2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 978-1-6654-2027-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/HPCA53966.2022.00029

2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

VAQEM: A Variational Approach to Quantum Error Mitigation

Gokul Subramanian Ravi*!, Kaitlin N. Smith*', Pranav Gokhale?, Andrea Mari’, Nathan Earnest*,
Ali Javadi-Abhari*, and Frederic T. Chong!

"University of Chicago
2Super.tech
3Unitary Fund
‘IBM Quantum, IBM T. J. Watson Research Center

Abstract—Variational Quantum Algorithms (VQA) are one
of the most promising candidates for near-term quantum
advantage. Traditionally, these algorithms are parameterized
by rotational gate angles whose values are tuned over iterative
execution on quantum machines. The iterative tuning of these
gate angle parameters make VQAs more robust to a quantum
machine’s noise profile. However, the effect of noise is still
a significant detriment to VQA’s target estimations on real
quantum machines — they are far from ideal. Thus, it is
imperative to employ effective error mitigation strategies to
improve the fidelity of these quantum algorithms on near-term
machines.

While existing error mitigation techniques built from theory
do provide substantial gains, the disconnect between theory
and real machine execution characteristics limit the scope of
these improvements. Thus, it is critical to optimize mitigation
techniques to explicitly suit the target application as well as
the noise characteristics of the target machine.

We propose VAQEM, which dynamically tailors existing
error mitigation techniques to the actual, dynamic noisy ex-
ecution characteristics of VQAs on a target quantum machine.
We do so by tuning specific features of these mitigation
techniques similar to the traditional rotation angle parameters -
by targeting improvements towards a specific objective function
which represents the VQA problem at hand. In this paper, we
target two types of error mitigation techniques which are suited
to idle times in quantum circuits: single qubit gate scheduling
and the insertion of dynamical decoupling sequences. We gain
substantial improvements to VQA objective measurements —
a mean of over 3x across a variety of VQA applications, run
on IBM Quantum machines.

More importantly, while we study two specific error miti-
gation techniques, the proposed variational approach is gen-
eral and can be extended to many other error mitigation
techniques whose specific configurations are hard to select a
priori. Integrating more mitigation techniques into the VAQEM
framework in the future can lead to further formidable gains,
potentially realizing practically useful VQA benefits on today’s
noisy quantum machines.

Keywords-quantum computing; noisy intermediate-scale
quantum; variational quantum algorithms; variational quan-
tum eigensolver; error mitigation; dynamic decoupling; gate
scheduling;

I. INTRODUCTION

Quantum computing is a revolutionary computational
model that leverages quantum mechanical phenomena for
solving some classically-intractable problems. Quantum
computers (QCs) evaluate quantum circuits or programs
in a manner similar to a classical computer, but quantum
information’s ability to leverage superposition, interference,
and entanglement is projected to give QCs significant ad-
vantage in chemistry [20], optimization [27], and machine
learning [9].

In near-term quantum computing, sometimes called Noisy
Intermediate-Scale Quantum (NISQ), we expect to work
with quantum machines which comprise hundreds to thou-
sands of imperfect qubits [36]. Further, due to design
constraints, the connectivity in these machines will be sparse
and qubits will have modest lifetimes. With such limitations,
near-term machines will be unable to execute large-scale
quantum algorithms like Shor Factoring [41] and Grover
Search [17], which would require error correction comprised
of millions of qubits to create fault-tolerant quantum sys-
tems [30] wherein many physical device qubits work in
careful synchronization to create a single logical qubit that
is used at the algorithm level.

Variational Quantum Algorithms: However, recently,
variational quantum algorithms (VQA) have been introduced
that are expected to be a near-perfect match for near-
term machines where logical and physical qubits have a
one-to-one mapping. This class of algorithms has a wide
range of applications such as ground state energy estimation
of molecules [32], MAXCUT approximation [27], prime
factorization [8] and so on. The fundamental aspect of VQAs
that make them suitable to today’s quantum devices is that
these algorithms adapt to the characteristics and noise profile
of the quantum machine they are executing on. The quantum
circuit for a VQA is parameterized by a list of angles (which
are the angles corresponding to gate rotations in the circuit).
These parameters are optimized by a classical optimizer over
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Figure 1: In traditional VQA applications, the gate
angles to the quantum circuit (ansatz) are tuned vari-
ationally to optimize for (eg. minimize) some objective
function / Hamiltonian H. Further, error mitigation is
often applied to the quantum circuit but is usually built
form theory / heuristics and is independent of the tuning
process. The entire traditional flow is indicated by the
dashed grey arrows. In this work we propose to varia-
tionally improve the error mitigation techniques to suit
the application / machine as well (red arrow). We tune
specific features of the error mitigation techniques within
the VQA harness of minimizing the same Hamiltonian
H. This effectively brings VQA closer to the optimal
noise-free solution.

the course of many iterations to maximize or minimize a
specific target objective which is representative of the VQA
problem. For this reason, variational algorithms are also
termed as hybrid quantum-classical algorithms. These VQA
characteristics make them more robust to be executed on
today’s quantum devices.

