
CoPIM: A Concurrency-aware PIM Workload
Offloading Architecture for Graph Applications

Liang Yan1, 2, Mingzhe Zhang1, 2, Rujia Wang3, Xiaoming Chen1, 2, Xingqi Zou1, 2, Xiaoyang Lu3
Yinhe Han1, 2, Xian-He Sun3

1Center for Intelligent Computing Systems, Institute of Computing Technology,Chinese Academy of Sciences
2University of Chinese Academy of Sciences, Beijing

3Department of Compute Science, Illinois Institute of Technology, Chicago, IL
Email: {chenxiaoming, yinhes}@ict.ac.cn, sun@iit.edu

Abstract—Processing-in-Memory (PIM) is considered a
promising solution to improve the performance of graph-
computing applications by minimizing the data movement be-
tween the host and memory. Which workload to offload and how
to offload it to PIM logic determine whether the PIM architecture
is well utilized. Offloading too much or too little workload
from the host processor to the PIM side could hurt overall
performance. On the other hand, the offloading granularity
needs to be representative without losing generality. In this
paper, we present CoPIM, a novel PIM workload offloading
architecture that can dynamically determine which portion of the
graph workload can benefit more from PIM-side computation.
CoPIM focuses on the loop code blocks of graph applications
and evaluates the necessity of offloading based on a concurrent
memory access model. We also provide detailed architectural
designs to support the offloading. In this way, CoPIM reduces
the size of offloading instructions and also improves the overall
performance with less energy consumption. The experimental
results show that compared with other state-of-the-art PIM
workload offloading frameworks, CoPIM achieves a speedup
by the geometric mean of 19.5% and 11.4% than PEI and
GraphPIM, respectively. On the other hand, CoPIM also reduces
the un-core energy consumption by 6.8% and 6.5% on average
over PEI and GraphPIM, respectively.

Index Terms—Processing-in-memory, hybrid memory cube,
workload partitioning

I. INTRODUCTION

With the rapid development of information technology
such as big data, cloud computing, and artificial intelligence,
information processing has shifted from computing-intensive
to data-intensive. The conventional von Neumann architecture
faces the memory wall bottleneck [1]. The challenges mainly
come from two aspects: first, the frequent data transmission
between computing units and memory units has become the
bottleneck of power dissipation and system performance [2];
second, with the increase of data size [3], the effectiveness

This work was supported by National Key Research and Develop Program
of China (2018YFA0701500), by Key Research Program of Frontier Sciences,
Chinese Academy of Sciences (ZDBS-LY-JSC012), by Strategic Priority
Research Program of Chinese Academy of Sciences (XDB44000000), by
National Natural Science Foundation of China (61804155, 61834006), by the
Youth Innovation Promotion Association CAS, and by Beijing Academy of
Artificial Intelligence (BAAI), and by ZheJiang Lab (2019KC0AB01).

of the conventional memory hierarchy based architectures
utilizing data locality decreases or even becomes invalid.

In terms of technology, with the development of the 3D-
stacking and Through Silicon Vias techniques, a new solution
for the memory wall problem was proposed: the Processing-
in-Memory (PIM) architecture. PIM integrates computing re-
sources into the memory to make full use of the near-data
advantage [4], [5]. PIM reduces unnecessary data movement
between the on-chip caches and the memory, thus significantly
improving memory access’s energy efficiency. In terms of
application, modern big data applications run on massive data
sets, and the data movement is significant. Among them,
graph-computing applications are particularly popular, because
graph naturally captures the relationship between data items,
and allows data analysts to obtain valuable insights from
patterns in data for wide application [6]. However, graph-
computing brings great challenges to memory system due
to the random memory access. As a result, because of the
advances in both technology and application, the research
community and industry become increasingly interested in
applying PIM to graph-computing applications.

