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ABSTRACT

Force-distance curve experiments are commonly performed in Atomic Force Microscopy (AFM)
to obtain the viscoelastic characteristics of materials, such as the storage and loss moduli or compliances.
The classic methods used to obtain these characteristics consist of fitting a viscoelastic material model to
the experimentally obtained AFM data. Here, we demonstrate a new method that utilizes the modified
discrete Fourier transform to approximate the storage and loss behavior of a material directly from the
data, without the need for a fit. Additionally, one may still fit a model to the resulting storage and loss
behavior if a parameterized description of the material is desired. In contrast to fitting the data to a model
chosen a priori, departing from a model-free description of the material’s frequency behavior guides the
selection of the model, such that the user may choose the one that is most appropriate for the particular
material under study. To this end, we also include modified Fourier domain descriptions of commonly

used viscoelastic models.



. INTRODUCTION

Atomic Force Microscopy (AFM) is widely utilized for micro and nanoscale viscoelastic
characterization of biological samples and other soft materials. > A common technique used to perform
this characterization relies on fitting a contact mechanics model to the force-indentation data obtained
from the AFM experiment. There exist various types of models used to perform this analysis, including
generalized spring-dashpot models, power-law rheology models, and fractional viscoelastic models; each
providing a different approach with its own advantages and disadvantages.”” Regardless of the chosen

model, performing a fit to obtain viscoelastic properties has some caveats.

First, shortcomings in the fitting process may result in widely different combinations of model
parameters that lead to similar force-indentation relationships for identical experimental data. Second,
the viscoelastic properties that are obtained by performing the fit will be specific to the type of model
chosen for the analysis, which may lead to certain physical phenomena not being captured by the selected
model (e.g., a model that is unable to reproduce creep will not properly represent a viscoelastic material).
Furthermore, in most cases, researchers are interested in frequency-dependent viscoelastic behaviors
such as the storage and loss moduli or compliances. Since these properties are defined in the Fourier
domain, obtaining them from fits of non-harmonic force-indentation experiments is only an indirect
approach that may be prone to large errors in the frequency domain. Clearly, the most direct way of
obtaining harmonic behavior would be using Fourier analysis; however, as the data from the force-
distance experiments is numerically unbounded (i.e., it is aperiodic), it is not possible to directly employ a

discrete Fourier analysis.

In this paper, we present an analysis technique that utilizes the modified discrete Fourier transform
to obtain an approximate representation of the storage and loss behavior of a material, directly from the

experimental data. Although the technique does not rely on models, the user may still choose to fit the



storage and loss behavior representations obtained from traditional viscoelastic models. Having a
description of the material behavior prior to choosing a model provides very valuable guidance for
selecting an appropriate material model. This work relies on a previously published mathematical
development used to invert AFM force-distance data, which extends through a systematic treatment of
the data that enables the use of the discrete Fourier transform.® We first introduce the theoretical
background and transformation techniques used and then discuss the proposed method’s application to
experimental AFM data in detail. Common viscoelastic models and their definitions in the frequency
domain are also provided for purposes of performing fits to force spectra. Additionally, we provide

supplemental code and examples.1%

L. THEORETICAL BACKGROUND

The Laplace domain is central to many of the developments of the theory of linear viscoelasticity.}>14

As here we seek to work with experimentally obtained data, we turn our focus to the discrete analog of
the Laplace domain, namely the Z-domain. We can write the general stress-strain relationship for a linear
viscoelastic material in the Z-domain as seen in Equations 1 and 2, in which o is the stress, € is the strain,
and @ and U are the source functions that define the material behavior, and are called the relaxance and
retardance, respectively.'?!3 By separating the real and imaginary components of relaxance and

retardance, one obtains the storage and loss behaviors, respectively.