Noise in near-term Machines: As the name suggests,
NISQ devices suffer from high error rates as noise is
prevalent during state initialization, gate application and
measurement procedures. In addition to errors incurred
while directly interacting with qubits, quantum state is also
vulnerable to error during periods of inactivity. This noise
on qubits is termed decoherence and manifests as damping
that degrades the quality of qubit state exponentially over
time. Noise has prevented current quantum computers from
surpassing the capabilities of classical computers in almost
all applications, including VQAs. Considering the promise
of VQAs on NISQ machines, it is imperative to explore
techniques to improve the quality of their execution on
today’s quantum machines.
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Error Mitigation: Orthogonal to the domain of VQAs,
multiple error mitigation techniques have been explored on
NISQ devices. These techniques reduce the effect of noise on
circuit execution on the quantum machine. Several promis-
ing strategies have recently emerged, including noise-aware
compilation [28], [45], scheduling for crosstalk [12], [29],
1-qubit gate scheduling in idle windows [42], dynamical
decoupling [34], [43], [48], zero-noise extrapolation [14],
[24], [46], readout error mitigation [11], [44], exploiting
quantum reversibility [31], [42] and so forth. While these
techniques have the potential to greatly improve execution
fidelity, there is often a significant disconnect between
the theoretical guarantees of these methods and how they
perform on real hardware. Complicated sources of error on
actual hardware make it difficult to reason about the best
configuration of the error mitigation technique.

A Variational Approach to Error Mitigation: Dynam-
ically tailoring specific features of error mitigation tech-
niques to a machine’s actual noisy execution environment
is a perfect fit for the variational quantum approach which
already tunes gate angle parameters as part of the frame-
work. Thus, we propose VAQEM, a variational approach to
error mitigation which integrates error mitigation features
into VQA’s iterative tuning of circuit parameters towards
the target problem objective. An overview of VAQEM is
illustrated in Fig.1. In this paper, we target two types of
error mitigation techniques which are suited to idle times
in quantum circuits: single qubit gate scheduling [42] and
the insertion of dynamic decoupling sequences [34], [43],
[48], resulting in substantial improvements in the measured
objective over a variety of VQA applications.

Most importantly, while we limit our scope to two idle-
time error mitigation techniques, the proposed variational
approach can enable improved mitigation over a variety of
other techniques, paving the way for quantum advantage for
VQA in the NISQ era. Further, benefits of this new approach
will only improve as the support for classical-quantum co-
processing in the cloud continues to grow.

Contributions:

(D VAQEM is the first variational approach to error
mitigation which integrates error mitigation techniques into
VQA'’s harness of feedback-based parameter tuning. It is able
to do so effectively without getting lost in the increased
degrees of tuning freedom.

@ The benefits from the VAQEM approach are demon-
strated by showing improvements in two idle-time error
mitigation methods - insertion of dynamical decoupling
sequences and single qubit gate scheduling. Each idle win-
dow has a different optimal error mitigation “configuration”
which is dependent on input state to the idle window, the
qubit characteristics etc., and therefore it is not trivial to
identify the optimal configuration.

(3 To the best of our knowledge, VAQEM is the first
proposal presenting the effective selection of dynamical
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decoupling (DD) sequence lengths tailored to a quantum
device.

@ Our techniques are evaluated on real IBM quantum
machines. VAQEM improves the quality of the measured
objective by over 3x on average across a variety of VQA
applications.

(3 To the best of our knowledge, this work is among
the first research papers that use IBM Qiskit Runtime [2],
which allows for greater than 100x speedups in classical-
quantum co-processing and is necessary to extend VQA
research on real quantum machines. We also discuss the
challenges of execution on today’s quantum machines via
the available cloud infrastructure and their effects on tackling
VQA problems.

(® We prove the “soundness” of the objective-aware
feedback-based tuning approach that we utilize to reduce
error from noise in quantum circuits.

(@) We discuss the potential for VAQEM to be extended
to other error mitigation and QC optimization approaches.
Incorporating multiple techniques into the variational frame-
work always ensures synergistic improvements because any
negative interactions between techniques are avoided by the
tuning mechanism.

II. BACKGROUND
A. Near-term Quantum Computing

The basic unit of quantum information is the quantum
bit, or qubit, which can exist in a linear superposition of
the basis states |0) and |1). If measured, however, the state
|ty = «|0)+ 3 |1) collapses into either |0) or |1), effectively
becoming a classical bit. A system of n qubits requires 2"
amplitudes to describe the state.

Qubits are manipulated via gates which modify their
amplitudes. Unlike in classical computation, there are many
non-trivial single-qubit gates such as R,(f) and R.(6)
which rotate the state around the x and z axes, respec-
tively. Pairs of qubits can be manipulated via multiqubit
interactions. The most common of these gates is the two-
qubit controlled- X, or C X. Together with single qubit gates,
CX enables universal quantum computation. There are
many choices of basis gate sets specified by the underlying
hardware.

Current QCs, sometimes called Noisy Intermediate Scale
Quantum (NISQ) devices, are error prone and less than 100
qubits in size [36]. These devices are extremely sensitive
to external influence and require precise control, and as a
result, some of the biggest challenges that limit scalability
include limited coherence, gate errors, readout errors, and
connectivity. Environmental coupling is the source of many
errors in quantum systems. For example, amplitude damping
describes the sporadic loss of energy resulting in the |1) state
falling to the |0) state; the rate of this process is described
by the device’s 7; time. Similarly dephasing details the
sporadic change in relative phase between basis states and is
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Figure 2: Overview of VQA flow that includes quantum
and classical processing to minimize some objective
function < H >, the expectation value of the problem
Hamiltonian.

expressed by the 75 time of the device. Both are the cause
of decoherence. Finally, crosstalk refers to error caused
by simultaneous execution of gates on nearby qubits. The
severity of each type of noise varies per qubit and calibration
cycle.