However, how to divide the graph-computing program rea-
sonably and select the proper instructions for PIM has become
a significant challenge. An unreasonable workload offloading
will lead to frequent data movements between CPU and mem-
ory, resulting in performance and energy overhead. When the
in-memory computing units are configured as general-purpose
cores, the computation partitioning will have a greater impact.
Therefore, it is necessary to establish an accurate and effective
workload offloading model to improve the performance and
energy efficiency of the PIM system.

Most of the partitioning strategies aim to move highly
data-intensive portions of the application to PIM logic units.
However, some studies illustrate that certain codes can still
benefit from the host CPU due to the performance gap
between the CPU and the PIM logic [7]. Therefore, an efficient
workload offloading architecture should take into account the
performance differences between the CPU and PIM core to
maximize the efficiency of the overall system.

Intuitively, an instruction that is suitable for PIM execution
should involve a cache miss. This idea has been adopted by [4].978-1-6654-3922-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Lo
w

 P
ow

er
 E

le
ct

ro
ni

cs
 a

nd
 D

es
ig

n
(I

SL
PE

D
) |

 9
78

-1
-6

65
4-

39
22

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

LP
ED

52
81

1.
20

21
.9

50
24

83

Poster101.pdf 1 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

However, a modern memory system is supported not only by
memory hierarchy but also by various data access concur-
rency. Techniques that exploit memory concurrency or data
parallelism, such as out-of-order execution and non-blocking
cache, have been applied in modern systems to effectively
overlap computation and memory access. Concurrent memory
access enables multiple memory requests to overlap to reduce
the memory stall time. Cache misses can be divided into
two different types considering memory concurrency: mixed
misses (hit/miss overlapping) and pure misses [8] (no hit/miss
overlapping). A mixed miss can reduce the performance loss
because the processor can still perform execution from an
overlapped cache hit. On the other hand, a pure miss with
no hit-miss overlapping could hurt the overall performance
more. As a result, a pure miss will indeed induce performance
loss in the modern memory system with the consideration of
concurrency [8], [9].

As discussed, most of the existing PIM workload partition-
ing strategies did not fully consider the memory access con-
currency. There remains space exploration to find an accurate
criterion to define which part of the code will cause the CPU
to stall and so that we should move them into PIM. This paper
aims to find an approach to wisely partition the code between
CPUs and PIM processors, which can transfer codes that
indeed need to be executed in memory with the consideration
of memory concurrency using last level cache (LLC) pure miss
cycle rate. We make the following contributions in this paper.

• We utilize the concept of pure miss in the cache hierarchy,
which considers both access concurrency and locality. We
identify that using pure miss and its related metrics can help
find critical parts of the workload that should be executed on
the PIM for better performance.

• We then propose CoPIM, a concurrency-aware PIM work-
load partition and offload architecture that integrates memory
access concurrency measurement and the workload source
code sampling. We present the detailed workflow and archi-
tectural extensions of CoPIM.

• We compare CoPIM with other state-of-the-art PIM code
partition frameworks and show the improvements with detailed
experimental results. We show that we can achieve higher
performance with less workload offloading and energy con-
sumption.

II. BACKGROUND AND MOTIVATION

A. Processing-in-Memory

To mitigate the memory wall bottleneck, the new computing
paradigm, PIM, proposes performing the computation directly
inside or near the memory modules. Researchers have pro-
posed various PIM designs and showed significant perfor-
mance improvement for applications like data analytic [10],
graph processing [6], [11], DNN training [12], etc.

In general, the PIM cores are much weaker in perfor-
mance than CPU, as they lack large caches and sophisticated
instruction-level parallelism (ILP) techniques. As a result, the
workload to be executed by PIM needs to be appropriately

chosen. Offloading too much or an unsuitable workload to the
PIM side could hurt the overall system performance.

As for the partitioning approach, there are already some
typical partitioning methods. For example, PEI [4] considers
the locality of the program and uses LLC miss as the standard
of code partitioning. GraphPIM [6] demonstrates the perfor-
mance benefits for graph applications by offloading the atomic
operations to PIM. Nonetheless, concurrent memory access is
not fully taken into account in both PEI and GraphPIM as
far as we know, so it may result in unnecessary code being
transferred into PIM. We will then present why and how
concurrent memory access could change and impact overall
system performance.