0(z) = Q(2)e(2) (1)
€(z) = U(2)o(2) (2)

Since the stress and strain are not direct observables in typical AFM experiments, Equations 1 and
2 can be reformulated in terms of the AFM cantilever force and the probe indentation by using contact
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mechanics models. The Hertzian contact model can be considered to be the most well-known contact
model, but it is only applicable for elastic materials.'® For a viscoelastic material, the model of Lee and
Radok is commonly utilized.'®*"*8 We can write the Lee and Radok model for a spherical indenter interacting
with a flat surface in the Z-domain as seen in Equations 3 and 4, where F is force, h is indentation, R is
the indenter radius (AFM tip radius of curvature), and Z{h3/2} denotes the Z-transform (discrete analog

of the Laplace transform) of the % power of the indentation. For different geometries of indenters, we can

write this relation in slightly different ways, which have been included in the Supplementary Material.>*°

We also would like to underline that, in agreement with the contact model, we exponentiate the
indentation before taking the Z-transform. The application of these equations to the data is explained in
greater detail later in this section, in the specific context of the storage and loss moduli (see discussion

following Equation 6).

A3 (3)
z{hz} = = U@F(@)

16VR (4)
F(z) = T\/_ 0(2) Z{h%}

The Z-transform takes a discrete signal X defined as a sequence in time and maps it onto the Z-domain,
following the transformation described in Equation 5.2%2 The domain variable z is a complex number and
is often represented in polar coordinates as re'®. By expanding the definition of the Z-transform in terms
of these polar coordinates, we arrive at the rightmost form of Equation 5, which shows the intimate
relationship between the Z-transform and the discrete Fourier transform (DFT). More specifically, when
the Z-transform is evaluated along the unit circle of the Z-domain (when r is equal to 1) the evaluation is
no different than the discrete Fourier transform. This is an established method to calculate the DFT and is

called chirp Z-transform.? Likewise, each circle of constant radius (different from unity) represents a



modified discrete Fourier transform (MDFT) of the original signal. One might notice that the MDFT of X is
equivalent to the discrete Fourier transform of the product of X and the exponential term r~™, where n
denotes the timestep index in the data sequence. In the introduction, it was stated that the Fourier
transform cannot be directly used to analyze the force-indentation data, as they are numerically
unbounded (aperiodic). However, the introduction of this exponential term allows for the discrete Fourier
transform to be taken for certain values of r, for which the product is bounded within the window of
measurement, as seen for the red trace (r = 1.007) in Figure 1. Importantly, when the exponential term
does not decay fast enough or is not present at all (see all traces in Figure 1 for which r < 1.007), the
force-indentation data remain aperiodic and data spectra computed with the DFT would not correspond
to physical behavior. With the introduction of the exponential term in equation 5, it is easy to view the Z-
transform and modified Fourier transform in terms of a conventional Fourier transform. We have found
that it is most convenient to perform these transforms using traditional fast Fourier transform algorithms

and values of r greater than 1.

[ee)

2{x} = i xfnlz™ = ) xlnlrrenion = i(x[n]r"")e‘i“m
n=0 n n=0

=0

(5)

- , (6)
MDFT{X,ry} = Z x[n]ry e = FFT{x[n]ry ™}
n=0



Figure 1 An arbitrary linear signal with different degrees of binding through the exponential term

r~ ™, corresponding to different circles on the Z-domain.

Through selection criteria which will be outlined in section lll.b, one should find a value for the
constant r, termed the decay constant, which allows for the simultaneous calculation of the MDFT of both
the force and indentation signals. Once this has been done, one can simply divide the two spectra in the
complex domain, making sure to include the proper constant for the contact mechanics geometry under
consideration, which directly leads to the relaxance or retardance of the material, as seen in Equation 7.
Itis important to note that the real and imaginary components of this retardance and relaxance represent
storage and loss behavior, but do not directly correspond to the storage and loss moduli of the material,
since they are not defined in the Fourier domain (i.e., since r is not equal to 1). Although they may be

numerically close, the Fourier domain behavior needs to be estimated from this modified Fourier domain



behavior by fitting to a viscoelastic model that is defined in the entire Z-domain. The resulting fit can then

be expressed setting r to be equal to 1, to give an estimation of the storage and loss moduli. °

MDFT{F,rs} 0(o,ry) = 1 (7)
= 1)) = ————
—163“R MDFT {h%, ro} U(@,ro)

