Xi−1, y;λ)P −

i (y;λ)−1H̃−
i (y)〉dy

= λ2di

0∫
−Xi−1

〈�̃−(y,−Xi−1;0)∗P c(0)∗�̃−(−Xi−1,0;0)∗W0,H(y)〉dy

+O(|λ|2(|λ| + e−α0X
∗
)|d|).

Since W0 is a constant solution to (3.26), P c(0)∗W0 = W0, and H(y) = −B∂cQ(y).

〈
W0,P

−
i (0;λ)λ2di

0∫
−Xi−1

�
c,−
i (0, y;λ)P −

i (y;λ)−1H̃−
i (y)dy

〉

= λ2di

0∫
−∞

〈W0,H(y)〉dy +O(|λ|2(|λ| + e−α0X
∗
)|d|)

= −λ2di

0∫
−∞

∂cq(y)dy +O(|λ|2(|λ| + e−α0X
∗
)|d|).

Similarly,
434



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
〈
W0,P

−
i (0;λ)

0∫
−Xi−1

�
c,−
i (0, y;λ)P −

i (y;λ)−1λ2diH̃
−
i (y)dy

〉

= λ2di

∞∫
0

∂cq(y)dy +O(|λ|2(|λ| + e−α0X
∗
)|d|).

The rest of the terms are higher order. For the terms involving a±
i , we use Lemma 9.8, (9.48),

(9.49), and (9.63) to get

〈W0,P
+
i (0;λ)�

u,+
i (0,Xi;λ)P +

i (Xi, λ)−1a+
i 〉=〈W0, �̃

+
i (0,Xi;λ)P u(0)�̃+

i (Xi,Xi;λ)a+
i 〉

= 〈�̃+
i (Xi,0;0)∗W0,P

u(0)a+
i 〉 +O(|λ|e−αX∗ |a+

i |)=〈W0,P
u(0)a+

i 〉 +O(|λ|e−αX∗ |a+
i |)

=O
(
|λ|e−αX∗ (

(e−α0X
∗ + |λ|2)|c| + |λ|2|d| + |D||d|

))
,

since W0 is a constant solution to W ′(x) = −A(Q±
i (x))∗W(x). For the terms involving ac

i , we 
use Lemma 9.8, (9.48), (9.49), (9.64), and (9.4) to get

〈W0,P
+
i (0;λ)�

c,+
i (0,Xi;λ)P +

i (Xi, λ)−1ac
i 〉 = 〈W0, �̃i,+(0,Xi;λ)P c(0)�̃+

i (Xi,Xi;λ)ac
i 〉

= 〈�̃+
i (Xi,0;0)∗W0,P

c(0)ac
i 〉 +O(|λ||ac

i |) =O
(
|λ|(e−α0X

∗ + |λ|)|c| + |λ|3|d|
)

.

For the terms involving b, b±
i = x±

i + y±
i vanishes when we take the inner product with W0. For 

the remaining terms, we use the estimate (9.62) to get

|〈W0,R
+
i (λ)b+

i 〉| ≤ C
(
|λ| + e−2α0X

∗)(
(|λ| + e−α0X

∗
)|c| + (|λ| + e−α0X

∗
)2|d|

)
.

For the center integral involving G±
i (y, λ), we use Lemma 9.6 and (9.4) to get

∣∣∣∣∣∣∣
〈
W0,P

+
i (0;λ)

0∫
Xi

�
c,+
i (0, y;λ)P +

i (y;λ)−1cie
−ν(λ)Xi G+

i (y;λ)dy

〉∣∣∣∣∣∣∣≤ C|λ|(e−α0X
∗ + |λ|)|c|.

The non-center integral involving G±
i (y, λ) has a stronger bound. For the non-center integral 

involving H̃±
i , we follow the same procedure as above, replacing P c(0) by P u(0), to get

∣∣∣∣∣∣∣
〈
W0,P

+
i (0;λ)

0∫
Xi

�
u,+
i (0, y;λ)P +

i (y;λ)−1λ2diH̃
+
i (y)dy

〉∣∣∣∣∣∣∣≤ C|λ|2(|λ| + e−α0X
∗
)|d|.

Bounds for the terms from P −
i (0; λ)Z−

i (0) are similar. Combining all of these terms and simpli-
fying, we obtain the center jump expressions (9.70). �
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Lemma 9.10. The jumps in the direction of 
(0) are given

ξi = 〈
(Xi),Q
′(−Xi)〉(di+1 − di) − 〈
(Xi−1),Q

′(−Xi−1)〉(di − di−1) − λ2diM

− 1

2
λMc

(
e−ν(λ)Xi ci + eν(λ)Xi−1ci−1

)
+O

(
(e−α0X

∗ + |λ|)2|c| + (e−α0X
∗ + |λ|)3|d|

)
,

(9.71)
for i = 0, . . . , n − 1, where

M =
∞∫

−∞
q(y)∂cq(y)dy, Mc =

∞∫
−∞

∂cq(y)dy,

and the remainder terms are analytic in λ.

Proof. The jumps in the direction of 
(0) are given by

ξi = 〈
(0),P +
i (0;λ)Z+

i (0) − P −
i (0;λ)Z−

i (0) + cie
−ν(λ)XiV +

i (0;λ) − ci−1e
ν(λ)Xi−1V −

i (0;λ)〉.

Using Lemma 9.5 and the bound (9.4),

〈
(0),cie
−ν(λ)Xi V +

i (0;λ) − ci−1e
ν(λ)Xi V −

i (0;λ)〉

= −1

2
λMce

−ν(λ)Xi ci − 1

2
λMce

ν(λ)Xi−1ci−1 +O
(
(e−αX∗ + |λ|)2|c|

)
.

The terms P ±
i (0; λ)Z±

i (0) are given by (9.65). As in Lemma 9.9, we begin by computing the 
leading order terms. For the non-center integral involving H̃±

i , following the same procedure as 
in Lemma 9.9,

〈

(0),P −

i (0;λ)

0∫
−Xi−1

�
s,−
i (0, y;λ)P −

i (y;λ)−1λ2diH̃
−
i (y)dy

〉

= λ2di

0∫
−Xi−1

〈�̃−(y,−Xi−1;0)∗P s(0)∗�̃−(−Xi−1,0;0)∗
(0),H(y)〉dy

+O(|λ|2(|λ| + e−α0X
∗
)|di |).

By Lemma 9.3, P s(0)∗ = P u,∗(0), and P u,∗(0)
(−Xi−1) = 
(−Xi−1) +O(e−2α0Xi−1). Since 

(x) is a solution to (3.26), H(y) = −B∂cQ(y), and the last component of 
(y) is −q(y), this 
becomes

〈

(0),P −

i (0;λ)

0∫
�

s,−
i (0, y;λ)P −

i (y;λ)−1λ2diH̃
−
i (y)dy

〉

−Xi−1
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= λ2di

0∫
−∞

q(y)∂cq(y)dy +O(|λ|2(|λ| + e−α0X
∗
)|di |).

Similarly,

〈

(0),P +

i (0;λ)

0∫
Xi

�
u,+
i (0, y;λ)P +

i (y;λ)−1λ2diH̃
+
i (y)dy

〉

= −λ2di

∞∫
0

q(y)∂cq(y)dy +O(|λ|2(|λ| + e−α0X
∗
)|di |).