B. Concurrent Memory Access Model

Average memory access time (AMAT) is a standard metric
to analyze memory system performance. An implicit assump-
tion of AMAT is, the memory only supports sequential ac-
cesses and do not have multiple accesses coinciding. A recent
performance model, Concurrent-AMAT (C-AMAT) [8], [9],
was developed to extend with the consideration of concurrent
memory access. C-AMAT provides a more accurate analysis of
modern memory systems where concurrent memory accesses
are common.

One of the important concepts introduced by C-AMAT
is pure miss. pure miss contains at least one miss cycle
which does not have any hit access overlapped with. Due to
concurrent memory access, during miss cycles overlapped with
one or more hit cycles, the processor can still work. However,
if a miss cycle has no hit to overlap with, it can severely
hurt the performance. Therefore, reducing pure misses, as
well as pure miss cycles, can significantly improve the overall
performance.

Based on the insights from the C-AMAT model, we use the
pure miss cycle rate of LLC (θ) to describe the cache efficiency
of a loop code block in graph-computing applications when
considering concurrent misses:

θ =
of LLC Pure Miss Cycles

of Total CPU Cycles
. (1)

The higher the θ value, the greater the probability that this code
block would introduce a longer CPU stall time. To maximize
performance, we can offload the code block with a high θ value
into PIM logic to relieve the pressure on memory accesses and
reduce the overall execution time.

C. Motivation

Due to the performance difference between CPU and PIM
processors, migrating too many tasks to the PIM side for
execution may lead to a decline in overall performance. So the
room for improvement of PIM workload partitioning is to find
the most critical factor that causes the performance degradation
to judge the code block whether needs to be transferred to
PIM or not. It has been suggested in the C-AMAT model
that pure miss becomes the critical factor that could most
hurt the performance. As illustrated in [8], [9], memory

Poster101.pdf 2 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

Bellman-Ford Shortest Path(G, w, v)

(a) (b)

D
at

a
Ac

ce
ss

1
瀑

2
瀑

3
瀑

4
5

Cycle
hit hit/miss pure miss

1
瀑

2
瀑

3
瀑

4
5

D
at

a
Ac

ce
ss

1: for i =1 to |G.V|-1 do:
2: if v is source then v.d = 0
3: else v.d = infinity
4: v' = null
5: for i =1 to |G.V|-1 do
6: for each edge(u,v) with weight w in edges:
7: if v.d >u.d + w(u,v)
8: v.d = u.d + w
9: v' = u
10: for each edge(u,v) with weight w in edges:
11: if v.d > u.d + w(u,v)
12: return FALSE
13: return TRUE

Cycle

Fig. 1. Example of workload partitioning in CoPIM. (a) Code snippet of
Bellman-Ford Shortest Path algorithm. G: graph structure; |G.V|: vertices;
w: distance weight; v: vertex; v’: predecessor of v; v.d: distance to v;
u: intermediate node; u.d: distance to u; w(u,v): distance from u to v. (b)
Concurrent memory accesses of 2 loops.

concurrency reduces the memory stall time by overlapping
multiple memory accesses. A single cache miss latency is no
longer a determinant factor of the memory system.

By taking the C-AMAT model’s inspirations, we find that
code blocks with the higher pure miss cycle rate are the
most potent part of an graph-computing application to be
transferred to PIM. These could bring two benefits: first, the
pure miss cycle rate is considered a more accurate metric to
determine the critical memory misses so that we can achieve
more optimal performance under this guidance; second, we
can reduce unnecessary code migration, leaving more work
executed on the host CPUs with higher performance.