M. METHOD IN PRACTICE

a. OUTLINE

In this section, we discuss how to implement the previously outlined procedure in practice. A flow
chart outlining the process can be found in Figure 2. The process steps can be summarized as i) obtaining
stress and strain from the AFM force-indentation data using contact mechanics, ii) recommended
denoising of the data, iii) estimating a suitable decay constant for the MDFT, iv) calculating the MDFT of
the stress and strain (or force and indentation), v) averaging several spectra to further reduce the noise,
vi) calculating the relaxance or retardance, and finally, vii) obtaining the modified Fourier domain forms
of the storage and loss behavior of the material. After obtaining the relaxance or retardance, one may
also fit the spectra using a viscoelastic model of choice to obtain an estimation for the true storage and
loss behavior. Having access to a frequency representation of the material behavior greatly assists in the

proper selection of the viscoelastic model.
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Figure 2 A flowchart summarizing the proposed technique. After calculation of the modified Fourier
spectrum of the stress and strain (or force and indentation), the data is handled in the complex domain
rather than the time domain. Before calculating the relaxance of the material, averaging the stress and
strain (or force and indentation) spectra among themselves is important to prevent unrealistic local peaks
in the relaxance when plotted vs. frequency. This is also important to avoid division by zero in the
calculations. Once the relaxance has been calculated, the user may decide to fit it to a viscoelastic model

of choice.

We now elaborate on each step in the process using a set of example force curves obtained for a
nylon sample cut from a rod (Figure 3A). The force-distance curves, which are plotted in Figure 3B, were
obtained with an AFM cantilever having a 0.5 N/m stiffness and 35 nm tip radius, and using a 250 nm/s
approach speed and a 50 kHz sampling rate. Figure 3B consists of 22 force-distance curves plotted

together. As is evident in the figure, the raw force-indentation curves contain a considerable amount of



noise. Before calculating the modified spectrum for the curves, we have discarded the non-contact
portion of the curves, keeping only the repulsive portion of the data, and have denoised the curves using
a moving average with a window size of 8% of the total data length of the respective curve. In Figure 3C,

a single representative raw FD curve and the denoised curve with the moving average correction can be

seen.

i Force - Distance Curves c

107

Force (nN)

F 4 6 0 2 4 6
Indentation {nm) Indentation (nm})

Figure 3 A) Nylon sample cut from a rod; B) collection of 22 Force-Distance curves obtained on the nylon

sample; C) one representative Force-Distance curve before and after applying a moving average with a

window size of 8% of the total data length of the respective curve in order to denoise it.

b. ESTIMATION OF THE DECAY CONSTANT

10



As discussed in the theory section, to calculate the MDFT of the force and indentation signals, one
needs a suitably large decay constant r to bind the signals within the time window of measurement, in
order to obtain physically meaningful results. ° On the other hand, by using too large a decay constant,
one significantly suppresses the signal which may result in too much valuable information being lost.
Therefore, one needs a value that is large enough to bind the signals, but small enough to preserve as
much fidelity as possible to the original, true behavior. In this work, we have used an algorithm that selects
an appropriate time coefficient, such that the endpoint of the bound signal is equal to its first non-zero
element at the beginning of the sequence. This algorithm is further outlined in the Supplementary
Material. Although the algorithm gives acceptable decay constants, it does not necessarily provide ‘the
best time constant. In order to get a cleaner-looking spectrum using this method, one may still need to

adjust the resulting time constant within an order of magnitude (at most).

Since one needs to calculate the quotient of the force and indentation spectra to obtain the
relaxance or retardance, we argue that such spectra should be defined on similar regions of the Z-domain.
Thus, the decay constant should be the same for the force and the indentation. Since the decay constant
needs to be able to bind both signals, it is prudent to use the larger of the two decay constants calculated
for the force and indentation. Likewise, when dealing with multiple force-distance curves, one should use
the same decay constant for all curves. Different time coefficients would project the signals onto different
circles in the z-plane. When averaging curves or comparing them to each other, it would be inappropriate

to compare across different circles.

