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Abstract

We consider the existence and spectral stability of periodic multi-pulse solutions in Hamiltonian systems
which are translation invariant and reversible, for which the fifth-order Korteweg-de Vries equation is a
prototypical example. We use Lin’s method to construct multi-pulses on a periodic domain, and in par-
ticular demonstrate a pitchfork bifurcation structure for periodic double pulses. We also use Lin’s method
to reduce the spectral problem for periodic multi-pulses to computing the determinant of a block matrix,
which encodes both eigenvalues resulting from interactions between neighboring pulses and eigenvalues
associated with the essential spectrum. We then use this matrix to compute the spectrum associated with
periodic single and double pulses. Most notably, we prove that brief instability bubbles form when eigen-
values collide on the imaginary axis as the periodic domain size is altered. These analytical results are all
in good agreement with numerical computations, and numerical timestepping experiments demonstrate that
these instability bubbles correspond to oscillatory instabilities.
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1. Introduction

Solitary waves, localized disturbances that maintain their shape as they propagate at a constant
velocity, have been an object of mathematical and experimental interest since the nineteenth cen-
tury [1] and have applications not only in fluid mechanics but also nonlinear optics [2], molecular
systems [3], Bose-Einstein condensates [4], and ferromagnetics [5]. Of more recent interest are
multi-pulses, which are multi-modal solitary waves resembling multiple, well-separated copies
of a single solitary wave. The entire multi-pulse travels as a unit, and it maintains its shape un-
less perturbed. The study of multi-pulses goes back to at least the early 1980s, where Evans,
Fenichel, and Faroe proved the existence of a double pulse traveling wave in nerve axon equa-
tions [6]. The stability of these double pulses was shown in [7], and the existence result was
extended to arbitrary multi-pulses in [8]. The existence of multi-pulse traveling wave solutions
to semilinear parabolic equations, which includes reaction-diffusion systems, was established in
[9], and the stability of these solutions was determined using the Evans function, an analytic
function whose zeros coincide with the point spectrum of a linear operator [10]. Existence of
multi-pulse solutions to a family of Hamiltonian equations was shown in [11] using the dynam-
ics on the Smale horseshoe set, and a spatial dynamics approach to the same problem is found
in [12]. Multi-pulses have since been studied in diverse systems, including a pair of nonlinearly
coupled Schrodinger equations [13,14], coupled nonlinear Schrédinger equations [15,16], the
vector nonlinear Schrodinger equation [17], and lattice systems such as the discrete nonlinear
Schrodinger equation [18] and the discrete sine-Gordon equation [19]. In general, the spectrum
of the linearization of the underlying PDE about a multi-pulse contains a finite set of eigenvalues
close to 0 [20,21]. Since these result from nonlinear interactions between the tails of neighboring
pulses, we call them interaction eigenvalues. Under the assumption that the essential spectrum
lies in the left half plane, spectral stability of multi-pulses depends on these interaction eigenval-
ues. For semilinear parabolic equations, these eigenvalues are computed in [21] by using Lin’s
method, an implementation of the Lyapunov-Schmidt technique, to reduce the eigenvalue prob-
lem to a matrix equation. An extension of this technique was used to study the existence and
spectral stability of multi-pulses in systems with both reflection and phase symmetries, such as
the complex cubic-quintic Ginzburg-Landau equation [22]. This was further adapted to multi-
pulses in certain Hamiltonian systems with two continuous symmetries, such as a fourth order
nonlinear Schrédinger equation [23].

A much more difficult problem concerns the spectral stability of multi-pulses in Hamilto-
nian PDEs in the case where the essential spectrum consists of the entire imaginary axis. (If
the essential spectrum is imaginary but bounded away from the origin, the spectral problem is
considerably easier; see, for example, applications to a fourth-order beam equation [24, Section
6] and a fourth-order nonlinear Schrodinger equation [23].) As a concrete example, we consider
solitary wave solutions to the fifth-order Korteweg-de Vries equation (KdV5)

Uy = 0y (uxxxx—uxx—i—cu—uz) c>1/4, (1.1)

which is the equation studied in [25] written in a moving frame with speed c. For the remain-
der of this paper, we will consider the wavespeed ¢ to be a fixed parameter. For ¢ > 1/4, the
solitary wave solutions will have oscillatory, exponentially decaying tails (see Hypothesis 3.5
and Remark 3.6 below). A double pulse solution resembles two well-separated copies of the pri-
mary solitary wave which are joined together in such a way that the tail oscillations “match up”
(Fig. 1, left panel). The distance between the two peaks takes values in a discrete set (Fig. 1,
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Fig. 1. Left panel is schematic of construction of double pulse solution (solid line) from two single pulses (dotted lines).
Oscillatory tails are exaggerated. Right panel shows the first four double pulse solutions to (1.1) for ¢ = 10.

right panel) [25,12]. This constraint is a consequence of a specific alignment of the stable and
unstable manifolds which is a necessary condition for multi-pulses to occur, and these discrete
values represent the number of twists made by the manifolds near the equilibrium at the origin
[21]. For the spectral problem, the essential spectrum is the entire imaginary axis, and depends
only on the background state. In addition, there is a pair of interaction eigenvalues which is sym-
metric about the origin and alternates between real (corresponding to double pulses with dashed
lines in the right panel of Fig. 1) and imaginary with negative Krein signature (corresponding to
double pulses with solid lines in the right panel of Fig. 1) [25]. Numerical timestepping verifies
that double pulses with real eigenvalues are unstable; when perturbed, the two peaks move away
from each other with equal and opposite velocities (Fig. 2, left panel). For the remaining double
pulses, numerical timestepping suggests that the two peaks exhibit oscillatory behavior when
perturbed (Fig. 2, right panel). Similar timestepping results can be seen in [25, Fig. 9], as well as
a reduction of the system to a two-dimensional phase plane [25, Fig. 10]. A different argument
that half of the double pulses are stable can be found in [26], which uses the asymptotic method
of [27]. Stability of double pulses in KdV5 is also discussed in terms of the Maslov index, an
integer-valued topological invariant associated with homoclinic orbits in a finite-dimensional
Hamiltonian system, in [28, Section 15.1]. The methods in [28] are extended to Hamiltonian
systems with phase space of dimension greater than four in [29]; a specific example is the 7th
order KdV model considered in [29, Section 8].

Although these numerical results suggest that every other double pulse is neutrally stable, this
remains an open question, since the imaginary eigenvalues are embedded in the essential spec-
trum. Furthermore, the timestepping simulation in Fig. 2 was performed with separated boundary
conditions, which shifts the essential spectrum into the left half plane, and thus could fundamen-
tally alter the behavior of the system. As an alternative, we will look at multi-pulse solutions on
a periodic domain subject to co-periodic perturbations. The advantage is that the essential spec-
trum becomes a discrete set of points on the imaginary axis; by analogy to the problem on the real
line, we will refer to this set as essential spectrum eigenvalues, even though they are elements
of the point spectrum. Purely imaginary interaction eigenvalues can then lie between essential
spectrum eigenvalues. Periodic traveling waves were described by Korteweg and de Vries in their
1895 paper [1], and the stability of these cnoidal waves is shown in [30,31]. Since then, stability
of periodic solutions has been investigated for many other systems, including the generalized
KdV equation [32], the generalized Kuramoto-Sivashinsky equation [33], the Boussinesq equa-
tion [34], the Klein-Gordon equation [35], a generalized class of nonlinear dispersive equations

370



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

Fig. 2. Results of numerical timestepping simulations for perturbations of double pulse solutions to (1.1) with real eigen-
values (left panel) and imaginary eigenvalues (right panel). Crank-Nicolson/Adams-Bashforth 2 IMEX scheme in time
with Chebyshev spectral discretization, Dirichlet and Neumann boundary conditions.

[36], the regularized short pulse and Ostrovsky equations [37], and the Lugiato-Lefever model
of optical fibers [38—40].

As in [12,21], we will use a spatial dynamics approach. We note that since the wavespeed
c is a fixed parameter, all solutions obtained this way will be traveling waves with speed c.
From this perspective, the primary solitary wave is a homoclinic orbit connecting the unstable
and stable manifolds of a saddle equilibrium point at the origin. A multi-pulse is a multi-loop
homoclinic orbit which remains close to the primary homoclinic orbit, and a periodic multi-
pulse is a multi-loop periodic orbit. Unlike multi-pulses on the real line, which exist in discrete
families (see Fig. 1, right panel), periodic multi-pulses exist in continuous families, since there is
an additional degree of freedom in their construction. Consider, for example, a 2-pulse. Whereas
a 2-pulse on the real line can be described by a single length parameter representing the distance
between the two peaks, the characterization of a periodic 2-pulse requires two length parameters
Xo and X (Fig. 3, left panel). The length of the periodic domain is 2X = 2Xo 4+ 2X . Double
pulse solutions on the real line correspond to the formal limit X; — oo. The length parameter X
(represented by the red solid and blue dotted horizontal lines in Fig. 3) formally converges to the
distance between the two peaks in the double pulse solution on the real line (these solutions are
shown in the right panel of Fig. 1). As a consequence of this additional degree of freedom and the
reversibility of the system, symmetric periodic 2-pulses (Xo = X) exist for all sufficiently large
X0, and asymmetric periodic 2-pulses (Xo # X1) bifurcate from these symmetric periodic 2-
pulses in a series of pitchfork bifurcations (Fig. 3, center panel). The symmetric periodic 2-pulse
solutions (Xo = X ) correspond to periodic single-pulse solutions with the period 2 X repeated
twice on the period 2X.

To compute the spectrum of the linearization of the underlying PDE about a periodic multi-
pulse, we use Lin’s method to reduce the eigenvalue problem to a block matrix equation; the
block matrix encodes the interaction eigenvalues, the essential spectrum eigenvalues, and the
translational eigenvalues (which are in the kernel of the linearization). For a periodic 2-pulse, the
block matrix is 4 x 4, and the resulting equation can be solved. This yields the interaction eigen-
value pattern in the center panel of Fig. 3, which corresponds exactly to the pitchfork bifurcation
structure. The arms of the pitchforks alternate between solutions with a pair of real interaction
eigenvalues and solutions with a pair of imaginary interaction eigenvalues; stability changes at
the pitchfork bifurcation points, when the interaction eigenvalues collide at the origin.
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Fig. 3. Left panel is an illustration of a periodic 2-pulse showing the two length parameters X and X. Center panel
shows the pitchfork bifurcation structure for periodic 2-pulses as these length parameters are varied. Pitchfork bifurcation
points are indicated with black dots. Blue dotted lines correspond to solutions with real interaction eigenvalues, and red
solid lines correspond to solutions with imaginary interaction eigenvalues. Right panel is a schematic of the eigenvalue
pattern for a periodic 2-pulse with a pair of imaginary interaction eigenvalues, corresponding to the solid red line in the
center panel. The spectrum comprises an imaginary pair of interaction eigenvalues (red dots), a double eigenvalue at the
origin from translation invariance (black square), and essential spectrum eigenvalues (blue open circles). The wavespeed
¢ is fixed. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

The right panel of Fig. 3 is a schematic of the eigenvalue pattern of a periodic double pulse
with imaginary interaction eigenvalues. The schematic also shows the first two essential spec-
trum eigenvalues. The essential spectrum eigenvalues are approximately equally spaced on the
imaginary axis, and, to leading order, their location depends only on the domain length param-
eter X. As long as the interaction eigenvalues and the essential spectrum eigenvalues do not get
too close, which we can guarantee by choosing the length parameters X and X sufficiently
large, the interaction eigenvalue pattern is as shown in Fig. 3. As the domain size X is increased
(moving to the right along the arm of the pitchfork corresponding to the red solid line in Fig. 3),
however, the essential spectrum eigenvalues move along the imaginary axis towards the origin.
At a critical value of X, there is a collision between one of the essential spectrum eigenvalues
and a purely imaginary interaction eigenvalue. Since the two eigenvalues have opposite Krein
signatures, we expect them to leave the imaginary axis upon collision. In fact, what occurs is that
a brief instability bubble is formed, where the two eigenvalues collide, move off the imaginary
axis, trace an approximate circle in the complex plane, and recombine on the imaginary axis in
a “reverse” Krein collision. This brief instability bubble, which we call a Krein bubble, is also a
consequence of the block matrix reduction, and is shown in schematic form in Fig. 4. The radius
of the Krein bubble in the complex plane and the value of X at which the Krein bubble occurs can
be computed using the block matrix reduction. Similar instability bubbles have been observed in
other systems. As one example, they are found for dark soliton solutions of the discrete nonlin-
ear Schrodinger equation on a finite lattice as the coupling parameter is increased [41]; in that
case, however, the instability bubbles disappear after a critical value of the coupling parameter is
reached ([41, Fig. 2]).

This paper is organized as follows. In section 2, we introduce a generalization of KdV5 as our
motivating example. In section 3, we set up the problem of interest in general terms as a Hamil-
tonian system in 2m dimensions which is reversible and translation invariant, for which KdV5
(corresponding to m = 2) is a special case. We also comment on extensions to higher order mod-
els, for which m > 2. We then present the main results of this paper, which concern the existence
(section 4) and spectrum (section 5) of periodic multi-pulse solutions. This is then applied to the
periodic single pulse and the periodic double pulse. In particular, we prove that Krein bubbles
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SR

Fig. 4. Schematic showing brief instability bubble which forms as the imaginary interaction eigenvalue and the first
essential spectrum eigenvalue collide on the imaginary axis. Domain size X increases from left to right, and top to
bottom. Eigenvalues are shown in red dots, Krein bubble is dotted circle, and center of instability bubble is marked with
blue X.

occur, and we give a formula for their radius in terms of fundamental constants associated with
the system. In section 6, we present numerical results which provide verification for our theoret-
ical work, including timestepping simulations to demonstrate the dynamical consequence of the
Krein bubble. The next sections contain proofs of the main results, after which we discuss our
findings in section 12 and offer some directions for future work.

2. Background and motivation

The Kawahara equation, also known as a fifth-order KdV-type equation, is used as a model
for water waves, magneto-acoustic waves, plasma waves, and other dispersive phenomena. This
equation takes the general form

0
Ur + QUyxxx + Pllyxrxx = af(’/‘a Uy, Uxxx), (2.1)
where u(x,t) is a real-valued function, the parameters o and § are real with 8 £ 0, and f is
a smooth function [42,43]. If f is a variational derivative, then (2.1) is the Hamiltonian system
oru = JE (u), where J = 0, is skew-Hermitian,

£u) = I]O L _ Lo ))d 22)
u)=-3 5lxx = S0l U, Uy, Uyy) | dx .
—00

is the energy, and f in (2.1) is the variational derivative of the term involving % in (2.2) [42]. A
prototypical example is

ur + Euxxxxx — bty +3uny +2uytyx + Uty =0,

which is a weakly nonlinear long-wave approximation for capillary-gravity water waves [44,45].
We will consider instead the simpler equation
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Up = Uyxxxx + PUxxx — 2Ully, (2.3)

which is a general form of the equation studied in [25]. Writing (2.3) in a co-moving frame with
speed c by letting £ = x — ct, equation (2.3) becomes

U = Ox (Uyxxx + pllyy +cu — uz)v 2.4)

where we have renamed the independent variable back to x. Localized traveling pulse solutions
satisfy the 4th order ODE

Uxxxx T PUxx +CU — u2 =0, (2.5)

which is obtained from (2.4) by integrating once. Equation (2.5) is Hamiltonian, with conserved
quantity
1 3

1 p c
H(u, Uy, Uy, Uyxy) = UyUyxyx — Eu)zm + 5“;26 + Euz - gu , (2.6)

which is obtained by multiplying (2.5) by u, and integrating once. Letting

U=1(q1,92, p1,p2) = (W, Uy, —Uxxx + Uy, Uxyx), 2.7

we can also write (2.5) in standard Hamiltonian form as the first order system
U'=FWU)=JVHU), (2.8)
where J is the standard 4 x 4 symplectic matrix and

P

1
5 a5+ = p3. (2.9)

N 1 1
H(ql,qz,pl,pz)=§q13——cq12+p1qz+ 5

2
We have the following theorem concerning the existence of localized solutions to (2.5), which is
a direct consequence of [46], reversibility, and the stable manifold theorem.

Theorem 2.1. If p < 2./c, then there exists a single-pulse solution q(x) to (2.5) which is an even
function and decays exponentially to 0 at Lo0.

Linearization of (2.5) about a solution u(x) is the self-adjoint linear operator
E"u) = 9% + pd? + ¢ —2u*, (2.10)

where £”(u) is the Hessian of the energy. The rest state u = 0 corresponds to the equilibrium
point U = 0 of the first order system (2.8). When p < 2./c, this equilibrium is a hyperbolic
saddle with 2-dimensional stable and unstable manifolds. The single pulse g(x) corresponds
to a homoclinic orbit connecting the stable and unstable manifolds of this equilibrium. If
—2./c < p < 2./c, the eigenvalues of DF(0) are a complex quartet +aq & Bip, and multi-
modal homoclinic and periodic orbits exist which lie close to the primary homoclinic orbit [12].
We adapt Lin’s method as in [47,12] to construct periodic multi-pulses (n-periodic solutions)
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by gluing together consecutive copies of the primary pulse end-to-end in a loop using small re-
mainder functions. This provides not only an existence result but also estimates for these small
remainder functions. As opposed to n-homoclinic solutions, for which the pulse tails are spliced
together at n — 1 locations, these n-periodic solutions require n splices at the pulse tails, which
provides an additional degree of freedom. For spectral stability, as in [21], we reduce the compu-
tation of the spectrum of the linearization of the PDE (2.4) about a periodic n-pulse to a matrix
equation. In contrast to [21], we obtain a 2n x 2n block matrix, which encodes both the interac-
tion eigenvalues and the essential spectrum eigenvalues near the origin.

3. Mathematical setup
3.1. Hamiltonian PDE

First, we define a Hamiltonian PDE which is reversible and translation invariant. This analysis
follows Grillakis, Shatah, and Strauss [48]. Let X = H 2m (R) form>2,and Y = LZ(R), and
consider the PDE

U = 3cE (), 3.1)

where u € X and £: X C Y — R is a smooth functional representing the conserved energy of
the system. We take the following hypothesis regarding the energy £ (u).

Hypothesis 3.1. The energy £ (1) has the following properties:

(1) £(0)=0and &£'(0)=0.
(i) Em)=E(p(u)), where p : X — X is the reversor operator [p(u)](x) = u(—x).
(iii)) E(T(s)u) =E(u) for all s € R, where {T' (s) : s € R} is the one parameter group of unitary
translation operators on X defined by [T (s)]u(-) = u(- —s).
(iv) &'(u) : X — X is a differential operator of the form

E'w)=0""u— fu,du,..., 07" ), (3.2)
where f : R?" — R is smooth.

Hypothesis 3.1(ii) is reversibility, and Hypothesis 3.1(iii) is translation invariance. Hypothe-
sis 3.1(iv) holds in applications such as KdV5, and lets us write the 2m-th order ODE &’'(u) =0
as a first order system in R>”.

Remark 3.2. Although we are most interested in the case where m = 2, for which the Kawahara
equation (2.1) and the fifth-order KAV model (1.1) are specific examples, the theory is developed

for general m > 2 so that it applies to higher order models as well. An example for m =3 is the
seventh-order KdV equation ([49, Chapter 15.10] and [29, Section 8])

Uy = Oy <_auxxxxxx + Uxxxx — Uxx +CU — 3u2) , (3.3)

which was introduced to study the KdV equation under singular perturbations (see also equation
(24) in [50]). The ninth-order KdV equation [49, Chapter 15.10] corresponds to m = 4. There has
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also been recent interest in nonlinear Schrédinger models incorporating higher order dispersion
terms [51].

Differentiating the reversibility relation £(u) = £(p (1)) with respect to u,

E'u) = p*(E (pw))) = p(E'(pw))),
since p is self-adjoint. Differentiating the symmetry relation £ (7 (s)u) = £(u) with respect to u,
E'u) =T (s)"E(T (s)u) (3.4
E"u) =T ()" E"(T()w)T (s5). (3.5
Differentiating the symmetry relation £(T (s)u) = £ (u) with respect to s at s =0,
0= ("), T'(s)u)ls=0 = (£'(w), T'(O)u) = (£ (u), dxu)

for all u € X, since T'(0) = 9, is the infinitesimal generator of the translation group 7 (s). There
is an additional conserved quantity Q : L(R) — R, given by

Q(u):—% / uldx, (3.6)

which represents charge in some applications. Traveling waves are solutions of (3.1) of the form
u(x,t) =T (ct)p(x) = ¢(x — ct). If ¢ satisfies the equilibrium equation £'(¢p) = cQ'(¢), then
T (ct)¢(x) is a traveling wave [48]. Since Q'(¢) = —¢, the equilibrium equation becomes

E' (@) +cp =0. (3.7)

Without loss of generality, we will assume that £'(¢) does not contain any terms of the form b¢
for b constant, since that is accounted for by the c¢ term in (3.7).

We take the following hypothesis concerning the existence of traveling waves, which is similar
to [48, Assumption 2]. In the next section, we will give a condition under which this hypothesis
is satisfied.

Hypothesis 3.3. There exists an open interval (c1, c;) C R and a C' map ¢ + ¢, such that for
every ¢ € (c1, ¢2), £ (¢pc) + cp. = 0, i.e. ¢, is a traveling wave solution to (3.1).

The linearization of the PDE (3.1) about a traveling wave solution ¢, is the linear operator
9y L(¢¢), where L(¢.) is the self-adjoint operator

L(pe) =E"(pe) +c, (3.8)

and £”(¢.) is the Hessian of the energy £(¢.). Differentiating (3.7) with respect to x and with
respect to c,
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£(¢c)ax¢c =0

(3.9)
L(¢e)(—0c¢e) = e

Differentiating again with respect to x,

[8x£(¢c)]3x¢c =0

(3.10)
[8x£(¢c)](_ac¢c) = 0x e,

thus the kernel of 3,€”(¢.) has algebraic multiplicity at least 2 and geometric multiplicity at
least 1.

3.2. Spatial dynamics formulation

We reformulate the equilibrium equation (3.7) using a spatial dynamics approach by rewriting
it as a first-order dynamical system in R?" evolving in the spatial variable x. From this viewpoint,
an exponentially localized traveling wave is a homoclinic orbit connecting a saddle point equi-

librium at the origin to itself. Let U = (u, dyu, ..., Bfm_lu)T e R, Using Hypothesis 3.1(iv),
equation (3.7) is equivalent to the first order system

U'x)=FUx);0), (3.11)
where F : R?" x R — R>" is smooth and is given by

u
u3
Fuy,uz, ... uzm;c) = : . (3.12)
flur,uz, ... uzm) —cuy

By reversibility,

F(RU;c)=—RF(U;c)

(3.13)

DF(RU;c)=—RDFU;c)R,

where R : R¥" — R?" is the standard reversor operator on R>”
R(uy,up, ... ugm—1,Uzm) = (U1, —U2, ..., Udm—1, —U2m)- (3.14)

First, we assume that (3.11) is a conservative system.

Hypothesis 3.4. There exists a smooth function H : R?” x R — R such that
(i) H(0;c) =0 forall c.
(i) VyH(U;c)=0ifand only if F(U;c)=0.

(iii) Forall U e R¥" and all ¢, (F(U; ¢), Vg H(U; ¢)) = 0.
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Fig. 5. Eigenvalue pattern of D F (0; ¢) as the wavespeed ¢ and the parameter a are varied for the 7th order KdV equation
(3.3).

