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Abstract—Graph processing is a vital component in various application domains.
However, a good graph processing performance is hard to achieve due to its
intensive irregular data accesses. Noticing that in real-world graphs, a small
portion of vertices occupy most connections, several techniques are proposed to
reorder vertices based on their access frequency for better data access locality.
However, these approaches can be further improved by identifying reordered data
more effectively, which will reduce reordering overhead and improve overall
performance. In this letter, we propose Learning-Based Reordering (LBR), a novel
lightweight framework that identifies and reorders hot data adaptively for given
graphs, algorithms, and threads. Our experimental evaluation indicates that LBR
decreases reordering overhead by 24.7% while improves performance by 9.9%
compared to the best-performing existing scheme.

Index Terms—Graph processing, reordering technique, learning-based prediction
model

<+

1 INTRODUCTION

GRAPH is a powerful data structure to describe real-world relations
and is widely used in various application domains. However,
graph processing workloads suffer from poor performance due to
their irregular memory access patterns, making it hard to utilize
locality-based performance enhancement designs. Moreover, the
large footprint of graph datasets, which is far beyond the cache
capacity, magnifies the impact of random data accesses on the sys-
tem performance by causing frequent cache misses.

On the other hand, most of the real-world graphs follow a
power-law distribution, indicating that a small portion of vertices
contributes to most connections [2]. Based on this observation, pre-
vious works focus on packaging the vertices with higher access
probabilities (i.e., hot vertices) in successive memory blocks before
the execution phase. A common way to determine the hot vertices
is to utilize the vertex degree. Therefore, the hot vertices identifica-
tion problem is converted to determine a degree threshold that sep-
arates high-degree and low-degree vertices [6].

Previous works [1], [2], [7] calculate the average degree (i.e., the
ratio of edges and vertices number) as the threshold for hot data
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identification. Such a static estimation may cause two problems:
First, the selected threshold may be too low, and some non-hot data
may be reordered, which will not only increase the reordering
overhead but also make the scale of reordered vertices exceed the
cache capacity, limiting the benefit of such an optimization. Sec-
ond, since graph processing performance is also sensitive to
dynamic factors like algorithms and threads, the static degree cal-
culated from the graph dataset may not be enough.

Therefore, we are motivated to find a balance between improv-
ing cache performance and reducing reordering overhead. Our
contributions can be summarized as follows:

e  We quantify the reordering overhead increasing trend with
the reordered vertices scale growth and further prove that
reordering a small portion of vertices can achieve signifi-
cant performance improvements.

e We propose Learning-Based Reordering (LBR), a novel frame-
work contains a learning-based prediction model for hot
data identification and a lightweight reordering scheme for
improving data locality.

e We evaluate the effectiveness of LBR on a real machine
across 80 datapoints, showing that LBR improves perfor-
mance by 9.9% while reduces reordering overhead by 24.7%
over the best-performing existing reordering technique.

2 MOTIVATION

Vertex reordering is a straightforward optimization in graph proc-
essing based on the power-law distribution. However, previous
studies either fail to control reordering overhead or fail to achieve
the highest performance improvement.

Sort replaces all vertices in a descending or ascending order,
resulting in significant reordering overhead. HubCluster [1] and
HubSort [7] categorize vertices with an equal or higher degree than
the average as hot ones and reorder them successively in the mem-
ory. Unfortunately, in this case, the scale of the hot vertices exceed
the cache capacity for most real-world graphs, which limits the
ability of reordering. Table 1 quantifies the portion of hot vertices
determined by the average in-degree and its storage scale. On aver-
age, 18.3% of vertices are marked as hot ones, occupying 125.1 MB
across fourteen datasets evaluated in our work. DBG [2] divides
vertices into multiple groups according to their degrees and main-
tain vertices within any group in their original order, which
reduces reordering overhead and preserves graph structures. But
since DBG still utilizes static parameters (i.e., the average degree
and its multiples) as the group boundaries, its performance is not
stable facing dynamic factors like various thread configurations.
RCM [3] is effective in reducing memory bandwidth but can not
solve the irregular memory access patterns well.

