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Abstract—Timeliness of information transfer is critical in real-
time applications. Prioritizing timeliness, however, often comes
at the cost of rate inefficiency, especially in block coding. In
this work, motivated by the sequential nature of encoding and
decoding in arithmetic source coding, the timeliness of arithmetic
coding is investigated. For a generate-at-will source model, an
upper bound is provided on the average peak age of information
(PAol). This upper bound builds on the arithmetic coding scheme
of Shayevitz et al. (2007) which has a finite look-ahead parameter
d. It captures interesting trade-offs between PAol, compression
rate, and the look-ahead parameter d. For periodic sources,
rate efficiency is argued to be less critical than the look-ahead
parameter d in minimizing the peak age, especially when the
traffic load is moderate and small. Through simulations, two
observations are made: (i) the optimal look-ahead parameter d is
an increasing function of the traffic load, and (ii) asymptotically,
as the traffic load gets close to its limit 1, the classical arithmetic
coding (without a finite bound on d) performs better than the
state-of-the-art age-optimal block codes.

I. INTRODUCTION

Age of information (Aol) is an important performance met-
ric for real-time sensing, estimation, and control applications
where freshness of information is critical. Aol is a metric that
is not directly captured by either rate or delay of a system,
although it is affected by both. Originally targeting status
updating systems, Aol captures how timely the information
is from the receiver’s perspective by tracking and accounting
for the time since the generation of information at the source.
Reference [1] and follow-up work, e.g., [2]-[4] use queuing
theory to analyze average (or peak) age of information, see
also [5], [6] and the references therein. Additionally, Aol
has been extensively studied in information-freshness focused
scheduling for wireless networks [7]-[17], in remote estima-
tion and control [18]-[21], and in many other settings, e.g,
[22]-[28]. Recent works have also considered new source
and channel code designs to minimize the average age of
information [29]-[35]. This work focuses on timely source
coding. Below, we review literature related to our work.

A. Related Work

Reference [36] studies age minimization in lossless block
coding for a streaming source with symbols that arrive pe-
riodically. The authors show that maximizing the error ex-
ponent is not equivalent to age minimization. They further
use results from queuing theory to relate Aol to the first and
second moments of codeword lengths. With this approach,
they propose age-optimal block codes. The case of random
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source symbol arrivals is considered in [37]. Reference [38]
considers a setting in which the encoder is informed of the
busy/idle state at the channel interface. The authors propose a
strategy in which the encoder switches among codebooks with
different source blocklengths based on the backlog of symbols
at the encoder, balancing delay and compression efficiency. In
[39], variable length coding is investigated for random source
arrivals and it is shown that it outperforms block coding when
the traffic load is large. Distinct from the above-mentioned
settings, [40] considers a generate-at-will model aiming only at
age minimization. Compared to previous settings, this means
that any source symbol that is generated while the system is
busy will be discarded for newly generated packets make the
old ones obsolete with respect to the age of information. In
this model and through an optimization framework, [40] shows
that asymptotic minimum average age can be attained up to a
constant gap by Shannon codes that are designed for a tilted
version of the original pmf.

B. Contributions

It is known that there are fundamental tradeoffs between rate
efficiency and age efficiency, especially in block coding. This
is because coding takes advantage of the typical behaviour
of sequences while timeliness requires immediate encoding
and decoding. In this sense, it is natural to look for sequential
encoding/decoding strategies that encode/decode depending on
the realization of the source as soon as they can. But this is
just what arithmetic coding does with asymptotic optimality.
As a matter of fact, it is known that arithmetic coding has the
best known redundancy-delay tradeoff [41], where the term
“delay” is simply the number of future source symbols the
encoder needs to encode for successful decoding. To avoid
confusion, we refer to this “delay” term as the look-ahead
parameter of the scheme. Motivated by the sequential nature
of encoding and decoding in arithmetic coding, we study its
age performance in two source models: generate-at-will and
periodic generation. Our findings are as follows:

o Under the generate-at-will model, we provide an upper
bound on the average peak Aol, capturing tradeoffs between
age, compression rate and the look-ahead parameter of the
arithmetic coding proposed in [41].

o In periodic source models, we argue that minimizing the
compression rate becomes less critical for (peak) age min-
imization than minimizing the look-ahead parameter of the
scheme, especially when the traffic load is not large. We



then propose a scheme based on the mismatched arithmetic
coding of [41] to trade rate optimality with the look-ahead
parameter of the scheme.

