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Abstract

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate

size features, where models with different resolutions or heterogeneous descriptions are coupled together

for predicting the system’s response. The solver with lower fidelity (coarse) is responsible for simulating

domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic

features with refined discretization, often making the overall cost prohibitively high, especially for time-

dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and

employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained

offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-

scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with

new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the

computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating

readily the incorporation of a plurality of interface conditions and coupling schemes. We present various

benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-

dependent problem, and we also demonstrate coupling of a continuum model (finite element methods, FEM)

with a neural operator representation of a particle system (Smoothed Particle Hydrodynamics, SPH) for a

uniaxial tension problem with hyperelastic material. What makes this approach unique is that a well-trained

over-parametrized DeepONet can generalize well and make predictions at a negligible cost.
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1. Introduction

Predicting and monitoring complex systems, where small-scale dynamics and interactions affect global

behavior are ubiquitous in science and engineering [3, 6, 21, 78, 84]. In disciplines ranging from material

fracture [31] to design problems [25], models at microscale have shown their capability in representing detailed

material response. However, despite their improved accuracy, the usability of microscopic models is often

compromised by several computational challenges. Specifically, microscopic models require a small spatio-

temporal scale to fully resolve small-scale details and capture underlying stochastic dynamics, leading to a

prohibitive computational expense. Therefore, simulating material dynamics at meso- or macroscale using

microscopic models is still largely beyond reach. In addition, although bottom-up approaches such as fine-

grained atomistic models have provided important insights into processes at microscale, they generally do

not scale up to finite-size samples [36, 83, 98]. These challenges raise the need for efficient mathematical

models and algorithms, which are capable of capturing small-scale behaviors while being computationally

expedient.

In the last two decades, a variety of multiscale approaches have been proposed to address these challenges.

Microscopic effects often concentrate locally, whereas a continuum model can accurately describe the system

in the rest of the domain. Solving such a continuum model by well-established numerical methods would

reduce the computational cost. Following this domain-decomposition strategy, several works that combine

continuum and microscopic models have been proposed [18, 39, 40, 49, 61, 62, 77, 79, 88] to model multiscale

systems. Another approach focuses on developing a fast surrogate as the fine-scale model represented by

homogenization [7, 9, 23, 85, 93, 99]. For example, [56] considered an approximation model of a partial

differential equation (PDE) that contains small-scale oscillations in its coefficients, in essence, replacing these

coefficients in the model with effective properties so that the resulting solutions can adequately approximate

the solutions of the original problem. However, quantifying effective properties poses a challenging task in

light of the feasibility of acquiring parameter values and the level of accuracy of the homogenized PDE model

compared to the original microscopic model.

Recently, deep learning algorithms have been proposed for simulating physical problems [12, 14, 37, 66,

97]. In particular, neural networks have been employed in conjunction with standard numerical models to

address the aforementioned challenges in multiscale modeling [3, 5, 16, 65, 69, 74, 81]. In [5], Arbabi et

al. proposed a data-driven method that trains deep neural networks to learn coarse-scale partial differential

operators based on fine-scale data. In [8], Bhatia et al. presented a novel paradigm of multiscale modeling

that couples models at different scales using a dynamic-important sampling approach. A machine learning

model is employed to dynamically sample in the phase space, hence enabling an automatic feedback from

micro to macro scale. In [55], Masi and his collaborators developed a thermodynamics-based artificial neural

network (TANN) and applied it in multiscale modeling of materials with microstructure. Their results

demonstrated that TANN is capable of implicitly learning the constitutive model from data and predicting

the corresponding stress fields based on state variables. The authors also demonstrated that TANN is capable
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Figure 1: Schematic of multiscale modeling with DeepONet. (a) In a multiscale mechanics system, traction T (x, t)

acts on the boundary of domain Ω, which is decomposed into sub-domains described by a variety of microscopic models. A

macroscopic model describes the response in the bulk region whereas nonlinear, microscopic, or data-driven models capture the

detailed response in the small regions. (b) DeepONet, composed of a branch and a trunk net, is able to learn the response of the

microscopic systems (from simulated or multi-modal data) and serve as a surrogate in the multiscale system. MD: molecular

dynamics, DPD: dissipative particle dynamics, SPH: smoothed particle hydrodynamics, PD: peridynamics, NL FEM: nonlinear

finite element, FEM: finite element, MF: multifidelity.

of solving boundary value problem in a multiscale system with complex microstructure using double-scale

homogeneization scheme. Other applications of machine learning in multiscale modeling include parameter

inference [63, 67, 87, 89], uncertainty quantification [15, 75], data-driven modeling [15, 34, 51, 68, 74, 93],

etc.

In the last few years, a new family of machine learning model, deep neural operators, have been proposed

to learn the solution operator of a PDE system implicitly [44, 46, 52, 92]. Unlike another type of scientific

machine learning, physics-informed neural networks (PINNs) [70], these neural operators can solve a PDE

system given a new instance of interface conditions or model parameters without retraining [13, 28, 45, 47, 48,

54, 90]. Hence, such computational advantage enables neural operators to serve as an efficient surrogate model

in multiscale coupling tasks, and especially for time-depenendent multiscale problems, which even today have

remained prohibitively expensive. Among the state-of-the-art neural operators, the Deep Operator Network

(DeepONet) serves as a unique model with exceptional generalization capability and flexibility, which can

learn the solution operator in irregular domains even in the presence of noise [53]. Another possibility is to

use the Fourier neural operator (FNO), which is fast but is limited to complex geometries and structured

data [44, 46]. Herein, we choose DeepONet as the surrogate model. For a more thorough comparison between

DeepONet and FNO, we refer the reader to [41, 53].

The present work aims to address the aforementioned challenges by developing a new multiscale coupling

framework, as demonstrated in Fig.1. Specifically, the new framework couples a surrogate of the micro-
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scopic system (DeepONet) with a standard finite element method (FEM) that represents the macroscopic

model. The coupling framework is flexible in choosing the domain decomposition algorithms, the types of

boundary condition, or the nature of multiphysics problems (static or time-dependent). In addition, the

surrogate model can learn from a plurality of fine-resolution microscopic systems or from experimental data

(Fig. 1(b)). Our approach is the first attempt to couple neural operators with standard numerical solvers

using a concurrent coupling method.

The paper is organized as follows: In Sec. 2.1, we briefly introduce DeepONet and the adopted coupling

algorithms. In Sec. 3, we report the coupling performance for a series of benchmarks, including a 2D Poisson

equation, a 1D heat problem, and a uniaxial tension problem with elastoplastic materials and hyperelastic

materials. We conclude by a brief discussion on the implications of the presented model in Sec. 4. In

the appendices, we give an overview of the smoothed particle hydrodynamics (SPH) method and present

additional results for FEM and SPH simulations. Finally, we provide further details on the network training

and data generation.

2. Methodology

In this section, we introduce the general architecture of DeepONet (Sec. 2.1) and the domain decompo-

sition methods for the coupling framework (Sec 2.2).

2.1. Deep Operator Network (DeepONet)

We briefly summarize the general architecture of DeepONet employed in this work. Let Ω ⊂ Rp be a

bounded open set, which is the domain of our input and output functions; DeepONet can learn a general

continuous operator between two Banach spaces of functions taking values in Rdf and Rdu , respectively.

