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Gradients in the water potential (Ψ) of soils and plants form 
the energetic basis for the transport of water, and elements 
contained therein, through a connected continuum linking 

the deepest soil layers to the top of plant canopies (Fig. 1). The Ψ can 
be a positive or negative pressure, although it is typically negative—
a tension force—in unsaturated soils and within plant hydraulic sys-
tems. Ψ gradients have been recognized as the fundamental driver 
of water fluxes between soils, streams and groundwater for more 
than a century, and they appear in some of the most foundational 
equations in hydrology1 (for example, Darcy’s Law and Richards’ 
Equation). Likewise, the critical role of Ψ gradients in driving water 
flows through the soil–plant–atmosphere continuum has been 
known for decades2.

Beyond redistributing water through ecosystems, Ψ is also a 
direct control of many biophysical processes. Soil Ψ (ΨS) regulates the 
flow of water into and out of soil microbe cells and determines their 
metabolism3. In plants, leaf Ψ (ΨL) is a key driver of stomatal conduc-
tance and photosynthetic carbon uptake4,5, and its close connection 
to branch and stem Ψ (ΨX) controls the risk of drought-driven xylem 
embolism and mortality6,7. Consequently, most ecosystem services, 
including water storage, food and fibre supply, and water and climate 
regulation, are fundamentally linked to Ψ.

While undeniably important for soil and plant function, for 
reasons that will be discussed in more detail, ΨS is rarely measured 
in situ8,9, and observations of plant Ψ have historically been limited 
to destructive and disjunct manual measurements. The objective of 
this paper is to demonstrate key uncertainties linked to the dearth 
of soil and plant Ψ data and to discuss the theoretical and modelling 
progress that could be enabled with richer and more discoverable 

information about Ψ. We begin by discussing issues surrounding 
the measurement, modelling and synthesis of ΨS and then address 
additional considerations linked to the measurement and predic-
tion of Ψ in plants. We then present a road map for creating acces-
sible and open Ψ databases and discuss promising new approaches 
for detecting Ψ using remote sensing.

Concepts and uncertainties linked to ΨS
Water flows ‘downhill’ energetically, moving from areas of higher 
potential to areas of lower potential, such that Ψs gradients are the 
driving force of subsurface water flows1. In most unsaturated soils, 
Ψs is dominated by the matric potential, which becomes more nega-
tive when soils dry, and the effective radii of water-filled pore spaces 
in the soil become smaller. This process produces the general shape 
of the water-retention curve (also known as the ‘moisture charac-
teristic’ or ‘water release’ curve), which relates Ψs to volumetric soil 
moisture content (θ). Critically, variation in soil physical properties 
can cause ΨS to differ by an order of magnitude across soil types, 
even if θ is the same10,11 (Fig. 2a).

Field observations of θ are common12, but with a few excep-
tions9,13, ΨS is rarely measured systematically in field research set-
tings8,9. The reasons why θ became the predominant metric for 
describing soil water status are not entirely clear8, but may reflect 
the fact that no single instrument captures the entire range of ΨS 
(from saturation to the very dry end), and sensors for measuring ΨS 
in the field have historically been associated with unique limitations 
and uncertainty8,14.

Even if ΨS data were plentiful, strategies for relating θ to ΨS would 
still be necessary in models to connect water-balance equations with 
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potential-driven flows. Most hydrologic and land-surface models 
thus rely on water-retention-curve models15, with those proposed 
by refs. 10,11 ranking high in popularity. Pedotransfer functions 
(PTFs) predict the parameters of water-retention-curve models 
using empirical equations driven by a limited set of soil characteris-
tics (typically %sand, %clay and bulk density16–18).

While developing PTFs is an active field15, PTF parameter dis-
tributions are poorly constrained and prevent confident transfor-
mation of θ to ΨS. For example, even relatively small variations in a 
single parameter of the van Genuchten model11 cause ΨS to vary by 
an order of magnitude over a wide range of θ (Fig. 2b–d). Soil struc-
ture, which differs from soil texture and is governed by biophysi-
cal properties, may be a key omission in PTFs19 explaining some 
of this uncertainty. For example, growth of roots and mycorrhizae 
into soil pores, and deposition of root exudates, increase over-
all water retention20,21, and macropores can create preferred flow 
pathways that are challenging to incorporate into PTFs. Moreover, 
depth into the soil may also affect hydraulic properties by control-
ling connectivity with root systems and through slowly evolving 
changes in soil morphology. Finally, most PTFs assume that the 
water-retention curve is static, but many relevant processes occur-
ring in natural landscapes (including drying–rewetting cycles, fire, 
and management shifts) may cause time-dependent hysteresis of 
the water-retention curve22–24.