It follows from Hypothesis 3.4 that H is conserved along solutions to (3.11). Since F(0; ¢) =
0 for all ¢, the rest state U = 0 is an equilibrium of (3.11) for all c. The next hypothesis addresses
the hyperbolicity of this equilibrium. Although the eigenvalue pattern described in Hypothe-
sis 3.5 is not necessary for the existence of a homoclinic orbit solution, it is a sufficient condition
for the existence of multi-pulse and periodic multi-pulse solutions.

Hypothesis 3.5. For a specific c¢p > 0, U = 0 is a hyperbolic equilibrium of (3.11). Furthermore,
the spectrum of D F (0; cp) contains a quartet of simple eigenvalues +og % Soi, where «g, Bo > 0,
and for any other eigenvalue v of D F(0; cp), |[Re v| > «p.

We note that localized pulse solutions will have tails which are exponentially decaying with
approximate rate o, and are oscillatory with approximate frequency So.

Remark 3.6. For the 5th order KdV equation (1.1), corresponding to m = 2, the spectrum of
D F (05 c) is the quartet of eigenvalues

For ¢ > 1/4, this is a complex quartet o & Boi, thus Hypothesis 3.5 is satisfied. For the 7th
order KdV equation (3.3), corresponding to m = 3, the spectrum of D F(0; c¢) comprises six
eigenvalues, one pair of which is always real (see Fig. 5, as well as the first quadrant of [29,
Fig. 3]). Hypothesis 3.5 is satisfied in the upper region of Fig. 5. Note that in the lower right
region of Fig. 5, there is a complex quartet of eigenvalues, but since the real pair of eigenvalues
lies inside this complex quartet, Hypothesis 3.5 is not satisfied.

We now address the existence of a primary pulse solution, which is a symmetric homoclinic
orbit connecting the unstable manifold W*(0; cg) and the stable manifold W*(0; co) of the rest

state equilibrium U = 0. Both of these manifolds have dimension m by reversibility. Since, in
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general, the existence of such a solution is unknown, we take the existence of a primary pulse
solution for a specific wavespeed cg as a hypothesis. For specific systems, such as KdV5, the
existence of a primary pulse solution has been proved (see, for example, Theorem 2.1 above).

Hypothesis 3.7. For the same cp as in Hypothesis 3.5, there exists a homoclinic orbit solution
01 (x; co) = (q(x; ), dxq (x5 €o), ..., 32" g (x; co))T € WS(0; co) N WH(0; co) € H™1(0; cp)
to (3.11). In addition,

(i) Q1(0;¢c0) #0.
(i) VyH(Q1(0; co); co) #0.
(iii) Q1(x;co) is symmetric with respect to the reversor operator (3.14), i.e. Q1(—x;co) =

RQ1(x; cp).

It follows from Hypothesis 3.7 that the first component g (x; co) is a symmetric, exponentially
localized traveling wave solution to (3.1). In order to prove the existence of homoclinic orbits
Q1(x; ¢) for c near cq, we take the following additional hypothesis.

Hypothesis 3.8. The stable manifold W*(0; co) and the unstable manifold W*(0; ¢o) intersect
transversely in H~10: ¢o) at 01(0; o).

Using Hypothesis 3.8 and a dimension-counting argument, we obtain the nondegeneracy con-
dition

To,0:c0) W’ (03 €0) N Tg, (03000 W (0; c0) = RQ (0; o). (3.15)
We then have the following existence theorem. The proof is given in section 7.

Theorem 3.9. Assume Hypothesis 3.4, Hypothesis 3.5, and Hypothesis 3.8. Then there exists
80 > 0 such that for ¢ € (co — 8o, co + 80), the stable and unstable manifolds ws (0; ¢) and
w (0; ¢) have a one-dimensional transverse intersection in H=1(0; ¢), which is a homoclinic
orbit Q1(x;c). Furthermore, Q1(—x;c) = RQ1(x;c), the map ¢ — Q1(x; c) is smooth, and
0c Q1(x; ¢) is exponentially localized, i.e. for any € > 0 there exists §1 > 0 with 61 < 8¢ such that
for c € (co — 61, co + 61),

18:01(x; )] < Ce™ @07, (3.16)
where « is defined in Hypothesis 3.5.
Finally, as in [48], we define the scalar
d(c)=E(q(x,c)) —w(g(x,0)).

By [52,48], the traveling wave g (x, ¢) is orbitally stable if d”(c) > 0, where

e e]

d"(0) =(Q(q(x,0)), deq(x,)) = f q(x,¢)dcq(x, c)dx. (3.17)

—00
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This can be computed numerically, and we take this stability criterion as a hypothesis.
Hypothesis 3.10. For each ¢ € (co — 8¢, co + 80), where 8 is defined in Theorem 3.9, d”(¢) > 0.

From this point on, we will fix a speed ¢ € (co — o, co + 80) and suppress the dependence on
¢ for simplicity of notation.

3.3. Eigenvalue problem

Let U*(x) = (u*(x), dyu* (x), ..., 32" 'u*(x))T be any solution to (3.11), so that u*(x) is a
traveling wave solution to (3.1). Then u*(x) also solves the equation 9, (£’ () + cu) = 0, which
is equivalent to the system

Ew)+cu=k
ok =0.

(3.18)

Using a spatial dynamics approach, we rewrite (3.18) as the first order dynamical system in
]R2m+l

U\ . (FU®) + ke
<k) (x)—( 0 ) (3.19)

where ey, = (0,...,0, 1)T € R?™ is the standard unit vector. We similarly reformulate the PDE
eigenvalue problem 9, L(u*)v = Av as the system

LuMHv=k
(3.20)
0k = Av.
This is equivalent to the first order dynamical system in C2"+!
V/(x) = A(U*(x))V(x) + ABV (x), (3.21)

where V (x) € C%R, C¥"+1), and A(U*(x)) and B are the (2m + 1) x (2m + 1) matrices

00 --- 0
1 0 0

A(0) has a one-dimensional kernel, which is characterized in the following lemma.

Lemma 3.11. The matrix A(0) has a simple eigenvalue at 0 and a quartet of eigenvalues Loy &
Boi. For any other eigenvalue v of A(0), |Re v| > ag. The kernel of A(0) is spanned by Vy and
the kernel of A(0)* is spanned by Wy, where
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1 T
V0=(—,0,...,o,1> ., Wp=(0,0,...,0, D)7, (3.23)
C

and (Vo, Wo) = 1. The projection on RV is given by Py, = (W, -).
Proof. Let p;(v) and p,(v) be the characteristic polynomials of D F(0) and A(0). Since
p2(v) =det(A(0) —vI) = —vdet(DF(0) —vI) = —vp1(v),

A(0) has the same eigenvalues as D F(0) as well as an additional eigenvalue at 0, thus part (i)
follows from Hypothesis 3.5. The kernel eigenvectors Vj and Wy and the projection Py, can be
verified directly. O

Since A(0) is non-hyperbolic, the rest state at the origin (U, k) = (0, 0) is a non-hyperbolic
equilibrium of (3.19), and the results of [21] do not apply. Let W*(0), W*(0), and W€(0)
be the stable, unstable, and center manifolds of the equilibrium at the origin. By reversibility,
dim W*(0) = m, dim W*(0) = m, and dim W¢(0) = 1. Let Q(x) be the primary pulse solution
from Theorem 3.9, and define

Q) =(Q1(x),0). (3.24)

The associated variational and adjoint variational equations are
V'(x)=A(Q(x)V (x) (3.25)
W' (x) = —A(Q(x))* W (x), (3.26)

and Q’(x) is an exponentially localized solution to (3.25). Since Q(x) is exponentially localized,
RQ'(0) C Ty W*(0)NTgW"(0). It follows from Hypothesis 3.8 that these are in fact equal.

Lemma 3.12. We have the nondegeneracy condition
TowyW*(0) N Ty W"(0) =RQ'(0). (3.27)

Proof. If the intersection were more than one-dimensional, there would exist another exponen-
tially localized solution V (x) = (v1, ..., Vam, vams1)” to (3.25). By the definition of A(Q(x)),
V2m+1 1S @ constant, which must be 0 since V (x) is exponentially localized. Then (vy, ..., )T
would be an exponentially localized solution to V/(x) = DF(Q(x))V (x), which contradicts the
nondegeneracy condition (3.15). O

Using (3.27), we can decompose the tangent spaces of the stable and unstable manifolds at

0(0) as

TooW ) =RQ 0o Y™
) - (3.28)
Too) W) =RO'0)p Y.

Since dimR Q' (0) @Y T @Y~ = 2m — 1, we need two more directions to span R27+1 We obtain
these from the following lemma.
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Lemma 3.13. Let Q(x) be defined by (3.24). Then we have the following bounded solutions to
the variational equation (3.25) and the adjoint variational equation (3.26):

(i) There are two linearly independent, bounded solutions to the variational equation (3.25),
which are given by Q'(x) and V¢(x). V¢(x) — Vpy as |x| — oo, where Vy is defined by
(3.23), and V°(—x) = RV¢(x), where R is the standard reversor operator. Furthermore,
V¢ = (V¢ 1), where VC solves the equation Ve(x) = DF(Q(x))VE(x) + ean. Any other
bounded solution to (3.25) is a linear combination of these.

(ii) There are two linearly independent, bounded solutions to the adjoint variational equation
(3.26), which are given by W(x) and Wy. V(x) is the exponentially localized solution

W(x) = (VH(Q(x)), g(x)7T, (3.29)

where the conserved quantity H is defined in Hypothesis 3.4, and W(—x) = RW(x). The
constant solution Wy is defined by (3.23). Any other bounded solution to (3.26) is a linear
combination of these.

Proof. For part (i), the existence of V¢(x) is a consequence of the geometry of the system, and
will be proved below after Lemma 9.4. The equation V¢ (x) = A(Q(x))V¢(x) then reduces to
Veé(x) = DF(Q(x))V¢(x) + eapn. For part (ii), equation (3.26) can be written in block form as

DF(Qx)* 0
esz 0

Wi(x)=— ( ) W(x),

for which Wy = (0,...,0, 1)T is a constant solution. Using Lemma 8.1 below, W(x) =
(VH(Q(x)),q(x))T is an exponentially localized solution to (3.26). O

Remark 3.14. Let v°(x) be the first component of V¢(x). Then v¢ is a formal solution to
L(g)v° =1, which provides a convenient way of computing V(x) numerically.

By Lemma 8.2 below, W(0) and Wy are perpendicular to RQ'(0) @ Y+ @ Y~ at x =0, thus
we can decompose RZ"*! as

R¥H =RQ' )@Y @Y™ & RY(©0) ®RW,. (3.30)
4. Existence of periodic multi-pulses

In this section, we prove the existence of periodic multi-pulse solutions to (3.11), which are
multi-modal periodic orbits that remain close to the primary homoclinic orbit. Heuristically, we
construct a periodic multi-pulse by gluing together multiple copies of the primary pulse end-to-
end in a loop (Fig. 6).

A periodic n-pulse can be described by the n pulse distances X, X1, ..., X,,—1. The distances
between consecutive pulses are 2X;, as shown in Fig. 6. The period of the orbit is 2X, where
X=Xo+ .-+ X,,—1. A periodic n-pulse requires one more length parameter than an n-pulse
on the real line, since we need one more connection to “close the loop”. Rather than describing a
periodic multi-pulse by the “physical” pulse distances X;, we will use a parameterization which

382



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

2Xn-1

Fig. 6. Schematic showing the construction of a periodic n-pulse solution from the primary pulse.

is more mathematically convenient and captures the underlying geometry necessary for a periodic
n-pulse to exist. This parameterization is an adaptation of that in [12,21] to the periodic case. Let

_b

200]

0 p* =arctan p, 4.1

where o and g are defined in Hypothesis 3.5. Define the set

mi

R = {exp <—27> ime No} U {0}, 4.2)

which is a complete metric space. We will use r € R as a scaling parameter. The parameterization
is defined as follows.

Definition 4.1. For n > 2, a periodic parameterization of a periodic n-pulse is a sequence of
n + 1 parameters (mq, m1,...,my—1,60), where 6 € (—w + p*, p*] and the m; are nonnegative
integers which are chosen so that

(i) at least one of the m; € {0, 1}.
(i) my_1>m; fori =0,...,n—2.

The selection of m,_ as the largest of the nonnegative integers m; is made for convenience
of notation, and to allow the periodic parameterization to be unique. Since we are on a periodic
domain, there is no loss of generality. The physical pulse distances X; are determined by the

periodic parameterization and by the scaling parameter r. If r = exp (— 2’"7”> , then

X; Qm +m)m +6*(0; my_1 —m;)) + L i=0,....,n—2

1
_2—/‘30(

n—1

= 2—/30((2m +my_ )7 +6) + L,

where L is a constant. The functions 6*(0; m) : [—7 + p*, p*] — R are defined for all nonneg-
ative integers m, are continuous in 6, and have the following properties:

(i) 6*(0; m) =0 for all m.
(i) 10%(0;m)| <10].
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Fig. 7. Schematic showing the first four functions 6*(9; m) plotted consecutively. The region between each pair of blue
dots corresponds to the domain § = [—7 + p*, p*].

(iii) [6%(6; m)| < Cexp (—%)
(iv) 6%(0:0) =6.
(V) 6*(p*sm) =0*(—m + p*;m+1).

The last property is a matching condition which “links up” the parameterizations corresponding
to adjacent m;. Fig. 7 shows a schematic of the first four functions 6*(6; m) plotted consecutively
to illustrate these properties. Together with the restriction of 6 to the half-open interval 6 €
(—m + p*, p*] in Definition 4.1, these guarantee that each periodic parameterization corresponds
to a unique periodic multi-pulse. The proof that the functions 6*(6;m) exist and have these
properties is given in Lemma 8.14 below.

We can now state the main theorem of this section, which gives conditions for the existence of
periodic multi-pulses. The requirement that the scaling parameter r be sufficiently small means
that the individual pulses must be well-separated. The proof is given in section 8.

Theorem 4.2 (Existence of n-periodic solutions). Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8.
Let Q1(x) be the transversely constructed, symmetric primary pulse solution to (3.11) from The-

orem 3.9. For any periodic parameterization (my, ..., my_1,0) with 0 ¢ {—m + p*, p*}, there
exists ry =ry(mo, ..., my—_1,0) > 0 with the following property. For any r € R withr <r,, there
exists a periodic n-pulse solution U(x) = U (x;myg, ..., mu—1,0,r) to (3.11). The distances be-

tween consecutive copies of Q1(x) in U (x) are given by 2X;, where the pulse distances X; are

1 1 -
Xi(rsmi,my_1,0) = —|logr|+ —t;(r;m;,my_1,0) + L i=0,...,n—2
20 280

1 1 -
Xp_1(r;my_1,0) = —|logr|+ -—(@m,_17 +0)+ L.
2010 2B
The functions t;(r; m;, m,—1,60) : R — R are continuous in r with
05 i, 0) = iz + 07 (O3 my—y —mi) =mizr +O (75" 1)

and L is a constant. Estimates for U(x) in terms of the primary pulse Q1(x) are given below in
Lemma 8.8.

Remark 4.3. It follows from the proof of Theorem 4.4 that periodic single pulse solutions exist
on the periodic domain [—X, X] for all sufficiently large X (see Corollary 8.10). These are single-
loop periodic orbits which lie close to the primary homoclinic orbit.
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S —

X

Fig. 8. Parameterization for periodic 2-pulses. Red dashed line represents symmetric periodic 2-pulses, and blue solid
line represents asymmetric periodic 2-pulses. Parameters sg and s increase in the direction of the arrow.

The condition that 6 ¢ {—m + p*, p*} in Theorem 4.2 is used to avoid bifurcation points
which arise in the construction. For periodic 2-pulses, we can use the symmetry of the solutions
and the reversibility of the system to give a complete bifurcation picture. In the next theorem,
we show that for periodic 2-pulses, asymmetric solutions (Xg # X1) bifurcate from symmetric
solutions (Xo = X1) in a series of pitchfork bifurcations (Fig. 3, center panel). The symmetric
2-pulse solutions (Xo = X1) correspond to periodic single-pulse solutions with the period 2X¢
repeated twice. The parameterization in Theorem 4.4, which is shown in Fig. 8, is different from
that in Theorem 4.2. The proof is given in section 8.

Theorem 4.4. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8. Let Q1(x) be the transversely
constructed, symmetric primary pulse solution to (3.11) from Hypothesis 3.7. Then there exists
ry« > 0 such that for all r € R with r <ry and mg € {0, 1},

(i) There exists a family of symmetric periodic 2-pulses Qz(x; mo, So, ) parameterized by
so € [0, r). The pulse distances X; are given by

- ~ 1 1 ~
Xo(r, s0) = X1(r, s0) = =—|logr| + — (mom + s0) + L. 4.4)
200 2Bo

(ii) There exists a family of asymmetric periodic 2-pulses Q1 (x; mo, s1, r) with pulse distances
X1 > X parameterized by s| € [p*, 00). The pulse distances X; are given by

1 1 -
Xo(r,mo, s1) = =—|logr| + ——to(r; mo, s1) + L
200 280 @.5)

1 1 ~
Xl(rasl)zﬂllogrl—i_z_ﬁosl +L7

where L is a constant, to(r; mo, s1) is continuous in r and s1, ty(0; mo, k) = mom for all
nonnegative integers k, and

10(0: mo. 51) = mox +(9(e_l‘”). (4.6)

(iii) The two families meet at a pitchfork bifurcation when so = p*(mg; r) and s| = p*, where
p* is defined in (4.1). The function p*(mg; r) is continuous in r, and p*(mgy;r) — p* as
r—0.
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We note that in Theorem 4.4(ii), X1 > Xo, which gives us the lower arms of the pitchforks in
Fig. 8. For the upper arms, we swap Xo and X1, which we can do by symmetry.

5. Spectrum of periodic multi-pulses

We now locate the spectrum of the periodic multi-pulses which we constructed in the pre-
vious section. Let 0, (x) = (¢n(x), 0xgn(x), ..., afmqn (x), 0) be any periodic n-pulse solution
constructed according to Theorem 4.2 on periodic domain [—X, X]. It is natural to pose the PDE

eigenvalue problem (3.20) on the space of periodic functions sze’f[—X , X], where

H2Z'-X, X]= {f e HR): fO—x)= f®X) fork=0,1,..., 2m} ,
although we note that in doing so, we are restricting ourselves to co-periodic perturbations. By
(3.10), the linear operator 9,L(q,) has a kernel with algebraic multiplicity at least 2 and ge-
ometric multiplicity at least 1. In the next lemma, we show that 9,£(g,) has another kernel

eigenfunction on Hgg‘ [-X, X].

Lemma 5.1. The linear operator 9, L(gy) posed on sz;'}[—X, X] has a kernel eigenfunction v,
which is a solution to L(q,)v;, = 1.

Proof. Since 1 € Hgg’[—X, X1, L(gn)1 = ¢ # 0. Since L(gy) is self-adjoint, for any v €
ker L(qn),

1 1 1
(Lv)= E(E(Qn)la v)=—(L, L(gn)*v) = - L(gn)v) =0,
thus 1 L ker £(q,)*. By the Fredholm alternative, the equation £(g,)v; = 1 has a solution v; €
H>[-X, X). Differentiating with respect to x, 9y L(g,)v; =0. O

per

Using the same formulation as in section 3.3, the PDE eigenvalue problem (3.20) on

ng”r’ [—X, X] is equivalent to the first order system with periodic boundary conditions

V/(x) = A(Qn(x))V (x) + 1BV (x)
V(=X)=V(X),

(5.1

where V(x) € CO(R, C¥"*+1), In next lemma, we show that for small A, the constant matrix
A(0) + AB has a simple eigenvalue v(A) near 0.

Lemma 5.2. There exists §1 > 0 such that for |A| < 81, the matrix A(0) + LB has a simple
eigenvalue v()). Furthermore, v()) is smooth in A, v(0) =0, v'(0) = 1/c, and for |A| < 8y,

1
v(L) = EA+O(|A|3). (5.2)

In addition, v(—1) = —v(A) and v(A) = v(h).
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Proof. Let p(v; L) be the characteristic polynomial of A(0) + AB. Since p(0;0) = 0 and
3y p(0; 0) = —c # 0, by the implicit function theorem, there exists 6; > 0 and a smooth func-
tion v(A) with v(0) = 0 such that for [A| < &1, v(}) is the unique solution to p(v; 1) = 0. The
derivative v'(0) = 1/c also follows from the implicit function theorem. By reversibility, p(v; A)
only involves odd powers of v, thus p(v; A) =0 if and only if p(—v; —X) = 0. Since the solu-
tion v(A) is unique, v(—A) = —v(A). Conjugate symmetry follows similarly since p(v; A) =0
if and only if p(v; 1) = 0. Equation (5.2) follows from a Taylor expansion of v(X) about
A=0. O

We can now state the main theorem of this section, which provides a condition for (5.1) to
have a solution. Since the spatial dynamics formulation (5.1) is equivalent to the PDE eigenvalue
problem, this allows us to find the PDE eigenvalues near the origin. This theorem is analogous to
[21, Theorem 2], with the n x n matrix in that theorem replaced by a 2n x 2n block matrix. The
proof is given in section 9.

Theorem 5.3. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let Q1(x) be the trans-
versely constructed, symmetric primary pulse solution to (3.11) from Hypothesis 3.7, and let
0(x)=(Q1(x),0). Let W(x) and V°(x) be defined as in Lemma 3.13. Choose any periodic pa-
rameterization (mo, ..., my—1,0) with 6 ¢ {—m + p*, p*}. Let ry be defined as in Theorem 4.2,
and for r <ry, let Q,(x;r) be the corresponding periodic n-pulse solution. Then there exists
r1 < ry and § > 0 with the following property. For r < ry, there exists a bounded, nonzero solu-
tion V(x) of (5.1) for |\| < & and |Rer| < r'/* if and only if

det E(L) =0, (5.3)

where E (L) is the 2n x 2n block matrix

KO —IaMKTO)  A2M.I C, D
E(\) = 2 . 5.4
) ( —IAMKT (V) S— 1M1 C, Dy (54)
The individual terms in E(\) are as follows:
(i) K (A) is the periodic, bi-diagonal matrix
e—VIX1 v Xo
K@) = _eVWXI ,—v()Xo n=2
e VWX —eVMXo
—_eVM X1 (M) X2
KOy = _eVMXa pmv()Xs e

_eVMXast g=v(M)Xo

where v(}) is defined in Lemma 5.2. K (L) is the same matrix with all terms positive.
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(ii) S is the symmetric banded matrix

—a) — a a1 +a
S = 1 0 1 0 n=2
ai+ay —ay—ao
5.5)
—dp—1 — Ao ao an—1
ap —agp — aj aj
S= ai —a1—a a2 n>2,
ap—1 ap—2 —ap-2 —dp—1
5.6)

where a; = (V(X;), O'(—=X;)).
(iii) M, M., and M are the Melnikov-type integrals

o o0 ) 00 | 1

where v (y) is the first component of V(y), and q(y) is the first component of Q(y).
(iv) The remainder matrices C; and D; are analytic in A and have uniform bounds

1l < CUA+ 7152, D1l < CIA(IA + 7177
Col < CUA+71)%, Do < C(al+r12)%,

The condition |ReA| < /4 is used to simplify the analysis. We will see when we apply the
theorem in the following sections that this condition is satisfied for sufficiently small r.

5.1. Spectrum of periodic single pulse

The simplest case is the periodic single pulse. There is a only single length parameter Xo,
which is the same as the domain length X, and the block matrix E(A) is a 2 x 2 matrix. The
form of E(X) is given in the following lemma. Proofs of all results in this section are given in
section 10.