III. COPIM FRAMEWORK

A. Overview
Previous works have used different granularities for PIM

workload offloading. For example, PEI [4] offloads workload
at the granularity of instruction. It is much more accurate than
other methods, but one consideration is that the overhead of
the frequent judgment of PIM instructions will be high. Some
other works choose to offload the application under the code
block granularity. For example, Prometheus [13] uses Low
Level Virtual Machine (LLVM) to partition the application
into many different code blocks. It examines the relationship
between these blocks and the memory access characterization
of the code blocks to establish the partitioning strategy. Com-
pared with instruction-level offloading, this method reduces
the frequent decision of offloading targets and reduces the
overhead accordingly. Nevertheless, it takes too much time
for large programs to use LLVM to obtain dynamic traces and
may transfer too many code blocks to PIM.

In this work, we select the loop body in graph-computing
applications as a code block to do the workload offloading.
There are three reasons for offloading in the granularity of
loop body: (1) Loop bodies account for a large proportion in
graph-computing application and can easily be located. (2) The
ubiquitous loop bodies often become the focus of optimization
due to frequent memory access operations. (3) To avoid the
significant overhead of the PIM target judgment compared
with finer granularity such as instruction.

For each miss cycle,
if it appears in

Hit Cycle Table ?

Yes

Finish

LLC requests

Hit in LLC? Hit Cycle Table++

Miss Cycle Table++

No

Track the miss
status in MSHR

No

pure miss++
Compare 2 tables

Fig. 2. Workflow of pure miss detection.

Fig. 1(a) illustrates a code snippet of the Bellman-Ford
Shortest Path algorithm that computes the shortest paths from
a single source vertex to all of the other vertices in a weighted
graph. There are two main steps: (1) initialization (line 1-4):
choose a starting vertex and assign infinity path values to all
other vertices; (2) relaxation (line 5-9): better ones replace
approximations to the correct distance until they eventually
reach the solution. In the code snippet, we mark two loops
to indicate the different memory behavior under the definition
of pure miss. Fig. 1(b) shows the concurrent memory access
schematic diagram of 2 marked loops. The first loop is for
initialization, which causes two pure miss cycles; the second
loop is for relaxation, which causes five pure miss cycles.
The different memory access behaviors mainly come from
the loops’ different operation complexity. As illustrated in the
example, pure miss is an effective measurement to examine
memory behavior with the consideration of concurrency.

B. CoPIM Workflow

In the CoPIM workflow, the most important step is to detect
the pure miss. We distinguish pure miss with the flow shown
in Fig. 2. Once memory requests come into the LLC is hit,
the request will be served by sending data to the register file
immediately, and we will track the hit cycle in a Hit Cycle
Table (HCT). Otherwise, if miss, a new Miss Status Holding
Register (MSHR) entry and cache line will be reserved for this
data request, and we will track this miss cycle in a Miss Cycle
Table (MCT). After we get the hit and miss cycle tables of the
first 5% loop iterations, we will search for each miss cycle of
MCT in HCT. If the miss cycle does not appear in HCT, we
define this miss cycle as a pure miss cycle. Additionally, we
can measure the pure miss cycle rate defined in Section II-B.

In our work, we adopt the sampling method for the first
5% of the loop iterations on the host CPU side. Furthermore,
the pure miss cycle rate (θ) is used to determine whether the
rest codes of the loop are placed into memory for execution
or not. The workflow of CoPIM is shown in Fig. 3. When an
application comes in, CoPIM locates all the loops and puts
the non-loop part directly on the host CPU for execution,
thus completing a preliminary program division. As described
in the prior sections, CoPIM focuses on loops, which are
conditional offloading candidate code blocks. Therefore, when
the program executes a loop body, we take the first 5% of
the loop iterations to do sampling. We make these portions of

Poster101.pdf 3 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

Define codes in
loop as

code blocks

Execute on
HMC

Select the first 5%
iterations to execute

on host CPU

YesSource C
ode

Is the code
belong to a loop

body?