We denote the input and output function spaces as A = A(Ω; Rdf ) and U = U(Ω; Rdu). The network aims

at approximating a mapping G : A → U between an input function g ∈ A and its corresponding output

function G(g) ∈ U . Although DeepONet can learn mappings between vector-valued functions, for simplicity

of exposition we focus on learning scalar-valued functions (du = 1) in the following. For any y ∈ Ω ⊂ Rp,

G(g)(y) ∈ R is the evaluation of function G(g) at y. As shown in Fig. 2, the branch network takes a function

g in its discrete representation [g(x1), g(x2), ..., g(xm)] at locations {xj}mj=1 as input and yields an array of

operator features, {bi}ni=1, as its output. The trunk network takes y as input and yields another array of

operator features, {ti}ni=1. Finally, G(g)(y) can be approximated by [17, 52]:

G(g)(y) ≈
n∑
i=1

biti. (1)

In this work, we adopt fully-connected neural networks as the architecture of both sub-networks. We refer

the readers to [43, 52] for theoretical analysis and error estimations of DeepONet.

Regarding the loss function, we adopt the mean squared error (MSE) which measures the square of L2

norm between model predictions and training data. Given M sample input functions g(i), i = 1, · · · ,M , and
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Figure 2: Schematic architecture of DeepONet. DeepONet learns the mapping operator G from an input function g to

its corresponding output function G(g). The input of branch and trunk net are g and y ∈ Rp, which represents a discretized

function from g(x1) to g(xm) and information such as coordinates and time, respectively. Note that the output dimension of

the trunk net, n, is consistent with that of the branch net. The final output G(g)(y) is computed as the dot product of b and

t.

the ground-truth of their corresponding output functions, Gdata(g(i))(·) on a set of N points {yj}Nj=1, the

loss is expressed as:

L =
1

MN

M∑
i=1

N∑
j=1

(Gmodel(g
(i))(yj)−Gdata(g(i))(yj))

2 + R̂, (2)

where Gmodel is the learned operator of DeepONet for approximation and Gdata(g(i))(yj) denotes the data

measurements for the i-th output function at j-th evaluation point. R̂ is an additional loss term for the

purpose of regularization (see Sec. 3.1 and Eq. 11).

2.2. Coupling Methods

Here we introduce the procedure of coupling DeepONet with a numerical model. Consider a system

defined on a computational domain Ω; we decompose the domain into ΩI and ΩII according to the features

in each domain. These two domains are described by a macroscopic model (model I) and a microscopic model

(model II), respectively. In this paper, we choose model I as FEM. Nonetheless, the proposed procedure can

be generalized to couple other mesh-based models [33, 38, 64, 80] or particle (meshfree) models [24, 29, 59, 72]

as shown in Fig. 1(b). Model II represents a DeepONet, which serves as a surrogate for the microscopic,

fine-scale model.

Notably, the domain decomposition can be either overlapping or non-overlapping. Fig. 3(a) shows an

one-dimensional illustration of the domain decomposition method. For the overlapping setting, Γ1 (= {x1}

for this 1D case) represents the internal boundary of model I and Γ2 (= {x2}) is the boundary of model II.
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Problem Model I Model II/Training Data Interface Condition Overlap

2D Poisson FEM DeepONet/FEM D-D, R-D Yes

1D Heat FEM DeepONet/FEM N-D No

2D Elastoplasticity Linear Elastic FEM DeepONet/Elastoplastic FEM N-D No

2D Hyperelasticity Hyperelastic FEM DeepONet/Hyperelastic SPH N-D, R-D/R-N No

Table 1: Setup for the four examples. D-D: Dirichlet-Dirichlet, R-D: Robin-Dirichlet, N-D: Neumann-Dirichlet, R-N:

Robin-Neumann

The overlapping region is ΩI ∩ΩII = [x2, x1]. The two models communicate with each other by exchanging

interface conditions on Γ1 and Γ2. For the non-overlapping setting, we have Γ1 = Γ2 := Γ (x1 = x2 for this

1D case) and the two model exchanges interface information on Γ. Fig. 3(b) and Algorithm 1 summarize

the iterative procedure of the coupling framework with a Robin-type boundary condition [94]. For the n-th

iteration, we utilize quantities (·)n to calculate (·)n+1. To initiate the coupling procedure (n = 0), we start

with an initial guess of the interface solution value u0(x1) and derivative-related information T 0(x1) on Γ1.

Then, we take a linear combination of these quantities and forms a Robin-type boundary condition on Γ1,

namely, h̃0(x1) = R1u
n(x1) + R2T

0(x1), which is applied on Model I. The method proceeds by solving

for un+1
I (x), x ∈ ΩI , from Model I, and interpolating the computed solution or its derivatives at Γ2. The

interpolated information will then be transmitted to Model II as the boundary condition. Then, we solve for

un+1
II (x), x ∈ ΩII , from Model II with the transmitted interface condition on Γ2 and interpolate its solution

on Γ1. If the stopping criterion∣∣∣∣un+1
I − unI

∣∣∣∣2
L2(ΩI)

+
∣∣∣∣un+1

II − u
n
II

∣∣∣∣2
L2(ΩII)

< ε, (3)

is satisfied, the coupling result is considered to be converged. The solution for the two domains is:

uI(x) := un+1
I (x), x ∈ ΩI , (4)

uII(x) := un+1
II (x), x ∈ ΩII . (5)

If the solution is not converged, we proceed to update the interface information on Γ1 with a relaxation

formulation: h̃n+1(x1) = (1 − θ)hn+1
I (x1) + θhn+1

II (x1) where hn+1
I,II = R1u

n
I,II(x1) + R2T

0
I,II(x1) are the

Robin boundary condition from Model I and II. Here, the relaxation parameter θ ∈ [0, 1] can be either fixed

or updated according to the Aitken’s rule [57, 94]. Then, we proceed to a new iteration by transmitting the

updated boundary condition h̃n+1(x1) to Model I and repeating the procedure stated above with n← n+ 1.

This procedure is repeated until the stopping criterion is satisfied. These coupling algorithms have their

origin to the classical Schwarz coupling methods [26, 50, 60] and an iterative patching algorithms [26].

3. Results

In this section, we present the simulation results of four benchmark problems: 2D Poisson equation, 1D

heat equation, 2D elastoplasticity, and 2D hyperelasticity, to demonstrate the applicability of our method.
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Figure 3: A flexible framework in domain decomposition. The proposed coupling framework is able to adopt either (a)

overlapping or non-overlapping domain decomposition coupled with Dirichlet, Neumann, or Robin boundary conditions at the

interface. As an illustration, (b) presents a Robin-type boundary condition imposed on model I with interfacial solution û(x1)

updated by a relaxation scheme. Dirichlet and Neumann boundary can be imposed by adjusting the value of R1 and R2. The

relaxation parameter, θ, is either fixed at a value or updated dynamically. Tn
II(x1) represents the Neumann-related information

at x1 from Model II, e.g., traction or derivatives.

Algorithm 1 Coupling Method. Γ1 := ∂ΩI , Γ2 := ∂ΩII . If non-overlapping, Γ1 = Γ2, else Γ1 6= Γ2.

Initialization: Set model I with u(x1) = 0 and model II with u(x1) = 0

Main Loop:

for n = 0 : nmax − 1 do

Model I (FEM):

• Receive the interface information hn(x1) from Model II (x1 ∈ Γ1).

• Solve for un+1
I from Model I.

• Calculate un+1
I (x2) or

∂un+1
I

∂x |x2 and pass it to Model II (x2 ∈ Γ2).

Model II (NN):

• Receive the interface information un+1
I (x2) or

∂un+1
I

∂x |x2
from Model I (x2 ∈ Γ2).

• Solve for un+1
II /Tn+1

II from Model II.

• Calculate hn+1
II (x1) = R1u

n+1
II (x1) +R2T

n+1
II (x1).

• Calculate h̃n+1(x1) = (1− θ)hn+1
II (x1) + θhn+1

I (x1) and pass it to Model I (x1 ∈ Γ1).