This uncertainly linked to PTFs propagates through water-cycle 
models in highly consequential ways.25,26 Previous work performed 
in the Shale Hills Critical Zone Observatory confirms that van 
Genuchten model11 parameters are the dominant source of model 
uncertainty in a coupled three-dimensional (3D) land-surface and 
hydrological model27, and that water-retention-curve parameters 
must be measured locally and optimized through data assimilation28 
for watershed hydrologic variables to be predicted with any degree 

of certainty29. Here, using a popular 1D water-balance model, we 
further demonstrate that uncertainty in a single PTF parameter 
drives large uncertainty in modelled predictions of evapotranspira-
tion, soil moisture and ΨS (Fig. 2e).

The parameters of the water-retention curve are also key 
sources of uncertainty explaining variability in carbon cycle fluxes 
from global-scale land-surface models. In this study, we used a 
global sensitivity experiment30 to explore the variability of these 
parameters along with other key parameters of the ORCHIDEE 
land-surface model31,32 (see Methods for details). The parameters of 
the water-retention curve explained between 10% and 32% of the 
modelled GPP variance across three diverse sites (Fig. 3). Moreover, 
when considering the wider set of soil hydrology parameters 
(including the hydraulic conductivity, field capacity and permanent 
wilting point of the soil), the percentage of explained GPP variance 
increased to 22–53% across sites.

The dearth of information about ΨS is not only a problem for 
models, but also confounds observation-driven work. Because θ 
is widely measured, and ΨS is not, it is extremely common to see 
key response variables such as carbon and water fluxes explained 
as a function of measured θ33–35. These relationships are usually 
nonlinear and threshold driven36,37. This is not surprising, as these 
responses embed site-to-site variability in the water-retention 
curve, which itself is nonlinear and threshold driven (Fig. 2a–d). 
The shape of these response functions thus depends very much 
on whether ΨS or θ is chosen as the driving variable38. Indeed, the 
relationship between gross primary productivity (GPP) and soil 
water status is more linear and less spatially heterogeneous when 
ΨS, as opposed to θ, appears on the x axis (Fig. 4). Likewise, substan-
tial skill in predicting soil respiration can be gained when model 
functions are driven explicitly by Ψs (ref. 3). Thus, more abundant 
and aggregated site-level ΨS information could reduce conceptual 
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Fig. 1 | Ψ links environmental drivers to biophysical responses. Water flows downhill along gradients of Ψ in the soils (ΨS, where Ψ is relatively high, often 
>−1 MPa) through the stems (Ψx) to the leaves (ΨL, where potential is relatively low) and eventually to the air (Ψair, where it can be as low as −100 MPa). 
Ψ also directly controls key biological processes, including microbial function, mortality risk arising from damaged plant xylem, and plant–atmosphere gas 
exchange. While observations of environmental drivers, θ, and carbon and water fluxes are broadly accessible from environmental networks and remote 
sensing, Ψ time series are more discrete, sparse and generally not coordinated or discoverable.
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uncertainty about how ecosystem fluxes respond to soil water defi-
cits and permit other sources of spatio-temporal variability to be 
more discernable.

Plant Ψ: key concepts and controversies
The effective radii of evaporating water surfaces within plant cell 
walls are extremely small, resulting in tension forces strong enough 
to pull water upwards from soils, where it is already tightly bound, 
to the leaves. Thus, the difference between ΨL and ΨS is the driv-
ing force for transpiration, which is closely coupled with photo-
synthetic carbon uptake. Moreover, ΨX, which is coupled with ΨL, 
interacts with anatomical features of the plant’s water transport 
system to determine the risk of xylem embolism that can lead to 
mortality6,7,39–41. Stomatal regulation of gas exchange is also critical 
for buffering plants from the very low Ψ of the atmosphere (see Fig. 
1), which is extremely sensitive to relative humidity42.