For the terms involving a±
i , we use Lemma 9.8, (9.48), and (9.63) to get

〈
(0),P +
i (0;λ)�

u,+
i (0,Xi;λ)P +

i (Xi;λ)−1a+
i 〉

= 〈
(0),P +
i (0;λ)�+(0,Xi;λ)P +

i (Xi;λ)−1P u(0)a+
i 〉

= 〈
(0), �̃+(0,Xi;0)P u(0)a+
i 〉 +O(e−α0X

∗
(|λ| + e−2α0X

∗
)|a+

i |)
= 〈
(Xi),P

u(0)Did〉 +O
(
e−α0X

∗
(e−α0X

∗ + |λ|)|c| + e−α0X
∗
(|λ| + e−α0X

∗
)2|d|

)
.

By Lemma 9.6, P u(0)Did = Q′(−Xi)(di+1 − di) +O(e−α0Xi (e−α0X
∗ + |λ|)|d|), thus we have

〈
(0),P +
i (0;λ)�

u,+
i (0,Xi;λ)P +

i (Xi, λ)−1a+
i 〉 = 〈
(Xi),Q

′(−Xi)〉(di+1 − di)

+O
(
e−α0X

∗
(e−α0X

∗ + |λ|)|c| + e−α0X
∗
(|λ| + e−α0X

∗
)2|d|

)
.

Similarly,

〈
(0),P −
i (0;λ)�

s,−
i (0,−Xi−1;λ)P −

i (−Xi−1, λ)−1a−
i−1〉

= −〈
(−Xi−1),Q
′(Xi−1)〉(di − di−1)

+O
(
e−α0X

∗
(e−α0X

∗ + |λ|)|c| + e−α0X
∗
(|λ| + e−α0X

∗
)2|d|

)
.

The remaining terms will be higher order. For the terms involving ac
i , similar to Lemma 9.9,

〈
(0),P +
i (0;λ)�

c,+
i (0,Xi;λ)P +

i (Xi, λ)−1ac
i 〉 = O

(
|λ|(e−α0X

∗ + |λ|)|c| + |λ3|d|
)

.

For the terms involving b, b±
i = x±

i + y±
i vanishes when we take the inner product with 
(0). 

For the remaining terms, similar to Lemma 9.9,

|〈
(0),R+
i (λ)b+

i 〉| ≤ C
(
|λ| + e−2αX∗)(

(|λ| + e−α0X
∗
)|c| + (|λ| + e−αX∗

)2|d|
)

.

For the center integral term, using the bounds from Lemma 9.6,
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〈

(0),P +

i (0;λ)

0∫
Xi

�
c,+
i (0, y;λ)P +

i (y;λ)−1(cie
−ν(λ)Xi G+

i (y;λ) + λ2diH̃
+
i (y))dy

〉

=
0∫

−Xi−1

〈
(−Xi−1),P
c(0)�̃−(−Xi−1, y;0)(cie

−ν(λ)Xi G+
i (y;λ) + λ2diH(y))〉dy

+O
(
(|λ| + e−2α0X

∗
)
(
|λ|(|λ + e−α0X

∗
)|c| + |λ|2|d|

))
=O

(
|λ|(|λ| + e−α0X

∗
)2|c| + |λ|2(|λ| + e−α0X

∗
)|d|

)
.

The non-center integral involving G±
i (x; λ) has a stronger bound. Bounds for the terms from 

P −
i (0; λ)Z−

i (0) are similar. Combining all of these terms, using the reversibility relation

〈
(−Xi−1),Q
′(Xi−1)〉 = 〈R
(−Xi−1),RQ′(Xi−1)〉 = −〈
(Xi−1),Q

′(−Xi−1)〉,

and simplifying, we obtain the jump expressions (9.71). �
Theorem 5.3 combines the jump conditions from Lemma 9.9 and Lemma 9.10 into a single 

block matrix equation E(λ) = 0 which is analytic in λ. A nontrivial solution exists if and only if 
detE(λ) = 0.

10. Proof of results for periodic single pulse

10.1. Proof of Lemma 5.4

For the periodic single pulse, there is one length parameter X0 = X, and for the ansatz (9.36), 
there is only one parameter c and one parameter d . The system of equations (9.41) becomes

(W±)′(x) = A(Q±
0 (x);λ)W±(x) + ce∓ν(λ)XG±

0 (x;λ) + dλ2H̃±
0 (x)

W+(X) − W−(−X) = C0c

W±(0) ∈R
(0) ⊕RW0 ⊕ Y+ ⊕ Y−

W+(0) − W−(0) + c(e−ν(λ)XV +
0 (0;λ) − eν(λ)XV −

0 (0;λ)) ∈ C
(0) ⊕CW0.

(10.1)

Equation (5.7) follows directly from Theorem 5.3. The bounds for the remainder terms follow 
from Theorem 5.3 and the fact that d only appears as λ2d in (10.1).

To show symmetry, suppose that (W+(x; c, d, λ), W−(x; c, d, λ)) is a solution to (10.1). 
Since the periodic single pulse is symmetric, Q−

0 (x) = RQ+
0 (−x), from which it follows 

that G−
0 (x; λ) = −RG+

0 (−x; −λ)R. Since ν(−λ) = −ν(λ), V −
0 (x; λ) = RV +

0 (−x; −λ), Y+ =
RY−, R
(0) = 
(0), and RW0 = W0, if we replace (c, d, λ) by (−c, d, −λ), equations (10.1)
are satisfied by (−RW−(−x; c, d, λ), −RW+(−x; c, d, λ)). Since (10.1) has a unique so-
lution, 

(
W+(x; c, d,−λ),W−(x; c, d,−λ)

) = − 
(
RW−(−x;−c, d,λ),RW+(−x;−c, d,λ)

)
. 

The jump conditions then become
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〈W0,W
+(0; c, d,−λ) − W−(0; c, d,−λ)〉 = 〈W0,W

+(0;−c, d,λ) − W−(0;−c, d,λ)〉
〈
(0),W+(0; c, d,−λ) − W−(0; c, d,−λ)〉 = 〈
(0),W+(0;−c, d,λ) − W−(0;−c, d,λ)〉.

Since W(x; c, d; λ) is linear in (c, d),

E(−λ) = KE(λ), K =
(−1 0

0 1

)
,

thus detE(−λ) = detK detE(λ) = − detE(λ). We compute the determinant directly with the 
aid of Wolfram Mathematica to get (5.8).

10.2. Proof of Theorem 5.5

First, we make a change of variables to simplify the problem. Since ν(0) = 0 and ν′(0) = 1/c, 
ν(λ) is invertible near 0. Let λ = ν−1(μ). Expanding in a Taylor series about μ = 0,

λ = ν−1(μ) = cμ +O(μ3). (10.2)

Substituting this into (5.8), dividing by cμ2 since we are looking for the nonzero essential spec-
trum eigenvalues, and simplifying, we wish to solve

2M sinh(μX) + cKμ cosh(μX) +O
(
|μ|(|μ| + r1/2X)

)
= 0, (10.3)

where K = MM̃ + M2
c . Choose any positive integer m ≤ N , and take the ansatz

μ = mπi

X + c K
2M

+ h

X
. (10.4)

For sufficiently large X, expand the denominator of (10.4) in a Taylor series to get

μ = mπi

X
(
1 + c K

2MX

) + h

X
= mπi

X

(
1 − c

K

2MX
+ c2 K2

4M2X2 +O
(

1

X3

))
+ h

X
. (10.5)

Substituting this into (10.3), expanding the sinh and cosh terms in a Taylor series about mπi, 
and simplifying, equation (10.3) is equivalent to

(
2M + cK

X

)
h +O

(
m + h

X

(
m + h

X
+ r1/2X

))
= 0.

Since X = X(r) = O(| log r|) and | log r|−1 is lower order than r1/2| log r|, we wish to solve

Gm(h, r) =
(

2M +O
(

1

| log r|
))

h +O
(

(m + h)2

| log r|2
)

= 0.