« We numerically investigate the average Aol performance of
the proposed scheme and show that the desired look-ahead
d is an increasing function of the traffic load. Moreover,
as the traffic load increases, asymptotically approaching
1, the classical arithmetic coding (matched to the original
source) outperforms state-of-the-art age-efficient block cod-
ing schemes in terms of average Aol.

II. SYSTEM MODEL AND PRELIMINARIES
A. Two Settings

Consider a discrete memoryless source X with alphabet
X ={0,1,...,K — 1}, pmf p(z), z € X, and entropy H (X)
that is to be compressed and communicated by a noiseless
channel. We consider two information generation models.
First, we consider a generate-at-will model in which the source
generates an iid source symbol as soon as the channel becomes
available. If the channel is already available, we account for
a processing time of § for the generation and/or processing of
the next symbol. The second model we consider is a periodic
generation processes in which source symbols arrive every
time unit.

The source feeds information to an encoder which outputs
L; bits for the source symbol X; and sends them to a decoder
over a noiseless channel. L; is a non-negative integer random
variable. The delay of transmission per bit is assumed to be
v time units and the encoded bits go through the channel on
a first come first serve basis.

Suppose that symbol X; is generated at time 7(¢). Under
the periodic generation model, we simply have

T(i) =1 (periodic generation).

By contrast, under the generate-at-will model, generation time
7(2) is a function of all past L;, j < i. More specifically,
if L; = 0, the channel remains available and the source
immediately generates another symbol with § processing time,
i.e., X;11 is generated at time 7(i + 1) = 7(¢) + 6. Otherwise,
7(i4+ 1) = 7(i) + vL;. Under this model, the generation time
of the i symbol is thus

1—1
(i) = Z max(vL;,d) (generate-at-will).
Jj=1

The decoder is interested in the timely recovery of the
source symbols in a lossless manner. Denote the time at
which the source symbol X; is decoded by t(¢). Right after
decoding X;, the age of information drops at the decoder. It
can happen that the decoder decodes multiple source symbols
at a time. We assume a small processing time & between
decoded symbols. That is, the age is at peak right before X is
decoded. This is a reasonable assumption since source symbols
are often recovered sequentially in practice. This assumption
simplifies our analysis. Figure 1 shows a sample age evolution
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Fig. 1: A sample path for age of information under the
generate-at-will source model.

in our generate-at-will model. Generation times {7(i)}; and
delivered times {t(7)} are marked on the figure.

To provide understanding on the timeliness of arithmetic
coding and its tradeoff with rate optimality, we consider the
metric of average (peak) age of information.

Consider time horizon 7' — oo and suppose that the
first m(T) source symbols are decoded, where m(T) is a
random variable. Right before decoding each symbol X,
i=1,...,m(T), we have a peak age of information' denoted
by A(i). After delivery, age drops to D(¢) which encodes the
delay in decoding X;. The average peak age of information
(PAOI) is

PAol = lim E

m(T) .
T—o0 lZi_l A(Z) (1)

m(T)

This metric is utilized in Sections III-IV. The average age of
information (Aol) is

S AG)

m(T) @

Aol = lim E
T—o0

where A(i) =
Section V.

1 (A(i)? — D(i — 1)?). This metric is used in

B. Arithmetic Coding Preliminaries

Arithmetic coding is known to be an asymptotically rate-
optimal lossless data compression technique. The idea is to
sequentially map a source sequence to a sequence of shrinking
intervals in [0, 1] that correspond to and contain the probability
of the source sequence and can be represented by a binary
sequence. It is known that there are infinitely many sequences
for which arithmetic coding has unbounded “delay” where
the term delay traditionally describes the lag between the
encoded and decoded source symbols. The lag is associated to
what [41] calls the “forbidden points”. If the encoder interval
contains a forbidden point, the lag can become unbounded.