If converged, stop;

end for
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Figure 4: Setup of the Poisson equation. (a) A 1× 1 unit square is decomposed into two overlapping regions, ΩNN (light

blue) and ΩFEM (meshed). ΩFEM is bounded by Γ1 and Γ0, whereas ΩNN is a 0.3× 0.3 square in the center with boundary

Γ2. (b) DeepONet takes uFEM |Γ2
as input and yields the solution in ΩNN , denoted as uNN |ΩNN

. (c) Formulation of an

overlapping D-D method. Given the boundary condition on Γ0, the coupling framework iteratively updates the corresponding

boundary condition on Γ1. The relaxation parameter θ is either fixed or updated based on the Aitken’s rule [94].

The detailed settings of these four examples, including the choices of model I and model II, interface con-

ditions, and whether domains overlap, are provided in Table 1. For interface conditions, we studied four

types of conditions, namely, Dirichlet-Dirichlet (D-D), Robin-Dirichlet (R-D), Neumann-Dirichlet (N-D),

and Robin-Neumann(R-N). The first letter represents the boundary condition for Model I and the second

letter for Model II. For each problem, our framework consists of two stages. In the first stage, we train a

DeepONet offline to obtain a surrogate of model II. Then, we couple Model I with DeepONet in the online

stage using our proposed coupling method. Training data of elastoplastic FEM in Sec. 3.3 and hyperelasticity

in Sec. 3.4 are generated by Abaqus [1] and an SPH solver [27]. All the other usages of FEM (including FEM

solver for model I and generation of training data for model II) are based on the FEniCS package [4] using

second-order Lagrange polynomials. For all experiments, the networks are trained on a NVIDIA GeForce

RTX 2060 GPU. The FEM simulations are performed on two 6-core Intel Core i7-8700 CPUs.

3.1. Poisson equation

We first study the feasibility of the proposed framework for solving a static problem. Let us consider a

Poisson equation described by the PDE system in Ω := ΩFEM ∪ ΩNN :

−∆u(x) = f(x), in Ω = [0, 1]
2
, (6)

u(x) = u|Γ0(x), on Γ0, (7)

where we set f(x) = 6 for all x ∈ Ω. As shown in Fig. 4(a), we decompose one domain into two overlapping

subdomains, namely ΩFEM = [0, 1]2/[0.4, 0.6]2 (with an internal boundary Γ1) and ΩNN = [0.3, 0.7]2 (with
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a boundary Γ2). In ΩFEM , the system is governed by Eqs. (6) and (7) with an boundary condition

u(x) = ũ|Γ1
(x), on Γ1. (8)

In this example, we first verify the efficacy of the coupling framework with a D-D interface condition. For

this setup, in ΩNN , the system is governed by Eqs. (6) and (7) with input

u(x) = uFEM |Γ2 , on Γ2. (9)

After presenting the results of the D-D case, we display results of parametric studies for better demonstrating

the influence of other factors that may influence the convergence rate.

In the offline stage, we train a DeepONet as a surrogate of FEM for predicting solution in ΩNN . First,

we sample a set of boundary conditions u|Γ2
from a random field with α = 5, a parameter in the correlation

function in Eq. (D.1). Qualitatively, a smaller α results in a less smooth function. More details of the random

field generation are provided in Appendix D. Then, we solve the Poisson equation with the randomly sampled

boundary conditions using FEM, whose computational results in ΩNN are collected as the training cases. We

generate 1,000 cases as the training dataset of DeepONet following the aforementioned process. As shown

in Fig. 4(b), the branch network input uFEM |Γ2
comes from an interpolation of the FEM solution on Γ2,

while the trunk network takes the coordinate x (∈ ΩNN ) as its input. The network output is uNN (x). We

present more details related to the network training in Appendix C.

After the completion of the offline training, we proceed to the coupling stage as shown in Fig. 4(c). Given

a fixed boundary condition on Γ0, we initiate the coupling framework with an initial guess of u on Γ1, which

is typically zero. Then, we solve the governing equation in ΩFEM with FEM and interpolate the solution

on Γ2 (denoted as uFEM |Γ2), which will be used as the input of the branch network. With this input, the

DeepONet then predicts uNN |ΩNN
, the solution of the Poisson equation in ΩNN . Following that, a relaxation

scheme is adopted to update the interface condition on Γ1 as: ũ|Γ1
= (1− θ)uFEM |Γ1

+ θuNN |Γ1
, which will

later be used as the boundary condition of FEM in the next iteration. The coupling iteration continues until

the solution u converges.

We show the performance of our coupling framework for the Poisson equation in Fig. 5. We fix the

relaxation parameter as θ = 0.5 and impose a boundary condition on Γ0 from the testing dataset (unseen

to the DeepONet in the training stage). Figs. 5(a-b) show a comparison between the FEM ground truth

(first column; computed directly in Ω) and the predictions from the coupling framework (second column;

first row in ΩFEM from FEM, second row in ΩNN from DeepONet) together with their difference (third

column). We observe an agreement between the coupling predictions and the ground truth. The maximum

absolute error presented in the third column is less than 1%. We also note that the error is larger in ΩFEM ,

especially in the region close to its external boundary Γ0. The observed error is mostly dominated by the

interpolation accuracy in the FEM, not the error of the coupling framework. We further show a quantitative

comparison between models prediction and ground-truth on Γ1 and Γ2 in Fig. 5(c): the predictions from
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Figure 5: Results of coupling FEM and DeepONet for the Poisson equation. (a-b) Model predictions from the FEM

and DeepONet with the corresponding absolute errors in ΩFEM and ΩNN . (c) Model predictions at the interfaces (u|Γ1 and

u|Γ2
) and the true solution (red line). The relative errors of model predictions at the interfaces are far less than 1%. Please see

Fig. 4 for ΩNN and ΩFEM .
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Figure 6: Parametric studies of the Poisson equation. (a) Given a boundary condition on Γ0, the convergence history of

the coupling model varies with the coupling method (Robin or Dirichlet) and parameter θ. (b) The model is trained with data

generated from a random field with α = 5. We test the generalization ability represented by the relative errors of the coupling

model for cases corresponding to α = 1 to 10. (c) Box plots of relative errors for DeepONets trained with 100 to 900 cases.

Each column shows the coupling results by testing with 50 different cases. The shaded area indicates that the relative error on

Γ1 is less than 1%. Notice that we present the error with respect to the ground truth to show the convergence and accuracy of

our framework.

coupled FEM/NN (blue dashed lines and green triangles, respectively) accurately reproduce the true solution

(red lines) with a relative error at around 0.07%.