Since Gm(0, 0) = 0 and ∂hGm(0, 0) = 2M �= 0, by the implicit function theorem, there ex-
ists rm ≤ r∗ and a unique smooth function hm(r) with hm(0) = 0 such that for all r ≤ rm, 
1 1
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Gm(hm(r), r) = 0. Expanding hm(r) in a Taylor series about r = 0, hm(r) = O
(

m2

| log r|2
)

. Let 

r1 = min{r1
1 , . . . , rN

1 }. Substituting hm(r) into (10.4), the essential spectrum eigenvalues are lo-
cated at

μm(r) = mπi

X + c K
2M

+O
(

m3

| log r|3
)

m = 1, . . . ,N.

Changing variables back to λ and using (10.2),

λess
m (r) = c

mπi

X + c
MM̃+M2

c

2M

+O
(

m3

| log r|3
)

,

from which we obtain (5.9) by factoring out X from the denominator. By Hamiltonian symmetry 
(and the symmetry of E(λ)), eigenvalues must come in quartets. Since there is nothing else 
above the real axis with similar magnitude, λess

m (r) is on the imaginary axis, and there is another 
essential spectrum eigenvalue at −λess

m (r).

11. Proof of results for periodic double pulse

11.1. Proof of Lemma 5.6

For the periodic double pulse, we have the symmetry relation Q−
i (x) = RQ+

i−1(−x), where 
the subscript i is taken mod 2. Let (W−

0 (x), W+
0 (x), W−

1 (x), W+
1 (x)) be the unique solu-

tion to (9.37) for given (c1, c0, d1, d0, λ). Following the same procedure as in the proof of 
Lemma 5.4, when (c1, c0, d1, d0, λ) �→ (−c1, −c0, d0, d1, −λ), equations (9.37) are satisfied by 
(−RW+

1 (−x), −RW−
1 (−x), −RW+

0 (−x), −RW−
1 (−x)), which must be the same as the origi-

nal solution by uniqueness. We then compute the jump conditions to get E(−λ) = K1E(λ)K2, 
where

K1 =
(

T 0
0 T

)
, K2 =

(−I 0
0 T

)
, T =

(
0 1
1 0

)
,

from which follows that detE(−λ) = detK1 detE(λ) detK2 = − detE(λ). The form of the re-
mainder matrix follows from this symmetry together with the fact that λ = 0 is an eigenvalue 
with at least algebraic multiplicity 3. The determinant of E(λ) is then computed directly with the 
aid of Wolfram Mathematica.

11.2. Change of variables

As in the proof of Theorem 5.5, we make the change of variables λ = ν−1(μ) so that detE(λ)

becomes

detE(μ, r) = −2μ2c2(2a + μ2c2 + R1)
(
M sinh(μX) + cμ(MM̃ + M2

c ) cosh(μX)
)

+ 4ac3μ3M2
c sinh(μX1) sinh(μX0) + R2μ

2 sinh(μ(X1 − X0))

+ R μ2 sinh(μX) + μ3R .

(11.1)
3 4
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The remainder terms have the same bounds as in Lemma 5.6 with λ replaced by μ. Define

μ∗
int =

√
− 2a

Mc2 (11.2)

μ∗
m = mπi

X + c K
M

m = 1, . . . ,N, (11.3)

where K = MM̃ + M2
c , and a is defined in (5.11). For Theorem 5.7, we will ensure that the 

interaction eigenvalues and essential spectrum eigenvalues do not interfere. Since μ∗
int =O(r1/2)

and μ∗
1 = O(| log r|−1), choose r0 ≤ r∗ sufficiently small so that |μ∗

int | ≤ 1
2 |μ∗

1| for all r ≤ r0. 
We can then simplify detE(μ, r) to obtain

detE(μ, r) = −2c2μ2(2a + c2μ2M)
(
M sinh(μX) + cμ(MM̃ + M2

c ) cosh(μX)
)

+ R̃μ2 sinh(μX) + Rμ3,

(11.4)

where |R̃|, |R| ≤ C(r1/2 + |μ|)3.

11.3. Essential spectrum eigenvalues

Choose any positive integer m ≤ N , and take the ansatz μ = μ∗
m + h

X
. As in the proof of 

Theorem 5.5, we expand the denominator of μ∗
m in a Taylor series, substitute the result into

(11.4), and simplify to obtain the equation

Gm(h, r) =
(

M +O
(

1

| log r|
))

h +O
(

(m + h)2

| log r|2
)

= 0.

Since Gm(0, 0) = 0 and ∂hGm(0, 0) = M �= 0, the result follows from the implicit function the-
orem and Hamiltonian symmetry as in the proof of Theorem 5.5.

11.4. Interaction eigenvalues

The interaction eigenvalues will be at approximately μ = ±μ∗
int , which is defined in (11.2). 

The interaction pattern will thus be determined by the sign of a. The first step is to characterize 
a. We start with the following lemma.

Lemma 11.1. Define the functions H :R+ ×R+ → R and H1 :R+ ×R+ → R by

H(b0, b1) = b0 sin (−ρ logb0) − b1 sin (−ρ logb1) (11.5)

H1(b0, b1) = b0
[
ρ cos (−ρ logb0) − sin (−ρ logb0)

]+ b1
[
ρ cos (−ρ logb1) − sin (−ρ logb1)

]
.

(11.6)

Then the zero sets of H(b0, b1) and H1(b0, b1) intersect only at the discrete set of points 

(b0, b1) = (b∗
k , b

∗
k ) for k ∈ Z, where b∗

k = e
− 1

ρ
(kπ+p∗) are the pitchfork bifurcation points from 

Theorem 4.4.
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Proof. Let f (x) = x sin (−ρ logx). Then H(b0, b1) = f (b0) − f (b1) and H1(b0, b1) =
−b0f

′(b0) − b1f
′(b1). If H(b0, b1) = 0 then f ′(b0) = f ′(b1), thus since H1(b0, b1) = 0, 

(b0 + b1)f
′(b0) = 0. If f ′(b0) = 0, then by Lemma 8.13, b0 = b∗

k , and so b1 = b∗
k as well. 

Otherwise, b0 = −b1, which is not possible since b0 and b1 are both positive. �
We can now characterize a in terms of the parameterization of the periodic double pulse.

Lemma 11.2. Let r∗ be as in Theorem 4.4. Then for any r ∈ R with r ≤ r∗,

(i) For a symmetric periodic 2-pulse Q̃2(x; m0, s0, r), a = rã(r; m0, s0), where ã(r; m0, s0) is 
continuous in r . Furthermore ã(0; m0, s0) = 0 if and only if s0 = p∗. For s0 �= p∗,

ã(0;0, s0) > 0 and ã(0;1, s0) < 0 if s0 > p∗

ã(0;0, s0) < 0 and ã(0;1, s0) > 0 if s0 < p∗.
(11.7)

(ii) For an asymmetric periodic 2-pulse Q2(x; m0, s1, r), a = rã(r; m0, s1), where ã(r; m0, s0)

is continuous in r . The sign of ã(0; m0, s0) is completely determined by m0 and is given for 
all s1 > p∗ by

ã(0;m0, s1) < 0 if m0 = 0

ã(0;m0, s1) > 0 if m0 = 1.
(11.8)

Proof. Using [21, Lemma 6.1(ii)], rescaling as in Lemma 8.11, and simplifying,

〈
(Xi),Q
′(−Xi)〉 = −p0α0e

α0φ/β0rbi (ρ cos (−ρ logbi) − sin (−ρ logbi)) +O(r1+γ /2α0),

from which it follows that a = −p0α0e
α0φ/β0rH1(b0, b1), where H1 is defined in (11.6). For part 

(i), a = rã(r; m0, s0), where

ã(r;m0, s0) = −p0α0e
α0φ/β0rH1(b0, b1)

= −2p0α0e
αφ/β0e

− 1
ρ
(m0π+s0)(−1)m0 (ρ cos s0 − sin s0) +O(rγ /2α).