'We assume a minimum processing time for decoding and, therefore, there
is a peak right before decoding each source symbol



In [42], it was shown that the lag between the encoded and
decoded source symbols is bounded in expectation. [41] made
the lag finite by introducing a mismatched encoder with two
additional (fictitious) source symbols. When the lag reaches
the threshold d, then one of the fictitious symbols is sent by
the mismatched encoder to force immediate decoding. These
fictitious symbols are such that they change the encoding
interval into a smaller one with no forbidden points and thus
make decoding possible and reset the lag. We refer to d as the
look-ahead parameter of the scheme.

Naturally, a bounded d comes at the cost of some redun-
dancy in compression rate. This redundancy is due to (i)
the fact that the arithmetic encoder with fictitious symbols is
slightly mismatched with the original source and (ii) describ-
ing the fictitious symbols requires additional representative
bits. By finding the right balance between these two sources
of suboptimality, [41] finds tradeoffs between the look-ahead
parameter d and redundancy.

We use the results of [41] and further build on the idea of
mismatched arithmetic coding for age minimization. We refer
to the mismatched source (with the two fictitious symbols) as
X with pmf pg(#) and alphabet set X € X U {s1,s2}. For
example, [41] designed X to be given by

rx(j) = ]f)i(;)e

Px(s1) =px(s2) =€

jeX 3)

where € = a?(1 + dlog(1/a)) loge.

Lemma 1 (cf. [41]). Let L; be the number of new bits that
are output by the encoder after reading X;. Under the scheme
of [41], the compression rate is

1 m
lim — L;=H(X d
Jim 35 = HX) +R(@

where
2
R(d) < 4ad=17c(@) (1 +(d—1—c(a))log (;)) (4)
o= rjnea;cp(j) Q)
0 a< L
cla) = { 2Lmj -1 otherit?ise. ©)

The following proposition is straightforward for the scheme
of [41] based on the analysis in [42].

Lemma 2. Let n(i) be the number of bits received by the
decoder right before X,;, X; € X, is decoded following the
scheme of [41]. The following holds.

Eln(m)] < m (H(X) + R(d)) + log(4e).  (7)

Remark 1. Note, as also remarked in [42], that E[n(m)] is
different than the average number of bits produced, because
n(m) is the number of bits produced until a symbol is decoded.
So the latter is often larger than the former.

III. THE GENERATE-AT-WILL MODEL

We now study the average peak age of information for
the arithmetic coding scheme of [41] (with finite look-ahead
d) under the generate-at-will model. After decoding a source
symbol, the destination’s information is updated with a more
recent source symbol. Right before decoding, the age is at a
peak. Suppose that the source symbol X; is decoded. Recall
that ¢(7) is the time at which X; is decoded. The peak age of
information before decoding X; is ¢(i) — 7(¢ — 1) and the age
of information drops to (i) —7 () after decoding X;. The peak
age before decoding X; can be upper bounded as follows:

A@) =t() — 7(i — 1) ®)
1—2
=t(i) — Z max(vL;,0) 9
j=1
i—2
<v|n@)—Y L;|+2ds (10)
j=1

where n(i) is the number of bits delivered before X; is
decoded and 23;21 L; is the number of bits communicated

before X;_; was generated. Besides the term n (i) — 22;21 L;
that partly constitutes ¢(i) — 7(¢ — 1), we have a term of order
O(dd). The precise description of this term which we have
upper bounded by 2dd is (d; + w;)0 where d; is the look-
ahead needed for the decoding of X; and w; is the number of
symbols decoded simultaneously at time ¢(¢). Since the look-
ahead parameter of the of arithmetic coding in [41] is bounded

by the constant d, both terms are bounded by d.

For arithmetic coding with finite look-ahead parameter d,
we prove the following upper bound on PAol.

Theorem 1. Given a generate-at-will source model with trans-
mission delay v per bit, the average peak age of information
(PAol) is upper bounded as follows:

PAol < 2v (H(X) + R(d)) + vlog(4e) + 2dd. (11)

Proof. Recall that m(T') denotes the number of decoded
source symbols up to time 7. Let

R*(d) == H(X) + R(d)

and define event £ as follows:

} (12)

where the term O(4) is essentially the long term expected
portion of the symbols X; that are encoded with zero bits



(L; = 0). This event occurs with high probability as 7' gets
large. The average peak Aol can now be written as follows:

S AG)
m(T)

7rL(T)
— lim E Fm\‘%] Pr(£d)

[2;”%

lim E

T—o0

m
rrL(T)

< lim E lijzl
m

where the inequality holds because the look-ahead parameter
(and hence the delay and age A(i)) are bounded per design
of [41]. Since the second term vanishes as 1" gets large, we
focus on the first term.