Lemma 5.4. For a periodic single pulse, the block matrix E(A) from Theorem 5.3 is the 2 x 2
matrix

. -~ 2
—2sinh(v()X) — Micosh(v()X) Mo >+<Cl dl), (5.7)

EM = ( —M_ A cosh(v(1)X) — M2 o

where the remainder terms are scalars with bounds
el leal < CIM(AL+ 72, ldil, |da] < CIAP (AL + /).
In addition, det E(—)\) = —det E()\), and
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det E(A) = A2 <2M sinh(V (W) X)(1 + O(A| + /%) + A (MM + M?) cosh(v(1) X)
(5.8)
+ O +r172)).

Using this lemma, we can compute the nonzero essential spectrum eigenvalues close to the
origin for the periodic single pulse. We emphasize that this does not locate all of the essential
spectrum eigenvalues, but only those near the origin, i.e. those of sufficiently small magnitude.

Theorem 5.5. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let r1 and § be as in
Theorem 5.3. Then there exists ry < ry such that for any r € R with r < r, the following holds
regarding the nonzero essential spectrum eigenvalues. Let N be any positive integer such that
Ncm /X < 8. Then the first 2N nonzero essential spectrum eigenvalues are given by ). = {15 :
m=1,..., N}, where

mii 1 m3
A5 (r) = — ol —— 59
m (r) C X 1+CM§4A;-}?4¢2 + (|logr|3> ( )

is on the imaginary axis.
5.2. Spectrum of periodic double pulse

For the next application, we consider the periodic double pulse. In this case, the block matrix
E()\) is a 4 x 4 matrix, the form of which is given in the following lemma. Proofs of all results
in this section are given in section 11.

Lemma 5.6. For a periodic 2-pulse, the block matrix E ()) from Theorem 5.3 is the 4 x 4 matrix

E\) =
efv(A)Xl _ %)\'Mefv()»)xl _eU(K)X() _ %)\Mev()»)X() MC)LZ 0
—e" X1 Ly v Xt gmvXo _ L i emvXo 0 M2 RO
—AAM eV WX — 1AM e )Xo —a— M ’
—AAM "W)X —AAM e~V Xo a —a— M
(5.10)
where
a=(¥(Xo), Q'(—Xo)) + (¥(X1), Q'(—X1)). (5.11)
The remainder matrix is a 4 x 4 matrix of the form
ca)y  a) 2y (2) ady ()
RO = —ci(=2) —ci(=2) —Adi(—2) —Adi(=2) (5.12)

) &l do+rda(h)  —do+rda(d) |’
—c2(=2)  —ca(=A) —do—Adr(=1) do— Ada(—2)

where the individual entries are scalars with bounds

389



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

do| < Cr3/?
leil, |G, 1di |, 1di] < C(IA] 4 r1/%)? i=1,2.

In addition, det E(—)\) = —det E()\), and

det EQV) = —222(2a + 2>M + R)) (M sinh(V(A) X) + A(MM + M>) cosh(v(,\)X))

+ 4ax> M? sinh(v(A) X 1) sinh(v(A) Xo) + R2A% sinh((1) (X — X0)) (5.13)
+ A2R3sinh(v(A) X) + A3 R4,

where the R; are scalars with bounds
IRi| < Cr3%, |Ral,|Rs|, |Ral < C(A| +r'/2)%

We will first consider the case where the interaction eigenvalues are “out of the way” of the
essential spectrum eigenvalues. Since the interaction eigenvalues scale as /2 and the essential
spectrum eigenvalues scale as 1/|logr|, we can always choose r sufficiently small so that this is
the case. Provided we do this, the interaction eigenvalue pattern for asymmetric periodic 2-pulses
is determined by the parameter mg used in the construction of the solution.

Theorem 5.7. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Let r1 and § be as in
Theorem 5.3. Then for every mg € {0, 1} and s1 > p* there exists ry = rp(mg, s1) < r1 such
that for any r € R with r < ry, the following hold regarding the spectrum associated with the
asymmetric periodic 2-pulse Qo (x; mo, s1,1).

(i) Let N be any positive integer such that Ncrw/ X < 8. Then the first 2N nonzero essential

spectrum eigenvalues are given by . ={£A% :m=1,..., N}, where
2688 — myi ! +0 m 5.14
m (r)=c X MM+ M |10gr|3 (5.14)
1+ c—5%

is on the imaginary axis.
(ii) There is a pair of interaction eigenvalues located at ). = A" (r), where

mr):,/_%“w(r),

a is defined in (5.11), and |X"™(r)| < %|Ai”(r)|. These are real when my = 0 and purely
imaginary when mg = 1.
(iii) There is an eigenvalue at 0 with algebraic multiplicity 3.

We note that since the interaction eigenvalues scale as r!/2, and the essential spectrum eigen-

values are purely imaginary, the condition |ReA| < r!/4 is satisfied for sufficiently small r.

Remark 5.8. The essential spectrum eigenvalues are not identical for the periodic single pulse

and the periodic double pulse. In particular, note the additional factor of 2 in the denominator

of the term in parentheses in (5.9). To leading order, however, the nonzero essential spectrum
mmi

eigenvalues are located at c*+ for nonzero integer m in both cases.
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Next, we consider the symmetric periodic 2-pulse. As long as we are away from the pitchfork
bifurcation points (i.e. as long as a # 0) the results of Theorem 5.7 hold; the only difference is
that the eigenvalue pattern is determined by the sign of a rather than by mg (see Lemma 11.2
below). Thus we only need to consider what happens at the pitchfork bifurcation point, which is
given by the following theorem.

Theorem 5.9. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10, and let r| be defined
as in Theorem 5.3. Then there exists ro < ry such that for all r € R with r < ry and for
mo € {0, 1}, there is eigenvalue at 0 with algebraic multiplicity 5 for the symmetric periodic
2-pulse Qs(x;mg, p*(mo; r),r), where p*(mq; r) is the pitchfork bifurcation point defined in
Theorem 4.4.

Finally, we consider what happens when an essential spectrum eigenvalue collides with an
interaction eigenvalue on the imaginary axis. For simplicity, we will only prove the result for the
first collision. The existence of the first Krein bubble is given in the following theorem, which
also provides numerically verifiable estimates for its size and location.

Theorem 5.10. Assume Hypotheses 3.1, 3.4, 3.5, 3.7, and 3.8, and 3.10. Choose mo = 1, and let
r1 be as in Theorem 5.3. Let

A (r) = \/_2‘1(2_ R _ _2;’4(” + 00, (5.15)

where Ry is defined in Lemma 5.6, and let Q(x; r) be the periodic 2-pulse solution from Theo-
rem 4.4 with domain size X = X (r), where

Xol) —c mi MM + M? 5.16)
T () M : '
Define Ty (r) > 0 by
M2
Ti(r) = —<— AP X3. 5.17
1) = 5— 5 1A X0 (5.17)

Fors e [—2«/ T1(r), 24T (r)], let Q>(x; s, r) be the periodic 2-pulse solution with domain size
X =X(s,r), where

2cms
|)\*(}’)|2

X(s,r)=X.(r) + +O(s?). (5.18)

Then there exists ro < ry such that for all r € R with r < r, the following holds for the lineariza-
tion of the PDE about Q>(x; s, r).

(i) There is a pair of eigenvalues located at

A=) —si £VT1() =524+ O (r5/4| 1ogr|‘/2) . (5.19)
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(ii) For

s=si(r) =+ Tl(r)<1+(’)( ! ))
[logr|

there is a double eigenvalue on the imaginary axis at

1
A=Ae() +5+(r)i +O ,
[logr|
which occurs when

VT (). (5.20)

X(s,r)=X(r) £ AX @)+ O(s9), AX(r)= 715
A ()]
(iii) For s € (s—, s+), equation (5.19) describes, to leading order, a circle of radius /T (r) in

the complex plane, which is the Krein bubble. The pair of eigenvalues is symmetric across
the imaginary axis.

(iv) For s € [ —2JTi(r ,s_> U <s+, 2J T (r)], the eigenvalues (5.19) are on the imaginary

axis.

We note that maximum real part of the Krein bubble is order >/4|logr|, thus the condition
|ReA| < r'/4 is satisfied for sufficiently small r.

Remark 5.11. It is straightforward to adapt Theorem 5.10 to locate subsequent Krein bubbles.
For any positive integer N, there exists o = rp(N) with o < ry such that for r <r, and m =
1,..., N, a Krein bubble occurs when the m-th essential spectrum eigenvalue collides with the
interaction eigenvalue on the imaginary axis. The radius of m-th Krein bubble in the complex
plane is approximately /7 (r)/m, and the Krein collisions occur at approximately X = X' (r)+
AX™(r), where

mmi MM + M?
A (1) M

XT(r)=c< ) AX™(r) = /mAX (7). (5.2D

Note that this requires N to be chosen first, and r; depends on N. See section 12 for a discussion
on what occurs with subsequent Krein bubbles when r is fixed.

6. Numerical results

In this section, we present numerical results for the existence and spectrum of periodic multi-

pulse solutions to KdV5. We start with the construction of the primary pulse solution. For p = —1
and ¢ = 36/169, the exact solution to (2.5) is known [25]
105 X
(x) = — sech* ( ) ) 6.1)
7= 338 2/13
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Fig. 9. Spectrum of periodic 2-pulse solutions for KdV5, showing the interaction eigenvalues (red dots), essential spec-
trum eigenvalues (blue open circles), and double eigenvalue at origin (black square). Left panel (mqg = 0) has real
interaction eigenvalues, right panel (my = 1) has imaginary eigenvalues. Fourier spectral methods with N = 1024 grid
points, p = —1, ¢ =20, X =30.

We use AUTO [53] for parameter continuation in ¢ and p until —2,/c < p < 24/c, so that
Hypothesis 3.5 is satisfied. Following the AUTO demo kdv, we formulate the problem using
equation (2.8), and use a small parameter € to break the Hamiltonian structure. We impose peri-
odic boundary conditions and rescale the domain from [—X, X] to [0, 1], using the domain size
X as a parameter.

To construct a periodic double pulse g2 (x), we discretize equation (2.5) using Fourier spectral
differentiation matrices to enforce periodic boundary conditions. As an initial ansatz, we take
two copies of the primary pulse joined together at the distances predicted by Theorem 4.4. We
then solve for the periodic double pulse using Matlab’s £ solve function. This same procedure
can also be used to construct arbitrary periodic multi-pulses. We can also vary the domain size
X by parameter continuation in AUTO. Using this, we verify that asymmetric periodic 2-pulses
bifurcate from symmetric periodic 2-pulses in a series of pitchfork bifurcations (Fig. 3, center
panel).

Next, we compute the spectrum of 9,E”(g2) by discretizing the linear operator using Fourier
spectral differentiation matrices and using Matlab’s eig function (Fig. 9). For asymmetric peri-
odic 2-pulses (X # X1), the interaction eigenvalue pattern depends only on the integer mq from
the periodic parameterization. For my = 0, the interaction eigenvalues are real, and for mg =1,
the interaction eigenvalues are purely imaginary (the real part of the eigenvalues computed with
eig is less than 10™%). We can also compute the interaction eigenvalues for symmetric peri-
odic 2-pulses (Fig. 10, left panel). At each pitchfork bifurcation point, an eigenvalue bifurcation
occurs, where a pair of interaction eigenvalues collides at 0 and switches from real to purely
imaginary (or vice versa). The full interaction eigenvalue pattern (up to the first Krein bubble) is
shown in the center panel of Fig. 3.

We then compute the essential spectrum eigenvalues for periodic single pulses using eig, and
compare the results to the leading order formula from Theorem 5.5. Plotting the log of absolute
value of the error versus logm and constructing a least squares linear regression line (Fig. 10,
right panel), the absolute error is proportional to m>, with a relative error in the exponent of less
than 0.02, as predicted by Theorem 5.5. The results are similar for periodic double pulses using
the leading order formula from Theorem 5.7.

Next, we look at what happens when we increase the periodic domain parameter X using
parameter continuation with AUTO. As predicted by Theorem 5.10, there is a brief instabil-

393



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

20
—Re A
9 --ImA
= 1t 8
Z 5
3 3
20 2
[}
0t = =
£ 2
g =
g %0
21y S
k=
2 ‘ ‘ ‘ ‘ ) 14 ‘ ‘ ‘ ‘ ‘ )
4 6 8 10 12 14 0 0.5 1 1.5 2 2.5 3
pulse distance (2X;) log m

Fig. 10. Left panel: real part (blue solid line) and imaginary part (red dashed line) of interaction eigenvalues vs. pulse
distance for symmetric periodic 2-pulses (X = X1). Parameters are p = —1 and ¢ = 20. Right panel: log of absolute
error vs. logm for the first 15 essential spectrum eigenvalues with least squares linear regression line for periodic single
pulse. Slope of regression line is 3.05. Parameters p = —1, ¢ =10, and X = 200.
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Fig. 11. Left panel shows collision of first essential spectrum eigenvalue with purely imaginary interaction eigenvalue as
X is increased. Imaginary part of eigenvalues in top panel (red), real part of eigenvalues in bottom panel (blue). Right
panel plots the imaginary part vs. the real part of the eigenvalues in the Krein bubble as X varies. Parameter continuation
with AUTO in periodic domain length X, p = —1, ¢ = 20.

ity bubble when the first essential spectrum eigenvalue collides with the imaginary interaction
eigenvalue (Fig. 11). If p and ¢ in (2.5) are related by

p=—-2(a—b), c=(a+b)’ a,b>0, 6.2)

then the eigenvalues of D F(0) are the quartet &+/a & +/bi. Choosing a = 0.25 and b = 3, so that
the tail oscillations of the primary pulse are sufficiently rapid but do not decay too quickly, we
can construct the first four periodic double pulses with mo = 1, together with the eigenfunctions
corresponding to the imaginary interaction eigenvalue, to a sufficient degree of accuracy so that
AUTO converges for both the existence and eigenvalue problems. Fig. 12 plots the log of the
absolute error of the Krein bubble radius in the complex plane (/7 from (5.17)) and the log of
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Fig. 12. Plot of log of absolute error for Krein bubble radius in the complex plane (left panel) and Krein bubble size in
X (right panel) vs. agXg, with least squares linear regression lines for first four periodic double pulses with my = 1.
Slopes of regression lines -3.0319 (left) and -1.0332 (right). Parameters ¢ = 0.25 and b = 3 in (6.2), which corresponds
to p=5.5 and ¢ = 10.5625.

the absolute error of the Krein bubble size in X (AX from (5.20)) versus ogXo. The slopes of the
least squares linear regression lines suggest that the Krein bubble radius in the complex plane is
given by /T| + O(e—320X0) and that the Krein bubble radius in X is given by AX 4 O(e~%0X0),
with relative errors in the exponent less than 0.01 and 0.03 (respectively). The leading order
terms agree with Theorem 5.10, while the error term is higher order than predicted. The results
for subsequent Krein bubbles discussed in Remark 5.11 can similarly be verified numerically.

Finally, we present results of numerical timestepping experiments to illustrate the effects of
the Krein bubble on the PDE dynamics of perturbations of periodic double pulses. Let u1(x) be
the periodic single pulse solution to (2.5). The initial condition for the timestepping is the sum
of two well-separated copies of the periodic single pulse,

u(x)=uj(x —L)4+u(x+L). (6.3)

The two pulses are separated by a distance 2L, which is chosen to be close to the pulse separa-
tion distance for a periodic double pulse. Timestepping was performed using a pseudo-spectral
method for spatial discretization and a fourth-order Runge-Kutta method for time evolution, as
in [25]. High frequency oscillations resulting from large essential spectrum eigenmodes were
damped using a lowpass filter.

The top panel of Fig. 13 plots phase portraits (L, dL/dt) for two different parameter config-
urations (see [25, Fig. 10] for similar phase portraits). Neutrally stable periodic double pulses
(mg odd) are marked with a black dot, and unstable periodic double pulses (¢ even) are marked
with black X. The top left panel of Fig. 13 is the phase portrait corresponding to a parameter
configuration outside the Krein bubble. The interaction eigenvalues for both periodic doubles
pulses with mq odd are purely imaginary. These correspond to neutrally stable centers in the
phase portrait, and the frequency of oscillation about these equilibria is within 5% of the imagi-
nary part of the corresponding interaction eigenvalue. The interaction eigenvalue for the periodic
double pulse with m( even is real, which corresponds to an unstable saddle equilibrium in the
phase portrait. The top right panel of Fig. 13 is the phase portrait corresponding to a parameter
configuration inside the Krein bubble. Since the interaction eigenvalue for the first periodic dou-
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Fig. 13. Phase plane showing d L /dt vs. L for timestepping simulations, where the two peaks are separated by a distance
2L. Top left (outside Krein bubble): parameters p = 1.1 and ¢ = 2.1025, domain size X = 40, and interaction eigenvalues
0.1120i, 0.0384, and 0.0134i (from left to right). Top right (inside Krein bubble), parameters p = 1.7 and ¢ = 2.7225,
domain size X = 36, and interaction eigenvalues 0.0124 4 0.2498i, 0.0968, and 0.0398i (from left to right). Bottom left:
L — Lg vs. t for solution starting near leftmost equilibrium point in top right phase portrait, where the two peaks in the
unperturbed periodic double pulse are separated by a distance 2L(. Bottom right: log(L — Lq) vs. ¢t at maxima of this
solution.

ble pulse (leftmost equilibrium point) has a small, positive real part, trajectories starting near this
unstable equilibrium slowly spiral outward (Fig. 13, bottom left). The average frequency of these
oscillations is 0.2380, which is within 5% of the imaginary part of the Krein bubble eigenvalue,
and the exponential growth rate of the maxima of this solution (Fig. 13, bottom right) is 0.0119,
which is within 5% of the real part of the Krein bubble eigenvalue.

7. Proof of Theorem 3.9

The proof is similar to that of [24, Lemma 6.2 and Lemma 6.4]. By Hypothesis 3.7, Q(0; co) #
0, H(Q(0; co); co) =0, and Vy H(Q(0; cp); co) # 0. By the implicit function theorem, there
exists 8o > 0 such that for ¢ € (co — 8o, co + o), the O-level set H~1(0; ¢) contains a smooth
(2m — 1)-dimensional manifold K (c), with K (cg) containing Q(0; cp). The existence result and
the smoothness of the map ¢ +— Q(x; c) for ¢ € (co — 8o, co + So) follow from the transverse
intersection of W*(0: cg) and W*(0; co) in K (co) C H™1(0: cp), the implicit function theorem,
and the smoothness of F. Symmetry with respect to the reversor R follows from the symmetry
of Q(0;co) and H.
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Fix ¢ € (co — 80, co + 80). Since Q(x; ¢) solves (3.11), Q(x;c) € C'(R, R?™). By the stable
manifold theorem, Q(x; c) is exponentially localized, i.e. for every € > O there exists a con-
stant C such that for all x € R, |Q(x; ¢)| < Ce™@=OKI Substituting Q(x; ¢) into (3.11) and
differentiating with respect to ¢, d. Q (x; c) satisfies

[0:Q(x; )] = Dy F(Q(x;¢); ©)3:Q(x; ¢) — BO(x; ¢), (7.1)
where B is defined in (3.22). Define the linear operator £ : C' (R, R>"*) — C%(R, R*") by

d
L=— —DyF(Q(x;c);0). (7.2)
dx
By equation (7.1), BQ(x;c) € ran L and is exponentially localized. Since D F (0; ¢) is hyper-
bolic, it follows from [54, Lemma 4.2] and the roughness theorem for exponential dichotomies
[55] that £ is Fredholm with index 0. By Hypothesis 3.7, ker £ = R Q’(x; ¢), thus the set of all
bounded solutions to (7.1) is given by {3.Q(x; ¢) + RQ'(x; ¢)}.
To show that 9. Q(x; c¢) is exponentially localized, we reformulate equation (7.1) in an expo-
nentially weighted space. Choose € € (0, ap) and let n(x) be a standard mollifier function [56,
Section C.5]. Let

O(x; ¢) = Z(x; c)e™ @07 (7.3)

where r(x) = n(x) * |x| is smooth, and for |x| > 1, r(x) = |x| and r'(x) = £1. Substituting (7.3)
into (7.1) and simplifying, we obtain the weighted equation

[0:Z(x; )] = [Dy F(Q(x; ¢); ¢) + (g — €)r' ()] Z(x; ¢) — ™D BO(xs0),  (7.4)

where the last term on the RHS is bounded. Define the weighted linear operator Ly,— :
C'(R,R?) — CO(R, R¥™) by

d
Loy—e = o Dy F(Q(x; ¢);¢) — (ag — e)r' (x)T. (7.5)

Since BQ(x;¢) eranL, ¢~ ®BO(x;¢) € ran Ly,—c. Since Dy F(0;¢) — (ag — €)Z is
still hyperbolic with the same unstable dimension as Dy F(0; ¢), it follows again from [54,
Lemma 4.2] that £, is Fredholm with index 0. Since Q’(x;c) is exponentially localized
by the stable manifold theorem, ¢~ Q' (x; ¢) is bounded, thus since Q’(x;c) € ker L,
e@0=r) 0/ (y: ¢) € ker L4,—e. Since any element in ker Lo, gives an element of ker £ via
(7.3), ker Loy—e = Re@0=@) 0/ (x; ¢). Since @0~ B (x; ¢) € ran Lyy—e, the set of all
bounded solutions to (7.4) is given by {3.Z(x; ¢) + Re@~=9"® 0’ (x; ¢)}, which implies that
3:0(x; ¢) = 8. Z(x; ¢)e” @~ g exponentially localized.

8. Proof of existence results

We will construct a periodic n-pulse U (x) using Lin’s method. For convenience of notation,
we will denote the primary pulse by Q(x) instead of Q1(x). Rather than taking U (x) to be a
piecewise perturbation of Q(x), we adapt the technique in [57] and instead take a piecewise

ansatz of the form
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UE(x) = 0F(x; B5) + 0F (v),

where ,3,.lL parameterize the stable and unstable manifolds W5 (0) and W*(0) near 0(0). The
functions Qi(x; ,Bii) lie in these manifolds, and the Qli are small remainder functions. In
essence, we use the parameters ,Bl.i to break the homoclinic orbit Q(x), and the remainder func-
tions Qli to glue the pieces back together. We will show that we can find a unique piecewise

solution which generically has n jumps in a specified direction. A periodic multi-pulse solution
exists if and only if these n jumps are all 0.

8.1. Setup

Using (3.15), we decompose the tangent spaces of the stable and unstable manifolds at Q(0)
as

TooyW"(0) =RQ' ) &Y~
TooyW ) =RQ'0) Y.

It follows from (3.15) that Q’(x) is the unique bounded solution to the variational equation
V' =DF(Qx))V, 8.1)
and that there exists a unique bounded solution W(x) to the adjoint variational equation
W'=—DF(Q(x))*W. (8.2)

(In both cases, uniqueness is up to scalar multiple.) Since we have a conserved quantity H, the
following lemma gives the exact form of W(x).

Lemma 8.1. ¥(x) = VH(Q(x)), where H is the conserved quantity from Hypothesis 3.4. In
addition, ¥(—x) = RV (x), where R is the standard reversor operator, and the last component

of ¥(x) is g’ (x).
Proof. Differentiating (F(U;c), Vy H(U; c)) =0,
0=DF(Q(x))*VH(Q(x)) + D*H(Q(x))*F(Q(x)).