When r = 0, ã(0; m0, s0) = 0 if and only if s0 = p∗ = arctanρ, and the sign of ã(0; m0, s0) is 
given by (11.7) for s0 �= p∗.

For part (ii), a = rã(r; m0, s1), where

ã(r;m0, s1) = −p0α0e
αφ/β0H1(b0(m0, s1), b1(s1)) +O(rγ /2α),

and the parameterization (b0(m0, s1), b1(s1)) is defined in Lemma 8.16. Since (b0(m0, s1),

b1(s1)) is contained entirely within the zero set of H(b0, b1), where H is defined in (11.5), 
it follows from Lemma 11.1 that ã(0; m0, s1) = 0 if and only if s1 = p∗. By continuity in s1, 
ã(0; m0, s1) must have the same sign for all s1 > p∗. Sending s1 → ∞,

lim
s1→∞ ã(0;m0, s1) = −p0β0e

αφ/β0e
− 1

ρ
m0π cos(m0π) = (−1)m0+1p0β0e

αφ/β0e
− 1

ρ
m0π ,
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thus since p0 > 0 and β0 > 0, the sign of ã(0; m0, s1) is given by (11.8) for s1 > p∗. �
We can now find the interaction eigenvalues. To rescale equation (11.4), let a = rã(r), where 

ã(r) = ã(r; m0, s1) is defined in Lemma 11.2 and ã(0) �= 0 since s1 > p∗. Let μ∗
int (r) =

r1/2μ̃∗(r), where μ̃∗(0) �= 0, and take the ansatz μ = r1/2μ̃∗(r) + r1/2. Substituting this into
(11.4), dividing by −2c2r5/2X, using the fact that μ =O(r1/2) and X =O(| log r|), and simpli-
fying, we obtain the equation

G(h, r) = Mc2h(μ̃∗(r) + h)3(2μ̃∗(r) + h)

(
M +O

(
1

| log r|
))

+O
(
r1/2(μ̃∗(r) + h)

)
= 0.

Since G(0, 0) = 0 and ∂hG(0, 0) = 2M2c2(μ̃∗(0))4 �= 0, by the implicit function theorem there 
exists r1 ≤ r0 and a unique smooth function h(r) with h(0) = 0 such that for all r ≤ r1, 
G(h(r), r) = 0. Expanding h(r) in a Taylor series about r = 0, h(r) = O(r1/2). Undoing the 
rescaling and changing variables back to λ, there is an interaction eigenvalue located at

λint(r) =
√

−2ã(r)

M
r1/2 +O(r) =

√
−2a

M
+O(r).

By Hamiltonian symmetry, there is also an eigenvalue at −λ(r). Since eigenvalues must come in 
quartets, and there only two eigenvalues of this magnitude, we conclude that for r ≤ r1, there is 
a pair of interaction eigenvalues given by λ = ±λint(r), which is either real or purely imaginary. 
Since M = d ′′(c) > 0 by Hypothesis 3.10, these are real if ã(0) < 0 and purely imaginary if 
ã(0) > 0, which depends only on m0 by Lemma 11.2.

11.5. Eigenvalues at 0

In this section, we use Rouché’s theorem to show that there are exactly three eigenvalues at 0. 
As in the previous section, let μ∗

int = r1/2μ̃∗(r), and let ξ = 1
2 |μ̃∗(0)|. Let μ = r1/2μ̃, and take 

μ̃ on the circle |μ̃| = ξ . Making these substitutions, dividing by −2c2r5/2X, and simplifying, 
equation (11.4) is equivalent to

G(μ̃, r) = Mc2μ̃3(μ̃ + μ̃∗(r))(μ̃ − μ̃∗(r))
(

M +O
(

1

| log r|
))

+O
(
r1/2

)
= 0. (11.9)

Let G(μ̃, r) = G(μ̃, 0) +G1(μ̃, r), where G1(μ̃, r) = G(μ̃, r) −G(μ̃, 0). On the circle |μ̃| = ξ , 
|G(μ̃, 0)| ≥ Mc2

16 |μ̃∗(0)|5. Since |G1(μ̃, r)| → 0 as r → 0 and μ̃∗(0) �= 0, there exists r2 ≤ r0

such that for r ≤ r2, |G1(μ̃, r)| < |G(μ̃, 0)| on the circle |μ̃| = ξ̃ . By Rouché’s theorem G(μ̃, r)
and G(μ̃, 0) have the same number of zeros (counted with multiplicity) inside the circle of radius 
ξ . By the choice of ξ̃ , G1(μ̃) has exactly 3 zeros inside the circle, thus G(μ̃, r) does as well. 
Undoing the scaling and changing variables back to λ, we obtain the result.

11.6. Proof of Theorem 5.9

Let ã(r, s0) = ã(r; m0, s0) as in Lemma 11.2, so that ã(0, p∗) = 0 and ã(r, s0) → 0 as r → 0
and s0 → p∗. Using Rouché’s as in the previous section, for sufficiently small r , there are five 
zeros of E(λ, r) in a small ball around the origin. Since two of these eigenvalues correspond 
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to the kernel eigenfunctions ∂xQ̃2(x) and ∂cQ̃2(x), and there is third kernel eigenfunction by 
Lemma 5.1, this leaves two eigenvalues unaccounted for. Let s0 = p∗ + h. Using the scaling 
μ = r1/2μ̃, following the same steps as in the previous section, factoring out μ̃3 from (11.9) since 
we have already accounted for three eigenvalues at 0, and simplifying, the remaining eigenvalues 
must satisfy the equation

G(μ̃, r, h) =
(

μ̃2 + 2ã(r,p∗ + h)

Mc2

)(
M +O

(
1

| log r|
))

+O
(
r1/2

)
= 0. (11.10)

When r = 0 and h = 0, G(μ̃, 0, 0) has a double root at μ̃ = 0. We will show that for small r , the 
double root persists at h = h(r). For μ̃ to be a double root, it must satisfy K(μ̃, r, h) = 0, where

K(μ̃, r, h) =
(

G(μ̃, r, h)

∂μ̃G(μ̃, r, h)

)
.

For r = 0, K(0, 0, 0) = 0. Using Lemma 11.2, ã(0, p∗ + h) = c0h +O(|h|2) for some constant 
c0 �= 0, thus we have

D(μ̃,h)K(0,0,0) =
(

0 2c0
c2

2M 0

)
,

which is nonsingular. Using the implicit function theorem, there exists r1 ≤ r0 and a unique 
smooth function (μ̃(r), h(r)) with (μ̃(0), h(0)) = (0, 0) such that for all r ≤ r1, K(μ̃(r), h(r), r)
= 0. In other words, μ̃(r) is a double root of G(μ̃, r, h) when h = h(r). By Hamiltonian sym-
metry, we must have μ̃(r) = 0, thus for r ≤ r1, there are two more eigenvalues at 0 when 
s0 = p∗ + h(r), which brings the total to five. Since the pitchfork bifurcation in the family of 
periodic 2-pulses occurs near p∗ at p∗(r), it follows from standard PDE bifurcation theory that 
this quintuple zero must occur at the pitchfork bifurcation point.