In addition to the results shown in Fig. 5, we also conducted parametric studies on diverse factors that

influence the performance of our framework, including: convergence of the framework with different coupling

methods (Fig. 6(a)); the coupling accuracy influenced by the extrapolation capability of the DeepONet

(Fig. 6(b)) and the number of training cases (Fig. 6(c)). In Fig. 6(a), convergence of errors with different

boundary conditions is plotted against iterations. The shaded area indicates that the relative error is less

than 1%. Specifically, given various values of the relaxation parameter θ (θ = 0.25, 0.5 and 0.75), the

displacement errors with Dirichlet boundary conditions satisfy the stopping criterion (L2 error less than

2 × 10−3, or equivalently, relative error less than 1%) at iteration 37, 18, and 12, respectively. With the

Aitken’s relaxation strategy for θ (see, e.g., [94]), the coupling error (denoted as “Dirichlet-Aitken”) converges

a bit faster than that of a fixed relaxation parameter θ = 0.75. We also adopt a Robin-type boundary (Robin-

Aitken) with dynamic update in θ (purple line). In this case of Robin boundary condition, the system in

domain ΩFEM is governed by Eqs. (6) and (7) with a Robin boundary:

R1u+R2
∂u

∂n
= g, on Γ1, (10)

where we set R1 = 1 and R2 = 1. Since the FEM needs both the information of the solution and its

derivative in the normal direction from DeepONet to update the Robin boundary condition, we adjust the
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training loss of the network following the strategy. The regularization term R̂ in Eq. (2) is set as:

R̂ =

(
∂u

∂n

∣∣∣∣
NN

− ∂u

∂n

∣∣∣∣
true

)2

,x ∈ Γ1 (11)

to regularize the partial derivative with respect to the normal direction of Γ1. In Eq. (2), the partial derivative

term is computed by taking the automatic differentiation of the network output with respect to the trunk

net input x [28, 82, 91, 95, 96]. We assign the weight of the regularization term as 1. With the employment

of the Robin boundary condition, we observe that the method only takes two iterations to reach a relatively

small error.

In Fig. 6(b), we show the generalization ability of DeepONet and its impact on the accuracy of the

coupling framework by testing with boundary conditions outside the training region. The minimal relative

errors of u|Γ2 are plotted against the correlation length α of the random field that was used to generate

training data. When the correlation length α increases, the sampled curves become smoother and vice versa.

Notice that we train the network on training samples with α = 5 and test its performance on α ranging

from 1 to 10, each with 50 testing cases. The relative errors drop from around 10% to less than 1% with α

increasing from 1 to 5. For α > 5, the errors are statistically stable.

Fig. 6(c) exhibits the accuracy of the coupling framework as a function of the generalization ability of

DeepONet, which is reflected by the number of training cases for DeepONet. The median of the relative

errors of u|Γ1 decreases slightly when the number of training cases increases from 100 to 300 and then

stays statistically stable even with further increase. The computational results implicitly suggest that after

300 training cases, the errors are most contributed by the accuracy of boundary interpolation, not the

generalization of DeepONet. The shaded area in (b-c) denotes relative error at 1%.

3.2. Heat equation

Next, we investigate the performance of the coupling framework for a dynamic problem, namely, 1D heat

equation, with a N-D method. Consider a PDE system in Ω := ΩFEM ∪ ΩNN :

∂u

∂t
= K

∂2u

∂x2
, for (x, t) ∈ Ω := [0, 1.0]× [0, 10.0], (12)

u(x, 0) = u0(x), for x ∈ [0, 1.0], (13)

ux(x, t) = 0, for (x, t) ∈ Γ0 := {0, 1.0} × [0, 10.0], (14)

where the thermal diffusivity K is set as 0.1. As shown in Fig. 7(a), we decompose the computational domain

Ω into two non-overlapping subdomains: ΩFEM := (x, t) ∈ [0, 0.5] × [0, 10.0] for FEM and ΩNN := (x, t) ∈

[0.5, 1] × [0, 10.0] for DeepONet. The interface is Γ := {0.5} × [0, 10]. For the FEM subdomain ΩFEM , we

set a Dirichlet boundary condition at the interface Γ:

u(x, t) = ũ(x, t) for (x, t) ∈ Γ, (15)

where ũ is the updated and relaxed solution at the interface. For the DeepONet subdomain ΩNN , we impose

the interfacial flux from FEM K ∂uFEM

∂x as input.
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Figure 7: Setup of the time-dependent problem (heat equation). (a) The spatio-temporal domain is decomposed into

two sub-domains with Γ as the interface between FEM and NN domain. (b-c) Formulation of the coupling framework for the

heat equation. The framework first solves for un+1,k+1
FEM from FEM with updated information at the interface ũ at k-th step.

Then, the computed derivative at Γ is transmitted into DeepONet, which predicts the spatial derivative in ΩNN (c). The

solution in ΩNN is computed based on a time-stepping scheme, followed by a relaxation update (b). The initialization at k = 0

and n = 0 is described in the main text.

The coupling method is illustrated in Fig. 7(b-c). The solution process is a nested loop with indices

n and k, where k represents the time step and n is the current iteration step. To initiate the framework,

we set both n and k as zero with an initial guess of interfacial flux for the FEM. The FEM solves for

the solution (un+1,k+1
FEM |ΩFEM

) in ΩFEM at time step k + 1 given the solution at the previous time step

k, denoted as u∞,kFEM |ΩFEM
. Then, we transmit the flux at Γ, K

∂un+1,k+1
FEM

∂x |Γ, to DeepONet as a part of

the trunk net input (Fig. 7(c)). The branch network takes the system solution in ΩNN at k-th time step

as input. The output of DeepONet estimates an approximation of the diffusion term K
∂2un+1,k+1

NN

∂x2 . The

solution in ΩNN is then calculated by a semi-discretized heat equation with the backward Euler method:

un+1,k+1
NN (x) = un,kNN (x) + ∆t ·K ∂2un+1,k+1

NN

∂x2 . Next, the interfacial flux ũn+1,k+1 is updated by the relaxation

scheme:

ũn+1,k+1 = (1− θ)un+1,k+1
FEM

∣∣∣
Γ1

+ θun+1,k+1
NN

∣∣∣
Γ1

(16)

In this example, we fix the relaxation parameter θ = 0.5. If the updated interfacial flux is not yet converged,

we continue to the next iteration. Otherwise, if the flux is converged, then we proceed to the next time step

in the outer loop and restart the inner loop with the reset iteration step n = 0.

Herein, we summarize the training procedure of DeepONet. We generate 1,000 initial conditions in

x ∈ [0.5, 1.0] from a Gaussian random field with constant mean 0 and correlation length 0.3. For each case,

we randomly sample the flux at u|Γ1
20 times based on a uniform distribution from -3 to 3 as the boundary

conditions. The training data of DeepONet is then generated by running FEM simulations on ΩNN with

the sampled initial/boundary conditions. Note that training a DeepONet in a spatio-temporal domain with
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Figure 8: Results of coupling FEM and DeepONet for the heat equation. (a) Model predictions from DeepONet and

FEM. DeepONet predicts the solution in x ∈ ΩNN while FEM predicts the solution for x ∈ ΩFEM . The black line at x = 0.5

denotes the interface of the two domains. The solution at x = 0.75 (indicated by the white dashed line) is presented in (b). (c)

The mean square errors of FEM (red) and DeepONet (blue) vs time (t).

disparate boundary/initial condition is a data-demanding task: one needs to sample in the spatio-temporal

domain. Also, performance of the framework may be deteriorated when the network extrapolates the solution

outside the training domain. Hence, we alleviate the challenges by training the network to learn the implicit

spatial derivative operator K ∂2u
∂x2 with an explicit method to advance in time. In practice, we acquire the

spatial derivative K ∂2u
∂x2 in ΩNN from FEM simulations running from from t = 0 to 1.0 with dt = 0.1. The

simulated spatial derivative is then collected and utilized for DeepONet training. For more details of the

network training, we refer the reader to Sec. Appendix C.