B. Variational Quantum Algorithms

Variational quantum algorithms are important in the near-
term because they comply with the constraints of NISQ
hardware. In particular, variational algorithms have innate
error resilience, due to the hybrid alternation with a noise-
robust classical optimizer [26], [32]. A schematic of this
process is illustrated in Fig. 2. There are multiple applica-
tions which are part of the VQA domain such as Quantum
Approximate Optimization Algorithm (QAOA) [13] and
Variational Quantum Eigensolver (VQE) [32] . In this work
we restrict ourselves to the latter, which is discussed next.

1) Applications: Variational Quantum Eigensolver: The
Variational Quantum FEigensolver (VQE) [32] is used to
find the lowest eigenvalue of a given problem matrix by
computing a difficult cost function on the quantum machine
and feeding this value into an optimization routine running
on a CPU. Typically, the problem matrix is the Hamiltonian
governing a target system and the lowest eigenvalue corre-
sponds to the system’s ground state energy [26]. VQE is
typically used to find the ground state energy of a molecule,
a task that is exponentially difficult in general for a classical
computer [15]. Estimating the molecular ground state has
important applications to chemistry such as determining
reaction rates and molecular geometry.

At a high level, VQE can be conceptualized as a guess-
check-repeat algorithm. The check stage involves the prepa-
ration of a quantum state corresponding to the guess. This
preparation stage is done in polynomial time on a quantum
computer, but would incur exponential cost in general on
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Figure 3: Comparison of the ideal VQE optimization
surface vs. local minimums (T'r[#H]) found in the tradi-
tional, noisy and error-mitigated search regions.

a classical computer. This contrast gives rise to a potential
quantum speedup for VQE [15].

2) Ansatz: The quantum circuit corresponding to each
iteration of VQE (and VQA in general) is termed an ansatz
which describes the range of valid physical systems and
thus determines the optimization surface. Traditionally, the
ansatz is parameterized by gate rotation angles as shown in
Fig. 2. A good ansatz provides a balance between a simple
representation, efficient use of available native hardware
gates, and sufficient sensitivity with the input parameters.

For molecules, while many ansatz choices are possible,
Unitary Coupled Cluster Single-Double (UCCSD), an ansatz
motivated by principles of quantum chemistry, is considered
the gold standard [15], [37]. Unfortunately the UCCSD
ansatz is generally of considerable circuit depth making it
less suitable for today's NISQ machines except for very
small molecules like Hs. More suitable to the NISQ-era
are hardware efficient ansatz [20] like the SU2 [4] which
are hyper-parameterized by number of qubits, number of
repetitions, and type of entanglement, and these can be
selected so as to optimize for the quantum application as
well as the machine.

3) Hamiltonian: The VQA problem is represented as a
Hamiltonian. The VQA objective function calculates the ex-
pectation value of this Hamiltonian iteratively. This objective
function is derived from ansatz measurements over different
bases - an example is shown in Fig. 2.

For example, in VQE the classical tuner variationally
changes the parameterized input until it converges to a global
minimum. This way it finds the corresponding eigenvalue
and eigenstate. Since VQE's Hamiltonian describes the
energy evolution, this global minimum represents the ground
state energy of the system. QAOA takes a similar approach.

If a circuit ideally intends to simulate the evolution of
some Hamiltonian, H, then in a noisy environment it can be
represented as the evolution of some other Hamiltonian, #H'.
If noise levels are reasonable and/or if the effects of noise are

m

adequately mitigated then the eigenstates and eigenvalues of
‘H and H' will be close in distance.

4) Parameter Space and Classical Tuning: The execution
on the quantum processor evaluates the objective function
to be optimized classically. A good optimizer has a short
distance to the true global optimum, high accuracy of the
optimal parameters found, or both. [23] . The shape of
the optimization surface is determined by the ansatz, and
although typical surfaces are smooth in the ideal case, noise
can change this landscape considerably. Fig. 3 compares
the smooth, convex noise-free optimization surface of ideal
VQE to local minimums defined as Tr[H,] = (| H |} for
pure states found in the traditional, noisy and error-mitigated
search regions. As seen in Fig. 3, reducing quantum system
noise discovers solutions closer to the ideal. Thus, we are
motivated to include error mitigation that is tuned dynami-
cally within VQA routines.

C. Error Mitigation Overview

With the limited number of qubits available in near-term
quantum computers, full-fledged quantum error correction
is impractical. QEC techniques require uniting multiple
physical qubits on a device to act as a single logical qubit
and special codes to remedy errors are implemented on these
multiple physical qubits. Near-term quantum computing is
very limited in the number of available physical gubits
meaning that we look at alternative approaches - specifically
error mitigation instead of comrection. These techniques
reduce the effect of noise on the execution of a quantum
circuit on the device.

Multiple orthogonal forms of error mitigation exist to
cormrect different forms of quantum errors, many of which
can be used in conjunction to achieve maximum fidelity.
Pre-processing mitigation includes techniques such as noise
aware mapping [28] which selects the most appropriate
physical machine qubits to map the circuit's logical qubits
onto. Post-processing techniques can correct measurement
errors [44], extrapolate for zero noise [22], [24], [25], [46]
and so forth. The errors mitigated by these techniques
are largely influenced by machine / circuit characteristics
which are externally observable i.e. mostly independent of
the internal workings (e.g. quantum state) of the particular
quantum circuit executing on the guantum machine. They
aim to minimize the impact of systematic noise in a “one-
size fits all manner” and can be incorporated as is, with
minimal understanding of the state of the quantum system.