]5 ] Pr(£2%)

Dleg| pr(et) + 0 Pr(ef)

S AG)
(a) V}?{d)}j"“T)/M ) d
= 7| T(1=0(5) —o(T) P
v (n0) = S0 Ly 2 (T)d

<vR@E ( <1_0(5>>—o)<T> ##priet)
(<C) Z];E:[T(T)] VQR( )E[ (Z) Zz 2LJ Ed} Pr(gd) (T)
< T(1—0(5)) — o(T)

2vR* (d)E[m(T)]dé

T(1-0(9)) —o(T) 4

ﬁ? E:Epn(Tv] 21%*(d)E:[n(z) }:;;j‘Lj} +o(T)
< T(1-0(5)) —o(T)

2vR*(d)E[m(T")|do (13)

T(1-0(6) —o(T)
In the above chain of inequalities, (a) follows by the definition
of &% in (12), (b) follows by (10), (c) holds by the definition
of &%, in particular because m(T) < E[m(T)] + o(T) and
n(i) — 23;21 L; is bounded by:

Ly

< (d+2)maxL; < (d+ 1)? log(p :

n(i) —
J
Finally (d) holds because n(i) — 22;21 L; is positive.
Taking the limit 7" — oo in (13) for finite d, we obtain

Il
—

I v [ni) - 23 1] o
T T T(1-0(9))
(& E[m(T)]v?>R*(d)(2R*(d) + log(4e
2 i B DR ¢ logtie)
= 2vR*(d) + vlog(4e) + 2do.
Step (e) follows from Lemma 2 and the fact that
12] 1 E[L;] = R*(d) for large 4. This concludes the proof.

O

IV. PERIODIC GENERATION

The second source model assumes periodic generation of
the source symbols. There is a major difference between this
model and the one we studied in Section III. Below, we will
argue that even though efficiency in compression is still desired
to minimize network congestion and timeliness, its role is not
as dramatic in this setting.

The peaks of the age of information function A(%) satisfy

E[A®)] =E[t(i) — (i — 1)]
<1+E[W;]+E[n(i) —n(i—1)]|+E[d; 8;] + O(d9)

(14)

where W; is the waiting time for symbol X; to be encoded,
d; is the look-ahead required for X; to be decoded and f3; is
the portion of time in which there is no bit transmission in
time interval [i,4+ d;). For example, if W; > d;, then 3; = 0.
Analyzing E[W;] is non-trivial because the number of bits
produced for symbols {X;}; (and hence the corresponding
service times) are dependent and so typical results from
queuing theory don’t apply. Nonetheless, (14) still provides
us with useful intuitions, and guides us to new arithmetic-type
coding schemes.

There are multiple coupled factors playing role in (14): (i)
W; (which depends on the traffic load of the channel and
the rate-efficiency of the encoder), (i) n(i) — n(¢ — 1) which
is the number of additional bits that the decoder needs after
recovery of X;_; to decode X; (and is governed by the rate-
efficiency of the encoder), and (iii) d;5; (which is governed
by the look-ahead parameter of the scheme, the traffic load of
the channel and the rate-efficiency of the encoder). As traffic
load increases, W; increases and (3; decreases. In its extreme
case, 3; vanishes and (14) would be minimized by minimizing
the compression rate. When traffic load is small, however,
W; is small and the dominant factor governing (14) is d;. So
minimizing d as a finite upper bound on d;, even at the cost
of a larger compression rate, may be desired. This suggests
devising schemes with a smaller look-ahead parameter d. We
build on the mismatched arithmetic code design of [41]. Given
a source X with pmf px (.), add two fictitious source symbols
and perturb the source pmf into p¢(.) with the alphabet set
X = X U {s1, 52}, such that the following assumption holds.