Historically, observations of plant Ψ have been limited to manu-
ally collected ‘snapshots’ (for example, with a pressure chamber43). 
These data have proved indispensable for shaping our theoreti-
cal understanding of how plants respond to soil water stress6,7,40,44. 
However, because pressure-chamber measurements are destructive 
and labour intensive, they are typically limited to weekly or seasonal 
temporal resolutions. While the weekly timescale is well matched to 
soil drying, it is too coarse to capture faster-acting hydrodynamic 
processes, including stomatal response to vapour pressure deficit 
(VPD45) and the depletion and refilling of plant water pools over 
the course of a day46. Moreover, with some exceptions47, ΨL and ΨX 
are not often monitored over long periods (for example, years to 
decades), and centralized databases and networks for time series of 
Ψ do not yet exist.

The discrete and undiscoverable nature of plant Ψ observations 
limits our ability to characterize the distributions of the mini-
mum plant Ψ that are so critical for determining plant mortality 
risk41. The gap also limits understanding of how plant Ψ and ΨS are  

coordinated and coupled. For example, a fundamental assump-
tion in plant eco-physiology is that ΨL and ΨX are equilibrated with 
ΨS across the root zone in pre-dawn hours48. This assumption has 
allowed eco-physiologists to circumvent the ΨS data scarcity prob-
lem by relying on pre-dawn ΨL observations as a proxy for root-zone 
ΨS—an approach that treats the plants as an instrument for record-
ing the soil water environment. Yet experiments have shown that 
night-time transpiration—while small—can still occur49,50, lowering 
pre-dawn ΨL and decoupling it from ΨS (ref. 51). Synthetic assess-
ments of pre-dawn equilibrium are hindered by the absence of 
nocturnal ΨL observations collected together with data on ΨS and/
or stem water flows (for example, from sap flux), or collected fre-
quently enough to determine whether stationarity in pre-dawn ΨL, 
which should be a hallmark of equilibrium, has been achieved.

Likewise, the Ψ information gap limits understanding of how 
ΨS and plant Ψ are coupled at mid-day. The relationship between 
mid-day ΨL and the root-zone ΨS is frequently used to classify plant 
water-use strategies44,52,53. For example, plants with conservative 
water-use strategies (‘isohydric’ species) close stomata quickly as 
ΨS declines, whereas ‘anisohydric’ plants keep stomata open longer, 
sustaining gas exchange but with more rapid declines in ΨL that may 
increase the risk of xylem embolism. The (an)isohydry framework is 
popular but controversial, with several studies highlighting critical 
interactions with other environmental drivers beyond ΨS (refs. 54–56), 
including VPD57. Moreover, coordinated observations of sap flow, 
enhanced with data on ΨS and ΨX, hold great promise for under-
standing how the dynamics of hydraulic conductance of different 
plant organs influence whole-plant hydraulic physiology58. Plant 
hydraulics schemes relying on concepts such as isohydry are rap-
idly being incorporated in hydrologic and Earth system models59–61. 
Benchmarking and testing these schemes would benefit from open 
and spatially representative databases of plant Ψ and ΨS time series, 
measured together at a temporal frequency (for example, hourly) 
over which key drivers such as VPD vary.
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Fig. 2 | Water-retention curve and PTF uncertainty. a, Across three soil types, Ψs can differ by an order of magnitude for a given θ (with curves generated 
from the van Genuchten model11,, see Methods). b–d, The uncertainty in the water-retention curve attributable to PTF parameter uncertainty. The shaded 
area shows the 90% confidence interval due solely to variation in a single parameter of the van Genuchten model (the n shape parameter, which is linked 
to pore size) within just one standard deviation of its reported distribution for each soil class from a popular PTF18: silty clay (b), silt (c) and loamy sand 
(d). Thick lines in b–d are the same as in a. The PTF-driven uncertainty in the water-retention curve propagates into large uncertainty for modelled fluxes 
and pools. e–g, Specifically, variation in the van Genuchten n parameter within again just one standard deviation of its reported range18 causes the 90% 
confidence intervals on modelled evapotranspiration (ET) (e), θ (f) and ΨS (g) (shaded grey areas) to vary by a magnitude comparable to the mean value 
of each parameter (thick black line). Simulations were run using the hYDRUS 1D79 model for a forest site in Indiana, USA80, during a drought event (see 
Methods for details).
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Coordinated observation of plant Ψ and ΨS could also offer 
new perspectives on the critical role of root hydraulic function. 
Pre-dawn observations of ΨL and ΨL from multiple depths could 
reveal interspecific patterns in functional rooting depth—a trait 
that is difficult to measure by other means and partially respon-
sible for model difficulty in capturing plant drought responses62. 
When complemented with data on Ψx and/or root sap flow, profile 
observations of ΨS would also illuminate the important but poorly 
understood consequences of hydraulic redistribution of water from 
wetter to drier soil layers through plant roots63,64. While root Ψx is 
difficult to measure with pressure chambers, it could be monitored 
more easily with psychrometers or other techniques for continuous 
observation of plant Ψx. Data on root Ψx, especially when paired 
with laboratory-derived root xylem vulnerability curves, would also 
be useful for understanding the dynamics of root hydraulic conduc-
tance, noting that roots may be among the most vulnerable com-
ponents of the plant hydraulic system65,66. Finally, differences in ΨS 
and root Ψx could also improve our understanding of gradients in Ψ 
occurring at the root–soil interface67.