11.7. Proof of Theorem 5.10

Choose m0 = 1, let r∗ be as in Theorem 4.4, and let Q2(x; s1, r) be the family of periodic 
2-pulse solutions parameterized by s1. By Theorem 5.7, there is a pair of purely imaginary inter-
action eigenvalues for sufficiently small r . Define

μ1(s1, r) = πi

X(s1, r) + c K
M

μ∗(s1, r) =
√

−2a(s1, r) − R1(r)

Mc2 =
√

−2a(s1, r)

Mc2 +O(r),

both of which lie on the imaginary axis. Note that we have included the remainder term R1(r), 
which independent of μ, in the definition of μ∗. As s1 → ∞, X1(r, s1) → ∞ and X0(r, s1) →

1
2α0

| log r| + π
2β0

+ L̃, which is a nonzero constant. By the definition of a in (5.11), a(s1, r)
approaches a nonzero constant as s1 → ∞. Thus there exists r0 ≤ r∗ such that for all r ≤ r0, we 
can find s∗(r) such that μ1(s∗(r), r) = μ∗(s∗(r), r). Let
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X∗(r) = X(s∗(r), r) = πi

μ∗(s∗(r), r)
− c

K

M
. (11.11)

For s1 close to s∗(r), define the parameter k(s1, r) by

2k(s1, r)i = μ∗(s1, r) − μ1(s1, r).

This measures the distance on the imaginary axis between μ1 and μ∗, so that k(s∗(r), r) = 0. 
From this point forward, we will drop the dependence on s1 and r for convenience of notation.

Let μ = μ∗ + h, so that μ = μ1 + h + 2ki. As in (10.5), we expand μ1 in a Taylor series to 
get

μ = mπi

X

(
1 − c

K

2MX
+ c2 K2

4M2X2 +O
(

1

X3

))
+ h + 2ki. (11.12)

Anticipating what will follow, we take the rescaling

μ∗ = r1/2μ̃, h = r5/4X0h̃, k = r5/4X0k̃.

Using this rescaling and the fact that 1/X(r) = O(r1/2) in this case, we substitute (11.12) into 
sinhμX and coshμX to get

sinh(μX) = (−1)

(
−c

Kπi

MX
+ c2 K2πi

M2X2 + (h + 2ki)X

)
+O

(
r3/2

)

cosh(μX) = (−1) +O
(
r3/2

)
.

(11.13)

It follows from (11.13) that sinh(μX) =O(r1/2). Furthermore,

sinh(μX1) sinh(μX0) = (sinh(μX) cosh(μX0) − cosh(μX) sinh(μX0)) sinh(μX0)

= μ2∗X2
0 +O(r1/2)

and

sinh(μ(X1 − X0)) = sinh(μX) cosh(2μX0) − cosh(μX) sinh(2μX0) =O
(
r1/2| log r|

)
.

Substituting all of these into (11.1), dividing by −2μ2c2 since μ �= 0, using the expression a =
−Mc2μ2∗/2 +O(r3/2), and simplifying, we obtain the equation

Mμ̃h̃X0r
7/4
((

M + cK

X

)
X(h̃ + 2k̃i)X0r

5/4 +O(r3/2)

)

− 2MM2
c cμ̃5r5/2X2

0 +O(r5/2X0) = 0.

(11.14)

Since (
M + cK

)
X = MX + cK = Mπi = Mπi = Mπi

1/2 +O(r1/4),

X cμ1 c(μ∗ − 2ki) cμ̃r
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equation (11.14) simplifies to

2πcM2X2
0r

5/2h̃(h̃ + 2k̃i) − 2MM2
c c3|μ̃|5r5/2X2

0 +O(r5/2| log r|) = 0. (11.15)

Dividing by X2
0r

5/2 and noting that X0 =O(| log r|), we obtain the equation

G(h̃, k̃, r) = h̃2 + 2k̃ih̃ − T +O
(

1

| log r|
)

= 0, T = M2
c

2πM2 c2|μ̃|5 > 0. (11.16)

When r = 0, G(h̃, k̃, 0) = 0 if and only if h̃ = h̃±
0 (k̃) = −k̃i ±

√
T − k̃2. When |k| ≤ √

T , this is 
a circle in the complex plane of radius 

√
T . We will show this persists for small r . For h̃ = h̃±

0 (k̃), 

G(h̃±
0 (k̃), k̃, 0) = 0 and ∂

h̃
G(h̃±

0 (k̃), k̃, 0) = 2
√

T − k̃2, which is nonzero as long as k̃ �= ±√
T . 

Choose any ε > 0 and define

Kε =
[
−2

√
T − √

T − ε
]
∪
[
−√

T + ε,
√

T − ε
]
∪
[√

T + ε,2
√

T
]
.

Then for k̃ ∈ Kε , G
h̃0

(h̃0(k̃), k̃, 0) is bounded away from 0, with bound dependent on ε. By 

the uniform contraction mapping principle, there exists r1 ≤ r0 and smooth functions h̃±∗ (k̃, r)

such that h±∗ (k̃, 0) = h̃±
0 (k̃), h±∗ (k̃, r) = h̃±

0 (k̃) + O
(

1
| log r|

)
, and for all r ≤ r1 and k̃ ∈ Kε , 

G(h̃±∗ (k̃, r), k̃, r) = 0. For k ∈ [−√
T + ε, 

√
T − ε], h̃±∗ (k̃, r) is real and is symmetric across the 

imaginary axis by Hamiltonian symmetry. All that remains is show there is a double zero on the 
imaginary axis when k̃ is close to ±√

T . Similar to the proof of Theorem 5.9, for h̃ to be a double 
root of (11.16), it must satisfy H(h̃, k̃, r), where

H(h̃, k̃, r) =
(

G(h̃, k̃, r)

∂
h̃
G(h̃, k̃, r)

)
.

For r = 0, H(−√
T i, 

√
T , 0) = 0, and

D
(h̃,k̃)

H(−√
T i,

√
T ,0) =

(
0 2

√
T

2 2i

)
,

which is nonsingular. Using the implicit function theorem, there exists r2 ≤ r1 and a unique 
smooth function (h̃1(r), k̃1(r)) with (h̃1(0), k̃1(0)) = (−√

T i, 
√

T ) and (h̃1(r), k̃1(r)) =
(−√

T i, 
√

T ) +O
(

1
| log r|

)
such that for all r ≤ r2, H(h̃1(r), k̃1(r), r) = 0. In other words, h̃1(r)

is a double root of G(h̃, k̃, r) when k̃ = k̃(r). By Hamiltonian symmetry, h̃(r) must lie on the 
imaginary axis. We have a similar result for (h̃, k̃) = (

√
T i, −√

T ).
Undoing the scaling and change of variables and letting s = k/c, for r ≤ r2 there is a pair of 

eigenvalues

λ(r) = λ∗(r) − si ±
√

T1 − s2 +O(r5/4| log r|1/2), T1 = − M2
c

2πM2c
|λ∗|5X2

0,
446



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
which is approximately a circle centered at λ∗ in the complex plane of radius 
√

T1. For s =
s±(r) = ±√

T1

(
1 +O

(
1

| log r|
))

, there are double eigenvalues at λ = λ∗ + s±(r) + O
(

1
| log r|

)
, 

which is on the imaginary axis by Hamiltonian symmetry. Again by Hamiltonian symmetry, the 
eigenvalues λ are symmetric about the imaginary axis for s−(r) < s < s+(r) and are purely 
imaginary for s < s−(r) and s > s+(r). The maximum real part of λ occurs when s = 0, and is 
approximately 

√
T1. Expanding μ1 in a Taylor series about X = X∗, this occurs when X(r) =

X∗(r) + 2cπs
λ2∗

+O(s2). In particular, the Krein collision (and reverse collision) occurs when X(r)

is given by (5.20).