Other mitigation techniques such as dynamical decou-
pling [10], [19], [21], [35], spin-echo correction [18] and
gate scheduling [42] are more dependent on internal quan-
tum state, as they try to refocus signals in open guantum
systems and their effectiveness is amplified if deployed
in & manner that is optimized to the compiled guantum
application characteristics as well as the quantum device
noise profile. We focus on these open-loop techniques in this
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work and optimize them via a variational approach; they are
discussed in more detail next.

III. IDLING ERRORS AND THEIR ERROR MITIGATION

In this work we target two mitigation techniques which
are implemented in circuit idle times that appear during
runtime. We define qubit runtime as the period spanning
the first gate up until measurement. During runtime, a qubit
will spend some cycles active within computation and others
idle while waiting for signals to propagate along a critical
path. Limited connectivity in near-term devices requires
routing networks for qubit communication in mapped cir-
cuits, and these routing networks are inserted during the
compilation of machine-agnostic algorithms into machine-
ready executables. Logically, communication constraints of
nearest-neighbor QCs will cause an increase in idle time
as algorithms scale. As idle time increases, qubit state can
decohere, leading to poor circuit fidelity.

The most elementary form of idle time error mitigation
suppresses single-qubit phase accumulation with Hahn spin-
echo techniques where R, (7m) = X instructions are insert
into circuits during runtime. These instructions reverse the
impact that dephasing has on quantum state over time.
For example, consider a quantum state |¢)) pictured on
the Bloch sphere in Fig. 4(a) that is prepared with a
rotation of R, (f) and R,(¢). Ideally, |¢)) would hold state
information indefinitely, but phase information is susceptible
to decoherence. In Fig. 4(b), the decay of state information
is represented by the unknown rotation R,(7) that causes
|t)) to evolve to |¢'). Hahn spin-echo techniques apply
an X operation to |¢') in Fig. 4(c) to mitigate the phase
accumulation caused by decoherence, resulting in state |¢)).
Continued dephasing in the form of another R,(7y) is shown
in Fig. 4(d). This accumulation of more phase counteracts
the original rotation of R(7), refocusing the qubit state to
create |¢"’). After the application of a second X gate, the
original state of |¢) is restored (Fig. 4(e)). The procedure
of inserting R, (m)R,;(m) = XX mid-circuit is permitted
as it preserves the semantics of the original circuit. The X
operation is self-inverse and XX ! = I where I is the
identity operation.

The two idling error mitigation techniques we focus on,
both inspired by the Hahn spin-echo techniques from above
are Dynamical Decoupling and single-gate scheduling within
idle windows.

A. Dynamical Decoupling

Dynamical decoupling (DD) [48] “decouples” compute
qubits from environmental noise with special gate sequences
that do not change the overall logic of a circuit. The
X X sequence implements the most basic form of DD that
provides Hahn spin-echo corrections. Standard DD with
the “universal decoupling” sequence requires four gates:
Ry (m)Ry(m)Ry(m)Ry(m) = XY XY [48]. The universal
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decoupling sequence (referred to as XY 4) adds increased
protection to state because § = 7 rotations about both the x
and y axes makes the qubit more resilient to environmental
noise [43]. Other DD sequences include Y'Y, XY8, and in
general XX... XX, YY. . YY, XYXY. . XYXY (to N)
wherein identifying the optimal number of DD sequences N
within an idle window is an unsolved problem. More details
and other sequences are discussed in prior work [35].

DD has proven effective at correcting single qubit states
and, to a lesser extent, two qubit entangled states in su-
perconducting systems [34]. DD has also improved the
Quantum Volume (QV) of a real QC. Both of these demon-
strations, however, cost additional circuit instructions during
runtime. Single-qubit gate errors on superconductors are on
average of order 10~ [3], [19], and although individually
small, collective errors can degrade circuit performance,
especially as circuits scale on maximally-utilized machines.

Thus, if DD is applied to circuit optimization, it must be
included within intelligent routines that avoid introducing
additional gate error that outweighs corrective benefits; the
optimal number of DD sequences to be inserted in an
idle window is largely unknown and VAQEM’s variational
approach can find this optimal sequence length effectively.

B. Single-qubit Gate Scheduling

As late as possible (ALAP) scheduling tends to be stan-
dard in compilation tools meaning that gates will not execute
until another operation, typically either a measurement or a
two-qubit operation along a critical path, can be executed
immediately afterwards. Scheduling qubit operations for
ALAP assists with mitigating noise associated with 77
and T, decoherence if qubit runtime has not initialized.
ALAP execution, however, is not always ideal once a qubit
holds state. DD techniques use additional gates to recohere
quantum state in the presence of noise. Rather than add gates
to a circuit, single-qubit gate scheduling refocuses signals
by appropriate scheduling of gates within idle windows.
Prior work on single-qubit gate scheduling [42] builds tuning
circuits from the original circuit by slicing the circuits into
many parts and appending the reversal of the circuit to the
slice. It then leverages the reversible nature of quantum
computation to find optimal gate positions for single-qubit
gates adjacent to slack within a quantum circuit. While
effective in the general case where circuit outcomes are
unknown, the process requires the construction of tuning
circuits and is limited by maximum circuit depth. VAQEM’s
variational approach can find optimal gate positions more
accurately, throughout the circuit and with less overhead.