Comparing across experiments with different sampling frequencies, similarly, careful treatment
is needed. In the previous treatments, the progressions of the signals were not directly related to time;
rather, they were related to the index of the signal. However, it makes most physical sense to consider
the force and indentation as signals in time. This is most conveniently done by tying the index value to the

sampling time through the product t = At n. Likewise, the decay constant  can be defined as in Equation
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8 below. Experimental results obtained with different sampling frequencies should then be compared

under identical values of 7; rather than r.

e (8)

c. CALCULATION OF THE TRANSFORMED SIGNALS

After obtaining a suitable time constant, one can transform the force and indentation data
sequences into the modified Fourier domain. One may notice that even after initial denoising in the time
domain, the force and indentation spectra may still contain considerable noise. As this noise may cause a
few extreme outlying points, their effect may be heavily amplified after dividing the spectra to obtain the
retardance or relaxance. Due to machine precision limitations, this issue may not be fixable with a simple
denoising scheme. Thus, separately obtaining an average spectrum for all force signals and all indentation
signals before performing the division is most ideal in order to reduce the effects of noise. Averaging
spectra from multiple experiments is a common technique in many different spectroscopy techniques
that utilize the Fourier transform, such as Raman spectroscopy, FTIR, AFM thermal tuning, etc.®?%
Furthermore, if desired, averaging curves obtained from different locations on the sample may help to
obtain an average material characteristic as opposed to local characteristics. Averaging spectra obtained
from different signals with the same length is quite trivial. However, the force and indentation signals we
obtain from different experiments may have slightly different numbers of data points. In order to be able

to average them on the same frequencies, one should calculate the modified Fourier transform with a set

transform length given by the length of the shortest experimental signal.

After obtaining the averaged force and indentation spectra, the relaxance or retardance of the
material can be calculated using the relations described in Equation 9. Again, taking the real and imaginary

components of the relaxance or retardance gives the modified storage and loss behaviors, respectively,
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which are numerically close but not exactly equal to the true storage and loss behaviors. ° One can use
this modified relaxance or retardance as a transfer function to determine material responses given a
specific input, but in order to obtain the true storage and loss behavior, it is necessary to utilize a
viscoelastic model defined in the Z-domain to convert between the modified Fourier and the Fourier

domains.

Concerning the confidence that can be placed on our material property estimations, we point out
that experimental noise is evident in the results presented here and can be directly observed in the
calculated relaxance and retardance. Although the results for different materials will be affected
differently by a given level and type of noise, which makes it difficult to specify a definitive cut-off that
separates reliable from unreliable data, a useful metric is offered by the material’s rubbery and glassy
responses (low and high frequency response limits, respectively). Specifically, a noise level that is
comparable to or greater than the difference between the material’s rubbery and glassy moduli would
make the distinction between the two frequency limits impossible, which would preclude the reliable
observation of the sample’s viscoelastic behavior. This limiting factor would be particularly important for

materials that have relatively close glassy and rubbery responses.

d. ANALYTICAL MODELS IN THE Z-DOMAIN

Viscoelastic models can provide a good understanding of how materials behave and are a convenient
way to represent their properties. In this work, we also use them as bridges between MDFT storage or
loss behavior and storage or loss moduli. In this section, we provide mathematical expressions for four

commonly used viscoelastic models in the Z-domain.

The Generalized Maxwell (Maxwell-Wiechert) and Generalized Kelvin-Voigt models are commonly
used to describe the relaxance and retardance through an equivalent spring-dashpot model, as seen in
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Equations 9 and 10. It is noteworthy to mention that these two models are congruent. For each
Generalized Maxwell model an equivalent Generalized Kelvin-Voigt model can be constructed and vice
versa.?® Here, At is the sampling timestep of the experiment and N is the number of Maxwell “arms” of
the model, which may be increased so that the experimental data is better fit by the model; however, this
overfitting is not necessarily advisable. From a mathematical perspective, N determines the number of
peaks in the loss modulus or compliance. ® Therefore, we argue that one should select N to be equal to
the number of distinct peaks in the imaginary component of the experimentally obtained relaxance or
retardance, even in cases where increasing N further would give a better numerical fit. For instance, the
data seen in Figure 4 indicates that N should be either 1 or 2.

ul G; (9)

Qmaxwell = Gg - z T e—iw
=1+ E(l - T)