Strategies to address the Ψ information gap
Recent advances in measurement technology have substantially 
improved the ease and reliability of ΨS observations. In the lab, sen-
sor improvement has reduced the time necessary to generate the ‘wet 
end’ of the water-retention curve68. A second instrument, typically 
a dew-point potentiometer, is required to capture the dry end of the 
curve, but this step proceeds relatively quickly. While the instru-
mentation and expertise necessary to characterize water-retention 
curves may be siloed within soil science disciplines, this barrier 
could be easily overcome through cooperative arrangements and/or 
knowledge transfer. At the same time, technology is improving for 
more confident observation of ΨS in situ8. Tensiometers, which are 
accurate when soil is relatively wet (for example, ΨS > −0.1 MPa), 

are widely used in agricultural settings for the purposes of irrigation 
scheduling. In the drier range, soil matric potential can be measured 
using psychrometry or from dielectric measurements, with several 
commercial sensors available at a relatively low cost (for example, 
the Teros 21 product, Meter Group). While the accuracy of sensors 
such as these is greatest when ΨS is above −2 MPa, this is still lower 
than the wilting point of many plant species8.

With respect to plants, psychrometers permitting continuous 
and long-term observation of both ΨL and ΨX are becoming more 
widely and commercially available (for example, the PSY1 products, 
ICT International), drawing from a long history of psychrometric 
approaches for measuring plant Ψ (ref. 69). Stem psychrometers can 
now be deployed on branches and boles of some species for weeks 
to months at a time55, and evidence is mounting that high-frequency 
ΨL and Ψx data can indeed improve our understanding of plant 
water-use strategies and dynamics55,70. Psychrometers are still 
relatively expensive, best suited for broadleaf and non-resinous 
species and sensitive to biases linked to temperature fluctuations 
and wounding effects. Thus, for now, psychrometer data are best 
viewed as complementary to pressure-chamber measurements. 
Nonetheless, for many plants, these instruments allow for the col-
lection of ΨL and/or Ψx data at the hourly timescales necessary to be 
harmonized with observed carbon and water fluxes (for example, 
from sap flux and flux towers) and to more rigorously test model 
frameworks.

Ultimately, addressing environmental questions at policy- and 
management-relevant scales requires the collection and standard-
ization of observations across many sites. This need has moti-
vated the recent development of many environmental observation 
networks, including highly centralized initiatives such as the 
National Science Foundation’s National Ecological Observatory  
Network71, as well as more bottom-up networks such as AmeriFlux72 
and FLUXNET73 and the new international SAPFLUXNET net-
work74. Other approaches include ‘network-of-networks’ cyber-
infrastructure such as the International Soil Moisture Network,13 
which aggregates soil moisture observations from dozens of indi-
vidual networks.