IV. TUNING THE ERROR MITIGATION

In this section, we show how tuning specific features of
error mitigation techniques can improve their efficacy over
a one-size-fits-all approach.
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Figure 4: Phase refocusing through Hahn spin-echo. (a) A qubit state, |¢), is prepared. (b) As time elapses, the
phase of |¢)) decoheres, and noise in the form of R.(v) creates the quantum state |¢)'). (c) An X gate rotates |¢')
180° around the x-axis to create |¢"’). (d) The effects of dephasing, another R,(v) rotation, constructively interferes
with [¢)") to produce [¢)"’). (¢) Another X pulse restores |¢)) from |¢)"").
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Figure 5: Demonstration of adding DD sequences for
error mitigation. The circuit on the top shows the
addition of the 2 sets of the XYXY (red boxed) sequence
in an idle window. The graph below shows that as the
number of such sequences are varied from none to
filling the entire idle slack window, they have distinct
impact on the circuit’s fidelity. The red line indicates
fidelity without DD and some sequences show decreased
fidelity (yellow region). Blue region implies fidelity gains
and peaks that can be found via variational tuning are
circled.

A. Dynamical Decoupling

First, we explore tuning the number of DD sequences
inserted into circuit idle windows. As alluded to in Section
III-A, the optimal number of DD sequences is dependent on
multiple factors such as the input signal, gate errors, impact
of crosstalk, qubit quality, and much more. Further, it is
dependent on the DD sequence itself. Thus, it is arduous
to derive an exact number from theory. The circuit shown
in Fig. 5 shows an example of DD sequence insertion - the
insertion of XY XY gates within one large idle window
of the circuit. The graph below it shows that when the
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number of such XY XY sequences are varied (from none
to filling the entire windows), the impact on overall fidelity
is distinctly different. The red line indicates fidelity without
DD and some sequences show decreased fidelity (yellow re-
gion). Decrease in fidelity can be a byproduct of cumulative
gate errors as well as ineffective signal correction. On the
other hand, increase in fidelity (i.e. the blue region) is more
prominent. Some number of sequences are more favorable
than others leading to multiple fidelity peaks. The variational
error mitigation tuning which optimizes towards a known
target objective function (described in Section VI) is able to
identify such prominent peaks, thereby optimally improving
fidelity with the optimum amount of DD.

B. Single-qubit Gate Scheduling

We are inspired by the theory of Hahn spin-echo to
reschedule single-qubit gates within idle windows for de-
coherence mitigation [42]. The circuit in the top of Fig. 6
provides a micro-benchmark that demonstrates the viability
of optimizing single-qubit gate execution when an adjacent
idle window exists. An IBM QC was used for micro-
benchmark experiments.

The circuit begins with an H gate that puts a qubit into
superposition of |¢) = 19411 Next, an idle window of
duration 28.44us artificially created with 799 identity (I D)
operations (each of approximately 35.56ns duration) and an
X gate that is tuned in position within the idle window
so that it sweeps each position from ALAP to as soon as
possible (ASAP) within the window. As a note, the X gate
swaps the amplitude of |0) and |1), leaving the overall state
of |¢) = % unchanged. To capture the impact of qubit
dephasing, an H at the end of the circuit allows measurement

to be in the X-basis (|+) = ‘0>+‘1>,|—> = 0-11y rather

V2 V2

than in the Z-basis (]0),|1)). Measurement in the X-basis
provides insight about the dephasing of |4).

The circuit in Fig. 6 is inspired by 75 experiments, and
it demonstrates that single-qubit gate placement within idle
windows impacts fidelity. We define fidelity as the Hellinger
fidelity between an ideal distribution and one produced from
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Figure 6: Qubit dephasing correction via Hahn spin-echo
techniques. The pictured H+X+Delay circuit on a single
qubit tunes X gate placement within a slack window to
relate position to state fidelity. An H at the circuit end
causes an X-basis measurement (|+)/|—)), capturing
information about qubit phase. When X is scheduled
near the middle of the slack window with a 390 ID
delay (approx. 14.22s), the Hellinger fidelity comparing
experimental distributions to the ideal is maximized.

a real QC run. The graph in the lower half of Fig. 6
demonstrates that gate placement within slack can influence
circuit outcome. When X is scheduled near the center of the
window, fidelity is maximized. The micro-benchmark shows
the effectiveness of rescheduling within a single window.
Ideally, VAQEM would use the variational approach to tune
gate schedules across all idle windows in unison to find a
synergistic combination of parameters.

V. SOUNDNESS OF TUNING ERROR MITIGATION

As seen in Fig. 3, the impact of environmental noise
causes VQA convergence on local energy minimums that
are higher than the global optimum. Thus, reducing noise
is key. Error mitigation that reduces external environmental
influence on computation is often treated as a separate
processing task run sequentially or in parallel to VQA
parameter tuning. In this work, we propose including error
mitigation within the variational framework of VQA.