To summarize, nearly all previous works choose the static aver-
age degree to guide the reordering scheme. However, our evalua-
tions find that the over-estimated reordered data set increases the
reordering time significantly, while has a minimum impact on exe-
cution time. Fig. 1 demonstrates the reordering and execution time
of the application SSSP on the datasets pk and Il with different reor-
dered vertices scale. We change the degree thresholds for reor-
dered vertices identification and thus vary the reordered vertices
portion from 5% to 30%. We make the following observations:

e Not surprisingly, a larger reordered data set requires lon-
ger reordering time. In particular, when running with II,
the reordering time grows from 8s to 15s as the proportion
of the reordered data increases from 5% to 30%.

e  Meanwhile, the execution time changes slightly as the scale
of reordered data grows. For instance, in II, when the
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TABLE 1
Hot Vertices Percentage and Scale Guided by the Average In-Degree
Graph Perc. Scale (MB) Graph Perc. Scale (MB)
pl 20% 70 bd 12% 59
pt 16% 59 ru 17% 111
ja 19% 70 fr 16% 111
pk 32% 119 ol 33% 232
fl 12% 47 de 17% 126
it 17% 73 hd 9% 40
lj 25% 278 [l 30% 357

proportion of the reordered vertices increases from 5% to
30%, the execution time only decreases from 12.39s to
12.37s.

The over-estimated reordered data scale affects system perfor-
mance from two aspects. First, the scale of hot vertices often
exceeds cache capacity, limiting the performance enhancement.
Second, real-world graphs often exhibit community characteristic
[4], indicating that vertices placed nearby in the memory tend to be
accessed successively. Changing the location of too many vertices
cannot preserve the original structure and will damage the
performance.

Based on the above analysis, A smaller group of reordered ver-
tices will lower reordering overhead and preserve the original
graph features. As an alternative to choose a static average degree,
we prefer an adaptive framework considering dynamic factors and
identifying a relatively smaller portion of hot vertices, motivating
us to exploit our proposed framework, LBR.

3 FRAMEWORK DESIGN AND IMPLEMENTATION

3.1 Characteristic Space

We use Machine Learning to identify the appropriate degree
threshold dynamically. In the training phase, the prediction model
learns from data samples, whose input is a vector as shown in
Equation (1) and the output is a degree threshold.

In input vector, the vertex and edge numbers change with vari-
ous graph datasets, demonstrating static graph density. The appli-
cation ID and thread number reflect dynamic runtime features.
The output of the model is the degree threshold of hot vertices,
which is also a reflection of hot vertices scale as well. Those vertices
with a higher degree than the predicted degree will be replaced
successively in the memory to improve locality while the others
will stay in the original place to decrease reordering overhead and
pursue community features

vertex number

. edge number

input space = Lo . (@)
application ID

thread number

3.2 Training Phase

To generate training samples, we implement fine-grained experi-
ments to find optimal degrees for distinct [vertex, edge, applica-
tion, thread]” configurations. Noticing that most real-world graphs
are directed graphs, we choose in-degree or out-degree thresholds

App Time (s)
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Fig. 1. Application time with different reordered vertices scale.

~40 40
o BFS DC
<30 30
o

720 20
=]

=9

» () 0

fl. hd pl or GM fl hd pl or GM
B Linear Regression @ Random Forest

Fig. 2. Multi-variable linear regression versus random forest.

as outputs according to application behaviors. If an application tra-
verses the graph following out-neighbors of each vertex, vertices
with more in-neighbors are more likely to be accessed. Then we
build the training set using in-degree as the outputs and predict in-
degree threshold in the testing phase to group vertices into hot and
cold ones.

For an input vector [vertex, edge, application, thread]”, we
change the degree threshold, reorder hot vertices identified by dif-
ferent degree thresholds and evaluate the application speed-ups.
We choose the top ten degrees with the best performance as the
outputs, generating ten samples for an input vector. We further
vary the application ID and thread configurations respectively so
as to obtain dissimilar samples facing dynamic factors. It takes
months to generate input samples and train the model. The model
is reusable, not requiring re-train for future workloads.

3.3 Model Selection

To build a lightweight degree prediction model with the highest
performance improvement, we explore two learning-based mod-
els: multi-variable linear regression and random forest, and estimate
application speed-ups with their predicted degree thresholds. We
predict degree thresholds with the same input samples on the two
learning-based models. Fig. 2 exhibits the application BFS and DC
speed-ups achieved by linear regression and random forest. BFS pro-
vides 24.3% speed-up over the baseline averaging across four test-
ing datasets when random forest is adopted, outperforming 20.9%
acceleration from linear regression. Similarly, random forest supplies
an outstanding average speedup of 20.1% in comparison to 14.8%
for linear regression in DC. We find that overfitting in linear regres-
sion is critical since there exist no obvious linear relationships
between various threads in the characteristic space. On the other
hand, random forest enhances the overfitting problem through sev-
eral disjoint decision trees. Therefore, we select random forest in
LBR framework as our learning-based model since the predicted
degree consistently achieves a higher application speed-up over
the baseline than multi-variable linear regression.