Using standard vector calculus identities, equation (3.7), and the fact that the Hessian is self-
adjoint,

d
—DF(Q(x))*VH(Q(x)) = D*H(Q(x))Q'(x) = EVH(Q(X)),
thus VH (Q(x)) is a solution to (8.2). Since V H is continuous and Q(x) is exponentially local-
ized, VH (Q(x)) is bounded, thus by uniqueness we can take W(x) = VH (Q(x)). Using (3.13)
and the symmetry relation Q(—x) = RQ(x),

[R¥(=x)]'=—RDF(Q(~x))¥(—x) = —R[~=RDF(Q(x)) R1¥(—x) = DF (Q(x))[R¥(~x)],
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thus W(—x) = RW¥(x) by uniqueness. By the definition of F, if W(x) = (Y1(x), ..., Y2u(x)) is
a solution to (8.2), then ¥, (x) solves L(g)*w = [£"(g) + c]*w = 0. Since L(q) is self-adjoint
and L(g)qg' =0, Yo, (x) =¢'(x). O

In the next lemma, we collect a few important results about solutions to (8.1) and (8.2).

Lemma 8.2. Consider the linear ODE V' = A(x)V and the corresponding adjoint equation
W' = —Ax)*W, where A(x) is a smooth n x n matrix. Then

d
(i) —(V(x), W(x)) =0, thus the inner product is constant in x.

(ii) If W (x) is bounded, and V (x) — 0 as x — 00 or x — —00, then (V (x), W(x)) =0 for all
x € R. The same holds if we reverse the roles of W and V.

(iii) If ®(y, x) is the evolution operator for V'(x) = A(x)V (x), then ®(x, y)* is the evolution
operator for the adjoint equation W'(y) = —A(y)*W(y).

Proof. For part (i),

d

§<V(X), W(x)) = (V'(x), Wx)) + (V(x), W (x))
=(A)V(x), W(x)) +(V(x), —AX)*W(x)) =0.

Part (ii) follows from part (i), the Cauchy-Schwartz inequality and the continuity of the inner
product. For part (iii), take the derivative of ®(y, x)®(x, y) = I with respect to y to get

d d d
0= (d—ﬂb(y, X)> D (x,y) + P(y,x) (—fb(x, y)) =A®Qy) + ®(y,x) <—<I>(x, y)) -
y dy dy

Rearranging and taking the transpose of both sides yields

d
d—<I>(x, VN =—AW)* Pk, »*. O
y

By Lemma 8.2(ii), ¥(0) L RQ'(0) @ Y+ @ Y, thus we can decompose R2" as
R =RQ' )@Yt d Y™ ®@RW(0). (8.3)
8.2. Piecewise ansatz

First, we write the unstable and stable manifolds as graphs over their tangent spaces. Fol-
lowing [57], we can parameterize WH(0) and W*(0) near Q(0) by the smooth functions
Q0 (y,B7) and Q*(y,B"), where y € R and B* € Y*. These functions are chosen so that
0t (y,0) — 0~ (y,0) e R¥(0), and Q7 (0,0) = 0~ (0, 0) = Q(0). We will always take y = 0.
Let QF(x; %) be the unique solutions to (3.11) on R* with initial conditions Q% (0, 8%) at
x =0. O (x; B7) lies in the unstable manifold W*(0) and QF (x; A7) lies in the stable mani-
fold W* (0).
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We will look for a n—periodic solution U (n) to (3.11) which is piecewise of the form

U~ (x)=Q (x; 7))+ 07 (x) x €[-Xi-1,0]

+ + + A+ (8.4)
Urx)=0"(x; ;") + 0 (x) x €[0, X;]

fori =0,...,n—1, where U;” : [-X;1,0] — R and Ul.Jr . [0, X;] — R are continuous. The
subscripts i are taken mod#n since we are on a periodic domain, and the pieces are glued together
end-to-end as in [21], with one additional join needed to “close the loop”. Since Qi(O; ,Bl.i) €

RQ'(0) ® Y*, we are free to choose Qii(x) so that

0; (0) eRW(O0) &Y™
0 () eRYO)®YT.

To construct a periodic n-pulse, we will solve the following system of equations

UF @) = FUF ) =0 (8.5)

U (Xi) = U7 (X)) =0 (8.6)

U (0)— U7 (0)=0 (8.7)

fori =0,...,n — 1. Equation (8.6) is a matching condition at the pulse tails, and equation (8.7)

is a matching condition at the pulse centers.
8.3. Exponential dichotomy
Let ®. (x, y; B%) be the family of evolution operators for
[VE@)] = DF (Q*(x, p5)) VE) x e RE. (8.8)

Choose any « slightly less than «g. In the next lemma, we decompose these evolution operators
in exponential dichotomies on R and R ™.

Lemma 8.3. There exist projections
Pi(y;BH, PLy:iBH=1-PL(y; 87 y=>0
Pi(y;B7), PL(yiB)=1—-Pi(y;B") y=<0

on RE such that the evolution operators ®+(x, y; B+) can be decomposed as ®+(x, y; p+) =
@5, (x, y; ) + DL (x, y; BE), where

S (x,y; BE) = dalx, y; BHPL(y; BE)
“(x, y; BE) = Da(x, yi BE)PL(y; BE).
We have the estimates
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% (x,y, B <Ce™@™  0<y<x
P4 (x,y, I =Ce ™ 0<x <y
| (x,y, ) < Ce *0™Y 0>y>x
|®° (x,y, )| < Ce * ™Y 0>x>y,

which also hold for derivatives with respect to the initial conditions B~. In addition, the projec-
tions satisfy the commuting relations

S (x, v; BHPY (v B5) = P (x: B D (x, 3 B4).
The projections can be chosen so that at y = 0 we have, independent of BT and 8-,
ker P{(0; BH =RU(0) Y™, ker PY(0; B)=R¥YO)d Y™
ran P{(0; ) =RU(O) @ Y, ranP5(0; B7)=RU(O0) Y™ .
Let Ej and Ej be the stable and unstable eigenspaces of DF(0), and let Pj and P§ be the

corresponding eigenprojections. For any o with 0 < o < o, we have the following estimates,
which are independent of ,Bii.

|PY(x; BT) = P§| < Ce ™™, |Pi(x; BT)— Pj| <Ce™™*

, (8.9)
|PY(x; B7) — PYI < Ce™,  |PS(x; B7) — Pl < Ce™ .

Proof. Since D F(0) is hyperbolic by Hypothesis 3.5, and |Re v| > «p for all eigenvalues v of
DF(0), the exponential dichotomy results follow from [57, Lemma 5.1], which follows from
[47, Lemma 1.1]. The estimates (8.9) follow from [47, Lemma 1.1] and [47, Lemma 2.1]. O

8.4. Fixed point formulation

Next, we formulate equation (8.5) as a fixed point problem. Substituting the piecewise ansatz
(8.4) into (8.5), and using the fact that Q% (x; ﬂii) solves (8.5) on R%,

(0F () = F(Q*(x; B + 0F (1) — F(Q*(x: BF)  i=0.....n—1.
Expanding the RHS in a Taylor series about Q% (x; ﬂii), this becomes
(0F() = DF(Q*(x; BENOF () + GEx; ) i=0,...,n—1,  (8.10)
where Gl.i(x; ,Bl.i) =0 Ql.i(x)|2). As in [57], derivatives of Gl.jE with respect to the parameters

,BijE are also quadratic in QljE Using the exponential dichotomy, we rewrite (8.10) in integrated
form as the fixed point equations
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07 (x) = ®" (x, X;; B)a

X X
+/<I>’_i(x,y;ﬂf)Gf(y;ﬁf)derfCDi(x,y;ﬂl*)G,*(y;ﬂ,*)dy
X; 0
. - 8.11)
Q,‘ (x) = ®% (x, _Xi—l;,Bi )ai—l
X X
+ / <I>‘i(x,y;ﬁf)Gf(y;ﬁf)der/fDLi(x,y;ﬂf)Gf(y;ﬂf)dy,
—Xi—1 0
fori =0,...,n — 1, where af € Eg anda; € Eg. Define the exponentially weighted norms
IVIxs= sup X0 |V(x)
xel0,X]
(8.12)
IVIx—= sup XV (x)l,
xe[—X,0]

and let Ky 4+ be the Banach spaces of continuous functions on [0, X] and [— X, 0] equipped with
these norms. Let Bx +(p) be the ball of radius p about O in Kx +.

8.5. Inversion

As in [57], we will solve for the remainder functions Qli and parameters ﬁii in a series of
lemmas. First, we will solve equation (8.11) for Qli

Lemma 8.4. There exist 8, p > 0 such that for X; > 1/8 and |a*|, |BE| < 6, wherei =0, ...,n—
1, there exist unique solutions Ql_ € Bx, |, —(p) and Ql+ € Bx, +(p) to (8.11). These depend
smoothly on (a;_,, ;) and (aiJr , ,8i+), respectively, and we have the estimates

19; llx;y.— = Cla;_,l

- ) (8.13)
19" x;+ = Cla;"|,

where the constant C depends only on 8. The estimates hold for derivatives of Qli with respect
+
to B;-.

Proof. The proof follows [57, Lemma 5.2]. For the first term on the RHS of (8.11),
Xm0 (x, Xi; B)at| < Ce*KiTVem @ Xm0 ak | = Claf,
. + - . . A+ A+
and for the second term, since G;" is quadratic in Q;" and Q," € Ky, +,

X Xi
e Xi=0) / 4 (x, y; BGT (v By | < Cex i f e~ 0F () Pdy
X

i
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X;
- Cea(Xi—x)/e—a(y—x)(e—“(Xf_>’))2|e“(X"_y)Q*(yﬂzdy =C.
— ! -

X

The third term is similarly bounded. Thus the RHS of the fixed point equation (8.11) is a smooth
map Kx, 4 +> Kx, +. Define H" : Kx, 4 x Ej x Y* — Ky, 4 by

HY(Of (0).ai", B = 0} (x) — @%.(x, Xi5 B )a;" — / Y (x, y;: B)GT (v B)dy
X
—/m(x,y;ﬂ,-*)c:r(y;ﬂf)dy.
0

Since Q(x) satisfies (3.11), H;"(0,0,0) = 0, and since G;" is quadratic in O} (x), the Fréchet
derivative of Hi+ with respect to Qj'(x) at (Q;"(x), al.+ , :31'+) = (0, 0, 0) is the identity. Using the
implicit function theorem, we can solve for Q;L(x) in terms of (al.Jr , ﬁ;’ ) for sufficiently small
|al.+| and | /3,.+ |. Since the map Hl.+ is smooth, this dependence is smooth. The estimate on Q:L

comes from the first term on the RHS of (8.11), since the remaining terms are quadratic in Qf
Since the exponential dichotomy estimates from Lemma 8.3 hold for derivatives with respect to
,B;F, these estimates do as well. We can similarly solve for Q; in terms of (a;_;, ;). O

Next, we will solve equation (8.6) to match the pieces (8.4) at =X; and obtain the initial
conditions al.i.

Lemma 8.5. For X; chosen as in Lemma 8.4, and for i =0, ...,n — 1, there is a unique pair of
initial conditions (a;", a;") € E§ x E{ such that U;* (X;) — U7, (= X;) =0. The pair (a;", a;")

1
depends smoothly on (ﬂi"’_ » Bi11), and we have the estimate

la"| < Ce™Xi, (8.14)

which holds as well for derivatives with respect to ,Bii. In addition,

a = =Py (QF(Xi: ) — 07 (=Xis Bip) + O

: _ (8.15)
a; =Py (Q+(Xi§ /3i+) -0 (—X;; ﬂ;rl)) + O(e 22Xy,

Proof. Evaluating the fixed point equations (8.11) at £X; and substituting them into (8.4), the
matching condition (8.6) can be written as H; (a;’, a;, /3i+, :31'_+1) =0, where H; : E(S) X E(”)‘ X
YT x Y~ — R?" is defined by
Hi(a} a7 B B ) =a —a; + (PL(Xi; B) — PYa;” — (P2 (=Xi: B5) — P)a;
+ 0T (Xi: B — Q7 (—Xi: By
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X =X
+ / Y (Xi,y: BTG (v, By — / " (—Xi, y: B )G (. B Ay,
0 0

where we have substituted Q;—L(x) from Lemma 8.4 into Gl.i. Since Q(x) satisfies (3.11),
H;(0,0,0,0) =0. Since Gl.i is quadratic in Qli, thus quadratic in al.i by Lemma 8.4,

0
a—iHi (0,0,0,0) ==+1+ O(e—otxi)’

1

where we also used the estimate (8.9). For sufficiently large X;, D+ H; (0,0, 0, 0) is invertible
in a neighborhood of (0,0, 0, 0), thus we can use the implicit funlction theorem to solve for
aii in terms of ,Bii. The estimate (8.14) then comes from the stable manifold theorem, since
Ot (£X;; ﬂii) = O(e~*¥i). To obtain the expressions (8.15), we apply the eigenprojections Py
and Py (respectively) to H; (aiJr ,a; ,8;’, B;41) = 0. The bound on the remainder term comes
from the bound (8.14), together with the estimates from Lemma 8.4 and equation (8.9). O

It remains to solve equation (8.7), which is the matching condition at x = 0. Before doing that,
we will use the flow-box method to make a smooth change of coordinates which will “straighten
out” the stable and unstable manifolds near Q(0) so that their non-intersecting directions are ¥+
and Y.

Lemma 8.6. There exists a differentiable map S : R x Y~ x Y+ x RW(0) — R*" such that
5(0,0,0,0) = Q(0), S is invertible in a neighborhood of Q(0), and for sufficiently small B*,

STHQT OB =8"

st ;g =p".
Proof. Let ®, (Up) be the solution operator which maps Uy € R to the point U (x), where U (-)
is the unique solution to (3.11) with U (0) = Up. Define the map S: R x ¥~ x YT x R¥(0) —
R by S(x; 87, 8%, y) = O, (Q(O) +07(0;87)4+07(0; ) + y\Il(O)). For small x and
,Bi, the stable and unstable manifolds are the surfaces WS = S (x;0,8%,0) and Wt =

S(x; B7,0,0). Their one-dimensional intersection is the homoclinic orbit Q(x) = S(x; 0,0, 0),
and S(0,0,0,0) = Q(0) # 0. The partial derivatives of S are

5:(0,0,0,0) = F(Q(0)) = 0'(0)
Sp-(0,0,0,0) = (Q7)p-(0;0) =Y~
S5+(0,0,0,0) = (QF)p+(0;0) =Y+

S,(0,0,0,0) = W(0),

which span R?” by (8.3). Since the Jacobian of § is invertible at the origin, S is invertible near
0 (0) by the inverse function theorem. O
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After applying this coordinate change near Q(0), the matching condition (8.7) is equivalent
to projecting Ul.+(0) — U;(0) = 0 onto RQ’(0), Y+, Y=, and RW(0) and solving separately
on each subspace. Since PRQ/(O)(Qi(O; ﬂi)) =0 and Qii(O) eRY(0) @ YT @Y, the equa-
tion PRo/()(U;(0) — U (0)) = 0 is automatically satisfied. Since Py=(Q*(0; B%)) = * and
PRy (0) (Q*(0; B%)) = 0 due to the change of coordinates, it remains to solve the equations

Py+(QF(0) — 07 (0) + B =0 (8.16)
Py-(Qf(0) — 07 (0) — B =0 (8.17)
Pru(0) (07 (0) — Q7 (0)) =0. (8.18)

In the next lemma we solve (8.16) and (8.17) to obtain the parameters ﬂ[i.

Lemma 8.7. For X; chosen as in Lemma 8.4, and fori =0, ...,n — 1, there exist (,3i+, B )€
Y+ x Y~ such that Py+gy- (Ui+ (0) — U; (0)) = 0. In addition,

|ﬂl+| 5 Ce—20tX,',1

(8.19)
|,8l_| S C672aX,-'

Proof. Evaluating the fixed point equations (8.11) at 0 and substituting them into (8.4), equations
(8.16) and (8.17) can be written as H; (;", B;) =0, where H; : YT @Y~ — YT @Y~ is defined
by

B = Pre (920, =Xim1, Bar, — [y, | @50, v, BIGT (3 7))
BT+ Py (94O, Xii ) + [, 4.0, v; BGE (s )y )
(8.20)

where we have substituted our expressions for Qli and aii from Lemma 8.4 and Lemma 8.5.
Using the estimates from these lemmas together with Lemma 8.3,

H BB )=

1 O(e_2°‘X”)> 821)

(BT B7) =
DHz(ﬂi 7131‘ )_ (O(e—ZQXi) 1

which is independent of ﬂii, thus D H; (ﬁ;‘, B;") is invertible for sufficiently large X;. By the

inverse function theorem, (,Bi‘" B )= Hl._1 (0, 0). The estimates (8.19) follow from (8.20) and
Lemmas 8.3, 8.4, and 8.5. O

We have found a unique solution to (8.5) and (8.6) such that (8.7) is satisfied except for n
jumps in the direction of W(0). We summarize what we have obtained so far in the following
lemma.

Lemma 8.8. There exists § > 0 such that for | X;| > 1/8, wherei =0, ..., n— 1, there is a unique
solution U (x) to equations (8.5), (8.6), and (8.7) which is continuous except for n jumps in the
direction of W(0). U (x) can be written piecewise in the form
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Ur () =0~ (x: ) + 07 () x €[=X;-1,0] 522)
U =04 85 + 0f (x) x €0, X;1,
where the pieces are glued together end-to-end in a loop, and we have the estimates
(i)
107 (0)] < Cem@imttgmain
! (8.23)
|0} (x)] < Cem@Ximx)gmaXi,
(ii)
107 (x: B7) — Q(x)| < Ce™2¥Xi g
(8.24)
10F(x; B — Q)| < Ce 2 Xinteme,
(iii) . B ~ .
Ql’ (Xi)=0" (—X;; IBiJrl) + O(e™ %) 825)

0; 1 (—Xi) = 0T (Xi; B) + O(e X0,

These estimates hold in addition for derivatives with respect to x.

Proof. Part (i) follows from the estimates (8.13) and (8.14) together with the definition of the ex-
ponentially weighted norm (8.12). Part (ii) follows from the estimate (8.19), smooth dependence
on initial conditions, and the stable manifold theorem. For part (iii), we solved the matching
condition 0 (X;: 8;7) + OF (Xi) = 0~ (—Xi; B,)) + O; (—X;) in Lemma 8.5. Applying the
projections P*(—X;, B;4,) and P} (X, ,8i+) in turn to this and using (8.9), (8.11), and the esti-
mates from the previous lemmas in this section, we obtain the estimates (8.25). O

8.6. Jump conditions

Equation (8.18) gives us n jump conditions in the direction of W(0). As in [12,21] these will
only be satisfied for certain values of the pulse distances X;. Since we have a conservative system,
we only need to satisfy n — 1 of these jump conditions, which are given in the following lemma.

Lemma 8.9. A periodic n-pulse solution exists if and only if fori =0,...,n —2,

i = (W(=X), QX)) — (W(=X;-1), Q(Xi—1)) + R =0, (8.26)

where the remainder term has bound

|R;| < C(e3%%i 4 g3 Xiz1y,
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Proof. Evaluating the fixed point equations (8.11) at x = 0 and substituting them into (8.18),

(W(0), 07 (0) — 07 (0)) = (W(0), D4(0, X;; BH)at) — (W(0), D°(0, —X;_1, B, a; )
0 0
+ f (W(0), 4.0, y; BHGT (v; BH))dy — / (W(0), ®°(0, y, B)G; (y; B )dy,

Xi —Xi-1

(8.27)
where we have substituted our expressions for Ql.i, aii, and ,Bii from Lemma 8.4, Lemma 8.5,
and Lemma 8.7. Using Lemma 8.3, smooth dependence on initial conditions, and the bound
(8.19),

D40, x5 1) — 40, x;0)] < Ce i1 x>0

D20, x; B7) — DL(0, x; 0)] < CeXie™  x <0

(8.28)

For the term involving aiJr in (8.27), we substitute (8.15) from Lemma 8.5 and use (8.28), the
estimate (8.24), and Lemma 8.2(iii) to obtain

(W(0), (0, X;: Ba;")

= —(W(0), D40, X;; B(PS(QF (Xis BT — Q7 (= X3 By ) + Oe2*%1)))

= —(W(0), D0, X;; 0)P§ (QT (Xi: Bi7) — Q7 (—Xis By )) + O(e 3% o7 20Xim1 g7 Xi
= —(W(X;), P{(Xi; 0)PY(Q(Xi) — Q(—X;))) + OeXi 4 g3 Xi1),

By (8.9), P_’ﬁ(X,»;O)Pé‘(Q(Xi) — Q0(—=X)) = 0(—X;) + O(e~22Xi)  thus it follows from
Lemma 8.2 that

(W(0), @ (0, X;; Bia") = (W(X;), Q(— X)) + O(e3Xi 4 g—3eXizny,

Similarly, we have
(W(0), D* (0, —X;_1, B;)a; ;) = (W(=Xi_1), Q(=X;_1)) + O(e3Xi 4 73 Xi=),

For the integral terms, we use the estimates from Lemma 8.8 and the fact that G?E is quadratic in
Qli to obtain the estimate

0
/ (W(0), @O, y; )G (3 B))dy| = Ce7 X0,
X

The other integral term has a similar bound. By reversibility,
(U(X3), O(=X))) = (RVU(=X;), RO(X;)) = (V(—X;), Q(X))).
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Combining everything above, we obtain equation (8.26) and the remainder bound for R;. As in
[12, p. 2093], since (3.7) is a conservative system, if n — 1 of the jump conditions are satisfied,
the final jump condition must automatically be satisfied. Since it does not matter which condition
we eliminate, we choose to eliminate the last one. O

As a corollary, periodic single pulse solutions exist for sufficiently large X, since in that case
there are no jump conditions. These are unimodal periodic orbits which are close to the primary
homoclinic orbit Q(x).

Corollary 8.10. Periodic single pulse solutions exist for sufficiently large Xy.

8.7. Rescaling and parameterization

Following [21, Section 6], we will introduce a change of variables with a built-in scaling
parameter to facilitate the analysis. Define the set

2mm
R = {exp <—7> me No} U {0}, (8.29)

where p = By/ag. Since R is closed and bounded, it is compact, thus complete. For r € R, define
X*=X*@r) by

o ¢
X" =——Ilogr — —, (8.30)
20 280
so that
F = e~ QX" +¢/po) (8.31)

The constant ¢p comes from [21, Lemma 6.1] (see Lemma 8.11 below for details). We will use r
as a scaling parameter for the system. Fori =0, ...n — 1, define

b = e 20Xi=X") (8.32)
where we have chosen X; > X* fori =0, ...,n — 1. The quantities b; are length parameters for
the system. In terms of » and b;,

1 ¢
X; =——1log(bjr) — — (8.33)

20 20

In the next lemma, we rewrite the system (8.26) using this rescaling.
Lemma 8.11. A periodic multi-pulse solution exists if and only if fori =0,...,n —2,
Gi(b1, ..., by—1,r) = bjsin (—plogh;) — by_ysin(=ploghy—1) + OC"**) =0,  (8.34)

where r € R and 0 < y < 1. All derivatives of the remainder term with respect to b; are also
O@r7/?),
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Proof. Using [21, Lemma 6.1(i)], for x > 0 sufficiently large,
(W(=x), Q) = poe™ 2 sin@fox + §) + O (e~ 20+, (8.35)

where 0 <y <1, po > 0, and ¢ are constants which come from [21, Lemma 6.1] (note that
we use po in place of s in that lemma, and that there is no dependence on a parameter ().
Substituting (8.35) into (8.26) and rescaling using (8.32) and (8.33),

Poe®®/Pop;r sin (—plog(bir)) — poe®®/Pb; i1 sin (—plog(bi_1r)) + O T7/2%) = 0.