It is critical that the variational error mitigation tuning
does not create any artificial effect which causes the algo-
rithm to return better than ideal solutions. This is ensured
by the following: (D) This approach is only suited to purely
quantum mitigation strategies that act on quantum qubits /
gates / noise channels. (2) Per theoretical design, one or more
of the pure quantum states that can be achieved by the VQA
ansatz can, at best, correspond to the ideal ground state, i.e.
the solution to the VQA problem. (3) A noisy quantum state
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is a sum of probabilities across multiple pure states. So a
quantum error mitigation strategy can, at best, reduce the
noisy state to the pure state(s) that correspond to the ideal
ground state, but never “better” than the ideal ground state.
Thus, VAQEM can, at best, achieve the ideal solution.

Now we prove the soundness of this variational error
mitigation approach to not exceed the true global optima
using VQE as an example, i.e. in Fig.3 the green boxes
never fall below the blue line.

Setup. Let A be a Hamiltonian with eigenvectors |¢);) and
eigenenergies E; so that H |¢;) = E; |[¢;). Let Eq denote
the ground state energy with corresponding ground state
|10). Ep is found on the blue curve representing the ideal
optimization surface in Fig. 3. For simplicity, assume that the
ground state is degenerate, meaning no other state has energy
of Eq (the analysis still holds if we relax this assumption).

Property 1: (Pure State VQE). (¢| H |¢) > E, for every
state |¢), with equality only achieved for the ground state
|¢) = |1bo). This is the core motivation behind VQE: one
can only overestimate the ground state energy. With a good
ansatz, one hopes to approach Ey.

Proof: Re-statement of the variational principle [38].

Property 2: (Mixed State VQE) The energy of a mixed
state is at least Eg, so one cannot “cheat” by tuning non-
unitary operations. A result of VQE for a specific H must
not fall into the region beyond the blue lower bound pictured
in Fig. 3. More formally, Tr[Hp] > Eo.

Proof: the energy of a mixed state p is Tr[Hp]. By
the spectral theorem, p > pi|di) (bi], where p; is a
probability vector and |¢;) are pure states. Therefore,

Tr[Hp] = ZPiTT[H |pi) (pil]l = Zpi (dil H i)

by cyclicity of trace. By Theorem 1, each (¢;| H |¢;) term
is at least Ey. Since p; is a probability vector, the energy
Tr[Hp] is at least Eq. Equality is achieved in the special
case where the mixed state p is actually the pure ground

state [10) (Yo

VI. DESIGNING VAQEM FOR TODAY’S QUANTUM
CLOUD

In Section IV we showed that tuning specific features of
error mitigation techniques can significantly increase their
impact on quantum circuit execution resulting in improved
fidelity. Fidelity increase leads to improvements in the
measured objective function for VQA applications. In this
section we show how these error mitigation features are
tuned within the VQA harness - we discuss how such
features can be optimally tuned in the future (as quantum
service offerings improve) and the challenges pertaining
to today’s machines and corresponding design choices that
make VAQEM feasible today even if sub-optimal.
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qubit_op = PauliOp(Pauli('XIIIII')) + PauliOp(Pauli('ZIIIIZ'))
ansatz = EfficientSU2(num_qubits=6, entanglement='full',reps=2)
provider = IBMQ.get_provider()

options = {
'backend_name' :

3

'ibmg_montreal’

runtime_inputs = {

'ansatz':

ansatz,

¢ The pr
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'operato
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'optimizer': {'name': 'SPSA', 'maxiter': ansatz.num_parameters},

T

l parameters of €
'initial_parameters':

np.array([np.pil*36),

# Whether to apply measurement error mitigation

'measurement_error_mitigation': True,

job = provider.runtime.run(
program_id="'vqge',
options=options,
inputs=runtime_inputs

)

# Get re

result =

job.result()

Figure 7: A snapshot of Qiskit Runtime (07/2021) im-
plementing a VQA workload.

A. Qiskit Runtime and its Constraints

In the past, quantum-classical co-processing experiments
(like VQA) on IBM machines and beyond, had to either
be run entirely via simulation or required (thousands or
even millions of) costly interactions between the client’s
classical processor and the quantum machine. These con-
stant interactions were required to transfer the quantum
measurements to the classical computer, which were used
to calculate the objective function and then enabling tuning
ansatz parameters for the next iteration of the VQA process.
With such a setup, the process of modeling LiH would take
as many as 45 days! [1].

IBM Qiskit Runtime [1] recently demonstrated a 120x
speedup in simulating molecules primarily thanks to the
ability to run quantum programs entirely on the cloud.
Improving this speed is critical for large calculations and is
an active area of work [49]. To the best of our knowledge,
this work is among the earliest to utilize the IBM Qiskit
Runtime platform in a research endeavor. A snapshot of the
environment / code sample is shown in Fig.7. The general
methodology to implement this variational approach was
already shown in Fig. 2.

New platforms come with constraints though. Qiskit Run-
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time is limited' in terms of: (1) which parameters can
be tuned variationally - only the traditional gate angle
parameters are allowed, (2@ which classical tuners can be
used - only the Simultaneous Perturbation Stochastic Ap-
proximation method (SPSA) [6] variants are allowed, which
are usually slow to converge as they only take incremental
local steps from start to finish, (3 the maximum runtime is
limited - we can at most run a problem for only 5 hours
which is especially detrimental when using a slow tuning
algorithm and larger circuits, and (4) machine access is very
limited - only one machine with Qiskit Runtime enabled is
accessible to us.