The coupling results are shown in Fig. 8. Fig. 8(a) shows the prediction from both models in the spatio-

temporal domain Ω. In Fig. 8(b), the solution of DeepONet at x = 0.75 is plotted against time. The

prediction from DeepONet shows a good agreement with the ground truth solution even for the temporal

region outside the training dataset (t > 1), indicating that the proposed framework works well for extrapo-

lation. The mean-squared errors (MSE) of both models in the coupling framework are plotted against time

in Fig. 8(c): the coupling framework shows stability and accuracy over long-time integration. Although the

prediction errors grow with the increase of t, we note that the errors accumulate at a relatively low rate,

demonstrating that the proposed coupling framework is capable of solving a time-dependent system. It may

be misleading that, from t ∈ [2, 7], DeepONet outperforms FEM since the mean squared error of DeepONet

is lower than that of FEM. In our concurrent coupling framework, the errors in FEM is induced by the
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Figure 9: Setup of the elastoplasticity problem. (a) A 2l×2l solid plate is clamped on the bottom edge with a traction t0

distributed on the top edge. (b) The yellow region (ΩFEM ) is modeled with linear elasticity, whereas the blue region (ΩNN ) is

modeled with elastoplasticity. Interfacial displacement (Dirichlet boundary condition) u|Γ computed from FEM is transmitted

to DeepONet as input. (c) The DeepONet estimates the stress components in ΩNN , σNN |ΩNN
, based on which the interfacial

traction tNN |Γ can be calculated accordingly. The predicted traction is updated and provided to FEM as a Neumann-type

boundary condition. In this example, we set the interior circle radius ri = 0.1, the interface circle radius ro = 0.3, and the plate

size l = 1.

oscillatory errors from DeepONet. Therefore, one can observe that the errors from FEM and DeepONet

are both in a similar scale. In general, one might observe a slightly better accuracy from DeepONet, but

these observations are generally problem-dependent and do not indicate that the data-driven DeepONet has

a better generalization ability than FEM.

3.3. Elastoplasticity

In this section, we test the proposed framework for predicting the elastoplastic behavior of a solid material.

As shown in Fig. 9(a), we consider a plane strain problem for a square-shaped solid of size 2l × 2l with a

circular void of radius ri, where vertical tension is applied on its top edge. In this example, we take l = 1,

ri = 0.1. For linear elastic materials, the kinematics, constitutive relation, and equilibrium equations are as

follows:

ε =
1

2
(∇u + ∇uT), (17)

σ = λtr(ε)I + 2µε, (18)

0 = ∇ · σ + b, (19)

where ε, u, and σ are the strain, displacement, and (Cauchy) stress; λ and µ are Lamé moduli, which we

take as λ = 0.5769 and µ = 0.3846, and I is the identity tensor. In this example, we consider a solid subject

to no body load, and therefore set the body force term b as zero.

To model the plastic behavior of the material, we consider small-deformation, rate-independent elasto-

plasticity with isotropic hardening. The additive decomposition of the strain tensor writes ε = εe + εp,
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where εe and εp are the elastic and plastic strains, respectively. The elastic strain εe is related to the stress

by

σ = λtr(εe)I + 2µεe. (20)

The plastic strain εp is purely deviatoric (i.e., tr(εp) = 0). We define the deviatoric stress s, the increment

of the equivalent plastic strain dε̄p, and the equivalent tensile stress (Mises stress) σ̄ as

s = σ − 1

3
tr(σ)I, (21)

dε̄p =

√
2

3
dεp : dεp, (22)

σ̄ =

√
3

2
s : s, (23)

respectively. The flow direction Np and the increment of the plastic strain dεp are given by

Np =

√
3

2

s

σ̄
, (24)

dεp =

√
3

2
dε̄pNp. (25)

Then, the yield function f can be defined as

f = σ̄ − Y (ε̄p), (26)

where the linear strain-hardening function Y is taken as

Y (ε̄p) = Y0 +H0ε̄
p, (27)

The initial strength Y0 = 0.1 and the hardening modulus H0 = 0.3 are taken as two constant material

parameters. The aforementioned mechanical quantities are subject to the Kuhn-Tucker complementary

conditions:

f ≤ 0, dε̄p ≥ 0, (dε̄p)f = 0. (28)

In addition, when f = 0, the consistency condition dε̄pdf = 0 also needs to be satisfied.

Due to the setup of our boundary value problem, the plastic deformation concentrates around the void

whereas the material is dominated by elastic behaviors in regions away from the void. Hence, we decompose

the square domain into two non-overlapping subdomains (see Fig. 9(a-b)): the internal region ΩNN , which

is an annulus with interal radius ri = 0.1 and external radius ro = 0.3 (on Γ), modeled by DeepONet

as a surrogate for the solid’s elastoplastic response; the external region ΩFEM , modeled by FEM for linear

elasticity. The two regions share a common interface on Γ. In ΩNN , we train several DeepONets as surrogates

of each stress components to capture the plastic behavior. First, we sample 1,000 displacement boundary

conditions on the top edge using the sampling method described in Appendix D.2, and employ the sampled

data as boundary conditions. Then, we solve for the displacement and stress fields in the entire domain with

a FEM solver based on the elastoplasticity model described above. Next, we collect the simulation results
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in ΩNN , which will be employed as the training data of DeepONets. As depicted in Fig. 9(c), DeepONet

can predict the corresponding Cauchy stresses in ΩNN with input as the displacement at the interface. In

2D problems, the Cauchy stress σ(x) for each material point is a 2 × 2 symmetric matrix. Therefore, to

model the stress we only need to predict its three components, namely, σ11, σ12, and σ22. For each of these

components, we train an independent DeepONet separately as a surrogate of these quantities. The traction

at the interface t|Γ is calculated accordingly based on the predicted stress from the DeepONets. More details

regarding the training of this network are presented in Appendix C.

Then, we employ the trained DeepONets in the coupling framework. As depicted in Fig. 9, DeepONets

and FEM communicate at the interface Γ by transmitting the information of displacement and traction

(Fig. 9). The interfacial displacement, uFEM |Γ, is computed in FEM and transmitted to the DeepONets

as the input of the branch network. Then, the network solves for the corresponding stress in ΩNN and

calculates the traction at the interface (tNN |Γ). In the next iteration, the computed traction tNN |Γ will be

imposed as the boundary condition of the FEM model. In this example, we employ a relaxation scheme for

the traction from the DeepONets. The relaxation parameter θ is fixed at 0.5.

We present the coupling results with a N-D interface condition in Fig. 10. In Figs. 10(a-b), we plot

the ground truth solution from FEM in the first column, the predictions from our coupling framework in

the second column, together with their differences in the third column. In plot (a), we show the results

of the normal stress (σ22) in the vertical direction of ΩFEM . The results of the equivalent plastic strain,

ε̄p in ΩNN are provided in plot (b). Although the coupling framework has generally well reproduced the

stress component σ22 in the bulk region of ΩFEM , there exist relatively large errors at the top edge and the

bottom corners. These errors either originate from numerical interpolation in the FEM solver or are caused

by a reduced solution regularity. Apart from these regions, the errors are controlled at a low value with the

maximum relative error lower than 10%. In ΩNN , the profile of ε̄p is well captured by the coupling scheme

with the maximum relative error of ε̄p less than 10%. The results demonstrate that plasticity in the region

of interest is well predicted by the surrogate model. To provide a further quantitative verification of our

coupling framework, we plot the ground-truth, the predictions of displacement, and traction components

on Γ in Fig. 10(c) as functions of θ, the angle in polar coordinate. The solid lines denote the ground-truth

results from the nonlinear FEM. The dashed lines denote the predicted values of the framework. The model

predictions match the ground truth well, with relative errors smaller than 2%. Fig. 10(d) shows the efficiency

of the coupling framework: the L2 errors between model predictions and the ground truth reach a plateau

at the fourth iteration.