Dividing both sides by rpge®0?/f0 > 0 and simplifying, we obtain the jump conditions (830
£ =b; sin (—plogh;) — bi_y sin (—ploghi_1) + OF"/*) =0, (8.37)
since sin (—plog(b;r)) =sin(—plogh;) forr e R.Fori =0,...,n —2, let
i
Gi(bi,....ba-1,7) =) & (8.38)
k=0

After canceling terms, we obtain the equations (8.34), which are equivalent to (8.26) via an
invertible linear transformation. O

Remark 8.12. In Lemma 8.11, we rewrote (8.26) so that equation i involves b; and a common
parameter b,_1. Since we are on a periodic domain, that choice was arbitrary; the final length
parameter b,,_1 was chosen for notational convenience.

When r = 0, the equations (8.34) all have the same form. Let

H (bg, b1) = by sin(—plogby) — by sin(—ploghy). (8.39)

In the next lemma, we will show that pitchfork bifurcations occur on the diagonal in the zero set
of H(by, by).

Lemma 8.13. A discrete family of pitchfork bifurcations occurs along the diagonal in the zero

1 *
set of H(bo, by) at (bo, b1) = (b}, b}) for k € Z, where b}, = e P PR ang p* = arctan p.
Locally, the arms of the pitchfork bifurcations open upwards along the diagonal.

Proof. First, we note that the partial derivative Hp,(bo, b1) = sin (—plogbg) — p cos (—plogbg)
is zero if and only if by = b} for integer k, which gives the locations of the bifurcation points.
Next, we change coordinates so that the pitchfork bifurcation will occur along the horizontal
axis. Let b =y — x and b = y 4+ x, which is a rotation by —r /4. Making this substitution, we
obtain

H(x,y)=(y —x)sin(—plog(y —x)) — (y + x) sin(—plog(y + x)). (8.40)

409



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

Forall y, H(—x,y) = —H(x, y), which is the required odd symmetry for a pitchfork bifurcation.
Let (xg, yo) = ( , b;; . Evaluating the relevant partial derivatives of H at (xo, yo),

H,(x0,y0) =0, Hy(x0,y0) =0, Hyx(x0,y0)=0, Hyy(x0,y0)=0
1
H,yy (x0, yo) = (—1)1‘2,0,/ 1+ p? exp (;(arctanp — kn)) #0

2
Hyxx (x0, y0) = —(—l)kZp\/ 1+ p? exp (;(arctanp - kn)) # 0,

thus a pitchfork bifurcation occurs at (0, by) for all k € Z. To leading order, near the bifurcation
points (0, b7), the arms of the pitchforks are upwards-opening parabolas of the form y = b +

cex?2, where ¢ = % exp (% (arctan p — kn)) > (. The result follows upon reverting to the (b, by)

coordinate system. O

Now that we have located the pitchfork bifurcations, we will construct a natural parameter-
ization for the zero set of H(bg, b1). We only need to consider by > by since the zero set is
symmetric across the diagonal. For any nonnegative integers m| > mg, the point

(bo, by) = (exp (—lmoﬂ’> , eXp (—lm1n>>
o P

is in the zero set of H. We will use these points to anchor our parameterization, and will use a
phase parameter 6 to connect these anchor points.

Lemma 8.14. For any nonnegative integers mo and m| with my > my, there is a smooth family
of solutions

(bo(mo, my,6), by (my, my, 60)) 0el-m+p*, p*l

to H(by, b1) = 0. This parameterization is given explicitly by

1
bo(mo, m1,0) =exp (—— (mom +60*(0;m) — mo))>
P (8.41)

1
bi(mg, my,0) =exp <—; (mm +9)) ,

where the functions 0*(0; m) : [—7 + p*, p*] = R are smooth in 6 for all nonnegative integers
m and have the following properties:

(i) 6*(;0)=6.

(ii) 6*(0; m) =0 for all m.

(iii) 16%(©:m)| <16).

(iv) *(p*sm) =67 (=7 + p*;m + ).
(v) 16%(0; m)| = Cexp (—22).
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In particular, 0*(p*; 0) = 0*(w — p*; 1) = p*.

*

Proof. We substitute (8.41) into H (by, b1) = 0 and solve for 8* in terms of 6.

1.

First, we show that 6* only depends on the difference m; — mg. Substituting (8.41) into
H (bg, b1) =0 and simplifying, we obtain the equation

1% 1 1
e 77 sing* = e MmO (_pymi=mo, =39 ¢ing — 0, (8.42)

which only depends on m — mg. Letting m = m| — my, it suffices to solve
g(O%) =t(m)g(0) (8.43)
1 1
for all nonnegative integers m, where g(6) = ¢ 7% sin6 and t(m) = (—1)"e o™,

Form =0, t(0) = 1, thus 6*(0; 0) = 6.
LetI = [—n + p*, p*]. For m > 1, we first show that g(6) is invertible on /. Since

L 1
g0)=e " (eose _ 2 sin9> , (8.44)
0

g (p*) =0, g(—m + p*) =0, and the only critical point of g’(9) on I is a local maximum at
0 = —m +2p*, g(0) is strictly increasing, thus invertible, on /. Let

1 - |
g(])z[—eﬁ”T, T:I, T=¢ »? Sinp*zLe_EarCtanp_

V1+p?

Then g : I — g(I) is abijection, and g~ : g(I) — I is also strictly increasing. Since the only
zero of g(0) on I occurs at 6 =0, g_l (0) = 0. We can now solve (8.43) for 6*. Forall 6 € I,

1

—Lm—Dr — Lz
- T T
tmg@ye |l ¢ e T T meven (8.45)
[—e 7™ T, e 7™ D77 modd.
Since 1 (m)g(@) C g(I) for all § € I, define
0*O;m) =g~ (1(m)g(6)) 0el,m>1. (8.46)

Since g(0) =0, 6*(0, m) = 0 for all m.

Next, we show that |0*(8; m)| < |0|. For m = 0, we have equality. Form =1 and § = —m +
p* t(—m + p*)g(—m + p*) =T, thus 0*(—m 4+ p*; 1) = —m + p*. For any other m and 6,
it follows from (8.45) that t (m)g(0) € [e_%” T, T), which is strictly contained in g(/). Since
g lis strictly increasing and g(0) =0, |0*(0; m) < |0].

We now show that consecutive parameterizations match up at the endpoints. For m > 0,

1 1%
9*(p*;m) =g71 (e—zmﬂ(_l)me_;p Slnp*)
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and
0% (=7 + p*im+1) =g (e—%(m-i-l)n(_1)m+le—%(—ﬂ+l7*)Sin(_n, +p*)>
=g! (e_%m”(—l)me_%”* sinp*) ,
which are equal. In particular, 0*(p*; 0) = 0*(x — p*; 1) = p*.
6. Finally, we obtain a bound on 6*(8; m). For m > 2 and 0 € I, it follows from (8.45) that

t(m)g(0) is contained in an interval I, which is strictly contained in 1. Since g’(0) =0 only
at the endpoints of I and is positive in the interior of I, g’(9) is bounded below on I, thus

~ 1
[g~!7(0) is bounded for 6 € g(I). Since [t(m)g(@)] < e »™ V™ T by (8.45) and g(0) =0,

we obtain the bound (v), which is independent of 6. O
8.8. Proof of Theorem 4.2
By Lemma 8.11, a periodic n-pulse exists if and only if G;(bg,...,b,—1,7) =0 for i =

0,...,n—2.Whenr =0, G;(bg,...,b,—1,0) = H(b;, b,_1), and we can use the parameteriza-
tion from Lemma 8.14. Choose any periodic parameterization (myo, ..., m,_1, 6) and define

1
bi(mi,my_1,60) =exp <—— (mirr +0*O;my—1 — mi))> i=0,....,n—2
p

1
by_1(my—1,0) = exXp <_; (my—1m + 9)) s
so that by Lemma 8.14,
H(bi(miﬂml’l—]’g)’bﬂ—l(mn—la 9)) =0 l=0, ,n—2

Substituting b,,_1 (m, 1, 0) for b,_1 in (8.34), define b = (bg, ..., b,—1) € R*land G :R" ! x
R — R" by G =(Gy,...,G,_2)T, where

Gi(b,r) = b; sin (—plogh;) — by—1(my—1,0) sin (—plogby—1 (my—1,0)) + O@"/**).

Let b* = (bo(mo, my_1,0),...,by_2(m,_2,my_1,0)). Then G(b*,0) = 0, and the Jacobian
matrix DG (b*, 0) is diagonal, with

3, G (b*, 0) = sin (—plogb; (m;, 0)) — pcos (—plogbi (m;, 6)) .

From Lemma 8.13, 95, G; (b, 0) = 0 if and only if b; is one of the pitchfork bifurcation points
b,’f. By Lemma 8.14, if we exclude 6 € {—m + p*, p*}, the Jacobian D,G (b*,0) is invertible,
thus we can use the implicit function theorem to solve for b in terms of r near b*. Specifi-
cally, there exists r, > 0 and a unique continuous function b : R N [0, r,] — R7-1 given by
b(r) = (bo(r), ..., by,—2(r)) such that b(0) = b* and G(b,r) = 0 if and only if b = b(r). For
i=0,...,n—2,define t;(r; m;,0) : R - R by

ti(rimi,my_1,0) = —plogb;(r), (8.48)
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which is continuous in r, and #; (0; m;, m, 1, 0) = m;w +6*(0; m,_1 —m;) by (8.47). Equations
(4.3) are obtained by substituting b;(r),i =0, ...,n —2, and b,_1(m,_1, 0) for b; in (8.33) and
using (8.48).

8.9. Periodic 2-pulse

For the periodic 2-pulse, we have a single jump condition

G (bo, by, r) = by sin (—ploghg) — by sin (—ploghy) + O@F?/?*) =0. (8.49)

First, we will show that the pitchfork bifurcations along the diagonal persist for small r. Recall
that by Definition 4.1, mg € {0, 1} for a periodic 2-pulse.

Lemma 8.15. There exists ry > 0 such that for mg € {0, 1} and r < ry, there is a non-degenerate
pitchfork bifurcation in the zero set of G(by, by, r) at (b,’:lO (r), b,’;o (r)), and

b,";,o(r) — b,";m asr — 0.

Proof. Take mo = 0. The proof is identical for my = 1. First, we show the required odd symme-
try relation. By Lemma 8.8, for an ordered pair of pulse distances (Xo, X1) with X; sufficiently
large, there exists a unique piecewise solution (U, (x), Ug’ (x), U x), U]Jr (x)) which is contin-
uous except for two jumps

£0(Xo, X1) = (W(0), Uy (0) = Uy (0)),  &1(Xo, X1) = (W(0), U;"(0) = U (0))  (8.50)

in the direction of W(0). By symmetry, (Uf“(—x), Ul (—=x), U(;r(—x), U, (=x)) is also a solu-
tion for (Xo, X1), thus it must be the same solution by uniqueness. In particular, U ]+ 0)=U, 0
and U, (0) = UJ(O), thus &y(Xo, X1) = —&1(Xo, X1) = —&0(X1, X0). Since swapping X and
X1 is equivalent to swapping bg and b; in (8.49), G(bg, b1,r) = —G (b1, by, r) for sufficiently
small r.

Making the change of coordinates (bo,b1) +— (x,y) as in Lemma 8.13, G(—x,y,r) =
—G(x, y, r) for sufficiently small . The persistence of the pitchfork bifurcation follows from a
Lyapunov-Schmidt reduction. By Lemma 8.13, G (0, b, 0) = 0 and G, (0, b, 0) # 0, thus by
the implicit function theorem there exists r, > 0, an open interval (—a, a), and a unique smooth
function y = y*(x, r) such that y*(0,0) = bj and G (x, y*(x,r),r) =0 for all x € (—a, a) and
r < rp. It follows that a pitchfork bifurcation occurs at (x, y,r) = (0, y*(0, r), r) by evaluating
the appropriate partial derivatives of G as in Lemma 8.13. Letting bj(r) = y*(0, r), the result
follows upon reverting to the original (bg, b1) coordinates. O

Next, we show that the arms of the pitchfork persist for sufficiently small . By symmetry, it
suffices to show this for the lower arm.

Lemma 8.16. Choose any § > 0. Then there exists r3 > 0 such that for my € {0, 1} and r <
r3, the portion of the zero set of G(bg, b1, r) corresponding to lower arm of the pitchfork at
(b (r), by, (r)) is parameterized by
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(bo, b1) = (bo(s; mo, r), b1(s)) sE€[p*+3,00),

where
bi(s)=e 7°. 8.51)

Proof. As in the previous lemma, take my = 0. The proof is identical for my = 1. For every
positive integer m| with m > 1, let

bo(m1,0) = exp <—%9*(9; m1)> . bi(my,0) =exp <—%(m171 +0)> , (8.52)

where 6* is defined in Lemma 8.14. Since these families connect at their endpoints, define b (s)
by (3.51). For s > p*, let m(s) = | 32 | and 6(s) = s — m(s)r, and define bo(s) by

bo(s) = bo(m(s), 6(s)), (8.53)

so that the continuous curve (l;o (s), b1(s)) for s > p* parameterizes the lower arm of the pitch-
fork when r = 0. Define the Banach space X = Cp([p* + 8,00),R) of bounded continuous
functions equipped with the uniform norm. For b € X, define G: X x R — X by

[G(b, r)] (s) = G(b(s), b1(s), r) = b(s) sin(—log b(s)) — e~ " sins + OG-/,

Then G(bo(s), r) =0, and Dp,G (b, 0) = G, (b(s), b1 (s), 0).

By Lemma 8.13, Gy, (bo, b1, 0) =0 if and only if (bg, b1) is one of the pitchfork bifurcation
points; by Lemma 8.14, these occur on the curve (l;o(s), b1(s)) only when s = p*. From the
proof of Lemma 8.14, |Gy, (bo(s), b1(s), 0)] is bounded below for s > p* 4+ 8, thus Dboé(l;o, 0)
is invertible with bounded inverse. Using the implicit function theorem for Banach spaces, there
exists 73 > 0 and a unique smooth function b : R — X with b(0) = 150 such that for all r < r3,
G(b(r), r) = 0. It follows from the definition of G that G(b(r)](s),bi(s),r)y=0forall r <rj3
and s € [p* 4+ §, 00). The result follows by taking bo(s; mg, r) = [b(r)](s). O

Finally, we show that for sufficiently small r, the lower arm of the pitchfork connects to the
pitchfork bifurcation point, which extends the parameterization in Lemma 8.16 to s € [ p*, 00).

Lemma 8.17. There exists r4 > 0 such that for mg € {0, 1} and r < ra4, the parameterization in
Lemma 8.16 can be extended to s € [ p*, 00), and

(bo(p*;mo. 7). bi(p*)) = (bjy, (). by, (1))
which is the pitchfork bifurcation point from Lemma 8.15.
Proof. For simplicity, take mg = 0. The proof is identical for mo = 1. Change variables
(bo, b1) — (x,y) as in Lemma 8.13, so that the pitchfork bifurcation takes place on the hori-
zontal axis. Let , be as in Lemma 8.15. Then there is a nondegenerate pitchfork bifurcation

at (x,y) = (b;(r), 0), and there exists y; > 0 such that for r < ry, the arm of the pitchfork is
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uniquely parameterized by (x, y) = (xo(y,7),y) for y € [0, y1], where xo(0,r) = bg (r). Take
6 = y1/2, and let r3 be as in Lemma 8.16. In the (x, y) coordinate system, the lower arm of
the pitchfork is uniquely parameterized by (x, y) = (x1(y,r),y) for y € [y1/2, o0) for r < r3.
Let r4 = min{rp, r3}. Then by the uniqueness of the two parameterizations, (x1(y,r),y) =
(xo(y,r),y) for y € [y1/2, y1] and r < r4. Since the two parameterizations overlap on an in-
terval, the lower arm of the pitchfork connects to the pitchfork bifurcation point. Returning to
the (bg, b1) coordinate system, we can extend the parameterization in Lemma 8.16 to the pitch-
fork bifurcation point, which occurs when s = p*. O

8.10. Proof of Theorem 4.4

Let r, = rq, where rq is defined in Lemma 8.17. From the proof of Lemma 8.15,
G (bo, by, r) = —G(bo, by, r), thus symmetric solutions with by = b exist for sufficiently small
r. To parameterize these, for mq € {0, 1} and sg € [0, ), let

1
bo(mo, so) = b1(mo, so) = exp <—;(moﬂ + So)) .

The pulse distances (4.4) are obtained by substituting this into (8.33). Let p*(mg;r) =
—p log(bj,‘m (r)), where b;"no (r) is the pitchfork bifurcation point defined in Lemma 8.15. Then
the pitchfork bifurcation occurs when sg = p*(mo; r), and p*(mg;r) — p* asr — 0.

For asymmetric periodic 2-pulses, taking s; = s in Lemma 8.17, the lower arms of the
pitchforks are parameterized by (bg, b1) = (bo(sy; mo,r), b1(s1)) for s; € [p*, 00). The for-
mula for X(r,s1) in (4.5) follows by substituting (8.51) into (8.33). Let ty(r;mo,s1) =
—plog (bo(sy; mog, r)), which is continuous in r and s;. Using this together with (8.33) we
obtain the formula for Xo(r;mg,s;) in (4.5). From Lemma 8.16, t3(0; mg, s1) = momw +
0*(6(s1); m(s1) — mg), where m(s) = (S‘;—p*1 and 0(s1) = s1 — m(s1)m. Using the estimate
for 6*(6; m) from Lemma 8.14,

6% (0(s1); m(s1) —mo) < Cexp (—%(m(n) - mo)ﬂ) <Cexp (—%n) ,

from which the estimate (4.6) follows. By Lemma 8.17, the pitchfork bifurcation point is reached

when 51 = p*.

9. Proof of Theorem 5.3

We will use Lin’s method as in [21] to construct eigenfunctions which are solutions to (5.1).
To do this, we will take a piecewise linear combination of the kernel eigenfunctions d, @, (x) and
0.0, (x) and a “center” eigenfunction as our ansatz, and we will join these together using small
remainder functions. As long as the individual pulses in Q,(x) are well-separated, Lin’s method
will yield a unique solution which solves (5.1) but which has n discontinuities. In contrast to
[21], these n jumps line in the two-dimensional subspace spanned by W(0) and Wy, which gives
us 2n jump conditions. Finding the eigenvalues near 0 amounts to solving these jump conditions,
which will give us both the interaction eigenvalues and the essential spectrum eigenvalues.
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9.1. Preliminaries

For convenience, we define

A(Q(x); 1) = A(Q(x)) + AB,

and note that A(0; A) = A(0) 4+ AB is a constant matrix. It follows from (3.22) and the symmetry
relations (3.13) that

A(Q(x); 1) = —RA(Q(—x); —M)R, .1

where R is standard reversor operator. Let ap and By be defined as in Hypothesis 3.5. Choose
any 1 > 0 with 2 < «g, and let @« = g — 1. Let §; be as in Lemma 5.2, and choose §; < §;
sufficiently small so that for all |A| < &2, |[v(X)| < n, where v(A) is the simple eigenvalue of
A(0; 1) close to 0 which is defined in Lemma 5.2, and | Re v| > « for any other eigenvalue v of
A(0; 1). To greatly simplify our analysis, we place the additional assumption on the real part of
A

|ReA| < rl/4 = Com20X" 9.2)

where the scaling parameter r is defined in (8.31) and X* is defined in (8.30). We will verify that
this assumption is satisfied for sufficiently small » when we consider applications of the theorem.
It then follows from (9.2) and Lemma 5.2 that

VX7 | < IREVDIXT _ (cx*e—%aox*> <C. (9.3)
Since the periodic parameterization (my, ..., m,_1,6) is fixed,
le?®Xi| < ¢ i=0,...,n—1. 94

9.2. Conjugation lemma

The conjugation lemma allows us to make a smooth change of coordinates to convert certain
linear ODE:s of the form W'(x) = A(x) W (x) into a constant coefficient system. The statement of
the lemma is identical to that in [58], except that the parameter vector A here lives in an arbitrary
Banach space. The proofs of Lemma 9.1 and Corollary 9.2 are straightforward modifications of
the proof of [58, Corollary 2.3].

Lemma 9.1 (Conjugation lemma). Let V € CV, and consider the family of ODEs on R
Vx) =AGx; AV (x)+ F(x), 9.5)
where A € Q is a parameter vector and 2 is a Banach space. Assume that
(i) The map A +— A(-; A) is analytic in A.
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(ii) A(x; A) — AT()) (independent of A) as x — *oo, and there exists § > 0 such that for
|A| < 8, we have the uniform exponential decay estimates

k

3
a—kA(x;A)—Ai(A) < Ce Il 0<k<K, 9.6)
X

where a > 0, C > 0, and K is a nonnegative integer.
Then in a neighborhood of any Ag € 2 there exist invertible linear transformations

Ptx,A)=1+01(x,A)

0.7
P (x,A)=1+0"(x,A)
defined on R* and R~, respectively, such that
(i) The change of coordinates V.= P*Z reduces (9.5) to the equations on R*
Z'(x) = A5 (M) Z(x) + PE(x, A) ' F(x). (9.8)
(ii) For any fixed 0 < 6<6,0 <k <K +1, and j > 0 we have the decay rates
af0ke*| < cj ke, 9.9)

Corollary 9.2. Take the same hypotheses as in Lemma 9.1, and let P*(x; A) be the con-
jugation operators for V(x) = A(x; A)V(x) on R*. Then the change of coordinates W =
[(PT)"11*Z on RE reduces the adjoint equation W'(x) = —A(x; A)*W(x) to the equation
Z'(x) = —AT(A)*Z(x).
9.3. Solutions in center subspace
First, we apply the conjugation lemma to

Vi(x) = A(Q(x); MV (x). 9.10)
For all A, A(Q(x); ) decays exponentially to the constant-coefficient matrix A(O; ). Since
DF(0) is hyperbolic, |A(Q(x); A) — A(0; 1)| < Ce™@+OK! for small €; the price to pay is a

larger constant C. Using the conjugation lemma on R* with A = A and Ag = 0, there exists
83 < & and an invertible linear transformation

PT(x; M) =1+0 (x;A), .11
such that for all |A| < 83, the change of coordinates V (x) = PT(x; A)Z™(x) conjugates (9.10)
into the constant-coefficient equation (Z7)(x) = A(0; 1) Z ¥ (x). The function ® T (x; A) has the
uniform decay rate

|©T (x; )| < Cem M, (9.12)

417



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

which holds for derivatives with respect to x and A.
For x e R™ and |A| < 83, define P~ (x; A) by

P~ (x;.) = RPT(=x; =M)R. (9.13)

By a straightforward adaptation of the proof of the conjugation lemma in [58] and the symme-
try relation (9.1), the change of coordinates V(x) = P~ (x; ) Z™ (x) conjugates (9.10) into the
constant-coefficient equation (Z7) (x) = A(0; A\)Z~(x) on R™.

Let E*/$/¢(0) be the stable, unstable, and center eigenspaces of A(0), and P*/*/¢(0) be their
respective eigenprojections. Let E*//¢(1) and P*/5/¢(}) be the corresponding eigenspaces and
eigenprojections for A(0; 1), which are smooth in A. E*(A) and E*(X) are m-dimensional, and
E€()) is 1-dimensional. In the next lemma, we collect some useful results about A(0; A).

Lemma 9.3. We have the following results concerning A(0; A).