N J
i
UVoigt :]g + Z T Py
P (1- 50
t

r

For some materials, it may be desirable to use a different definition of the material behavior that
may not be possible to accomplish with one of the above models. 2> In this case, one may use fractional
viscoelastic elements, referred to as a spring-pots (S-P), or a power law (PLR) model, for example. Both
approaches are defined in Equations 11 and 12. In the case of the spring-pot model, the 8 term represents
the fractional order of the differential stress-strain relationship, whereby its values range between 0 and
1, corresponding to pure elastic and pure fluidic behavior, respectively.® The Cp term is a simple scaling
constant that has units of i—g. The power law model behaves in a very similar manner to the spring-pot

in that it contains a scaling constant, Ey, with units of Pa, and an exponential term, n, which ranges from

0 to 1, exclusive.>®
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Aside from converting between the Fourier and modified Fourier domains, model fits are
desirable by many practitioners in order to obtain a parameterized description of the material, which
readily yields quantities such as the relaxation time, for example. One advantage of obtaining the
frequency domain behavior of a material directly from an experiment first, without fitting, is that one can
then visually assess exactly what type of material model would be best suited to describe the material
being analyzed. For example, it can be seen from Figure 4 that the nylon sample behavior agrees well with
a single-arm Maxwell (Standard Linear Solid) model. Figure 5 provides estimates of the true storage and

loss moduli based on this model.
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Figure 4 A, C) Real and B, D) imaginary parts of the experimentally obtained, frequency averaged relaxance
of the nylon sample from Figure 3, as well as the model fits using the Maxwell-Wiechert and Spring-pot
models. The plots in the second row contain the same data as those in the first row, but using a logarithmic
frequency axis. The fit to the Maxwell-Wiechert model is particularly good. Different degrees of
agreement may be observed for different viscoelastic models when studying different materials. One
significant advantage of having access to the model-free frequency behavior is to be able to compare
model and material behavior before choosing a particular viscoelastic model. The shear modulus of Nylon

is estimated to be between 75 MPa and 1.34 GPa,? which agrees with our findings.
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Figure 5 A, C) Storage and B, D) loss modulus obtained from the models fitted to the data in Figure 4. The

plots in the second row contain the same data as those in the first row, but using a logarithmic frequency

axis. Note that the moduli tend towards very small values at low frequency. Such a phenomenon is known

as creep.

The proposed method is quite versatile and could also be applied to non-polymeric materials, and

even to arbitrary composite samples whose molecular structure is not known in detail. In order to

demonstrate this, we have repeated the same procedure for a freshly cut orange peel sample (Figure S3),

using an AFM cantilever with 0.1 N/m stiffness and 10 pum spherical colloidal bead probe. The
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experimental results and model fits can be seen in Figure 6. Clearly, the results do not correspond to the
behavior of a single, specific material but such an analysis may still be quite useful, for example, for quality

control purposes in industrial settings, among other applications.
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Figure 6 A, C) Storage and B, D) loss behaviors obtained for an orange peel sample. The plots in the second

row contain the same data as those in the first row, but using a logarithmic frequency axis.

In this manuscript, we have discussed the method from an AFM point of view, but the method is
also applicable to other experimental techniques that record the stress-strain relationship of a material,
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such as macroscale compressive and tensile testing instruments. Since these systems generally provide
stress and strain outputs rather than a force—indentation curve, we would base our analysis on Equation
13, which is derived from Equation 1, and we would follow the same steps to characterize the material as

we have done in this manuscript.

O'((A), rO) = Q(wl TO) E(w:ro) (13)

Iv. CONCLUSION

We have demonstrated a method to obtain the viscoelastic properties of a material in the modified
Fourier domain using data from force-distance atomic force microscopy experiments. We have also
provided a means to convert the results from the modified Fourier domain to the Fourier domain in order
to obtain approximations of the storage and loss behavior of the material. The proposed method utilizes
the modified discrete Fourier transform (MDFT). Unlike traditional Fourier transform techniques, the
MDFT has the added benefit of being able to handle the numerically unbounded (aperiodic) inputs
obtained from the AFM force-distance experiments. This method also serves as a useful tool for classical

viscoelastic model fitting.

SUPPLEMENTARY MATERIAL

See Supplementary Material for (i) guidelines on selecting a stable decay constant for the MDFT,
(ii) suggested method of taking the MDFT, (iii) derivation of viscoelastic models, and (iv) different contact

mechanics geometries.
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