3.4. Hyperelasticity

In the previous examples, DeepONet was trained based on data generated from FEM and was coupled

with another FEM in the online stage. These examples illustrated the capability of our coupling framework in

solving both static and dynamic problems. In this section, we demonstrate the capability of our framework in

concurrently coupling a continuum model (FEM) with a surrogate from smooth particle dynamics (SPH) for
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Figure 10: Results of coupling FEM and DeepONet in elastoplaticity. (a-b) Results of the normal stress in y direction

(σ22) and equivalent plastic strain (ε̄p). From left to right: True value, FEM/DeepONet predicted value from coupling, and

their absolute errors. (c) Displacement and traction at the interface Γ. True values and predicted values from coupling are

presented. Solid lines: displacement and traction of true data in x (blue) and y (red) directions. Dashed lines: displacement

and traction of the model predictions in x (yellow) and y (black) directions. (d) The history of the relative errors of the coupling

model at the interface. εFEM and εNN refer to the L2 error of displacement and traction from FEM and DeepONet, respectively.

Notice that we present the error with respect to the ground truth to show the convergence and accuracy of our framework.
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Parameter µ K k1 k2 α

Value 0.3846 0.8333 0.1 1.5 π/2

Table 2: Parameters value of the HGO model. We set the value of k1, k2, and α the same for i = 1 and 2.

describing a microscopic particle system. We consider using the coupled framework to predict the mechanics

of a hyperelastic material. We first derive the energy minimization formulation of the continuum model.

We denote by ψ the strain energy density of the hyperelastic model and seek to find a displacement field

u : Ω→ R2 that minimizes the total potential energy Ψ:

Ψ =

∫
Ω

ψ(u)dx−
∫

Ω

b · udx−
∫

ΓN

T0 · uds. (29)

Here, b denotes the body force in Ω, T is the traction load applied on the Neumann boundary ΓN . Hence,

the total potential energy Ψ is the integration of strain energy density, ψ, over the entire domain Ω, deduced

by the energy contributions from the body force b, the traction T.

We consider the Holzapfel-Gasser-Odgen (HGO) model [32] to describe the constitutive behavior of the

material in this example. Essentially, the material is hyperelastic, anisotropic, fiber-reinforced in diverse

directions. Its strain energy density is:

ψ =
µ

2
(I1 − 3)− µ ln(J) +

k1

2k2

2∑
i=1

(exp (k2〈Ei〉2)− 1) +
K

2
(
J2 − 1

2
− ln J), (30)

where 〈·〉 denotes the Macaulay bracket. In this model, the fiber strain of the two fiber groups is expressed

as:

Ei = κ(I1 − 3) + (1− 3κ)(I4i − 1), i = 1, 2, (31)

where k1 and k2 are fiber modulus and the exponential coefficient, respectively, I1 is the first principal

invariant, and I4i is the fourth principal invariants corresponding to the i−th fiber group. Mathematically,

for the i−th fiber group with angle direction αi from the reference direction, I4i is calculated by nT
i Cni,

where C is the right Cauchy-Green tensor and ni = [cosαi, sinαi]
T. In our simulations, we consider a

material with fiber reinforcement in the vertical direction (see Fig. 11 right for illustration). Therefore, for

both fiber groups we set αi = π/2. In Eq. (31), fiber dispersion is denoted as κ, whose value ranges from 0

to 1
3 . Intuitively, κ = 0 means no fiber dispersion whereas κ = 1

3 represents an isotropic fiber dispersion. In

this example, we consider the fiber oriented vertically with no dispersion (κ = 0). All parameter values in

this example are summarized in Table 2.

We now present the problem set up of this example. As depicted in Fig. 11(a), we consider a 2D unit

square plate with a centered circular void (radius as 0.1). The plate deforms under a uniaxial tension,

T0(x), applied on its top edge. The bottom edge is clamped. We model the material response of the entire

domain using an SPH model, whose solution is taken as the ground-truth solution. More details of the

SPH model are provided in Appendix A. To develop a coupling model, we consider a similar setting as in
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Figure 11: Setup of the hyperelasticity problem. (a) A unit square is decomposed into ΩNN and ΩFEM . We impose a

non-uniform traction boundary condition on the top edge and fix the displacement at the bottom and train multiple DeepONets

to represent the mechanics of an SPH model. The material is reinforced by fibers in the vertical direction. Information at the

interface (displacement u and first Piola-Kirchhoff stress P) is transmitted between DeepONet and FEM. (b) Traction and

displacement in different directions are exchanged at the interface Γ. FEM predicts the external domain while the DeepONet

is trained based on SPH data. (c) Two types of DeepONet are proposed to predict the mechanics of the system: predicting

stresses based on displacement information (green boxes) and vice versa (yellow boxes).
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the previous example and decompose the entire domain Ω into two non-overlapping subdomains. Then, we

train DeepONets using SPH data to obtain a surrogate for the internal domain while the external region is

described by a continuum FEM model. Models in these two domains communicate by exchanging proper

interface conditions on their common interface, Γ. In Fig. 11(b) we present a schematic of information

transmission of the coupling framework with a N-D method. At the n-th interation, the FEM solver receives

an updated distributed traction on Γ from DeepONets and solves the updated displacement field, unFEM ,

with the given information. Then, the FEM transmits the updated displacement information unFEM |Γ to

DeepONets. With the displacement on Γ as input, DeepONets estimate the first Piola-Kirchhoff (PK1)

stresses in ΩNN . Based on the predicted PK1 stresses, we then calculate the surface traction on Γ and other

associated quantities, such as the equivalent plastic strain ε̄p and von Mises stress σ̄, accordingly. At the

n-th iteration, the system solution at the interface Γ is updated as T̃(x) = (1− θ)Tn
I (x) + θTn

II(x).

Next, we briefly describe the training process of DeepONet. To generate the training/testing dataset,

we sample 1, 000 different traction loading T0(x) on the top edge from a random field (see Algorithm in

Sec. Appendix D). Then, for each sampled traction loading, we perform an SPH simulation to obtain

the solutions in the entire domain and collect the corresponding solutions of displacement and PK1 stress

fields of in ΩNN . Among these 1000 samples, 900 cases are employed as the training data while the rest

is kept as testing data. As depicted in Fig. 11(c), we consider two approaches for network training. In the

first approach, the network (Netu2s) takes the displacement at the interface (u|Γ) as input and predicts

PK1 stress as the output. In the second approach, the interfacial traction T |Γ is employed as the input of

the network (Nets2u), yielding the displacement field as output. These approaches provide a flexibility of

imposing different interface conditions. We adopt the first approach in the N-D method and combine the

information of the two approaches (û and T̂) in the R-D/R-N method.

Fig. 12 shows the coupling results of a typical testing case with a N-D method. In Fig. 12(a-b), we compare

the vertical displacement u2 in ΩFEM (first row) and the PK1 stress component P22 in ΩNN (second row)

between the SPH ground truth (first column) and the FEM/NN prediction (second column). The prediction

errors are displayed in the third column. We observe that the coupling results match well with the ground

truth solution with the largest prediction errors distributed near the bottom corners. The errors are partially

induced by the numerical interpolations in the FEM and reduced regularity in that region. To further examine

the prediction accuracy, in Fig. 12(c) we plot a quantitative comparison of displacement and traction on

the interface Γ as functions of the polar coordinate angle θ. Despite some numerical discrepancies between

SPH and FEM (see Appendix B.1), the FEM/DeepONet predictions shown in dashed lines successfully

reproduce the SPH simulation results depicted in solid lines. Therefore, our proposed method is capable

of capturing the mechanics from SPH with a substantially improved efficiency: the time cost of performing

an SPH simulation is approximately 4 hours whereas running its surrogate just takes a fraction of a second

(Table 3). Admittedly, the excessive cost of SPH is exacerbated because we use a time-dependent SPH solver

to simulate a static problem. Nonetheless, we can see that replacing a particle model with its surrogate in
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Figure 12: Results of coupling FEM and DeepONet in the hyperelasticity problem. Results of (a) displacement in

ΩFEM and (b) P22 in ΩNN . From left to right: prediction from SPH, prediction from FEM, and their absolute differences. (c)

Predicted displacement and traction at the interface. Predictions from both FEM and DeepONets are compared with the true

data. Solid lines: displacement and traction of true data in x (blue) and y (red) directions. Dashed lines: displacement and

traction of the model predictions in x (yellow) and y (black) directions.
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Model Wall Time

FEM-SPH ∼ 4h

FEM-DeepONet < 1s

Table 3: Wall time comparison for SPH and DeepONet per iteration in the hyperelastic problem. The excessive cost of SPH is

exacerbated because we use a time-dependent SPH solver to simulate a static problem.