(i) A(0; —A) = —RA(0; )R, where R is the standard reversor operator. In particular, A(0) =
—RA(O)R.

(ii) If V is an eigenvector of A(0) corresponding to eigenvalue ., then RV is an eigenvector
of A(0) corresponding to eigenvalue —u, and V is an eigenvector of A(0) corresponding
to eigenvalue (.

(iii) Let P<*(0) be the center eigenprojection of —A(0)*. Then P<*(0) = [P(0)]*.

(iv) Let P**(0) and P"*(0) be the stable and unstable eigenprojections of —A(0)*. Then

P¥*(0) =[P (0)]* and P"*(0) = [P*(0)]".

Proof. Part (i) can be verified by multiplying out RA(0; A)R. For part (ii)), AQ)V = uV
implies A(0)V = @tV since A(0) is real. Using part (i), —RA(O)RV = uV, which rear-
ranges to A(0)(RV) = —u(RV). For part (iii), ker[P€(0)]* = (ran POt = span{Vo}J- and
ran[ P€(0)]* = (ker P€(0))~. For any eigenvector W of —A(0)* with nonzero eigenvalue .,

1 1 1
(W, Vo) = =(uW, Vo) = =(=A0)'W, Vo) = —=(W, A(0) V) =0,
o w w

thus ker[ P€(0)]* is the direct sum of the stable and unstable eigenspaces of —A(0)*. Similarly,
for any eigenvector V of A(0) with nonzero eigenvalue w, (Wy, V) = 0, thus ran[P¢(0)]* =
span{ Wy}, which proves (iii).

For part (iv), let W be an eigenvector of —A(0)* with nonzero eigenvalue p. Then for all
eigenvectors of A(0) with eigenvalue 1, we have

1 1 1 1 i
(W, V)= = (uW, V) = — (—AQO)*W, V) = — — (W, AO)V) = —— (W, AVo) = — (W, V),
o 0 0 o

=

thus (W, V) = 0 unless ft = —. For the stable eigenprojection, ker[ P*(0)]* = (ran P*(0))*
and ran[ P* (0)]* = (ker P*(0))" = (E“(0) @ E€(0))*. Let W be in the unstable eigenspace of
—A(0)*, and let u be the corresponding eigenvalue with Re o > 0. Then W is perpendicular to
all eigenvectors in E€(0) @ E"(0), thus W € ran[P*(0)]*. Similarly, if W is in the unstable or
center eigenspace of —A(0)*, then W € ker[ P*(0)]*. This proves (iv) for P**(0). The result for
P**(0) is similar. O
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Let ®(x, y; A) = eAOPNE=Y) pe the evolution operator of the constant-coefficient equation
Z'(x) = A(0; L) Z(x). Then the evolution operator of the unconjugated equation (9.10) on R* is
given by

OF(x, i ) = PE VP, i MPT ()T x yeRE 0.14)
We can decompose (9.14) in exponential trichotomies on R via the operators
BS/eE (x, yi 1) = PE(; M@ (x, y; W) PO PEx; )] x,y eRE, (9.15)

where we have estimates

| &5 (x, yi 1] < Cem @Y y=x
|&)u,i(x’ yiA)| < Ce*a(}'*x) X<y (9.16)
|DE(x, y; )| < Ce™ N,

which are uniform in A.

The equation Z’(x) = A(0; A) Z(x) has a solution Z(x) = Vo(L)e”™* which lies in the one-
dimensional eigenspace E€()) spanned by Vp(A). In the next lemma, we show that equation
(9.10) has solutions V*(x; A) on R* which approach Vo(1)e”™* as x — +oo.

Lemma 9.4. For sufficiently small |A|, equation (9.10) has solutions

VE@ ) ="M (Voh) + ViE(xs ) x e RE, 9.17)
where |Vli(x; M| < Ce X gnd V= (x: 1) = RV (—x; —1).
Proof. Let Z(x) = e"™*V,()), and define

Vi) =P (e MZx) =" PP M Vo(h). (9.18)

By (9.7), V*(x; &) = "™ (Vo(A) + V;F(x; 1)), where we define V;"(x; 1) = ©F (x; 1) Vo(A).
Similarly, define

V7(x;0) =P~ (x; M) Z(x) = RPT(—x; —=2)Re"M* V(1)
= "R+ O (—x; =M RVO () = " P¥ (Vo(h) + RO™ (—x; —W) Vo(—1)),

and let V| (x; 1) = RO (—x; —A)Vo(—1). The decay rate for Vli (x; A) comes from the conju-
gation lemma. O

We use this result to prove the existence of V¢(x) in part (i) of Lemma 3.13. Using a dimension
counting argument, dim W (0) = m + 1 and dim W (0) =m + 1. Since W(0) L T W (0) +
ToyW(0), dimTgy W (0) + ToyW™"(0) < 2m, which implies that dim Tgy W (0) N
To)W(0) = 2. Since dim T o) W*(0) N To)W*(0) = 1 by Lemma 3.12, there exists Y° e
Ty W (0) N Too) W (0) which is linearly independent from Q’(0) with Y0 ¢ ToyW* ()N
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ToyW*(0). Define VE(x; 0) as in Lemma 9.4. Since V~(0; 0) = RV1(0; 0) and VE(0; 0) €
span{Y°}, V*(0; 0) = V—(0; 0), thus we define

Vt(x;0) x>0

Vi) = iV‘(—x;O) x =<0,

from which it follows that V¢(—x) = RV(x). In addition, by reversibility, Y~ = RY ™, thus
since Y+ and Y~ only have trivial intersection, V(0) can contain no componentin Y™ @ Y .
The next lemma evaluates two important inner products involving V*(0; 1).

Lemma 9.5. We have the following inner products

1 -
(Wo, VEO; 1) =1F SM2+ O(r»

1 (9.19)
(W(0), VE(0; 2)) = F 5 Med + O ),
where
0 1 0
M= / (vc(y) — E) dy <oco, M,= / d.q(y)dy,
0 —00
q(y) is the first component of Q(y), and v°(y) is the first component of V°(y).
Proof. Define V*(x; 1) by
V(s a) = "BV (x; ), (9.20)
so that V1 (x, 1) = Vp() as x — oo. Differentiating with respect to A at A =0,
+ 7+ 1 c
HWVT(x;00 =0V (x;0)+ -xV(x), (9.21)
c

since ‘7+(x; 0) = V¢(x) and v'(0) = 1/c. Substituting (9.20) into (9.10), differentiating with
respect to A at A = 0, and simplifying,

- - 1 .
[ VT (x; 0] = A(Q(x)3, VT (x; 0) + (B - —1> VE(x). (9.22)
C
For convenience, let Y (x) = 0, ‘7+(x; 0). Using the exponential trichotomy (9.15) for A =0

and noting that CTD"**(x, v; 0) = (Wp, ) V¢(x), we can formally write Y (x) in integrated form as

420



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

X

- - 1
Y(x)=®"(x,0;0)Y; + / 5t (x, y;0) (B - —I) Ve(y)dy
c

+/ci>"~+(x,y; 0) <B - %1) VE(ydy + VC(x)/<Wo, <B - %1> Vc(y)>dy

Using the estimates (9.16), the first and second integrals are finite for all x since V¢(x) is
bounded. To prove that (9.23) is a valid expression for Y (x), it remains to show that the third
integral is finite for all x. Using the expression for V¢(x) from Lemma 3.13,

1 1
<Wo, (B - —I) V“(y)> =v(y) — -,
C Cc

where v¢(x) is the first component of V¢(y). Since |V¢(y) — Vp| < Ce™, and the first compo-

nent of Vp is 1/c,
X o
1 e—(xx
‘f<Wo, <B——I) V”(y)>dy §C/e_°‘ydy=C ,
c o
o0

X

(9.23)

which is finite, thus the formal expression (9.23) is valid.
Evaluating (9.23) at x = 0 and taking the inner product with Wy,

0
1 -~
(Wo, 9,V (x; 0)) = (Wo, VE(0)) /(v (y)——> dy=--M, 9.24)

since v¢(y) is an even function and (Wy, V¢(0)) = 1. Expanding V*(0; A) in a Taylor series
about A = 0 and using (9.21), (9.24), and (Wp, V¢(0)) = 1, we obtain the first equation in (9.19).
Evaluating (9.23) at x = 0 and taking the inner product with ¥ (0),

(W(0), H VT (x;0) =

(W(0), (0, y; 0)BVE(y))dy

(W(0), d"*(0,0;0)D(0, y; 0) BV (y))dy,

8\0 8\0

since 1 (0, y;0)V(y) = 0. For the projection ®**(0,0;0), since ker ®**(0,0;0)* L
ran &+ (0, 0; 0), ran &+ (0, 0; 0)* L ker ®**(0, 0; 0), and ker ®**(0, 0; 0) = T () W* (0) ®
ToyWe(0), @*“1(0,0; 0)* acts as the identity on (T W*(0) & TQ(O)WC(O))J-. Since ¥(0) L
To) W*(0), W(0) € ran &+ (0, 0; 0)*, thus ®*+(0, 0; 0)*¥(0) = W(0). It follows that
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(W(0), &V (x;00) = [ (D0, y; 0)*"F(0,0; 0)*W(0), BV(y))d / (¥(y), BVE(y))dy
0

1
g (y)dy = 3 / g (y)dy,

—00

0
o[
o0 o
0
since the last component of W(y) is —g(y), and both v°(y) and g(y) are even functions. Since
L(g)v° =1 and L(q) is self-adjoint, it follows from (3.9) that

i 17 . 17 |
(\IJ(O),E)AV*(x;O)):—E / E(q)acq(y)v‘(y)dy=—§ / deq (V) L(@)v (y)dy
__! 003 dy = 1M
__E/ q(y) y——z c-

Expanding V*(0; A) in a Taylor series about A = 0 and using (9.21), (9.24), and (¥(0), V¢(0)) =
0, we obtain the second equation in (9.19). The formulas for V =~ (0; 1) are similarly obtained. O

9.4. Piecewise formulation

As in [21], we will write the eigenvalue problem (5.1) as a piecewise system of equations.
From Theorem 4.2 and Lemma 8.8, the periodic n-pulse Q,(x) can be written piecewise as

07 (x)=0"(x; )+ 0; (x) x €[=X;-1,0]

- (9.25)
0 ) =0" ;B + 0f () x €[0, X;1,
where Q; : [—X;-1,0] — RZm+1 and Q;” : [0, X;] — R?>"*1 are continuous, and the pieces
are joined together end-to-end in a loop. We extend Q; (x) smoothly to (—o0, 0] and Q+(x)
smoothly to [0, 00), so that |Q (x)| < Ce™@*I Next, we use the conjugation lemma to simplify
(5.1) and to construct our piecewise ansatz. We will apply the conjugation lemma on R¥ to the
equation

V() = (AU X)) +AB)V (x), (9.26)

where U(x) € Cp([0, 00), R¥"*1) or U(x) € Cp((—00, 0], R¥"+1). Let A = (U(x), 1) and
Ao = (Q(x),0). Using the conjugation lemma, there exists 64 < §3 and invertible linear trans-
formations PE(x; U(x), 1) = I + ©F(x; U(x), A) such that for all |A| < 84 and U(x) with
IU(x) — Q(x)|| < é4, the change of coordinates V = PE(x;U(x), ) on R* conjugates (9.26)
into the constant-coefficient equation Z’(x) = A(0; 1) Z(x). By Lemma 8.8, || Ql.i(x) — 0
Ce= X" thus we can choose X* sufficiently large so that ||Q?E(x) — 0)|| <64 for i
0,...,n— 1. Define

IA

PE@; D) =14+ 0F (1) =1 +0%(1x; 0F(x), A). 9.27)
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Expanding (9.27) in a Taylor series about Q(x), and using (9.9) and the estimates from
Lemma 8.8, @ii(x; 1) = OF(x: 1) + O(e~220X") | thus we have the uniform estimates

PE(xr; 1) = PE(x; 1) + O(e 220X, 9.28)

where P*(x; 1) are the conjugation operators (9.11) and (9.13).

Next, we note that when A =0, Wy is a constant solution to W/(x) = —A(Ql.i(x); 0)*W(x)
for all i, thus by Corollary 9.2, [Pii(x; A)~1*Wy is a solution to the constant coefficient
equation Z'(x) = —A(0)*Z(x) for all i. Since Wy is also a solution to this equation, and
[Pii(x; )Wy — Wy as x — +o0,

[P (x: 1)~ T Wo = Wo (9.29)
fori =0,...,n — 1 and all x € R*.
Similarly to Lemma 9.4, define
+, . DX pEo. +
VEQ; L) ="M PE M)V x e RE, (9.30)

so that VijE (x; 1) solves the equation
VE@ DI 0) = AQF () MV (k) x eR™ (9:31)
Using (9.30) and (9.28), we have the estimate
VE@ L) = VE@; 1) + O 20X, (9.32)
Finally, fori =0, ..., n — 1 define the constants

(Q'(0), VE(©0, 1))

kE() = , 9.33
P (Q(0), 0'(0)) 033
which are chosen so that fori =0, ...,n — 1 and all |A| < 44,
(Q'(0), ViH(0: 1) — k" (0) Q' (0)) = (Q'(0), Vi (0; 1) —k; (L) Q'(0)) =0. (9.34)
We can now construct our ansatz. It follows from (3.10) and (3.22) that
[9x Qn]'(x) = A(Q1 (x))3x Qn (x)
(9.35)

[0: 0n]'(x) = A(Qn (x))3c Qn(x) — By O ().

To exploit (9.35) and (9.31), we take the piecewise ansatz for the eigenfunction V (x)

di (35 Q7 (X) =13, Q7 (X)) +ci1e”PX=1 (V= (x; W)=k, (M) Q' () + W, (x) x €[~X;-1,0]

di (35 O (x) = 20: Q7 (X)) + cie P X (VE(x; 1) — kT (W) Q () + W (x)  x €0, X1,
(9.36)
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fori =0,...,n— 1, where W, (x) € C([—X;—1,0], C*" 1), W (x) € C([0, X;], C*"*1), and
¢i,d; € C. The subscripts are taken modn, and the pieces are joined together end-to-end as in
[21]. The factors e "M Xi and ¢"™Xi-1 are chosen to facilitate joining the pieces at &=X;. Next,
we substitute (9.36) into (5.1). Since the eigenfunction V (x) must be continuous, the 2n pieces
(9.36) must satisfy n matching conditions at x = +X; and n matching conditions at x = 0. The
remainder functions Wl.jE (x) must then satisfy the system of equations

(W) () = A(Q; (0); MW, (X) + ¢i—1e"PX1G 7 (x; 1) + did H] (x)
(WY (x) = AQ (0); MW, (x) + cie " DX GF(x; 0) + did” HiF (x)
W (X)) — W, (=X;) = Did + Cic (9.37)
W (0) = W (0) + cie "X (V. (0: 1) — k7 (1) Q(0))
— cim1e" DX (VT (0;0) — k7 (1) Q(0) =0,

fori =0,...,n—1, where
GE(x; ) =k () (A(QF () — A(Q(x)) — AB) Q' (x)

H*(x)=-Ba.0F(x) (9.38)
H(x)=-B93:0(x)

and
Did =di 41 (35 Qry (—Xi) = 0. Q7 (= X)) = di (8x Q7 (Xi) = 130 (X)) (9:39)
Cie=ci (" PX (V7 (=X =k W Q (=X0) = e PRV (X ) — K () Q' (X))

(9.40)

As in [21], we will not be able to find a solution to this system for arbitrary A. We will instead
consider the system

(W) () = A(Q; (x); MW, (x) + ¢i—1e"PXiT1G (x5 2) + did* H (x)
(W5 () = AQF (0); MW, (x) + e DX G (x; ) + dih” HF (x)
W (X;) — W, (—=X;) = Did + Cic (9.41)
WE0) eC¥O)dCWod Y @Y™
W (0) — W, (0) + cie " PXivF(0; 1) — cim1e”PXi=1 V.7 (0; 1) € CW(0) © C W,
for i =0,...,n — 1. The fourth equation states that the remainder functions Wii(x) have no
component in C Q’(0). The other terms in the ansatz do not appear in this equation by (9.34).
The final equation states that the jumps can only be in the directions of Wy and W(0). The terms
involving Q’(0) in the ansatz do not appear in this equation since Q’(0) L. Wy ® ¥(0). A solution

to (9.41) solves (9.37) if and only if n jump conditions at x = 0 in the direction of CW(0) & C Wy
are satisfied, i.e.
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& = (W(0), W, (0) = W (0) + cie "PXVH(0; 1) — ¢jm1 " PNV (0; 1)) =0 ©.42)
£ = (Wo, W;H(0) = W (0) + cie " PXivF©0; ) — ¢y’ PXtvm ;) =0,
fori =0,...,n — 1, where the terms involving Q’(0) in the ansatz again do not appear.
Finally, we apply the conjugation operators (9.27) to the system (9.41). Making the substitu-
tion WijE x)= PijE (x; )L)ZijE (x), we obtain the equations
(Z7) (0) = AO; M Z7 () + ¢im1e” PN PT (e )T G (5 M) + A2 P (s )T T (1)

(Z5) (%) = A; MV Z} (x) + cie " PX P (e ) TG (s 2+ 22 P G W) T R (),
(9.43)
with matching conditions at x = £X;

PH(Xis WZT(Xi) — P (= Xis W Z (X3 4) = Did + Cic, (9.44)
and matching conditions at x =0

PEO;MNZEO) eYT @Y™ @ CW(0) & CW,y
P (0; M)ZH(0) — P7(0; 1) Z; (0) (9.45)
+cie”"PXiyE(0; 1) — cim1e"PXi-1 V.7 (0; 1) € CW(0) © CW.
The jump conditions become
& = (¥(0), T (0; ) ZH(0) — P (0; 1) Z; (0)
+cie Py 0, 1) — ¢i_1e"PXi-1 VT (0,0)) =0
£F = (Wo, P (0; 1) Z7(0) — P (0; M) Z7 (0)
+eie” NV 1) — 1PNV (01 4) =0.

(9.46)

To conclude this section, we collect some important estimates in the following lemma.
Lemma 9.6. We have the estimates

(i) |H)|, |HE(x)] < Ce@0l,
(ii) |H(x) — H(x)| < Ce~0Xi=1g=00(Xi=1x) | o=200Xi ganox,
(iii) |I-Ii+(x) —HWX)| < Ce—%0Xip=a0(Xi—x) | p=200Xi-1 p—a0x
(iv) |GE(x; V)| < CIal(e=0Xi 4 [a])ee0l],
(v) Did = (Q'(Xi) + Q' (= X)) (dis1 — di) + O(e~0Xi (e=0X" 4 |2])|d]).
(vi) |Cic| < C(e™®Xi 4 |A])|c].

Proof. Since H(x) = —9.Q(x), it follows from Theorem 3.9 that | H (x)| < Ce~*M! where we
can use «g in place of og — € since D F (0) is hyperbolic. The result for H(x)=—0, Q?E(x) can
be similarly obtained by using Lin’s method as in [12,47]. The bounds (ii) and (iii) follow from
Lin’s method and an adaptation of Lemma 8.8 to derivatives with respect to c. For the estimates
on G (x; 1), by reversibility, (Q(0), V*(0,0)) = (Q'(0), V¢(0)) = 0, thus k(x) = O(A]).
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Using this together with the estimates from Lemma 8.8 gives us (iv). For the estimate (v), we use
(8.25) and (8.24) with the derivative with respect to x to get

(0 ) (=X) = (07 (=Xi; B + (07, ) (— X))
=(Q7) (X1 B + (@1 (Xi: B) + Oe720%1)
= Q'(—Xi) + Q'(X;) + O(e~®0Xigm0 X"y,
Similarly, (Q7) (X;) = Q'(—X:) + Q'(X;) + O(e~%0%ie=*0X™) Substitute these into (9.39) and
use (i) to get the estimate (v). For the estimate (vi), by Lemma 9.4, e"MXiy—(=X;; 1) = Vo) +

O(e=0Xiy and e "M Xi V(X 1) = Vo(1) + O(e~*Xi). Subtracting these and using kij:()\.) =
O(|1]), we obtain the estimate (vi). O

9.5. Exponential trichotomy

We will now define exponential trichotomies on R¥ for the conjugated system. Since there is
some freedom in choosing subspaces for the trichotomy, we will make a choice that allows us to
best satisfy equation (9.44). The range of the stable projection on R¥ is unique and is given by
E*(A), but we can choose any complement of E*(}1) to be the complement of the range of the
stable projection at X;. For sufficiently small A, since the eigenvectors of A(0; 1) are smooth in
A, E*(0) ® E€(0) is a complement of E¥(A). Since Pi+ (X;; 1) = I + O(e20Xi), for sufficiently
small A and sufficiently large X;, Pi+ (Xi, M)"YE*(0) @ E”(O))P{" (Xi, A) is a complement of
E*(X). A similar result holds for the complement of the unstable projection on R™ at —X;_;.
Using these complements, there exists 5 < §4 such that for all |A| < §5, we can decompose the
evolution operator ®(x, y; A) on R* as

D(x, y; 1) = DV (x, y3 A) + BT (x, i A) + DT (x, i A) i=0,....,n—1,(9.47)
where

7T (x, y; A) = d(x, y; PV
L (x, y; ) = d(x, Xis VP (X, VT PUO)PT(X, M P(Xi, i A
O (x, y; ) = d(x, Xi3 VP (X, )T PYO) P (X, D B(XiL i A
OV, ¥ 1) =D, =X WP (=X, W) T PO P (= Xi—1, D D(—Xio1, yi A)
T (x, y; 4) = Dx, yi P (L)
T,y ) =P, —Xim1s WP (= Xim, )T POV P (= X1, D D(— X1, 3 A,
(9.48)
and we have the estimates
D7 (x, y; M < Ce @y <x
|D4F (x, y; M) < Ce™ 0™ x <y (9.49)
|06E (x, y; )| < Ce™ Y,
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which are uniform in A, and are the same as the estimates (9.16) but with possibly dif-
ferent constants C. The stable evolution CIDf’+(x, y;A) on R* and the unstable evolution
CD?’_(x, y;A) on R™ do not depend on X; or i. The evolution of the unconjugated system
WijE x)= A(Qii(x); A) Wl.jE (x) on R¥ is given by

OF(x, y; 1) = PE(y: M@y, x; M) PE(xs 1)L (9.50)

Fori =0,...,n — 1, equations (9.48) induce an exponential trichotomy for the unconjugated
system via the evolution operators

s/u/c, £

zs/uj/c,x
i i

d (x,y;0) = PE(y; )@ (v, x; M) PE(s )7L (9.51)

As a consequence of (9.48),

BT (Xi, Xii 1) = P(0), BT (X, Xis2) = P(0)
O Xim Ximi ) = PO 7T (= Ximn Xim1:2) = P(O),

which are the eigenprojections for A(0) and are independent of A.
9.6. Inversion

We will now solve the system (9.41). This follows the outline of the proof of [21, Theorem
2], the main differences being the presence of a center subspace and the fact that we are on a
periodic domain. Choose § < §s. The result will hold for |A| < §, and we may need to decrease &
as we proceed. Define the spaces

n—1

Vo =P E“(0) ® E°(0) ® E°(0)
i=0
n—1

Vi=@PCoomaerH)eCoOearh
i=0

n—1
ve=Epc
i=0
n—1
Vi= @(C
i=0

Vi = Bs(0) Cc C,
where the subscripts are taken mod n, since we are on a periodic domain, and the product spaces
are endowed with the maximum norm. Using the variation of constants formula and splitting the

evolution operator via the exponential trichotomy (9.48), we write (9.43) in integrated form as

427



R. Parker and B. Sandstede Journal of Differential Equations 334 (2022) 368—450

Z7 () =0T (=X VP (= Xi—is ) e + 0T (x, 0: 1) P (0: 1) by
— T, —Xi— s WP (= Xim )l
X
+/<I>§‘"(x,y;A)Pf(y;A)“(ci_le”(“x"—‘GZ(y;)\)+x2diﬁ;(y))dy
0

X
+ / O (x, v WP (s A eim1e" M X G (v 0 + A2 H (v)dy
—Xi-1
X
+ / OO, s AP (v M) T eim1e"PXiLGT (v A) + A% H (v)dy
—Xi-1
ZH @) =@ (, X M PT (X 0 a0 (e, 0,0 PO, 1) 7 b
+ &0 0, X WP (X )7 af
X
+ / O (e, i P (v 1) cie P BX G (v 1) + 22 FF () dy
0

X
+ f L (x, y WP (s 7 (cie " PNGH (v ) + 2% HE (v))dy
X;
X
+ [ty P 030 e NG i) 2 ().
Xi
(9.52)
Asin [21], we will solve the eigenvalue problem in a series of inversion steps. Since the RHS of

the fixed point equations (9.52) does not involve Zl.i, these equations solve equation (9.43). In
the next lemma, we solve (9.44), which are the matching conditions at the tails.