Measure θ to rule
offloading of the rest
iterations , is θ >5%ᷠ

Execute on
host CPU

Yes

Finish

NoNo

Fig. 3. CoPIM workflow for selecting offloading targets.

loops executed on the host CPU and use the CoPIM offloading
architecture to distinguish the LLC pure miss cycle rate(θ). In
general, when the code block leads to a high value of θ, the
memory access characteristics of the code block are indigent.
If the value of θ is greater than 5%, we transfer all the rest
of the loop block into memory for execution; Otherwise, we
continue to execute the rest portion of the loop on the host
CPU. The threshold of θ will be discussed in Section IV-C5.

CoPIM does not restrict the method to identify loops. For
example, loops can be annotated manually in the source
code or identified automatically by the compiler. By any
loop identification method, the instruction set needs some
modifications to let the CPU know which instructions are
related to loops in the original source code. In CoPIM, we
use a CUDA-like mechanism for loop identification. We use
MACRO to mark the start and the end of the loop, then the
compiler can identify the loops and translate the marks into
the binary code.

C. Architecture Integration

Fig. 4 shows the architecture of CoPIM, which can be
divided into the Host and Hybrid Memory Cube (HMC) parts.
On the host side, we have configured 4 out-of-order (OoO)
CPU cores and equipped them with three cache levels, in
which L1 and L2 are private for each core, and LLC is
shared. L1 is divided into the I-cache and D-cache. To keep
the architectural changes non-intrusive to current hardware
architectures, we only make simple modifications to L1 I-
cache and L3 cache to implement the functions of CoPIM,
which will be described below. The HMC side mainly contains
the data switch component, the vault logic, and the stacked
DRAM layers. There are 16 vaults in our work. At the same
time, we equip the logic layer of each vault with a simple
sequential CPU core. The host and HMC are connected by
high-speed links, which typically run at several gigabits per
second per bit-lane. Requests flow over the high-speed links
to an interconnect that transmits them to their target vault
controller. Each vault controller sends commands to write/read
data to/from the memory banks in each partition. After the

O
oO

 C
or

e
O

oO
 C

or
e

L1-I

L1-D

L2

La
st

-le
ve

l C
ac

he

L1-I

L1-D

L2

L1-D

HM
C

Co
nt

ro
lle

r

PM
C

Links Sw
itc

h

DRAM
Partition

DRAM
Partition

DRAM
PartitionIn-order Core

Vault0 Logic

Vault1 Logic

Vault15 Logic

HOST HMC

...

... ...L1-I

In-order Core

In-order Core

IM
U

IM
U

LLC

MSHR

HCT

MCT

Mem Inst

ɚ {loop body}?

to L1
N

Y
θ > 5%?

to L1
N

Y
to HMC

valid

valid miss cycles

hit cycles

Fig. 4. CoPIM architectural designs to support the workload offloading.

DRAM access completes, data will be transferred back through
the interconnect to the high-speed links.

1) Pure Miss Counter: In CoPIM, We have implemented
the measurement of pure miss in LLC. The measurement is
realized by adding a Pure Miss Counter (PMC) unit in the
LLC. We record the information of hit/miss cycles at the same
time to find out the pure miss cycle. In the PMC unit, we
design two tables: HCT and MCT, to record the behavior of
the LLC and the cycle of hit and miss. As shown in Fig. 4,
the PMC unit is implemented by connecting the LLC and
the MSHR structures. The case of hit cycle can be obtained
by comparing the tag of LLC. When the tag is matched, the
cache is hit. All cache miss status is tracked by MSHR. When
a missed request arrives at the MSHR, the MCT will also track
this miss status. Furthermore, a pure miss cycle is determined
by searching each miss cycle of MCT in HCT to see if this
miss cycle has no hit cycles overlapped.

2) Instruction Management Unit: The program is divided
into two parts: loops and the others. For the portion without
loops, we directly execute these parts of code on the host CPU,
while the real potential PIM execution object is the loop body.
After sampling, if its pure miss cycle rate of LLC is greater
than 5%, we will transfer this loop into memory to execute. As
shown in Fig. 4, CoPIM integrates an Instruction Management
Unit (IMU) in each host core, which determines the data path
of instructions. We load the instructions that do not need to
be executed in memory directly into the next level cache to
complete the execution on the host CPU side. While for the
instructions annotated as PIM execution, these instructions are
delivered to the PIM by sending memory requests, which is
shown as the grey line in Fig. 4, and the PIM side will execute
these instructions in succession.