While we obtain promising results with the use of Qiskit
Runtime (smaller chemistry problems), considering the chal-
lenges outlined above, we are forced to pursue alternative
methodologies for some steps / scenarios which are unsuited
to Runtime (at the present): circuits which require tuning
times of more than 5 hours, when machine access is lim-
ited, and for tuning the mitigation approaches. These are
discussed next.

B. Simulation Feasibility

Simulation is insufficient for scalable quantum computa-
tion. In fact, that is the primary motivation for QCs. But
for the size of the VQA problems which are currently
explored (due to machine limitations), simulation is feasible
as long as it accurately models the effects of the quantum
machine. In this section, we show that while simulation
can be appropriate for variationally tuning the VQA angle
parameters, they are unsuitable for tuning error mitigation.

1) Tuning Angles: Fig. 8 shows the variational tuning
of the traditional gate angle parameters for a 6-qubit VQE
problem. The top graph shows tuning via ideal simulation
while the bottom graph shows results from real quantum
machine execution (on ibmg_casablanca). Importantly,
note that the angle tuning is performed on the ideal simulator
and the same tuning parameters are run on the quantum
machine. It is evident from the graphs that even though
the range of the objective function values, as well as the
final converged objective measurement are different, the
tuning and convergence trends are similar on both. This
empirically shows that finding optimal minima parameters
through simulation are also reasonable minimas for the real
quantum machine. This Optimal Parameter Resilience in the
face of incoherent noise, such as decoherence processes and
readout errors has also been motivated from a theoretical
perspective in prior work [39]. Thus, simulation is suitable
for angle tuning when machines are unavailable / unsuitable.

2) Tuning Error Mitigation: On the other hand, simu-
lation can be less suitable to many forms of error mit-
igation. This is because the noise models used in to-

ILimitations correspond to 07/2021 when we were among the earliest
users of Qiskit Runtime. Please refer to https:/qgiskit.org/documentation/
partners/qiskit_runtime/tutorials.html for information on latest updates.
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Figure 8: Ideal Simulation and real quantum machine
execution for tuning gate rotational angles for a 6-
qubit VQE problem. Similar convergence trends are
seen on both, even though the objective function value
measured varies. Finding optimal minima parameters
through simulation are also reasonable minimas for the
real quantum machine.
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Figure 9: Noisy Simulation and real quantum machine
execution for error mitigation via tuning gate positions
in idle windows for a 2 qubit microbenchmark with one
large idle window. Clearly the trends and range seen in
simulation are vastly different from the real machine.

day’s simulations are unable to capture a lot of the noise
characteristics and interactions within the real quantum
machines. Fig. 9 shows machine-based noisy simulation
(ibmg_casablanca model) and real quantum machine
execution (on ibmg_casablanca) for error mitigation
via tuning gate positions in idle windows for a 2-qubit
micro-benchmark with one large idle window. Note that the
noise model is obtained from the same calibration cycle as
the real device. Clearly the trends seen in simulation are
vastly different from the real machine. While the simulation
shows a preference for gate positioning at the beginning
of the window, the real machine shows poor fidelity at
the start but different optimal positions across the window.
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Further, the range of fidelity is considerably greater on
the real machine. Similar trends can be seen across other
mitigation techniques such as DD as well. Clearly, benefits
of mitigation techniques (in general) and tuning mitigation
(in specific) should be evaluated on the real machine until
we have a better understanding of the machines to build
more accurate noise models.

Minimize Objective (

—

nom

Figure 10: Tuning DD error mitigation on a real QC to
discover optimum sequencing that boosts circuit fidelity.

C. Tuning EM on the Machine

As motivated above, we would like to use the quantum
machine where possible - especially when error mitigation
tuning is required. On the one hand, error mitigation tuning
cannot be directly performed within Qiskit Runtime in its
current form (as discussed earlier). On the other hand, a
distributed feedback based approach, alternating between the
client’s classical processor and the quantum machine on the
cloud is infeasible due to the communication costs.

Thus we take an approach which: @ first finds the opti-
mum gate rotation angle parameters with methods discussed
earlier and then (b) tunes error mitigation features in each
idle window independently to optimize for the VQA prob-
lem’s objective function and combines together the optimum
tuned values for each window. Tuning each window indepen-
dently (i.e. tuning in one window while keeping parameters
corresponding to other windows fixed) is a reasonable ap-
proach because the error mitigation techniques explored here
only involve adding / moving single qubit gates in the idle
windows and it is known that impact of single-qubit gate
crosstalk is minimal compared to other noise forms. This is
confirmed by our own micro-experiments as well as in prior
work [29].

An illustration of the framework performing DD sequence
tuning is shown in Fig. 10. Two windows for EM tuning
are circled in green. The figure shows a specific window
being tuned, shaded with green and DD sequences inserted
within the window. The number of DD sequences inserted
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Figure 11: Overall VAQEM flow: Ideal (long term) vs
Feasible (near term) methodology.

is swept from none to maximum (i.e. to fill the window
entirely) and the objective function is measured for the tuned
ansatz. When this particular window is tuned, other windows
are without any DD insertions (i.e. baseline). The tuning
with the lowest objective function value (in a minimization
problem) is selected. Similarly other windows are tuned and
all the optimal tunings are then combined together. The
above technique is also used in the same manner for the
single-qubit gate position tuning. Note that the resolution of
the sweep is constrained by the available resources in the
quantum execution framework (discussed further in Section
VII).