12. Conclusions

In this paper, we use Lin’s method to construct periodic multi-pulse solutions to KdV5 and 
to determine the spectrum near the origin associated with these solutions. The results hold more 
generally for Hamiltonian systems which are both reversible and translation invariant, including 
higher order KdV equations. This technique allows us to compute both the eigenvalues result-
ing from interactions between neighboring pulses in the periodic multi-pulse structure and the 
essential spectrum eigenvalues resulting from the background state. Of note, we show that as 
the domain size is increased, brief instability bubbles form when interaction eigenvalues and es-
sential spectrum eigenvalues of opposite Krein signature collide on the imaginary axis. These 
Krein bubbles can be found numerically, and their location and size agree with the theoretical 
results. Numerical timestepping experiments show that these Krein bubbles correspond to slowly 
growing, oscillatory instabilities.

In Theorem 4.2, we prove the existence of periodic multi-pulse solutions, but have to exclude 
certain periodic parameterizations to avoid bifurcation points. We only demonstrate the complete 
bifurcation structure for periodic 2-pulses (Theorem 4.4). It is likely that bifurcation structures 
exist for arbitrary periodic n-pulses, but that these become more complex as n increases. As a 
first step to elucidating these bifurcations, it would be useful to study periodic 3-pulses by using 
AUTO for parameter continuation not only in the domain size X but also in the parameters c and 
p. This could suggest a theoretical result as well as a generalization to higher n. We could also 
extend the spectral results to arbitrary multi-pulses. As long as any Krein collisions are avoided, 
it should be possible to determine the interaction eigenvalue patten solely from the geometry of 
the periodic multi-pulse, as is the case with the periodic double pulse. It would also be worth 
looking at whether Krein bubbles occur for higher order periodic multi-pulses. As an initial step, 
we could construct periodic 3-pulses with two pairs of imaginary interaction eigenvalues as well 
as “mixed” periodic 3-pulses with one pair each of real and imaginary interaction eigenvalues. 
We could then determine numerically if Krein bubbles occur for either of these two periodic 
3-pulses. We also note that we obtained better error estimates for the Krein bubble size in the 
numerical computations in section 6 than were predicted by Theorem 5.10, thus it might be 
possible to obtain sharper error estimates analytically.

Finally, we note from Remark 5.11 that as the domain size X increases, the centers of subse-
quent Krein bubbles (indexed by increasing m) are approximately equally spaced in X. However, 
their widths in X scale with 

√
m, so that they grow with each subsequent bubble (Fig. 14, left 

panel). At some critical value X = Xc, the Krein bubbles will start overlapping (Fig. 14, right 
panel). After this occurs, we expect that there will always be an eigenvalue with positive real part, 
thus the periodic double pulses should all be unstable for X > Xc. As X is further increased, we 
expect that more than two Krein bubbles will interact, and that the eigenvalue behavior will 
447
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Fig. 14. Real part of λ vs. X for first five Krein bubbles as X is increased (left). Real part of λ vs. X showing overlapping 
Krein bubbles as X is further increased.

become increasing complicated. (This is very difficult to simulate numerically, as it involves ex-
tremely large domain sizes.) At the same time, the radius in the complex plane of subsequent 
Krein bubbles scales with 1/

√
m (Fig. 14, left panel), which suggests that the maximum real 

part of the corresponding interaction eigenvalue approaches 0 as X → ∞. Although we cannot 
generalize the periodic case to obtain the behavior on R by taking X → ∞, this suggests that 
the spectrum of the double pulse on the real line, which is the formal limit of the periodic double 
pulse as X → ∞, may in fact be purely imaginary.

Acknowledgments

This material is based upon work supported by the U.S. National Science Foundation under 
grants DMS-1148284 (R.P. and B.S.), DMS-1840260 (R.P.), and DMS-1714429 (B.S.).

References

[1] D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new 
type of long stationary waves, Philos. Mag. 39 (240) (1895) 422–443, https://doi .org /10 .1080 /14786449508620739.

[2] J.R. Taylor (Ed.), Optical Solitons: Theory and Experiment, Cambridge University Press, 1992.
[3] A.S. Davydov, Solitons in Molecular Systems, 2nd edition, Mathematics and Its Applications, Springer, Dordrecht, 

Netherlands, 1990.
[4] P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González (Eds.), Emergent Nonlinear Phenomena in Bose-

Einstein Condensates, Springer, Berlin, Heidelberg, 2008.
[5] A.M. Kosevich, V.V. Gann, A.I. Zhukov, V.P. Voronov, Magnetic soliton motion in a nonuniform magnetic field, J. 

Exp. Theor. Phys. 87 (2) (1998) 401–407, https://doi .org /10 .1134 /1 .558674.
[6] J.W. Evans, N. Fenichel, J.A. Feroe, Double impulse solutions in nerve axon equations, SIAM J. Appl. Math. 42 (2) 

(1982) 219–234, https://doi .org /10 .1137 /0142016.
[7] E. Yanagida, K. Maginu, Stability of double-pulse solutions in nerve axon equations, SIAM J. Appl. Math. 49 (4) 

(1989) 1158–1173, https://doi .org /10 .1137 /0149069.
[8] J.A. Feroe, Existence of traveling wave trains in nerve axon equations, SIAM J. Appl. Math. 46 (6) (1986) 

1079–1097, https://doi .org /10 .1137 /0146064.
[9] J.C. Alexander, C.K.R.T. Jones, Existence and stability of asymptotically oscillatory double pulses, J. Reine Angew. 

Math. 446 (1994) 49–80, https://doi .org /10 .1515 /crll .1994 .446 .49.
[10] T. Kapitula, B. Sandstede, Eigenvalues and resonances using the Evans function, Discrete Contin. Dyn. Syst. 10 (4) 

(2004) 857–869.
[11] B. Buffoni, A.R. Champneys, J.F. Toland, Bifurcation and coalescence of a plethora of homoclinic orbits for a 

Hamiltonian system, J. Dyn. Differ. Equ. 8 (2) (1996) 221–279, https://doi .org /10 .1007 /BF02218892.
448

https://doi.org/10.1080/14786449508620739
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib7627936E50F5594B6DDF5CADC1BF4350s1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibE036F444D5519A2D7E5B28B93F799BEDs1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibE036F444D5519A2D7E5B28B93F799BEDs1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib92BFC25C1C28B75E1FA9CEA402D656FEs1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib92BFC25C1C28B75E1FA9CEA402D656FEs1
https://doi.org/10.1134/1.558674
https://doi.org/10.1137/0142016
https://doi.org/10.1137/0149069
https://doi.org/10.1137/0146064
https://doi.org/10.1515/crll.1994.446.49
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibFC1FF0F147E4E15B53ECE2BBBF7FE29Ds1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibFC1FF0F147E4E15B53ECE2BBBF7FE29Ds1
https://doi.org/10.1007/BF02218892


R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
[12] B. Sandstede, Instability of localized buckling modes in a one-dimensional strut model, Philos. Trans. R. Soc., A: 
Math. Phys. Eng. Sci. 355 (1732) (1997) 2083–2097, https://doi .org /10 .1098 /rsta .1997 .0111.

[13] A.C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Differ. Equ. 173 (1) (2001) 92–137, https://
doi .org /10 .1006 /jdeq .2000 .3922.

[14] A.C. Yew, Stability analysis of multipulses in nonlinearly-coupled Schrödinger equations, Indiana Univ. Math. J. 
49 (2000) 1079–1124, https://doi .org /10 .1512 /iumj .2000 .49 .1826.