Both bottom-up and top-down approaches could be useful for 
building new Ψ networks. On the one hand, centralized and stan-
dardized deployment of new Ψ sensors, ideally in locations that are 
already nodes of other networks, would have the advantage of uni-
formity in instrumentation and data quality control that facilitates 
cross-site synthesis. On the other hand, a community-driven effort 
to aggregate and redistribute both existing and new Ψ data could 
follow the highly successful ‘coalition’ model employed by networks 
such as AmeriFlux72, increasing the discoverability of data while 
allowing room for innovation at the site level. Even a concerted effort 
to generate and/or collect laboratory-based water-retention curves 
from existing network sites could substantially constrain how much 
of the nonlinearity in the response of fluxes to observed soil water 
content can be explained by soil physics (for example, see Fig. 4). 
The success of a Ψ network would be maximized with (1) a focus on 
collecting data from sites that also support continuous plant- and/
or stand-scale carbon and water fluxes, (2) cyberinfrastructure to 
support the discoverability and distribution of these databases, (3) a 
focus in at least some locations on within-site spatial heterogeneity 
in Ψ dynamics to better understand how many observation points 
(and at what depths) are necessary to substantially improve model 
skill, and (4) training programmes, such as summer short courses or 
distributed graduate seminars, to transfer knowledge about how to 
interpret network observations and to share best practices for sen-
sor deployment.

Even with well-developed observation networks, it is not pos-
sible to measure key physiological variables such as Ψ every-
where and all the time. Thus, strategies for linking these variables 
to proxies observable from space are required for regional- and 
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The Sobol method30 was used to perform the sensitivity analysis; this 
method is based on variance decomposition and is able to capture 
interactions between parameters. More details can be found in Methods.
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continental-scale work, with microwave remote sensing represent-
ing a particularly promising approach. Microwave observations can 
be used to determine vegetation optical depth (VOD), which is sen-
sitive to plant water content75 and should be monotonically related 
to ΨL

76,77. Comparison of observed ΨL with either space-borne78 or 
tower-based70 radiometry confirms that VOD and ΨL follow similar 
dynamics, especially after accounting for the effect of changing bio-
mass and leaf area. However, the exact relationship between VOD 
and ΨL is influenced by vegetation type76, and further study of this 
relationship is currently hindered by the sparsity of ΨL data.

Importantly, microwave remote-sensing observations can be 
made at night, which raises the question of whether nocturnal 
microwave remote sensing of ΨL can be used to infer dynamics of 
root-zone ΨS. Answering this question requires a critical under-
standing of when and where pre-dawn ΨL is equilibrated with 
root-zone ΨS. This knowledge gap can be addressed with network 
observations of ΨL from psychrometry or observations of plant Ψ 
and ΨS collected in the same site, which could then guide the design 
and interpretation of both tower- and satellite-mounted microwave 
remote-sensing systems. The approach will also require further 
refinement of retrieval algorithms for separating the contribution 
of plant and soil water content, for example, by leveraging emerging 
approaches for the remote sensing of vegetation structure77.

In conclusion, we have highlighted how more numerous, discov-
erable and continuous observations of ΨS and plant Ψ can not only 
improve our conceptual understanding of biophysical processes 
throughout the soil–plant–atmosphere continuum, but also serve as 
a much-needed new tool for benchmarking and calibrating hydro-
logic and land-surface models and remote-sensing products. While 
in situ and site-specific observations of ΨS, ΨL and Ψx may not yet 
be easy, recent advancements in sensor technology have certainly 

made them easier than in decades past. The time is right for a new 
focus on the collection of these data in the field and the develop-
ment of new networks to aggregate observations across sites com-
plemented by new approaches for integrating these observations 
into Earth system models.

online content
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Fig. 4 | ΨS better explains variability in GPP when compared with θ. a–j, The relationship between GPP (normalized by its well-watered rate) and ΨS 
(f–j) is more linear than the relationship between GPP and θ (a–e) across four AmeriFlux sites for which site-specific water-retention curves were 
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Methods
Water-retention-curve uncertainty. The water-retention curves in Fig. 2 were 
created using the van Genuchten water-retention curve model11 relating ΨS to θ. 
As described in more detail in the Supplementary Information, most parameters 
of the model were held constant within each soil type, specified as the mean 
values reported in the updated ROSETTA PTF18 (Supplementary Table 1). The ‘n’ 
parameter—a key shape parameter of the van Genuchten model—was allowed 
to vary by randomly selecting a value from a uniform distribution bounded by 
±1 standard deviation as reported for the ROSETTA PTF18. Overall, this was a 
conservative approach; drawing the values of n from the full distribution reported 
for each soil type expands the range of predicted ΨS by orders of magnitude.