Lemma 9.7. For i =0,...,n — 1, there is a unique set of initial conditions (ai+, a. ,af) such

i
that (9.44) is satisfied for any (b, c, d) and \. These are given by

af =P\ Did + Ay (b c.d)
a7 = —P{(\)Did + Ay (W] (b, ¢, d) 9.53)
af = A2(0); (b, ¢, d),

where Ay and A~2 are analytic in ), linear in (b, ¢, d), and have bounds
1420 b, ¢, d)| = € (X b] 4 (0% 2 Dle| +121d]) 9.54)

A2 (b, c,d) = CPf (=X 1b| + e~ % e + =X p2lal) . (955)
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Proof. It follows from (9.48) that

Py (X YT (—Xi ~ X )P (—Xi ) = PYO) 9.56)
PH(Xi, YT (X, X WP (X, 1)~ = PYC(O).

Substituting (9.52) into (9.44) and using (9.56), we have

D;d + C;c :ai‘Ir —a; +2a;
+ P (X3 W] (X, 0, PO, )7 b — PO (=X MO T (= X0, 0 P (00 b
X

+ P (X5 2) / O (Xy, v VP (s 1) e e "W XIGF (y; 1) + A2d H (9))dy
0
7Xl'

— P (=X ) / LT (—=Xi, y; WP i V) eie WX G (vi 1) + A H (»)dy,
0

9.57)
which is of the form

Did + Cic =a} —a +2af + L3(1); (b, d). (9.58)

L3(1)i(b, c,d) is defined by the RHS of (9.57), is linear in (b, ¢, d) and analytic in A, and is
independent of a. To obtain a bound on L3, we will bound the individual terms involved. For the
terms involving b, we use trichotomy estimates (9.49) to get

[P (X35 W)@ (X, 0, 1) PT(0; 1)~ P (0; 1) 71 b| < Cem X

The term involving b, , is similar. For the integral terms, using (9.49), the bound (9.4), and the
estimates from Lemma 9.6,

X;
P (X3 ) f DX, ys WP )T e PG (v; 1) + A%d B (v))dy
0

i

= € (IMEX + alel + 221d]) [ X emongy

ot

< Cem X (e 0%+ ADle] + 1271d] ).
The other integral is similar. Combining these, we have the bound for L3

IL3(0i (b, ¢, )| = € (7 [b] + 0K (€7 0% 4 A [c] +e 0% A ld]) . (9.59)
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To solve for al.+, a; , and af, we apply the projections on P#/4/¢(0) on the eigenspaces E*/*/¢(0)
to (9.58). For a,.i, using the bound (9.59) for L3(A)(b, c,d) and the estimate for C;jc from
Lemma 9.6,

a = P{(0)Did + Ay (M)} (b, c,d)
a7 =—=P{O)Did + Ay (W)} (b, ¢, d),
where AZ(A)?E(b, ¢, d) has bound (9.54). For a;, we apply the center projection P¢(0) = (W, -)
to (9.58), and note that (Wy, D;d) = 0. Since kl.jE (W) Q' (£X;) = O(|A]e~*0Xi), and by reversibil-
ity
(Wo.e"DXiv=(=X;:2) — e "PXiVE (X 0) = (P (= Xi: 1) — PT(Xi: 1)) Vo(b)
= (Wo, ROT(X;; 0)R — ©F(X;3 0), Vo) + O(|r]e" %) = O(|r]e~*0X1),
we have |(Wy, Cic)| < [xle~*Xi|¢;|. For a bound on (Wy, L3(1); (b, ¢, d)), using (9.29) we ob-
tain
(Wo, P (X M@ (X;, 0; 1) PF(0; 1)~ b))
= ([P (Xi; 0)~ 1" Wo, P (X3 0)®° (X;, 0; 0) P (0; 1)~ 'b7") + O(e™ X111} ))
= (Wo, @°(Xi, 0; )P (0; )~ 'b]) + Oe™ XAl 1b] ) = Oe X[l ).

Bounding the other terms in L3(A); (b, ¢, d) in a similar fashion, we obtain the estimate

[(Wo, LaGh)i (b, ¢, )| = CIA] (€7X11b| + e~ 0¥ 3] 0% 4 ] lel + e~ 0¥ A2l )

(9.60)
Combining the above bounds and dividing by 2, ai = A2(}); (b, ¢, d), where A2(1); (b, ¢, d) has
bound (9.55). O

In the next lemma, we solve equations (9.45), which are matching conditions at x = 0 in
the directions other than CW(0) & C Wy. Using the decomposition (3.30), equations (9.45) are
equivalent to the three projections

P(CQ' ()P (0;)Z] (0)=0
P(CQ'O)PF(O0;)Z(0)=0
P @Y 0;0)Z(0) — P (0; 1)Z7 (0)
+eie” PNV 1) e e"PXV(0:0) =0,

9.61)

where the kernel of each projection is the remaining spaces in the direct sum decomposition
(3.30). We do not need to include C Q’(0) in the third equation of (9.61) by (9.34) and since we
eliminated any component of Pl.i(O; )»)Zl.i(O) in C Q’(0) in the first two equations.
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Lemma 9.8. There is a unique set of initial conditions (ai+, a; , al’?)for i=0,...,n—1, and an
operator By : V) x V. x Vg — V}, such that for a = (al.+, a; ,a;) and b = B1(1)(c, d), equations
(9.44) and (9.45) are satisfied for any (c,d). Bi(A)(c, d) is analytic in A, linear in (c,d), and

has uniform bound

BIA) e d)] = C (X + aDlel + (3] + 70X d] ). 9.62)

The initial conditions ai‘|r ,a;, and aiC are given by

af” = Py (0)D;d + As(W)] (¢, d)
a; =—Py(0)D;d + A4(1); (c,d)
af = As(W)i(c, d),

where Ay and Az are analytic in X, linear in (c, d), and have bounds
|44Gi(B, e )] = € ((€70% -+ ADlei| + 131d] ) 9.63)

A4 b, c,d) = CIal (7% ei] + 0¥ 22l ) (9.64)

Proof. Using the decomposition (3.28), we can write bl.jE uniquely as bii = xii + yii, where
)cl.i € CQ’(0) and yl.ﬂE € Y*. Using this together with (9.48), we can write Pl.i(O; A)Z?E (0) as

P7(0;M)Z7 (0)=x; +y. + R (Wb + P (0; )@~ (0, —X;—1; )P (=Xi—1, ) 'a;_
— PT(0; )@ (0, —X;—1: VP (= Xi—1, 1) 'af_,
0
+ P7(0; ) f (0, v VP (v M) (eim1e” M XN G (v; 1) + A2 H (v)dy

—Xi—1

0
+ P7(0; 1) f OCT(0, y; AP (3 ) Neim1e" M X G (v 0) + A2 H (v)dy
—Xi-1
PF(O; 0)Z0) = x7 + 37 + RF b + P(0; 1)@ (0, X5 M P (X, )t
+ PT(0; M®CT(0, Xi; M P (X, )l
0
+ P (0; 1) f D0, y; WP M) (e PXIGE (v 1) + A2 H ())dy
Xi
0
+ P (0; 1) / OCHO0, y; WP (3 ) Heie PG (v 2 + A2 B (v)dy,
Xi

(9.65)
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where

R () =P (0; )P (WP (0: )" = P7(0;0)P“(0)P(0;:0) ™" = O([A| +e72#%)

. (9.60)
R () =P (O0; )P WP O0; 1)~ = PTO;0)P ) PT(0;0)~ = O(Ir| + e 2X7).
Applying the projections in (9.61), we obtain an expression of the form
x;
T |+ La@ib, e, d) =0, 9.67)
+ _ —_
Vi Vi

where L4(A); (b, c,d) consists of the projections in (9.61) applied to the remaining terms in
(9.65) as well as the term P(YT @ Y ™) (cie™"MXi v (0; 1) — ¢;—1e"PXi V.7 (0; 1)) in the final
component. To obtain a bound on L4, we will bound the individual terms involved. For the aijE
terms, we use the expression from Lemma 9.7, the estimate (9.54), and the trichotomy bounds
(9.49) to get

|PF0; DT (0, Xi3 WP (X, 0) " a |

< Cem X (X ] 4 (70Xt el + (A + IDDIdI)

The a;” term is similar. For the ai" terms, we use (9.49), the estimate (9.4), and the expression
from Lemma 9.7 to get

PO T, Xis )P (X )7 af] = CI (7%l + ™% ey + 12 21d)
For the remainder terms involving b;, we use (9.66) to get
IRF BT = € (17 4+¢7257) bl

The term involving b;” is similar. For the terms involving c¢ in the third equation in (9.61), it

follows from (9.32) that Vl.i(O; 1) = VE@O) + O(|A| + e~2*0X™) From the discussion following
Lemma 9.4, V¢(0) contains no component in Y @ Y ~, thus we have

PO @Y ) (cie " PXVT0; 1) — cim1e”PXi=1v7(0; )| < C(IA] + e 720X ),

where we also used the estimate (9.4). The bound on the integral terms is determined by the
integral involving the center subspace, since the other integral has a stronger bound. Using the
bounds from Lemma 9.6 together with the trichotomy bound (9.49) and the bound (9.4),

0
PO 0) | 0T, y; VP M) (e PP XGE (v 0) + A2d: H (v)dy

X

= € (1A + 1aDlel + [MP1d]).
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The integral terms from P; (0; A)Z; (0) have similar bounds. Combining these and simplifying,
we obtain the bound

IL40i (b, e, )| = C (1 +e X b] + (2] + 70X el + (2] + ¢~ 0%)2a)).

—aX*

Since |A| < § and we can choose X* sufficiently large so that e < §, this becomes

Ls(M) (b, c,d) < C<8|b| + (1Al + e~ e] + (1A +e*°‘0X*)2|d|),
which is uniform in |b|. Define the map
L:[@coomecoo|e|Prrer | >PcoomecoOmartar)
j=1 j=1 j=1

by Jz((xlﬂ',xi—), (yl,+, yo)i = (xl.Jr,)cl._,yl.Jr — ¥; ), which is an isomorphism by (3.30). Since
bi=x; +y;, xi+ + yi‘"), we can write (9.67) as

Do (x5, 5700, 07T y7)i 4 La(h)i (bi, 0,0) + La(M)i (0, ¢, d) =0. (9.68)
Let $2(b)i = Ja((x;", x7), (v, y7))i + La(1)i (b, 0, 0). Substituting this into (9.68), we obtain

the equation S»(b) = —L4(A)(0, ¢, d). Decreasing § if necessary, the operator S (b) is invertible,
thus we can solve for b by using

b=Bi(M)(c,d)=—S; ' Ls(42)(0,c,d), (9.69)

which has bound given by (9.62). Substituting (9.62) into the bounds (9.54), and (9.55) and using
the estimates for C;c and D;d from Lemma 9.6, we obtain the bounds (9.63) and (9.64). O

9.7. Jump conditions
We have constructed a unique solution to (9.37) which will have n jumps in the directions of
W(0) and Wy. For this solution to be an eigenfunction, all n jumps must be 0. In the next two

lemmas, we compute the jumps in the direction of Wy and W(0).

Lemma 9.9. The jumps in the direction of Wy are given

1 - 1. -
£ = e VW Xig, (1 — EAM) —e"WXizig <1 + 5AM>

+O(( X 4 [AD2el + MM +e~0%la)),

(9.70)

fori=0,...,n—1, where

~ i . 1
M=/<v‘<y)—;)dy,
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and the remainder terms are analytic in A.
Proof. The jumps in the center direction are given by
ES = (Wo, PF(0; M) Z(0) — P7(0; 1) Z7 (0) + cie " PXiVE(0; 1) — i1 e P Xim1V,7(0; ).
Using Lemma 9.5 and the bound (9.4),

(Wo.cie " MXVH0: 1) = ¢j1e" DXV (0; 1)

1 - 1= .
— e—v(A)XiCi (1 _ 5)\.M> _ ev()")X"_lCifl (1 + 5)L]M) +0 ((e—otoX + |A|)2|c|) .

The terms Pl.jE (0; )\)Zl.jE (0) are given by (9.65). The only leading order term involves the integral
of ﬁii in the center subspace. Using (9.48), (9.28), (9.14), and Lemma 9.3,

0

<Wo, P (0; 1)2%d; f OO,y WP (T H (y)dy>
—Xi-1
0
=22d; f (Wo, P (0; DO, —X;—13 ) P, (=Xi—1,2)”"

—Xi-1
PEO) P (= Xi 1, B(— X1, y: P (i )~ () dy
0
32, / (& (3, — Xi_ 13 0)* PE(0)*® (= X;_1, 0 0)* Wo, H(y))dy
—Xi-1

+OAP(A] + e X d)).
Since Wj is a constant solution to (3.26), P€(0)*Wo = Wy, and H(y) = —Bd.Q(y).

0
<Wo, P (0; M)A / OCT(, y; P (s A) T HS (y)dy>
—Xi—1

0
224, / (Wo. H())dy + O (A + e~ 0X ) d])

0
=—)%d; / 9eq (»)dy + O (1A + e~ %) d)).

—00
Similarly,
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0
<Wo, P7(0; 1) / DCT(0, y; WP (y; 2) A%, ﬁ,-(y)dy>
—Xi—1

o
=k2di/acQ(y)dy+O(I?»|2(|)»| + e %) d)).
0

The rest of the terms are higher order. For the terms involving a,.i, we use Lemma 9.8, (9.48),
(9.49), and (9.63) to get

(Wo, P (0; 1)@ (0, Xi3 W P (X5, ) at) =(Wo, & (0, X3 1) P (0) D] (X3, X3 Ma")
= (0] (Xi,0; 0)*Wo, P“(0)a;") + O(Irle™ X |a;" )= (Wo, P*(0)a;") + O(Irle™ ¥ |a; )

=0 (IMe™¥ (™% + [1P)lel + 21| +1Dlld]) )

since Wy is a constant solution to W'(x) = —A(Qii(x))*W(x). For the terms involving aj, we
use Lemma 9.8, (9.48), (9.49), (9.64), and (9.4) to get

(Wo, P (0; M@CF(0, X5 M) P (X, 1)~ haf) = (Wo, @40, Xi3 M) PE(O)D] (X4, Xi;3 Maf)

= (& (Xi,0: 0" Wo, P°(0)af) + O(Illaf]) = O (1™ +aDle| + [+Id]).

For the terms involving b, bijE = )cl.jE + yii vanishes when we take the inner product with W. For
the remaining terms, we use the estimate (9.62) to get

[(Wo, R G )1 = € (131 4+ €205 (3] 4+ e~ 0X )] + (] + 70X )d).

For the center integral involving Gl.i(y, A), we use Lemma 9.6 and (9.4) to get
0
<Wo, P 0; 1) f CF (0, y; WP (i ) e PX G (s A)dy> < CIAlE™™* + [A]el.
Xi

The non-center integral involving Gl.i(y, A) has a stronger bound. For the non-center integral
involving I:Iii, we follow the same procedure as above, replacing P¢(0) by P*(0), to get

0
<Wo, PT(0; ) / 10, y; M P (y; x>—lxzdiﬁ,»+(y>dy> < CIAP (Al + e 0% |d).
X,

Bounds for the terms from P, (0; 1) Z;” (0) are similar. Combining all of these terms and simpli-
fying, we obtain the center jump expressions (9.70). O
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Lemma 9.10. The jumps in the direction of W (0) are given
£ = (W(X), Q' (—X))(div1 — di) — (W(Xi_1), Q' (= X;_))(d; — di—1) — \2di M

1 . | e .
— M (7PN DXt )+ O (0N 4 el + (N 4 )l

9.71)
fori=0,...,n—1, where

(0.¢] (e.¢]
M = / q(¥)ocq(y)dy, M. = / deq(y)dy,
—00 —00
and the remainder terms are analytic in A.
Proof. The jumps in the direction of W(0) are given by
& = (W(0), PF(0; ) Z(0) — P7(0; M Z7 (0) + cie " ™XiVE (0 1) — cim1 "M Xim1 V7 (05 1),
Using Lemma 9.5 and the bound (9.4),
(W(0),cie™" PNV (01 4) = iy "XV, (0: 1)
1 1 x
= —SiMee PNl = M PNl + 0 (€ 412Dl
The terms Pii(O; )L)Zii (0) are given by (9.65). As in Lemma 9.9, we begin by computing the

leading order terms. For the non-center integral involving I:Iii, following the same procedure as
in Lemma 9.9,

0
<\IJ(0), P7(0; ) / P70, y; VP (vi ) A2 H (y)dy>
—Xi-
0
=7%d; / (@7 (v, —Xi—1;0)* P*(0)*®™ (= X;_1,0; 0)*W(0), H(y))dy

—Xi-1
+OAP(A + e %) d;).
By Lemma 9.3, P*(0)* = P**(0), and P*“*(0)W(—X;_1) = W(—X;_1) + O(e~2%0Xi-1)_Since

W(x) is a solution to (3.26), H(y) = —Bd.Q(y), and the last component of W(y) is —¢g(y), this
becomes

0
<\IJ<0>, P7(0; 1) / OO, y; VP (s 1) A% Ffi(y)dy>
—Xi-1
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0
=224 / gy + OUAP (A 4 e~*X7)|d;]).

—0o0

Similarly,

0
0, y; M) P (s 1) 1A% Fli+(y)dy>

<\IJ(0), Pt (0; 1)
Xi

[e¢]

=—szi/q(y)BCCI(y)der@(le(lkl +e %) dy)).
0

For the terms involving aii, we use Lemma 9.8, (9.48), and (9.63) to get
(W(0), P (0; DT (0, Xi5 WP (X 1) lah)

= (W(0), T (0; MDH(0, Xi5 M) P (X3 1)~ P (0)a)

= (W(0), (0, X;5 0) P“(0)a;") + O(e X (JA] + 720X |aF))

= (W(X0), P*(O)Dyd) + O (70X (0% 4 3]y [c] + 70X (] + 70X d]).
By Lemma 9.6, P*(0)D;d = Q'(—X;)(dj+1 — d;) + O(e~0Xi (e=2X" |1])|d|), thus we have

(W(0), PT(0; M0, Xi3 M PT (X, M) aT) = (W(X)), Q' (= X)) (di+1 — di)
+0 (70X (@ 0X 4 ADJel + 70X (] + 70X d] ).

Similarly,

(W(0), P7(0; M@ (0, —X;—1; M) P (—Xi—1, l)_lai_,ﬁ
= —(W(—X;—1), Q' (Xi—1))(d; —di—1)

+0 (70X (0% 4 el + 70X (] 4+ e70%)al ).
The remaining terms will be higher order. For the terms involving a;, similar to Lemma 9.9,
(W) P 0: )OO, Xis P (Xi, )7 af) = O (™% +13Dle] +12°1d])

For the terms involving b, bl.ﬂE = xijE + yl.ﬂE vanishes when we take the inner product with W(0).
For the remaining terms, similar to Lemma 9.9,

(W), RF M) = € (1 +72X7) (] 4+ 70X el + (2] +eX)d] ).
For the center integral term, using the bounds from Lemma 9.6,
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0
<\If(0>, PO 2) [ @070, y; P (3 0 e PG (v 1) + A% Fli+(y>>dy>

Xi
0
= / (W(=X;-1), PYOID (= X1, y; 0)(cie " PN G (y; 0) + 22d; H(y)))dy
—Xi-1

+0 (1 + 7205 (1A + e )le] + 12211

= O (MM + e 0X) el + 122(] + e )jd])

The non-center integral involving Gl.i(x; A) has a stronger bound. Bounds for the terms from
P (0; A)Z; (0) are similar. Combining all of these terms, using the reversibility relation

(W(=X;—1), Q'(Xi—)) = (R¥(—=X,;-1), RQ'(X;_1)) = —(¥(X;—1), Q'(—=Xi_1)),
and simplifying, we obtain the jump expressions (9.71). O
Theorem 5.3 combines the jump conditions from Lemma 9.9 and Lemma 9.10 into a single
block matrix equation E(A) = 0 which is analytic in A. A nontrivial solution exists if and only if
det E(1) =0.
10. Proof of results for periodic single pulse

10.1. Proof of Lemma 5.4

For the periodic single pulse, there is one length parameter Xo = X, and for the ansatz (9.36),
there is only one parameter ¢ and one parameter d. The system of equations (9.41) becomes

(WEY (x) = A(QF (x); WWE(x) + ceT"PXGT (x5 1) + dA?H (x)
WH(X)— W (=X) = Coc

WE(0) e RVO0) @RWo@ YT @ Y~

WF(0) — W (0) + c(e "XV (0; 1) — "™ XV, (0; 1)) € CH(0) ® CW.

(10.1)

Equation (5.7) follows directly from Theorem 5.3. The bounds for the remainder terms follow
from Theorem 5.3 and the fact that d only appears as A2d in (10.1).

To show symmetry, suppose that (Wt (x;c,d, ), W™ (x;c,d, 1)) is a solution to (10.1).
Since the periodic single pulse is symmetric, Q4 (x) = R Q(J)r (—x), from which it follows
that G, (x; 1) = —RG{ (—x; —A)R. Since v(—1) = —v(1), V; (x; 4) = RV, (—x; =), YT =
RY™, R¥(0) = ¥(0), and RWy = Wy, if we replace (c,d, A) by (—c, d, —A), equations (10.1)
are satisfied by (—RW ™ (—x;c,d,)), —RW'(—x;c,d, 1)). Since (10.1) has a unique so-
lution, (W*(x;c,d, —1), W™ (x;c,d, —1)) = — (RW™(—x; —c,d, 1), RWt(—x; —c,d, 1)).
The jump conditions then become
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<W07 W+(0; c, da _)\') - W_(O; c, d’ _)")) = <W07 W+(O; —C, da )\') - W_(O; —C, d7 A‘))
<lIJ(O)’ W+(0; c, da _)\') - W_(O; c, d’ _)")) = <\Ij(0)7 W+(0; —C, da )\') - W_(O; —C, d7 A‘))

Since W (x; ¢, d; M) is linear in (c, d),

-1 0
E(—X) = KE(L), K:(O 1),

thus det E(—A) = det K det E(L) = —det E(A). We compute the determinant directly with the
aid of Wolfram Mathematica to get (5.8).