IV. EVALUATION

A. System Configuration
We use PIMSim [14], an open-source PIM simulator based

on Gem5, to evaluate the effectiveness of CoPIM. PIMSim

Poster101.pdf 4 7/31/2021 8:09:43 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SYSTEM CONFIGURATIONS.

Configuration

Host Side

Processor 4 Cores, OoO, 2GHz, 192-entry ROB

Private L1 Cache Separated 32KB I/D-Cache per
core, 8-ways, 2-cycle hit latency,
8-entry MSHR, 64B line size

Private L2 Cache 256KB/core, 8-ways, 12-cycle hit
latency, 12-entry MSHR, 64B line size

Shared L3 Cache shared 2MB/core, 32-ways,
35-cycle hit latency, 32-entry MSHR,
64B line size

PIM Side
PIM Logic 16 PEs, in-order pipeline,

1 PE/vault, 500MHz
Private Cache 32KB/PE, 4 ways, 64B line size
Memory HMC v2.1 [15], 16 vaults, 256 banks

TABLE II
BENCHMARKS AND DATA SETS.

Benchmark Dataset
Breadth-First Search p2p-Gnutella30 (36K Verticies, 88K Edges),
(BFS), Bellman Ford com-DBLP (317K Verticies, 1M Edges),
Shortest Path (SP), com-Youtube (1.1M Verticies, 2.9M Edges),
PageRank (PR) wiki-Talk (2.3M Verticies, 5M Edges),

soc-LiveJournal (4.8M Verticies, 6.9M Edges)

provides a variety of PIM instructions for the PIM architecture.
To realize the multi-platform implementation of PIM architec-
ture, PIMSim uses Gem5 pseudo instructions to implement
PIM instructions. The detailed PIM architecture parameters
are listed in Table I.

The following experimental results involve four kinds of
simulation configurations (1) CPU-only: this is a conventional
architecture that uses HMC as the main memory and does
not offload any operations to the memory. (2) PEI [4]: during
the real execution, we assume the system uses a locality-
aware offloading approach to decide where the PIM operations
should be executed (i.e., all requests that can incur the on-
chip cache hit are served by the host processors. Otherwise,
they will trigger further execution within the memory). (3)
GraphPIM [6]: based on GraphPIM’s observation of the source
program of graph applications, it is found that accessing
the graph property using atomic functionalities is easy to
cause the inefficient utilization of the memory subsystem,
which is suitable for PIM. (4) CoPIM: the partitioning method
discussed in this paper.

B. Benchmarks and Workloads
We use several typical graph workloads as PIM applications

for evaluation, which were also used in [4], [6]. We use real-
world graphs to make the results more reliable. As shown in
Table II, the numbers of the workloads’ vertices vary from
36K to 4.8M.

C. Experimental Results
1) Percentage of code offloading: To explore why and how

CoPIM improves the performance, we evaluate the percentage
of instructions executed at the PIM side during the execution of
the entire application when using different data sets. As shown

0%

10%

20%

30%

40%

50%

60%

BFS PR SP BFS PR SP BFS PR SP BFS PR SP BFS PR SP

%
 O

ffl
oa

de
d

PI
M

 In
st

ru
ct

io
n

PEI GraphPIM CoPIM

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube

Fig. 5. Percentage of offloaded instructions into memory.

0

0.2

0.4

0.6

0.8

1

BFS PR SP BFS PR SP BFS PR SP BFS PR SP BFS PR SP GM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CPU-only PEI GraphPIM CoPIM

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube
GM

Fig. 6. Normalized performance evaluation using graphs of different
sizes, GM: geometric mean.

in Fig. 5, CoPIM tends to offload 51.1% fewer instructions into
PIM on average compared with PEI. Furthermore, for each
application using different sizes of the data set, CoPIM all
tends to offload fewer instructions than PEI. Compared with
GraphPIM, CoPIM also offloads 33.0% fewer instructions on
average.