The HYDRUS 1D simulations. Uncertainty in the water-retention curve linked 
to pedotransfer uncertainty (for example, as Fig. 2a–d) was propagated through 
predictions of ΨS and θ (at depths of 15 cm) and surface evapotranspiration 
(cm d–1) using the HYDRUS 1D soil water-dynamics model79. Fifty simulations 
were performed for the Bradford Woods deciduous forest site in south-central 
Indiana, where the HYDRUS 1D model had been previously calibrated80. In 
general, model settings were left unchanged, with a few exceptions as discussed 
in more detail in the Supplementary Information. The soil at Bradford Woods is 
characterized by a 40-cm-depth AP (plowed A) horizon dominated by sandy loam 
and a BW (weathered B) horizon dominated by silt loam from a depth of 40 cm to 
208 cm. The very bottom of the soil layer (depths 208–230 cm) was prescribed to 
be clay loam. The parameters of the van Genuchten model used in the HYDRUS 
simulations are shown in Supplementary Table 2, where again most were held 
constant, but n varied for the sandy and silt loam layers by drawing it from within 
one standard deviation of its distribution reported in the updated ROSETTA 
PTF18. The shaded areas in Fig. 2e,f thus illustrate the resulting variations in 
evapotranspiration, ΨS and θ due solely to variability in n.

The ORCHIDEE GPP sensitivity analysis. The ORCHIDEE land surface model 
(CMIP6 version)31,32, which is the terrestrial part of the IPSL (Institute Pierre-Simon 
Laplace) Earth system model, was used to explore the sensitivity of modelled GPP to 
uncertainty in a wide range of parameters. ORCHIDEE relies on the van Genuchten 
model to calculate ΨS, as well as the hydraulic conductivity and diffusivity required 
to solve the Richard’s diffusion equation. ORCHIDEE discretizes the first 2 m of 
the soil column over 11 layers. For this experiment, we ran ORCHIDEE over three 
single-mesh locations using local half-hourly forcing data to drive the model at 
each site (Supplementary Table 3) and considered modelled GPP at a daily time 
step. The sensitivity analysis results shown in Fig. 3 were generated using Sobol’s 
method30, using the SALib python package87 to sample the parameter space and 
execute the algorithms. Briefly, the model was run using different parameter 
ensembles, with parameters varied within their reported ranges of uncertainty. 
Then, each modelled GPP time series was compared with GPP derived from 
flux-tower observations. The variance of simulated GPP was then decomposed into 
fractions that can be attributed to each parameter tested. These results, shown in 
Fig. 3, capture both independent and interactive contributions of each parameter to 
the total variance. When interactions are removed, the independent contribution of 
water-retention-curve parameters is still significant, and actually increases for the 
semi-arid site (see details in Supplementary Information section 3).

The AmeriFlux GPP analysis. Half-hourly or hourly data from the four flux 
towers referenced in Fig. 4 were acquired from the AmeriFlux network (ameriflux.
lbl.gov) and subjected to standardized quality-control, gap-filling, and partitioning 
approaches. The sites and quality-control procedures are described in more 
detail in Supplementary Table 5. The methods used to determine the relationship 
between GPP and soil moisture are similar to those previously used to explore the 
relationship between surface conductance and soil moisture35. Briefly, analysis was 
constrained to the peak of the growing season to limit bias linked to phenological 
variation in leaf area index. Estimates of ΨS for each site were determined from 

site-specific water-retention curves38,81–83. The data were then sorted into eight 
bins representing the 15th, 30th, 45th, 60th, 70th, 80th, 90th and 100th quantiles 
of the observed values of soil moisture content in each site. Within each bin, data 
were constrained to relatively high light (net radiation >300 W m–2) conditions 
with VPD limited to 1 ≤ VPD ≤ 1.5 kPa in US-MMS, US-TON and US-MOz 
and 1.5 ≤ VPD ≤2 kPa in the more arid US-SRM site. The mean GPP, ΨS and θ 
were then calculated for each bin using the filtered data and normalized by the 
maximum bin-averaged value observed at each site.