10.2. Proof of Theorem 5.5

First, we make a change of variables to simplify the problem. Since v(0) =0 and v'(0) = 1/c,
(1) is invertible near 0. Let A = v~ (x). Expanding in a Taylor series about ;& = 0,

r=v N w =cpn+0w?). (10.2)

Substituting this into (5.8), dividing by cu? since we are looking for the nonzero essential spec-
trum eigenvalues, and simplifying, we wish to solve

2M sinh(1X) + ¢K pcosh(uX) + O (Iul(lm + rl/zX)) —0, (10.3)

where K = MM + MC2. Choose any positive integer m < N, and take the ansatz

mmi h

- . (10.4)
X—i—c% X

u

For sufficiently large X, expand the denominator of (10.4) in a Taylor series to get

mmi h  mmi K K? 1 h
_ n_ 1— 2 ol — —. (105
8 X(1+c—21§x)+x X ( “omx T mex: * <X3))+X (10>

Substituting this into (10.3), expanding the sinh and cosh terms in a Taylor series about mri,
and simplifying, equation (10.3) is equivalent to

cK m+h (m+h 12
M4+ —Vh+ 0O —— | ——— 2x =0.
( +X) * < X ( x 7 >>

Since X = X (r) = O(]logr|) and |logr|’1 is lower order than r!/2| logr|, we wish to solve

2
G (h.r) = (2M+o( ! ))h+O(M> o0,
[logr| [logr|?

Since G,,,(0,0) =0 and 9,G,,(0,0) = 2M +# 0, by the implicit function theorem, there ex-
ists 7" < ry and a unique smooth function h,,(r) with 4, (0) = 0 such that for all r <r{",
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G (A (r), ) = 0. Expanding hi, (r) in a Taylor series about r = 0, /i (r) = O (’"—2) Let

[log r|?
ry = min{rll, e rfv}. Substituting A, (r) into (10.4), the essential spectrum eigenvalues are lo-
cated at

mii m3
um(r)=7K+O(—3) m=1,...,N.
X +cay [Togr|
Changing variables back to A and using (10.2),

: 3
)\'fnSS(r)ZC mii _I_O( m )’

MM+ M2 |1()gr|3
X+ C—5r <

from which we obtain (5.9) by factoring out X from the denominator. By Hamiltonian symmetry
(and the symmetry of E())), eigenvalues must come in quartets. Since there is nothing else
above the real axis with similar magnitude, A5>*(r) is on the imaginary axis, and there is another
essential spectrum eigenvalue at —A5>>5(r).

11. Proof of results for periodic double pulse
11.1. Proof of Lemma 5.6

For the periodic double pulse, we have the symmetry relation Q. (x) = R Q;r_l (—x), where

the subscript i is taken mod2. Let (W, (x), W(;r (x), W (%), Wl+ (x)) be the unique solu-
tion to (9.37) for given (ci, co, d1, do, A). Following the same procedure as in the proof of
Lemma 5.4, when (c1, cg, d1, do, X)) — (—c1, —co, do, d1, —A), equations (9.37) are satisfied by
(—R W1+(—x), —RW (=x),—R WJ‘(—X), —RW/| (—x)), which must be the same as the origi-
nal solution by uniqueness. We then compute the jump conditions to get E(—X1) = K1 E(A) K>,

where
T O -1 0 0 1
=5 7). w=(3 7). 7=(V o)

from which follows that det £(—A) = det K1 det E (1) det K = —det E(A). The form of the re-
mainder matrix follows from this symmetry together with the fact that A =0 is an eigenvalue
with at least algebraic multiplicity 3. The determinant of £ (1) is then computed directly with the
aid of Wolfram Mathematica.

11.2. Change of variables

As in the proof of Theorem 5.5, we make the change of variables A = v=1(w) so that det E (1)
becomes

det E(u, r) = —2u22 2a + 1> + Ry) (M sinh(uX) + e (MM + M>) cosh(MX))
+ 4ac3,u3M3 sinh(uX 1) sinh(1Xo) + Rop? sinh(iu(X1 — Xo)) (1L.1)
+ Ry sinh(uX) + w1’ Ry.
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The remainder terms have the same bounds as in Lemma 5.6 with A replaced by w. Define

[ 2a
/’L;'knt = _M62 (11.2)

« _ _mmi 1,....N (11.3)
= m=1,...,N, .
Hm X—i—c%

where K = MM + Mg, and a is defined in (5.11). For Theorem 5.7, we will ensure that the
interaction eigenvalues and essential spectrum eigenvalues do not interfere. Since u,, = O(r 172y

and uj = O(|logr|™1), choose ro < r sufficiently small so that lf,, | < %m’ﬂ for all r < rg.
We can then simplify det £ (u, r) to obtain

det E(u, r) = —2¢2 12 2a + 2> M) (M sinh(uX) + cu (MM + M) cosh(uX))
(11.4)

+ Rp2sinh(uX) + Ry,
where |R|, |R| < C(r'/2 + |u]).

11.3. Essential spectrum eigenvalues

Choose any positive integer m < N, and take the ansatz p = ), + % As in the proof of
Theorem 5.5, we expand the denominator of w, in a Taylor series, substitute the result into
(11.4), and simplify to obtain the equation

2
Gm(h,r>=(M+o< ! >>h+O<M)=O.
|logr| |logr|?

Since G,,(0,0) =0 and 9,G,,(0,0) = M # 0, the result follows from the implicit function the-
orem and Hamiltonian symmetry as in the proof of Theorem 5.5.

11.4. Interaction eigenvalues
The interaction eigenvalues will be at approximately u = £pu},,, which is defined in (11.2).
The interaction pattern will thus be determined by the sign of a. The first step is to characterize

a. We start with the following lemma.

Lemma 11.1. Define the functions H : RT x Rt — R and Hy : Rt x RT — R by

H (bo, b1) = bgsin (—plogbg) — by sin (—plogby) (11.5)
Hi(bo, b1) = bo [p cos (—plogbg) — sin (—plogbg)] + bi[p cos (—ploghi) — sin(—ploghy)].
(11.6)

Then the zero sets of H(bg,b1) and Hi(by, b1) intersect only at the discrete set of points

1 *
(bo, b1) = (b, bf) for k € Z, where b}, = e %P re the pitchfork bifurcation points from
Theorem 4.4.
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Proof. Let f(x) = xsin(—plogx). Then H(bg,b1) = f(bo) — f(b1) and Hi(by,b1) =
—bo f'(bg) — b1 f'(by). If H(bg,b;) =0 then f'(by) = f'(b1), thus since Hj(bg,b;) =0,
(bo + b1) f'(bo) = 0. If f'(by) =0, then by Lemma 8.13, by = b}, and so b; = b} as well.
Otherwise, by = —b1, which is not possible since by and by are both positive. O

We can now characterize a in terms of the parameterization of the periodic double pulse.
Lemma 11.2. Let r, be as in Theorem 4.4. Then for any r € R with r <r,,

(i) For a symmetric periodic 2-pulse Q2 (x; mo, so, 1), a = ra(r; mo, so), where a(r; mo, so) is
continuous in r. Furthermore a(0; mg, so) = 0 if and only if so = p*. For so # p*,

a(0;0,s9) >0and a(0;1,s0) <0 ifsg> p*

(11.7)
a(0;0,s9) <0anda(0;1,s0) >0 ifsg < p*.

(ii) For an asymmetric periodic 2-pulse Q»(x; mg, s1,r), a =ra(r; mo, s1), where a(r; mg, so)
is continuous in r. The sign of a(0; mg, so) is completely determined by mg and is given for
all sy > p* by

a0;mg,s1) <0 ifmy=0
(11.8)
a(O;mo,s1)>0 ifmo:l.

Proof. Using [21, Lemma 6.1(ii)], rescaling as in Lemma 8.1 1, and simplifying,
(W(X0), Q'(—X1)) = — poctoe®*?Prb; (p cos (—plogb;) — sin (—plog b)) + O T7720),

from which it follows that a = — poage®®/Por Hy (b, b1), where Hj is defined in (11.6). For part
(1), a =ra(r; mgy, sg), where

a(r; mo, s0) = — poctge®?/Por Hy (b, by)
1
= —2poorge®®/Poe™ 5 MOTHO) (_1ymo (1 cos 5y — sinsg) + O /2.
When r =0, a(0; mg, so) = 0 if and only if so = p* = arctan p, and the sign of a(0; mo, so) is

given by (11.7) for sg # p*.
For part (ii), a = ra(r; mg, s1), where

a(r; mo, s1) = — poctoe®®’ P Hy (bo(mo. 51), b1(s1)) + O /2%),
and the parameterization (bg(mg, s1), b1(s1)) is defined in Lemma 8.16. Since (bg(my, s1),
bi1(s1)) is contained entirely within the zero set of H (b, b1), where H is defined in (11.5),

it follows from Lemma 11.1 that a(0; mg, s;) = 0 if and only if s; = p*. By continuity in s1,
a(0; mg, s1) must have the same sign for all s; > p*. Sending 51 — o0,

1 1
lim a(0; mo, s1) = — poPoe®/Pe™ 2" cos(mor) = (—1)"F! popoe®?/Poe™ s ™7,
S§1—>00
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thus since pg > 0 and By > 0, the sign of a(0; mo, s1) is given by (11.8) for s1 > p*. O

We can now find the interaction eigenvalues. To rescale equation (11.4), let « = ra(r), where
a(r) = a(rymg,sy) is defined in Lemma 11.2 and a(0) # O since s; > p*. Let uf, (r) =
P12 % (r), where [1*(0) # 0, and take the ansatz u = r'/21*(r) + r!/2. Substituting this into
(11.4), dividing by —2¢?r3/2X , using the fact that u = O(r'/?) and X = O(|logr|), and simpli-

fying, we obtain the equation

G(h, r) = MEh(E*(r) + h)> Q" () + h) (M +o ( )) +O(FP2@ ) + 1) =0

[logr|

Since G(0,0) = 0 and 3, G (0, 0) = 2M>c2(i*(0))* # 0, by the implicit function theorem there
exists 71 < ro and a unique smooth function A(r) with 2(0) = O such that for all r < ry,
G (h(r),r) = 0. Expanding A (r) in a Taylor series about r =0, h(r) = 0172, Undoing the
rescaling and changing variables back to A, there is an interaction eigenvalue located at

int . _ [_2a0) 1 _ | 2
A = i r'’“+0F) = M—+—O(r).

By Hamiltonian symmetry, there is also an eigenvalue at —X(r). Since eigenvalues must come in
quartets, and there only two eigenvalues of this magnitude, we conclude that for r < ry, there is
a pair of interaction eigenvalues given by A = £AI"(r), which is either real or purely imaginary.
Since M = d"(c) > 0 by Hypothesis 3.10, these are real if a(0) < O and purely imaginary if
a(0) > 0, which depends only on my by Lemma 11.2.

11.5. Eigenvalues at 0

In this section, we use Rouché’s theorem to show that there are exactly three eigenvalues at 0.
As in the previous section, let u” = r125%(r), and let & = %|,&*(O)|. Let = r'/2f1, and take
it on the circle |ji| = &. Making these substitutions, dividing by —2¢%r>/2X, and simplifying,
equation (11.4) is equivalent to

G (i, r) = M3 (i + 5 () (i — ¥ (r)) (M +O (@)) +0 (rl/z) —0. (119
Let G(it,r) =G(f1,0)+ G (i, r), where G{(ix,r) = G(fx,r) — G(fi, 0). On the circle || =&,
|G (fx,0)] > 11/1122 |ft+(0). Since |G (fi,r)| = 0 as r — 0 and ji4(0) # 0, there exists r» < rg
such that for r <r, |G1(t, )| < |G (i, 0)| on the circle || = § By Rouché’s theorem G (i, )
and G (1, 0) have the same number of zeros (counted with multiplicity) inside the circle of radius
&. By the choice of &, G1(t) has exactly 3 zeros inside the circle, thus G (i, r) does as well.
Undoing the scaling and changing variables back to A, we obtain the result.

11.6. Proof of Theorem 5.9
Let a(r, so) = a(r; mg, so) as in Lemma 11.2, so that a(0, p*) =0 and a(r, sog) > Oasr — 0
and so — p*. Using Rouché’s as in the previous section, for sufficiently small r, there are five

zeros of E(A,r) in a small ball around the origin. Since two of these eigenvalues correspond
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to the kernel eigenfunctions 0y Qz(x) and BCQQ(X), and there is third kernel eigenfunction by
Lemma 5.1, this leaves two eigenvalues unaccounted for. Let so = p* + h. Using the scaling
w =r'/2[1, following the same steps as in the previous section, factoring out ji* from (11.9) since
we have already accounted for three eigenvalues at 0, and simplifying, the remaining eigenvalues
must satisfy the equation

. (-2, 2a(r,p*+h) 1 12\ _
G(u,r,h)—(u t—a )<M+(’)(—|logr|>>+(9<r )_o. (11.10)

When r =0and h =0, G(j1, 0, 0) has a double root at fi = 0. We will show that for small r, the
double root persists at 4 = h(r). For i to be a double root, it must satisfy K (i, r, h) = 0, where

(G
K@, r,m = <BL~LG([L,r,h)> '

For r =0, K(0,0,0) = 0. Using Lemma 11.2, (0, p* + h) = coh + O(|h|?) for some constant
co # 0, thus we have

0 2«
DK (0,0,0) = <2M Cé ) ,

which is nonsingular. Using the implicit function theorem, there exists r; < rp and a unique
smooth function (fi(r), h(r)) with ((0), 2(0)) = (0, 0) such that for all » < ry, K(u(r), h(r),r)
= 0. In other words, ((r) is a double root of G (i, r, h) when h = h(r). By Hamiltonian sym-
metry, we must have fi(r) = 0, thus for r < r, there are two more eigenvalues at 0 when
so = p* + h(r), which brings the total to five. Since the pitchfork bifurcation in the family of
periodic 2-pulses occurs near p* at p*(r), it follows from standard PDE bifurcation theory that
this quintuple zero must occur at the pitchfork bifurcation point.

11.7. Proof of Theorem 5.10

Choose mg = 1, let r, be as in Theorem 4.4, and let Q>(x; s1,7) be the family of periodic
2-pulse solutions parameterized by s1. By Theorem 5.7, there is a pair of purely imaginary inter-
action eigenvalues for sufficiently small r. Define

i
X(s1,r) + %

2 — 2
alsr.r) = \/— enn a0 \/— WO o,

ni(sy,r) =

both of which lie on the imaginary axis. Note that we have included the remainder term R;(r),
which independent of w, in the definition of u.. As s1 — oo, X1(r, s1) — oo and Xo(r, s1) —
ﬁ)ﬂogrl + 2”% + L, which is a nonzero constant. By the definition of a in (5.11), a(sy,r)
approaches a nonzero constant as s; — 00. Thus there exists ry < r, such that for all r < rgy, we

can find s, (r) such that 1 (s (), ) = (s« (r), r). Let
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i

K
X*(r)ZX(S*(V),I’)Zm—CM.

(11.11)
For s close to s.(r), define the parameter k(s1, r) by

2k(slsr)i ZM*(SI,}’) _/.L](Sl,r).

This measures the distance on the imaginary axis between w1 and p, so that k(s.(r),r) =
From this point forward, we will drop the dependence on s and » for convenience of notation.

Let w = s + h, so that u = 1 + h + 2ki. As in (10.5), we expand w1 in a Taylor series to
get

mmi K K? 1
=——|(1- 2 O h + 2ki 11.12
== ( Sux T e T <X3>>+ + 2ki. ( )

Anticipating what will follow, we take the rescaling
Uy = rl/z,&, h= r5/4Xoi~l, k= r5/4Xolz.

Using this rescaling and the fact that 1/ X (r) = O(r'/?) in this case, we substitute (11.12) into
sinh u X and cosh u X to get

Kmi o K*mi
MX M2X2

sinh(X) = (=1) (—c 4 (h+ 2kl)X> ( 3/2>

(11.13)
cosh(uX) = (1) + O (r3/2) .

It follows from (11.13) that sinh(xX) = O(r'/2). Furthermore,
sinh( X 1) sinh( X) = (sinh(uX) cosh(t X) — cosh(uX) sinh(u X)) sinh(uXg)
= M*Xo + O(rl/z)
and

sinh( (X1 — Xo)) = sinh(X) cosh(214Xo) — cosh(1X) sinh(2uXo) = O (r1/2| 1ogr|) :

Substituting all of these into (11.1), dividing by —2u?c? since u # 0, using the expression a =
-M cz,ui /2 + O(r3/%), and simplifying, we obtain the equation

- K\ o - .-
MpahXor’* ((M + C—) X (h + 2ki) Xor™/* + (’)(r3/2)>
X (11.14)

—2MM?2e’r3 2 X3 + Or3/?Xo) = 0.
Since

Mrmi _ Mmi Mrmi

— O 1/4
i —2ki) ez TOUTD:

cK
<M+7)X=MX+CK:
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equation (11.14) simplifies to
2meM? X33 h(h + 2ki) — 2M M3 P32 X2 + O3  logr]) = 0. (11.15)

Dividing by X%rs/ 2 and noting that Xo = O(|logr|), we obtain the equation

- - - - . M2
G(h,k,r):h2+2kih—T+O< ):0, T=—<2Cca>0. (11.16)

|log 7| 2 M?

When r =0, G (h, k,0) = 0 if and only if i = A (k) = —ki = /T — k2. When |k| < /T, this is
a circle in the complex plane of radius /7. We will show this persists for small 7. For 7 = f% (k),
G (hj (k), k,0) = 0 and 3; G (hy (k), k,0) = 2v/T — k2, which is nonzero as long as k # £v/T.
Choose any € > 0 and define

K€=[—Zﬁ—ﬁ—e]u[—ﬁ+e,ﬁ—e]U[ﬁ+e,2ﬁ].

Then for k € K., GEO (fzo(lz), k, 0) is bounded away from 0, with bound dependent on €. By
the uniform contraction mapping principle, there exists r| < ro and smooth functions fz*i(lg, r)
such that 5 (k, 0) = g (0), hE(k,r) = hg () + O (ks ), and for all r < 7y and & € K,

G(hf(k, r), k, r)=0.Fork e [—\/_ T+e, T — €], h*i(k, r) is real and is symmetric across the
imaginary axis by Hamiltonian symmetry. All that remains is show there is a double zero on the
imaginary axis when & is close to ++/7'. Similar to the proof of Theorem 5.9, for / to be a double
root of (11.16), it must satisfy H(ﬁ, IE, r), where

-~ Gk
Hh, k,r)= (aﬁc(ﬁ,lé,r))
Forr =0, H(—/Ti,~/T,0) =0, and

D iy H(—NTi, VT,0) = (0 2‘/_>,
l

which is nonsingular. Using the implicit function theorem, there exists r, < r; and a unique
smooth function (h;(r),k;(r)) with (h1(0),k1(0)) = (=~/Ti,~/T) and (hi(r), ki (r)) =
(—VTi,¥T)+O <|10g I) such that for all r < ra, H(h1(r), k1(r), r) = 0. In other words, &1 (r)

is a double root of G(h, k, r) when k = k(r). By Hamiltonian symmetry, h(r) must lie on the
imaginary axis. We have a similar result for (h, k)= (NTi,—T).

Undoing the scaling and change of variables and letting s = k/c, for » < r; there is a pair of
eigenvalues

M2
M) =hu(r) = si £V T1 =52+ O logr|1/%), - Ty = = — A XG,
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which is approximately a circle centered at A, in the complex plane of radius +/7;. For s =
s+(r) =+£JVTh (1 + O (w)) there are double eigenvalues at A = A, + s1+.(r) + O (H;W)
which is on the imaginary axis by Hamiltonian symmetry. Again by Hamiltonian symmetry, the
eigenvalues A are symmetric about the imaginary axis for s_(r) < s < s4+(r) and are purely
imaginary for s < s_(r) and s > 54 (r). The maximum real part of A occurs when s = 0, and is
approximately /7. Expanding /1 in a Taylor series about X = X, this occurs when X (r) =
X.(r)+ 2;’2’ S+ O(s?). In particular, the Krein collision (and reverse collision) occurs when X ()

is given by (5.20).

12. Conclusions

In this paper, we use Lin’s method to construct periodic multi-pulse solutions to KdV5 and
to determine the spectrum near the origin associated with these solutions. The results hold more
generally for Hamiltonian systems which are both reversible and translation invariant, including
higher order KdV equations. This technique allows us to compute both the eigenvalues result-
ing from interactions between neighboring pulses in the periodic multi-pulse structure and the
essential spectrum eigenvalues resulting from the background state. Of note, we show that as
the domain size is increased, brief instability bubbles form when interaction eigenvalues and es-
sential spectrum eigenvalues of opposite Krein signature collide on the imaginary axis. These
Krein bubbles can be found numerically, and their location and size agree with the theoretical
results. Numerical timestepping experiments show that these Krein bubbles correspond to slowly
growing, oscillatory instabilities.

In Theorem 4.2, we prove the existence of periodic multi-pulse solutions, but have to exclude
certain periodic parameterizations to avoid bifurcation points. We only demonstrate the complete
bifurcation structure for periodic 2-pulses (Theorem 4.4). It is likely that bifurcation structures
exist for arbitrary periodic n-pulses, but that these become more complex as n increases. As a
first step to elucidating these bifurcations, it would be useful to study periodic 3-pulses by using
AUTO for parameter continuation not only in the domain size X but also in the parameters ¢ and
p. This could suggest a theoretical result as well as a generalization to higher n. We could also
extend the spectral results to arbitrary multi-pulses. As long as any Krein collisions are avoided,
it should be possible to determine the interaction eigenvalue patten solely from the geometry of
the periodic multi-pulse, as is the case with the periodic double pulse. It would also be worth
looking at whether Krein bubbles occur for higher order periodic multi-pulses. As an initial step,
we could construct periodic 3-pulses with two pairs of imaginary interaction eigenvalues as well
as “mixed” periodic 3-pulses with one pair each of real and imaginary interaction eigenvalues.
We could then determine numerically if Krein bubbles occur for either of these two periodic
3-pulses. We also note that we obtained better error estimates for the Krein bubble size in the
numerical computations in section 6 than were predicted by Theorem 5.10, thus it might be
possible to obtain sharper error estimates analytically.

Finally, we note from Remark 5.11 that as the domain size X increases, the centers of subse-
quent Krein bubbles (indexed by increasing m) are approximately equally spaced in X. However,
their widths in X scale with \/m, so that they grow with each subsequent bubble (Fig. 14, left
panel). At some critical value X = X, the Krein bubbles will start overlapping (Fig. 14, right
panel). After this occurs, we expect that there will always be an eigenvalue with positive real part,
thus the periodic double pulses should all be unstable for X > X.. As X is further increased, we
expect that more than two Krein bubbles will interact, and that the eigenvalue behavior will
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Re A\
Re A\

ANIE
Y

Fig. 14. Real part of A vs. X for first five Krein bubbles as X is increased (left). Real part of A vs. X showing overlapping
Krein bubbles as X is further increased.

become increasing complicated. (This is very difficult to simulate numerically, as it involves ex-
tremely large domain sizes.) At the same time, the radius in the complex plane of subsequent
Krein bubbles scales with 1/./m (Fig. 14, left panel), which suggests that the maximum real
part of the corresponding interaction eigenvalue approaches 0 as X — oo. Although we cannot
generalize the periodic case to obtain the behavior on R by taking X — oo, this suggests that
the spectrum of the double pulse on the real line, which is the formal limit of the periodic double
pulse as X — oo, may in fact be purely imaginary.
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