3.4 Prediction-Based Hot Data Reordering

Our proposed LBR framework knows which vertex ought to be
rearranged with the help of the degree threshold predicted by the
learning-based model. As shown in Fig. 3, we train the prediction
model offline with generated samples. In the testing phase, we
input the vertex and edge numbers of the testing graph, the appli-
cation ID, and the thread number to the trained model. The model
outputs a predicted degree, which guides the reordering phase.

Training Phase
(V1 Ei, Ay, Ti, D) 27 Train the
(Vn, En, An, Tn, Dn)"

Predicted Degreeé

Reordering Phase
NV .degree = Predicted Degree ?

Y.
Current Hot Page is Full ?
Allocate a New Page
Replace the Vertex

Traverse all Vertices ?

Y-
Execution Phase

bl

Next Vertex

Testing Phase

Prediction -+
V,E,A,T)"
t.EAT

Fig. 3. LBRimplementation and workflow.
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TABLE 2 TABLE 4
Configuration of the Simulated System Testing Graphs
Configuration Dataset [V| |E| Dataset I\ [E|
Processor Type Intel Xeon Silver 4114 Wiki_pl (pl) 1.53 57.49 Flicker (f) 1.72 15.55
Frequency 2.2 GHz Hudong (hd) 1.95 14.87 Orkut (or) 3.07 117.18
Core 2 sockets, 10 cores per socket
L1 32KB private, 8-way |V| and |E| are all in millions.
L2 1MB private, 16-way
L 13.75MB shared, 11-way Table 3, and run fine-grained experiments to find the best-perform-
Other Memory 48 GB ing degree thresholds to generate input samples. We consider uni-
05 CentOS7 form random datasets to generate our input samples. They have
different vertex and edge numbers, representing various density
features. They come from different domains including social net-
works, twitter followers, and so on, so that we can safely consider
TABLE S different graphs to have uniform behavior. In the testing ph.
Training Graphs graphs to have uniform behavior. In the testing phase, we
generate input vectors on four graphs (shown in Table 4) using
Dataset V| |E| Dataset V| |E| their vertex and edge numbers combing with application and
Wiki_pt (o) 16 19.02 Japan (a) 161 71.06 thread configurations. We predict in-degree thresholf:ls for the four
Pokec (pk) 1.63 30.62 InterLinks (if) 187 9156 unseen graphs and evaluate the performance improvements
Baidu (bd) 2.14 17.8 Wiki_ru (ru) 2.85 82.06 guided by predicted degrees. These testing graphs have significant
Friends (fr) 3.02 10238 England (de) 323  81.63 different vertex and edge numbers with the training datasets,
LiJournal (l]) 4.85 68.48 LiveLinks (/) 5.2 49.17 ensuring the effective test of LBR.

|V| and |E| are all in millions.

At the beginning of the reordering phase, LBR allocates an
empty page waiting for hot vertices. Then LBR traverses the graph
and compares each vertex’s degree with the predicted degree.
Only vertices with an equal or larger degree than the predicted one
are replaced in the allocated page. Once that page is full, another
page will be allocated to keep hot vertices. LBR performs the execu-
tion phase until all vertices are traversed.

We reorder hot vertices together to improve cache performance
but allocate one page each time to decrease the demand for contig-
uous memory space. In such a case, hot vertices are located in con-
centrated pages without influenced by cold ones. Since the
predicted degree is higher than the average degree, the scale of hot
vertices is much smaller, benefiting the application from a lower
reordering overhead and a cluster-friendly representation.

4 EVALUATION

4.1 Experimental Setup

We implement LBR on GraphBIG [5], a widely used vertex-centric
graph framework. Rather than CSR format, the graph is denoted
by a vertex list containing pointers to all vertices. Each vertex is an
independent unit composed of vertex ID, property value, and in/
out-edge lists. Table 2 shows the hardware details of the evaluated
system.

We choose four classical graph algorithms (i.e., BFS, CCMP,
SSSP, and DC), in our experiments. Since all algorithms traverse
graphs following out-neighbors, LBR learns and predicts in-degree
thresholds for all applications.

In the training phase, we select a set of real-world graphs from
different fields with various vertex and edge numbers, as shown in

40

Speed-up (%)

GM fl hd pl or
BELBR mDBG ®mRCM @mSort ©HubCluster OHubSort

GM fl hd pl or

4.2 Experimental Results and Analysis

Performance: We evaluate LBR and compare it with Sort, HubClus-
ter [1], RCM [3], HubSort [7], and DBG [2] - the-state-of-the-art
reordering technique, over the LRU baseline without reordering.