[15] D.E. Pelinovsky, Y.S. Kivshar, Stability criterion for multicomponent solitary waves, Phys. Rev. B 62 (2000) 
8668–8676, https://doi .org /10 .1103 /PhysRevE .62 .8668.

[16] D.E. Pelinovsky, P.G. Kevrekidis, D.J. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, 
Physica D 212 (1–2) (2005) 1–19, https://doi .org /10 .1016 /j .physd .2005 .07 .021.

[17] T. Kapitula, On the stability of N-solitons in integrable systems, Nonlinearity 20 (2007) 879–907, https://doi .org /
10 .1088 /0951 -7715 /20 /4 /005.

[18] R. Parker, P. Kevrekidis, B. Sandstede, Existence and spectral stability of multi-pulses in discrete Hamiltonian lattice 
systems, Physica D 408 (2020) 132414, https://doi .org /10 .1016 /j .physd .2020 .132414.

[19] R. Parker, P.G. Kevrekidis, A. Aceves, Stationary multi-kinks in the discrete sine-Gordon equation, Nonlinearity 
35 (2) (2021) 1036–1060, https://doi .org /10 .1088 /1361 -6544 /ac3f8d.

[20] J. Alexander, R. Gardner, C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. 
Reine Angew. Math. 410 (1990) 167–212, https://doi .org /10 .1515 /crll .1990 .410 .167.

[21] B. Sandstede, Stability of multiple-pulse solutions, Trans. Am. Math. Soc. 350 (02) (1998) 429–473, https://doi .
org /10 .1090 /s0002 -9947 -98 -01673 -0.

[22] V. Manukian, B. Sandstede, Multi-hump pulses in systems with reflection and phase invariance, J. Differ. Equ. 
247 (6) (2009) 1866–1898, https://doi .org /10 .1016 /j .jde .2009 .06 .010.

[23] R. Parker, A. Aceves, Multi-pulse solitary waves in a fourth-order nonlinear Schrödinger equation, Physica D 422 
(2021) 132890, https://doi .org /10 .1016 /j .physd .2021 .132890.

[24] T. Kapitula, R. Parker, B. Sandstede, A reformulated Krein matrix for star-even polynomial operators with applica-
tions, SIAM J. Math. Anal. 52 (5) (2020) 4705–4750, https://doi .org /10 .1137 /19M124246X.

[25] M. Chugunova, D. Pelinovsky, Two-pulse solutions in the fifth-order KdV equation: rigorous theory and numerical 
approximations, Discrete Contin. Dyn. Syst., Ser. B 8 (4) (2007) 773–800, https://doi .org /10 .3934 /dcdsb.2007 .8 .
773.

[26] A.V. Buryak, A.R. Champneys, On the stability of solitary wave solutions of the fifth-order KdV equation, Phys. 
Lett. A 233 (1997) 58–62, https://doi .org /10 .1016 /S0375 -9601(97 )00453 -2.

[27] K.A. Gorshkov, L.A. Ostrovsky, Interactions of solitons in nonintegrable systems: direct perturbation method and 
applications, Physica D 3 (1) (1981) 428–438, https://doi .org /10 .1016 /0167 -2789(81 )90146 -9.

[28] F. Chardard, F. Dias, T.J. Bridges, Computing the Maslov index of solitary waves, part 1: Hamiltonian systems on a 
four-dimensional phase space, Physica D 238 (18) (2009) 1841–1867, https://doi .org /10 .1016 /j .physd .2009 .05 .008.

[29] F. Chardard, F. Dias, T.J. Bridges, Computing the Maslov index of solitary waves, part 2: Phase space with dimen-
sion greater than four, Physica D 240 (17) (2011) 1334–1344, https://doi .org /10 .1016 /j .physd .2011 .05 .014.

[30] J.A. Pava, J.L. Bona, M. Scialom, Stability of cnoidal waves, Adv. Differ. Equ. 11 (12) (2006) 1321–1374.
[31] N. Bottman, B. Deconinck, KdV cnoidal waves are spectrally stable, Discrete Contin. Dyn. Syst. 25 (4) (2009) 

1163–1180, https://doi .org /10 .3934 /dcds .2009 .25 .1163.
[32] M.A. Johnson, Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equa-

tion, SIAM J. Math. Anal. 41 (5) (2009) 1921–1947, https://doi .org /10 .1137 /090752249.
[33] B. Barker, M.A. Johnson, P. Noble, L.M. Rodrigues, K. Zumbrun, Nonlinear modulational stability of periodic 

traveling-wave solutions of the generalized Kuramoto–Sivashinsky equation, Physica D 258 (2013) 11–46, https://
doi .org /10 .1016 /j .physd .2013 .04 .011.

[34] S. Hakkaev, M. Stanislavova, A. Stefanov, Linear stability analysis for periodic travelling waves of the Boussinesq 
equation and the Klein–Gordon–Zakharov system, Proc. R. Soc. Edinb. A 144 (3) (2014) 455–489, https://doi .org /
10 .1017 /s0308210512000741.

[35] A. Demirkaya, S. Hakkaev, M. Stanislavova, A. Stefanov, On the spectral stability of periodic waves of the Klein-
Gordon equation, Differ. Integral Equ. 28 (2015) 431–454.

[36] V.M. Hur, M.A. Johnson, Stability of periodic traveling waves for nonlinear dispersive equations, SIAM J. Math. 
Anal. 47 (5) (2015) 3528–3554, https://doi .org /10 .1137 /12090215x.

[37] S. Hakkaev, M. Stanislavova, A. Stefanov, Periodic traveling waves of the regularized short pulse and Ostrovsky 
equations: existence and stability, SIAM J. Math. Anal. 49 (2017) 674–698, https://doi .org /10 .1137 /15M1037901.

[38] L. Delcey, M. Haragus, Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability, Philos. 
Trans. R. Soc., A: Math. Phys. Eng. Sci. 376 (2117) (2018) 20170188, https://doi .org /10 .1098 /rsta .2017 .0188.
449

https://doi.org/10.1098/rsta.1997.0111
https://doi.org/10.1006/jdeq.2000.3922
https://doi.org/10.1006/jdeq.2000.3922
https://doi.org/10.1512/iumj.2000.49.1826
https://doi.org/10.1103/PhysRevE.62.8668
https://doi.org/10.1016/j.physd.2005.07.021
https://doi.org/10.1088/0951-7715/20/4/005
https://doi.org/10.1088/0951-7715/20/4/005
https://doi.org/10.1016/j.physd.2020.132414
https://doi.org/10.1088/1361-6544/ac3f8d
https://doi.org/10.1515/crll.1990.410.167
https://doi.org/10.1090/s0002-9947-98-01673-0
https://doi.org/10.1090/s0002-9947-98-01673-0
https://doi.org/10.1016/j.jde.2009.06.010
https://doi.org/10.1016/j.physd.2021.132890
https://doi.org/10.1137/19M124246X
https://doi.org/10.3934/dcdsb.2007.8.773
https://doi.org/10.3934/dcdsb.2007.8.773
https://doi.org/10.1016/S0375-9601(97)00453-2
https://doi.org/10.1016/0167-2789(81)90146-9
https://doi.org/10.1016/j.physd.2009.05.008
https://doi.org/10.1016/j.physd.2011.05.014
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib0DC2DCAFF99825B72B6B4C3317D7908Cs1
https://doi.org/10.3934/dcds.2009.25.1163
https://doi.org/10.1137/090752249
https://doi.org/10.1016/j.physd.2013.04.011
https://doi.org/10.1016/j.physd.2013.04.011
https://doi.org/10.1017/s0308210512000741
https://doi.org/10.1017/s0308210512000741
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibB7AD343A8A0E55ED21DF82B6064728CDs1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibB7AD343A8A0E55ED21DF82B6064728CDs1
https://doi.org/10.1137/12090215x
https://doi.org/10.1137/15M1037901
https://doi.org/10.1098/rsta.2017.0188


R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368–450
[39] M. Stanislavova, A.G. Stefanov, Asymptotic stability for spectrally stable Lugiato-Lefever solitons in periodic 
waveguides, J. Math. Phys. 59 (10) (2018) 101502, https://doi .org /10 .1063 /1 .5048017.