Assumption 1. There is an ordering of the source alphabet
through a map g : X U{s1,s2} — {0,1,..., K+ 1} such that
the cumulative distribution function f s satisfies

0 < Felolo) ~ 1), Felols) < % (15)
S <Ixlols) Txlgl) + D2 6)

Using an arithmetic encoder matched to the source X with
properties stated in Assumption 1, we achieve a smaller d
at the cost of a larger rate. More specifically, every time the
look-ahead parameter reaches the target value d, the encoder
inserts one of the two fictitious symbols. Assumption 1 makes
immediate decoding possible (see also [41]).
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Fig. 2: Aol of a source with uniform generation process.

Remark 2. While Assumption 1 also underlies the designs
in [41], the challenge in [41] is to choose the perturbation
carefully so that rate efficiency is not compromised too much
while keeping the look-ahead bounded. As discussed above,
rate optimality is not always essential in the periodic source
model. Therefore, we have the freedom to perturb the source
however we want as long as Assumption 1 is satisfied.

V. SIMULATION RESULTS

In this section, we provide a summary of our simulation
results, shedding light on the tradeoff between rate, age, and
the look-ahead parameter d in arithmetic coding. While we
worked with the metric of peak Aol in previous sections, we
now consider average Aol for our simulations in order to have
a fair comparison with the state-of-art.

In Figure 2, we consider a periodic source with pmf
px(0) = 0.6,px (1) = 0.3,px(2) = 0.1 as was considered
in [38]. The source symbols are generated every unit of time.
Let p = vH(X) be an indicator of the “traffic load”. First,
we compare the performance of arithmetic coding (in terms of
Aol) with the backlog-adaptive schemes of [38]. We observe
that in its classical form, arithmetic coding outperforms the
schemes of [38] when p is very large. This is consistent with
the asymptotic superiority of arithmetic coding, compared to
block coding, in terms of the decoding lag [41]. When p is
small, however, arithmetic coding does not perform well.

The reason behind the poor performance of arithmetic
coding in the regime of small p is that while arithmetic
coding seeks rate-optimality, it does so by encoding with a
delay (waiting for future source symbols). The time elapsed in
waiting for the generation of new source symbols contributes
to the bad age performance of arithmetic coding. That time
could have been used for transmitting bits without impacting
Aol adversely. In other words, a smaller look-ahead parameter
is desired even at the cost of a larger compression rate.

In Figure 3, we demonstrate the impact of d on Aol
for different regimes of p. We encode the source using a
mismatched arithmetic encoder with two fictitious symbols.
For this purpose, we deviate from the design of [41] which
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Fig. 3: Impact of the look-ahead parameter d.

targets finite (but not necessarily small) values of d and
follows the approach we outlined in Section IV. For the plot
in Figure 3, we have perturbed the original source pmf to
p5(0) = 049, pg(l) = 0.3, pg(2) = 0.1 in order to
allow for p¢(s1) = 0.01 and p ¢ (s2) = 0.1. With this choice
Assumption 1 holds and therefore s; and s, can be mapped
to intervals without forbidden points. This perturbed source
is not dependent on d and does not converge to the original
source as d gets large. This explain why the black curve (for
mismatched arithmetic coding with d — o0) is sub-optimal
compared to the (classical) matched arithmetic encoder for
large p. Optimal source perturbation methods remains open
for further exploration. We observe in the plot of Figure 3 that
imposing a judicious tradeoff between the look-ahead and rate
of arithmetic coding, we can improve the Aol. In particular,
as p increases, a larger look-ahead d is desired.

VI. CONCLUSION

In this paper, we have studied the interplay between two
important performance metrics in source coding: efficiency in
compression and timeliness of decoding. We have done so
through the lens of arithmetic coding, which is sequential by
nature and is known to have the (order-wise) best asymptotic
delay performance. Looking at generate-at-will and periodic
source models, we have studied the tradeoff between age,
rate, and the look-ahead parameter of arithmetic coding. We
have demonstrated that, for periodic source models, optimal
compression is not always desired for age minimization es-
pecially in regimes where the traffic load is not very large.
Consequently, we have outlined an approach building on the
mismatched arithmetic encoding of [41] to improve the time-
liness of classical arithmetic coding by trading rate efficiency
for a smaller look-ahead parameter.

An interesting future research direction is to devise optimal
mismatched encoding schemes that can adapt to the backlog
of the system.
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