Figure 13: L2 errors of the interfacial displacement in the hyperelastic multiscale model with a Robin boundary.

The red line with Robin coefficient R=0.25 converges fastest among the testing cases. The black solid line represents the relative

error history of a Neumann boundary condition (R=0). The shaded area indicates that the relative error is less than 2%. Notice

that we present the error with respect to the ground truth to show the convergence and accuracy of our framework.

a multiscale coupling framework poses unique advantages in both efficiency and programming easiness.

To further illustrate the flexibility and investigate the convergence rate of our coupling framework, we

employ a R-D/R-N coupling method to our framework with a variety of values of the Robin coefficient R. To

clarify, R-D/R-N means that the FEM, imposed with a Robin-type boundary condition, separately transmits

the information of displacement and traction to Netu2s and Nets2u in order to update the Robin information

in the next step. The continuum model with a Robin boundary condition is modified as:

Ψ =

∫
Ω

ψ(u)dx−
∫

Ω

b · udx−
∫

ΓN

T0 · uds−
∫

ΓR

(
r− 1

2
Ru

)
· uds. (32)

r is the Robin boundary condition applied on the interface ΓR. We define r as:

r = T̂ +R · û, for x ∈ ΓR, (33)

where R is the (positive) Robin coefficient, T̂ and û are the known traction and displacement.

The coupling procedure is changed as well. At the n-th iteration, we first solve the FEM model with a
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Robin boundary condition r̃n(x). Then, we transmit the interfacial traction and displacement of FEM to

Netu2s and Nets2u, respectively. The corresponding displacement ûn+1 and tractions T̂n+1 are estimated

by DeepONets and used to update the Robin boundary condition: r̃n+1(x) = (1 − θ)rn+1
FEM (x) + θrn+1

NN (x).

Here, θ = 0.5 is taken as a fixed relaxation parameter.

We further study the convergence of interfacial displacement errors with different values of R. In Fig. 13,

we highlight the results from the N-D coupling method with the black line and the results of R-D/R-N with

R = 0.25 (best result) in red. The shaded area indicates 2% equivalent relative error of the test case. Due

to the nonlinearity of the problem, it generally takes more iterations for the coupling framework to reach

the stopping criterion. When taking a R-N coupling method with a sub-optimal Robin coefficient (such as

R = 5.0 as shown in the purple line of Fig. 13), the coupling framework fails to converge. This fact again

demonstrates the importance of choosing an appropriate coupling method.

4. Discussion

In this paper, we propose an efficient concurrent coupling framework for multiscale modeling of mechanics

problems. In lieu of coupling an expensive microscopic model, we propose to employ a deep neural operator,

DeepONet, as a surrogate to approximate the microscopic solution in the domain with fine-scale features.

The response in the coarse-scale domain is simulated by a standard numerical model, such as the finite

element method. The two models are coupled concurrently by exchanging information at the interface until

convergence. To verify the performance of this framework, we study four benchmarks including solving

static and dynamic problems for different materials. We have also demonstrated that the framework is

readily applicable for various interface conditions. The results show that the cases with a Robin boundary

condition tend to converge faster than a Neumann/Dirichlet boundary condition. Moreover, the predictions

of the coupled model agree well with the true solution acquired from a numerical method, indicating the

generalization ability of DeepONet and the accuracy of the proposed framework.

In addition, using a neural operator as surrogate enables the model to be trained directly from data. Such

a model is particularly promising for learning dynamics of complex materials without explicit constitutive

models. Moreover, coupling DeepONet with FEM substantially improves the computational efficiency in

multiscale modeling: DeepONet predicts the expensive microscopic behavior only at a fraction of second.

Hence, the overall computational cost of the proposed framework could be shorten by orders of magnitude

than the existing multiscale coupling methods. In addition, we can train the surrogate model to learn based

on partial information: it can predict the information only at the interface and neglect dynamics inside the

microscopic region. Thus, the overall framework behaves as an artificial-intelligence type boundary condi-

tion, which would potentially improve the efficiency especially in the scenarios where only the macroscopic

dynamics is of interest.

As a further note, we would like to point out the keys to build a successful neural operator based coupling

framework with guaranteed convergence and to avoid possible pitfalls. First, the generalization ability of
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DeepONet determines if the result converges and its convergence rate. Utilizing an accurate neural operator

model takes fewer iterations to converge. However, a poorly trained model could lead to slow convergence or

even divergence. Second, normalizing data is another key to convergence. In our experiments, the training

data are at disparate scales, ranging from 10−3− 101. Properly normalization of the training data would be

essential to the convergence of numerical iterations. In addition, choosing proper coupling strategies, such as

the right Robin coefficient, also plays a critical role in guaranteeing fast numerical convergence as it affects

the condition number of the stiffness matrix in FEM and the coupling system [20]. A large condition number

may lead to a slow convergence or even divergent result in the coupling framework (see Sec. 3.4 and [22, 30]).

Certainly, more improvements and directions can be considered in the future. Learning directly from data

facilitates a unique feature that DeepONet can learn data that comes from different scales, which has been

demonstrated in Sec. 3.4. In the future, it would be interesting to develop a data-driven model from noisy

data, such as molecular dynamics and dissipative particle dynamics, as presented in Fig. 1. In addition, over-

coming the multiscale characteristic length and time scale would be another challenge in multiscale modeling

with machine learning, that is, the time and length of a microscopic model are usually orders of magnitude

smaller than the continuum model, causing challenges in network training and long-term predictions. The

coupling results may drift away from the true solution or even diverge due to inaccurate predictions from

surrogate models. Another improvement would be considering microstructures and geometric variations

(see [55]). Developing an operator-learning neural network that can predict dynamics with different geomet-

ric variations would be a great improvement for broadening the application of the proposed method. Also,

simulating fracture progression [35] is another natural and promising application of the multiscale coupling

framework. As fracture progresses, the field of interest that includes the damage region may also move along

with the tip of a crack. Such modification is particularly useful for problems with discontinuity and/or

multiple phases, such as fracture, phase transition, shock wave capturing, and etc. Our framework can be

further extended to employ other coupling methods such as quasicontinuum [76], multigrid [11], or serves as

a surrogate model for heterogeneous multiscale method (HMM) [86], etc.
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Appendix A. Smoothed Particle Hydrodynamics

In this section, we briefly introduce the basic formulation of the Total Lagrangian Smoothed Particle

Hydrodynamics (TLSPH). We refer the reader to [27, 73] for more details. In the SPH framework, physical

quantities are approximated with the neighboring information in a kernel. Consider a function f(X) at Xi
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can be approximated by ĝ(Xi) with the integration

ĝ(Xi) =

∫
f(X)W (X −Xi)dX, (A.1)

where W (X) is a weighting kernel which is chosen as a third-order polynomial

W (Rj , h) = A

(h−Rj)3, Rj < h,

0, Rj ≤ h,
(A.2)

h denotes the radius of the integration kernel; Rj is defined as the distance between Xj and the reference

point in the kernel Xi with A = 10/πh5 in two dimensions or A = 10/πh6 in three dimensions. SPH

numerically approximates the integration as

g(Xi) =
∑
j∈S

fjVjW (Rj , h), (A.3)

where Vj is the volume of particle j. The gradient of g(Xi) with respect to its reference coordinate is

∇Xg(Xi) =
∑
j∈S

fjVj∇XW (Rj , h) (A.4)

with

∇XW (Rj , h) = (
∂W (Rj , h)

∂Rj
)
Rj
Rj

(A.5)

For a vector f(X), its gradient to the referential coordinate is approximated as the following using the

integration rule:

∇Xg(Xi) =
∑
j∈S

fj ⊗ Vj∇XW (Rj , h) (A.6)

We then introduce two ad-hoc corrections for keeping symmetrization and first-order completeness [58].