2) Performance with different partitioning methods: In
this paper, we use the execution time of the entire applica-
tion to evaluate the different partition methods’ efficiency.
Fig. 6 shows the normalized execution time and geometric
mean(GM) of 3 kinds of partition strategies. Generally, CoPIM
achieves a 38% speedup by the geometric mean over CPU-
Only. Compared with PEI, when the input size is small,
such as p2p-Gnutella30, CoPIM performs 7.5% better than
PEI on average. When the input size gets large, such as
soc-LiveJournal1, CoPIM performs 46.4% better than PEI on
average. CoPIM tends to show better performance as the data
set enlarges and achieves a speedup by the geometric mean of
19.5% than PEI. Compared with GraphPIM, CoPIM achieves
a speedup by the geometric mean of 11.4%.

3) Energy evaluation : Fig. 7 shows the normalized energy
consumption breakdown of un-core aspects when running
the BFS application with different data sets. We investigate
the energy consumption considering three aspects which are
caches, HMC Serializer/Deserializer (SerDes) Link and HMC-
other(DRAM layer and logic layer). We model the cache using
CACTI 6.0 [16]. The energy of HMC-link is considered to
be 13.7pJ/bit [17]. Energy per bit is considered at 3.7 pj for
the DRAM layers and 6.78 pj/bit for the logic layer [18].
As shown, CoPIM reduces the un-core energy consumption
by 18% on average over CPU-only. Compared with PEI and
GraphPIM, CoPIM reduces 6.8% and 6.5% energy consump-
tion on average, respectively. The energy savings mainly come
from HMC-link, and the HMC-other. This is because of the
reduction of workload offloading, which saves the energy of

Poster101.pdf 5 7/31/2021 8:09:44 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

C
PU

-o
nl

y

PE
I

G
ra

ph
PI

M

C
oP

IM

N
or

m
al

iz
ed

 E
ne

rg
y

Caches HMC-link HMC-other

p2p-Gnutella30 com-DBLP wiki-Talk soc-LiveJournal1com-Youtube

Fig. 7. Normalized energy consumption breakdown of un-core aspects.

0.5

0.6

0.7

0.8

0.9

1.0

BFS PR SP BFS PR SP

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CPU-only PEI GraphPIM CoPIM

500Mhz 1Ghz

Fig. 8. Normalized Performance with different PIM processor frequencies
using wiki-Talk data set.

data transfers via HMC SerDes links and the energy of DRAM
and logic layer.

4) Performance with different PIM processor frequencies:
As shown in Fig. 8, we evaluate the performance of 2 different
PIM processors’ frequencies: 500MHz and 1GHz with wiki-
Talk data set. With the improvement of the PIM processors’
frequency, the performance of three different offloading meth-
ods has been improved slightly. Compared with GraphPIM,
CoPIM shows little difference in performance on average as
the frequency increases. Compared with PEI, CoPIM achieves
a 9.5% speedup on average with 500MHz PIM processors, but
only 4.0 % when the PIM processors’ frequency is promoted
to 1GHz. Due to the lack of consideration of memory con-
currency, PEI will introduce much more computation-transfer
between CPU and PIM processors than CoPIM. When the PIM
processors’ frequency is 500MHz, more computation-transfer
means the benefits of reducing the data movement can be offset
by the weak performance of PIM processors.

5) Sensitivity of θ : As shown in Fig. 9, we investigate
the effect of θ value on execution efficiency. We select wiki-
Talk as the input data set and examine the difference in the
execution time of 3 different applications when the θ value
varies from 1% to 10%. The results show that the lowest
execution time of BFS and PR is around 5%, and the minimum
execution time of SP is when θ is 8%, but the difference
between the execution time when θ sets at 8% and 5% is
only 1.2%. Thus, we select 5% as the threshold of θ.