[40] S. Hakkaev, M. Stanislavova, A.G. Stefanov, On the generation of stable Kerr frequency combs in the Lugiato-
Lefever model of periodic optical waveguides, SIAM J. Appl. Math. 79 (2) (2019) 477–505, https://doi .org /10 .
1137 /18M1192767.

[41] M. Johansson, Y.S. Kivshar, Discreteness-induced oscillatory instabilities of dark solitons, Phys. Rev. Lett. 82 (1) 
(1999) 85–88, https://doi .org /10 .1103 /PhysRevLett .82 .85.

[42] T.J. Bridges, G. Derks, Linear instability of solitary wave solutions of the Kawahara equation and its generalizations, 
SIAM J. Math. Anal. 33 (6) (2002) 1356–1378, https://doi .org /10 .1137 /s0036141099361494.

[43] T.J. Bridges, G. Derks, G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: a 
numerical framework, Physica D 172 (1–4) (2002) 190–216, https://doi .org /10 .1016 /s0167 -2789(02 )00655 -3.

[44] A.R. Champneys, Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics, 
Physica D 112 (1–2) (1998) 158–186, https://doi .org /10 .1016 /s0167 -2789(97 )00209 -1.

[45] A.R. Champneys, M.D. Groves, A global investigation of solitary-wave solutions to a two-parameter model for 
water waves, J. Fluid Mech. 342 (1997) 199–229, https://doi .org /10 .1017 /s0022112097005193.

[46] M.D. Groves, Solitary-wave solutions to a class of fifth-order model equations, Nonlinearity 11 (2) (1998) 341–353, 
https://doi .org /10 .1088 /0951 -7715 /11 /2 /009.

[47] B. Sandstede, Verzweigungstheorie homokliner Verdopplungen, Ph.D. thesis, University of Stuttgart, 1993.
[48] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 

74 (1) (1987) 160–197, https://doi .org /10 .1016 /0022 -1236(87 )90044 -9.
[49] A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, Berlin, Heidelberg, 2009.
[50] Y. Pomeau, A. Ramani, B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular 

perturbation, Physica D 31 (1) (1988) 127–134, https://doi .org /10 .1016 /0167 -2789(88 )90018 -8.
[51] A.F.J. Runge, Y.L. Qiang, T.J. Alexander, D.D. Hudson, A. Blanco-Redondo, C.M. de Sterke, Generation of pure-

sextic, -octic and -decic Kerr solitons, May 2020, Postdeadline paper CLEO 2020.
[52] J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. 

R. Soc. Lond. Ser. A, Math. Phys. Sci. 411 (1841) (1987) 395–412, https://doi .org /10 .1098 /rspa .1987 .0073.
[53] E.J. Doedel, T.F. Fairgrieve, B. Sandstede, A.R. Champneys, Y.A. Kuznetsov, X. Wang, AUTO-07P: continuation 

and bifurcation software for ordinary differential equations, Tech. rep., 2007.
[54] K.J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differ. Equ. 55 (2) (1984) 225–256, 

https://doi .org /10 .1016 /0022 -0396(84 )90082 -2.
[55] W.A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol. 629, Springer, Berlin, Heidel-

berg, 1978.
[56] L.C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
[57] B. Sandstede, Convergence estimates for the numerical approximation of homoclinic solutions, IMA J. Numer. 

Anal. 17 (3) (1997) 437–462, https://doi .org /10 .1093 /imanum /17 .3 .437.
[58] K. Zumbrun, Numerical error analysis for Evans function computations: a numerical gap lemma, centered-

coordinate methods, and the unreasonable effectiveness of continuous orthogonalization, https://doi .org /10 .48550 /
arxiv.0904 .0268, 2009.
450

https://doi.org/10.1063/1.5048017
https://doi.org/10.1137/18M1192767
https://doi.org/10.1137/18M1192767
https://doi.org/10.1103/PhysRevLett.82.85
https://doi.org/10.1137/s0036141099361494
https://doi.org/10.1016/s0167-2789(02)00655-3
https://doi.org/10.1016/s0167-2789(97)00209-1
https://doi.org/10.1017/s0022112097005193
https://doi.org/10.1088/0951-7715/11/2/009
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib289F6B822A20FA6260370242E11642B3s1
https://doi.org/10.1016/0022-1236(87)90044-9
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib159B860BE1513423460D5000AD6DB790s1
https://doi.org/10.1016/0167-2789(88)90018-8
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibC5C24648B5DF9F6FC914E5BB269CD48Bs1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibC5C24648B5DF9F6FC914E5BB269CD48Bs1
https://doi.org/10.1098/rspa.1987.0073
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibE1F2D5134ED2543D38A0DE9751CF75D9s1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bibE1F2D5134ED2543D38A0DE9751CF75D9s1
https://doi.org/10.1016/0022-0396(84)90082-2
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib99B53EF330B297B6E1D016311B32DDE9s1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib99B53EF330B297B6E1D016311B32DDE9s1
http://refhub.elsevier.com/S0022-0396(22)00387-4/bib352781C8F969DE0C90EAEF64EC916472s1
https://doi.org/10.1093/imanum/17.3.437
https://doi.org/10.48550/arxiv.0904.0268
https://doi.org/10.48550/arxiv.0904.0268

	Periodic multi-pulses and spectral stability in Hamiltonian PDEs with symmetry
	1 Introduction
	2 Background and motivation
	3 Mathematical setup
	3.1 Hamiltonian PDE
	3.2 Spatial dynamics formulation
	3.3 Eigenvalue problem

	4 Existence of periodic multi-pulses
	5 Spectrum of periodic multi-pulses
	5.1 Spectrum of periodic single pulse
	5.2 Spectrum of periodic double pulse

	6 Numerical results
	7 Proof of Theorem 3.9
	8 Proof of existence results
	8.1 Setup
	8.2 Piecewise ansatz
	8.3 Exponential dichotomy
	8.4 Fixed point formulation
	8.5 Inversion
	8.6 Jump conditions
	8.7 Rescaling and parameterization
	8.8 Proof of Theorem 4.2
	8.9 Periodic 2-pulse
	8.10 Proof of Theorem 4.4

	9 Proof of Theorem 5.3
	9.1 Preliminaries
	9.2 Conjugation lemma
	9.3 Solutions in center subspace
	9.4 Piecewise formulation
	9.5 Exponential trichotomy
	9.6 Inversion
	9.7 Jump conditions

	10 Proof of results for periodic single pulse
	10.1 Proof of Lemma 5.4
	10.2 Proof of Theorem 5.5

	11 Proof of results for periodic double pulse
	11.1 Proof of Lemma 5.6
	11.2 Change of variables
	11.3 Essential spectrum eigenvalues
	11.4 Interaction eigenvalues
	11.5 Eigenvalues at 0
	11.6 Proof of Theorem 5.9
	11.7 Proof of Theorem 5.10

	12 Conclusions
	Acknowledgments
	References