Data availability
The FLUXNET tower data appearing in Fig. 3 are from the FLUXNET 2015 dataset 
(https://doi.org/10.18140/FLX/1440186 for SD-Dem, https://doi.org/10.18140/
FLX/1440071 for US-HA1 and https://doi.org/10.18140/FLX/1440160 for FI-SOD). 
The AmeriFlux tower data appearing in Fig. 4 are available from the AmeriFlux 
network (https://doi.org/10.17190/AMF/1246080 for US-MMS, https://doi.
org/10.17190/AMF/1246081 for US-MOz, https://doi.org/10.17190/AMF/1246104 
for US-SRM and https://doi.org/10.17190/AMF/1245971 for US-TON).

Code availability
The HYDRUS 1D programme used to create the results of Fig. 2e–g is available for 
public download from https://www.pc-progress.com/en/Default.aspx?hydrus-1d. 
A reference version of the ORCHIDEE land-surface model, used for Fig. 3, is 
available at https://orchidee.ipsl.fr/. Details on the parameterizations of these 
models are presented in the Supplementary Information.

References
 87. Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity 

analysis. J. Open Source Softw. https://doi.org/10.21105/joss.00097 (2017).

Acknowledgements
K.A.N. acknowledges support from NSF (DEB, grant 1552747) and the AmeriFlux 
Management Project via the US Department of Energy, Office of Science Lawrence 
Berkeley National Laboratory. A.G.K. was supported by NASA Terrestrial Ecology 
(award 80NSSC18K0715). J.D.W. acknowledges support from the US Department 
of Energy, Office of Science, through Oak Ridge National Laboratory’s Terrestrial 
Ecosystem Science Focus Area. K.J.D. and Y.S. were supported by National Science 
Foundation grant EAR 1331726 (S. Brantley) for the Susquehanna Shale Hills Critical 
Zone Observatory.

Author contributions
K.A.N. conceived of the study with substantial input from D.L.F., A.G.K., K.J.D., T.A.G., 
R.L.S., B.N.S., Y.S. and N.M. Data analyses were performed by K.A.N., T.A.G., D.L.F. and 
N.R., who also created the resulting figures. D.B., R.L.S., K.A.N. and J.D.W. contributed 
AmeriFlux data used in Fig. 4. All authors wrote the text and provided substantial 
conceptual input to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41561-022-00909-2.

Correspondence should be addressed to Kimberly A. Novick.

Peer review information Nature Geoscience thanks Christopher Still, Vincent Humphrey 
and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe GeoSCieNCe | www.nature.com/naturegeoscience

https://doi.org/10.18140/FLX/1440186
https://doi.org/10.18140/FLX/1440071
https://doi.org/10.18140/FLX/1440071
https://doi.org/10.18140/FLX/1440160
https://doi.org/10.17190/AMF/1246080
https://doi.org/10.17190/AMF/1246081
https://doi.org/10.17190/AMF/1246081
https://doi.org/10.17190/AMF/1246104
https://doi.org/10.17190/AMF/1245971
https://www.pc-progress.com/en/Default.aspx?hydrus-1d
https://orchidee.ipsl.fr/
https://doi.org/10.21105/joss.00097
https://doi.org/10.1038/s41561-022-00909-2
http://www.nature.com/reprints
http://www.nature.com/naturegeoscience

	Confronting the water potential information gap
	Concepts and uncertainties linked to ΨS
	Plant Ψ: key concepts and controversies
	Strategies to address the Ψ information gap
	Online content
	Fig. 1 Ψ links environmental drivers to biophysical responses.
	Fig. 2 Water-retention curve and PTF uncertainty.
	Fig. 3 Water-retention-curve parameters are a key source of land-surface model uncertainty.
	Fig. 4 ΨS better explains variability in GPP when compared with θ.