Fig. 4 demonstrates application speed-ups excluding reordering
time for various testing graph. Each bar is a geometric mean across
five thread configurations. Averaging across all 80 datapoints, LBR
provides 17.3% speed-up over the baseline, outperforming
HubCluster by 9.9%, DBG by 10%, RCM by 50.4%, Sort by 27.1%,
HubSort by 20%. Through replacing hot vertices continuously in
the memory, LBR creates a cache-friendly scenario, improving the
locality of vertex property value.

As shown in Fig. 4, Sort replaces vertices in a descending degree
order, destroying the original graph structure completely, thus
causing application slowdown (-9.8%) averaging all the datapoints.
HubCluster and HubSort narrow the reordered vertices by utiliz-
ing average degree as the threshold. However, in some cases, like
the application CCMP on the dataset fI, they reorder too many ver-
tices and can not preserve graph community features very well,
leading to significant performance decrements (-37.1% and -9.7%).
On the other hand, LBR labels much fewer vertices determined by
the predicted degree threshold, protecting the structure most and
benefiting the performance. RCM is a classical algorithm to reduce
graph bandwidth. However, the poor performance in graph appli-
cations mainly comes from irregular data accesses, so RCM does
not solve the performance bottleneck. DBG receives an average
performance improvement by 7.3% over the baseline. However,
we find that facing dynamic factors like thread configurations,
DBG can not achieve a stable benefit. For example, in the applica-
tion CCMP on the dataset pl, DBG yields a speed-up by 36.7% with
20 threads but -64.7% with 40 threads. LBR is an adaptive

Fig. 4. Application speed-ups (excluding reordering time) for LBR and prior techniques over the baseline without reordering.
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Fig. 5. LLC MPKI for the application BFS across graphs. Lower is better.
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Fig. 6. Reordered vertices proportion and reordering overhead reduction.

framework considering runtime features, providing higher perfor-
mance than DBG.

LLC Misses Per Kilo Instructions (MPKI): To further explain the
performance increments, we analyze MPKI on LLC using various
reordering techniques. Fig. 5 shows LLC MPKI on the application
BFS configured by various threads. On average, LLC MPKI in LBR
is the lowest (43) while in RCM is the highest (62), clarifying the
huge performance gap between these two schemes. Although DBG
generates the least LLC MPKI in some cases (i.e., on the dataset pl
with ten-thread configuration), it can not work well facing dynamic
factors, producing 47 LLC MPKI on average.

Hot Data Proportion and Reordering Overhead. Since HubCluster is
the best-performing reordering technique in our evaluations, we
quantify the reordered data proportion of average degree
(employed by HubCluster) and our proposed LBR. Fig. 6 (left)
shows, for all datasets, LBR can generate less reordered vertices.
On average, the reordered hot vertices proportion reduces from
18.3% to 5.9% when the predicted degree guides the reordering
technique instead of the average degree. In the worst case, 32.9% of
vertices are categorized as hot ones by HubCluster in the applica-
tion CCMP on the dataset or, indicating that nearly one-third of
vertices will be rearranged in memory. Conversely, only 4.8% of
vertices are reordered by LBR, protecting the community feature
and thus improving performance.

Fig. 6 (right) indicates the reordering overhead reduction of LBR
over HubCluster. Since LBR reduces the scale of identified reor-
dered vertices significantly, the reordering overhead is decreased
as well. As shown in Fig. 6 (right), the average reordering overhead
reduction is from 11% to 40% for different datasets and can be up
to 41.8% in the application SSSP on the dataset or. The mean over-
head reduction is 24.7% using our LBR framework compared with
HubCluster.

5 CONCLUSION

Graph analysis plays an essential role in big data applications
today. However, cache performance of graph processing is poor
due to frequent cache misses. Multiple reordering techniques have
been proposed to improve cache utilization. Nevertheless, existing
methods are inefficient in both hot vertices identification and the
way of reordering. We find that average degree is not ideal to cate-
gorize hot vertices and its additional traversal is costly. In this
paper, we propose LBR that includes a prediction-based model to
find a just-right degree, which predicts less hot vertices but pro-
vides better performance than the average degree. The new scheme
has achieved significant performance improvements comparing
with prior works. Moreover, the framework is easy to combine
with any degree-based software graph optimizations. With our
approach, the application performance, in terms of execution time,
is 9.9% faster and the overhead is reduced by 24.7% compared
with the best-performing reordering scheme.
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