∇Xg(Xi) =
∑
j∈S

(fj − fi)Vj∇XW (Rj , h). (A.7)

Another correction guarantees the first-order completeness [71], the corrected gradient tensor is defined as

∇̃XW (Rj , h) = A−1∇XW (Rj , h) (A.8)

where the shape tensor A is

Ai =
∑
j∈S

Vj∇XW (Rj , h)⊗Rj (A.9)

We introduce the SPH integration to the governing equation of solid at the continuum level. The equi-

librium equation is:

∇ · P + ρ0b = ρ0ẍ (A.10)

where P is the first Piola-Kirchhoff stress tensor, b the body force vector, ρ0 the referential mass density,

and ẍ the acceleration. We define the deformation gradient as

Fi =
∂xi
∂Xi

=
∑
j∈S

rj ⊗ Vj∇̃XW (Rj , h) (A.11)
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According to basic continuum mechanics law,

Pi = FiSi = 2Fi
∂W
∂C

(A.12)

As proved in [10], the internal forces emerge from the divergence of the first Piola-Kirchhoff stress P :

miẍi = f int + fext, (A.13)

where the internal forces is expressed as

f inti =
∑
j∈S

ViVj(Pi∇̃XW (Ri, h)− Pj∇̃XW (Ri, h)). (A.14)

We adopt another correction for suppressing spurious hourglassing mode [27]

fhgi =
∑
j∈S
−αEViVjW (Rj , h)

2R2
j

(δi + δj)
rj
rj

(A.15)

The deformation derivative in time is approximated as

Ḟ =
1

∆t
(F t+1 − F t) (A.16)

We adopt the strain energy function W(C,M) for a fiber-enhanced tissue proposed in [32]

W(C,M) =
c

2
(I1 − 3)− c ln(J) +

k1

2k2

2∑
i=1

(exp (k2〈Ei〉2)− 1) +
K0

2
(
J2 − 1

2
− ln J), (A.17)

where principal invariants, I1 and I4 are defined as,

I1 = C : I, J = detF, I4 = C : M ⊗M (A.18)

The parameters are set the same as the FEM model in Sec. 3.4. We refer the reader to [2, 73] for more

details.

Appendix B. Accuracy of FEM and SPH

Appendix B.1. Accuracy of SPH

To compare the numerical solution of the FEM and SPH model, We present their computational results

for a same benchmark problem. The problem is set up as shown in Fig. B.14(a). We impose a distributed

traction boundary condition on the top edge and impose a displacement boundary condition (Dirichlet-type)

at the interface for both models shown in Fig. B.14(b): the displacement in x and y at the interface are

plotted against the angle θ. The corresponding tractions at the interface are presented in Fig. B.14(c). The

solid lines are the FEM tractions in x and y directions with the dashed lines denoting the SPH results. The

results correspond well in general with some deviation around θ = π/2 and θ = 3π/2 due to the difference

in numerical integration methods. This discrepancy partially contributes to the overall errors observed in

Sec. 3.4.

27



Figure B.14: Comparison of SPH and FEM. (a) We impose the same Dirichlet boundary condition on the top and internal

circle for a FEM and SPH model. (b-c) Interfacial displacement and traction of both models.

Figure C.15: Network size for various problems. We tabulate the branch/trunk network size for the four examples in

Sec. 3 with the number of training epochs.
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Appendix C. Network Training Details

We explain the details of network training in this section. Network architecture for each problem is

presented in Fig. C.15. We adopt a fully-connected neural network (FNN) with four layers for all the sub-

networks. The input layer dimension of the branch net depends on the number of points at the interface,

which ranges from 51 to 120 in our examples. Three hidden layers are concatenated with the input layer

where we adopt the hyperbolic tangent function as the activate function. Each hidden layer has 100 or 150

neurons shown in Fig. C.15. To minimize the loss function for each case, we set the training epoch as 100,000

steps for the heat and Poisson example and 1,000,000 for the other two examples. Moreover, we illustrate

the error history of a few cases in Fig. C.16 where each cases shows a relatively small difference between the

training and testing errors. The low testing errors indicating a good generalization capability of the network.

More specifically, we tabulate the input/output of each network in Fig. C.17 with MSEs of the training and

testing data for each case.

We define the following metrics proposed in [19] to quantitatively characterize the efficiency of our

framework.

Rt =
Ct

NsCs
, Re =

Ce
Cs
, N∗e = Ns +

Ct
Cs
. (C.1)

Here, Rt is the training ratio where the time cost for training the DeepONet (Ct) is divided by the number

of simulations (Ns) and the cost in time (Cs) for each simulation in the training dataset. Re represents the

ratio of time on one forward prediction in DeepONet over performing a standard numerical solver. The break

even time N∗e indicates the number of evaluations in the numerical solver where training a DeepONet costs as

much as using numerical solvers. Beyond this point, surrogate modeling will be more efficient than a classical

PDE solver. Taking the elastoplasticity case as an example, each elastoplastic FEM takes approximately

30s (Cs = 30s) on a single CPU where we generated 1,000 (Ns = 1000) samples as the training data. The

DeepONet training takes 62 min (Ct = 3720s) on a single GPU. The time cost of each forward evaluation

using DeepONet (Ce) is 0.0014s. Thus, using this information, we obtained Rt = 0.124, Re = 4.6 × 10−5,

and N∗e = 1124. That means, as far as the resultant surrogate model is used for more than 1124 times in

prediction tasks, DeepONet will be a more efficient choice.

Appendix D. Data Generation

Appendix D.1. Random field generation

We provide an overview of the algorithms of random fields generation using Fast Fourier Transformation

(FFT). Let W (x) be a Gaussian white noise random field on Rd. A random field φ(x) can be sampled by

φ(x) = F−1(γ1/2F(W ))(x) (D.1)

where F and F−1 denote Fourier transformation and its inverse. γ represents a correlation function ‖k‖−α

where ‖k‖ is the L2 norm of the wave number k ∈ Rd. In Sec. 3.1, 3.2, and 3.4, we adopt this method for

generating the training data with α = 5. We refer the reader to find more theoretical details in [42]
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Figure C.16: History of Training/testing errors of DeepONet for different problems.
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Figure C.17: Details of network setup (inputs/outputs and MSE errors of training/testing) for each example in

Sec. 3.

Appendix D.2. Sampling in elastoplasticity

In the case of elastoplasticity, the non-uniform tension t0(x) (see Fig. 9) is generated by

t0(x) =

3∑
i=1

Ai
i

cos (ix) +

3∑
i=1

Bi
i

sin (ix), (D.2)

where Ai, Bi ∼ N(0, 0.052) (i ∈ {1, 2, 3}) are independent normal random variables. We choose the standard

deviation as 0.05 to make sure that the dataset contains similar numbers of cases with and without plastic

deformation.
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