V. CONCLUSIONS

In this work, we propose CoPIM, a novel PIM graph-
computing workload offloading architecture. CoPIM offloads
code in the granularity of the loop code block. Based on a
concurrent memory access model, CoPIM identifies the can-
didates for PIM acceleration during the first few iterations of a

0.75

0.8

0.85

0.9

0.95

1

1% 3% 5% 8% 10%

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

θ value

BFS PR SP

Fig. 9. Sensitivity of θ of 3 different applications with wiki-Talk data set.

loop code block. We also provide detailed architectural designs
to support the offloading. The CoPIM has been evaluated on a
state-of-the-art PIM architecture with a wide range of graph-
computing applications. The results show that CoPIM reduces
the size of offloading instructions and also improves the overall
performance. Compared with other PIM workload offloading
frameworks: 1) CoPIM achieves a speedup by the geometric
mean of 19.5% than PEI with 51.1 % fewer offloaded in-
structions on average. 2) CoPIM achieves a speedup by the
geometric mean of 11.4% than GraphPIM with 33.0% fewer
offloaded instructions on average.3) CoPIM reduces the un-
core energy consumption by 6.8% and 6.5% on average over
PEI and GraphPIM, respectively.

REFERENCES

[1] B. Rogers et al., “Scaling the bandwidth wall: challenges in and avenues
for CMP scaling,” in ISCA, 2009, pp. 371–382.

[2] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in ISSCC, 2014.

[3] S. Kanev et al., “Profiling a Warehouse-Scale Computer,” IEEE Micro,
vol. 36, no. 3, pp. 54–59, 2016.

[4] J. Ahn et al., “PIM-enabled instructions: A low-overhead, locality-aware
processing-in-memory architecture,” in ISCA, 2015, pp. 336–348.

[5] M. Gao et al., “Practical near-data processing for in-memory analytics
frameworks,” in PACT, 2015, pp. 113–124.

[6] L. Nai et al., “Graphpim: Enabling instruction-level PIM offloading in
graph computing frameworks,” in HPCA. IEEE, 2017, pp. 457–468.

[7] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for
Near-Data Accelerators,” in ISCA, 2019, pp. 629–642.

[8] Y. Liu and X. H. Sun, “LPM: A Systematic Methodology for Concurrent
Data Access Pattern Optimization from a Matching Perspective,” IEEE
TPDS, vol. PP, no. 99, pp. 1–1, 2019.

[9] D. Wang and X. H. Sun, “APC: A Novel Memory Metric and Measure-
ment Methodology for Modern Memory Systems,” IEEE Transactions
on Computers, vol. 63, no. 7, pp. 1626–1639, 2014.

[10] M. Drumond et al., “The mondrian data engine,” in ISCA, 2017.
[11] Y. Zhuo et al., “GraphQ: Scalable PIM-Based Graph Processing,” in

MICRO, 2019.
[12] J. Liu et al., “Processing-in-Memory for Energy-Efficient Neural Net-

work Training: A Heterogeneous Approach,” in MICRO, 2018.
[13] Y. Xiao et al., “Prometheus: Processing-in-memory heterogeneous archi-

tecture design from a multi-layer network theoretic strategy,” in DATE,
2018, pp. 1387–1392.

[14] S. Xu et al., “PIMSim: A flexible and detailed processing-in-memory
simulator,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 6–9,
2018.

[15] H. M. C. Consortium et al., “HMC Specification 2.1,” Retrieved May,
2019.

[16] N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,”
Bragantia, 2009.

[17] E. Azarkhish et al., “Design and evaluation of a processing-in-memory
architecture for the smart memory cube,” in ICACS, 2016.

[18] J.Jeddeloh et al., “Hybrid memory cube new dram architecture increases
density and performance,” Digest of Technical Papers - Symposium on
VLSI Technology, pp. 87–88, 2012.

Poster101.pdf 6 7/31/2021 8:09:44 PM

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 01,2021 at 07:27:41 UTC from IEEE Xplore. Restrictions apply.