D. Summary: Overall Workflow

Fig.11 illustrates the overall workflow of VAQEM. On the
left, it shows the ideal flow which we envision utilizing in
the future as Qiskit Runtime develops further and supports
tuning non-standard variational parameters, allows for more
classical tuners and is enabled on more quantum machines.
In such a scenario the entire VAQEM approach can be
performed within Qiskit Runtime.

On the right, the figure shows the feasible flow suited
to the current IBM quantum cloud to evaluate VAQEM’s
benefits. Tuning the variational gate angles is performed
either via simulation or through Qiskit Runtime based on
problem tuning feasibility / machine availability. In our eval-
uated applications, we are able to use Qiskit Runtime for two
small molecular chemistry applications while the other use
simulation for angle tuning (Section VII). Once the angles
are tuned, error mitigation tuning is performed on the real
machine again to optimize for the VQA objective function,
but using an independent window EM tuner (instead of the
traditional feedback based VQA tuning approach).

It is critical to note that simulation as a part of the
workflow is only pursued here as a means to proceed to
the proposed error mitigation tuning on the real quantum
machine i.e. to showcase the benefits from VAQEM. Sim-
ulation is not a scalable solution and is very limited in its
capabilities, primarily only suited to today’s trivial quantum
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Bench | 6q/f/2r | 6q/c/2r | 4q/c/6r | 4q/f/ér | 6q/c/4r | Li+ | H2

Depth | 54 31 57 101 55 90 | 61

# Win | 42 24 22 34 30 a5 | 26
Table 1I: Benchmark characteristics. The first 5 columns

show TFIM while the last two are from molecular
chemistry. “Depth” is circuit depth in terms of CX gates
and “# Win” is number of idle windows targeted.

problems. In fact, if ideal simulation was always possible
in non-exponential time, there would be no need to perform
error mitigation, or even use a quantum computer at all!

VII. METHODOLOGY
A. Applications

We limit ourselves to one VQA domain, the VQE which
was introduced in Section II-B. Due to machine limitations
on circuit width and depth applications are restricted to
6 qubits or fewer and of shorter duration. We evaluate 7
different VQA applications built for 3 Hamiltonians:

D Transverse Field Ising Model / Hardware Efficient
Ansatz: The one dimensional TFIM is a ubiquitous model
which has applications to understanding phase transitions in
magnetic materials [47]. The TFIM is a desirable system
since it is exactly solvable via classical means. We solve for
TFIM ground state energy on 5 different hardware efficient
SU2 ansatz [4]. The ansatz are constructed for 4 qubits and
6 qubits and for “full” and “circular” entanglement. Further,
the number of block repetitions within the ansatz structure
are varied between 2, 4 and 6.

Q) Hydrogen Molecule / UCCSD Ansatz: Unitary Coupled
Cluster Single-Double (UCCSD) is an ansatz motivated
by principles of quantum chemistry. Hydrogen, being the
smallest molecule, is most suited for UCCSD today due
to the higher depth of UCCSD. The UCCSD ansatz used
is the Qiskit implementation with the Hartree-Fock initial
state, with “parity” qubit mapping and without two qubit
reduction. This generates a 4 qubit ansatz with 15 Hamilto-
nian terms, 4 of which were truncated with very negligible
coefficients.

Q) Li+ Ion / Hardware Efficient Ansatz: The Lithium ion
was unsuited to the UCCSD ansatz due to circuit depth. So
we instead use the SU2 ansatz. It requires a 6 qubit ansatz,
which we use with 3 repetitions and ‘full’ entanglement.
This generated 55 Hamiltonian terms, around 25 of which
were truncated with very negligible coefficients.

Benchmark circuit depth and number of idle windows
targeted by error mitigation are shown in Table I. Note
that benchmarks with higher depth and more (6) qubits
stress the 7q IBMQ machine more - greater decoherence
and accumulation of significant CX errors.

We integrate VAQEM as part of the Qiskit [7] framework
- it is added as a final step in the compilation process. Appli-
cations using Qiskit Runtime (the two molecular chemistry
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Figure 12: Improvements to VQE Energy relative to a baseline with only measurement error mitigation. Higher is
better. VAQEM benefits with GS, DD and GS+DD are shown. VAQEM provides benefits over “naive” error mitigation
and, further, techniques can combine in a synergistic manner for greater improvements.

applications) use ibmg _montreal (27 qubits). The other
5 applications that don’t use Qiskit Runtime are distributed
across 3 quantum devices: ibmg_guadalupe (16 qubits),
ibmg_jakarta (7 qubits), and ibmg casablanca (7
qubits). Machine details can be found on the IBM Quantum
Systems page [5].

B. Evaluation Comparisons

Baseline / MEM: The baseline uses no DD sequences
within the idle windows and schedules single-qubit gates As
Late As Possible (ALAP). This is the standard compilation
via Qiskit. We add measurement error mitigation (MEM) to
improve baseline fidelity. MEM can be applied orthogonal
to VAQEM mitigation techniques.

No-EM: Similar to the baseline above but without MEM,
thus the worst performer among our evaluations.

DD (XY / XX): The basic DD designs incorporate a single
round / sequence of DD within the idle windows. There
are 3 versions, employing XY4, XX respectively. The DD
sequence is spread out in the idle window, evenly spaced
out i.e. a periodic DD distribution [10].

VAQEM DD (XY / XX): Proposed variational approach to
DD error mitigation by tuning the number of DD sequences
inserted in the idle windows based on the VQA objective.
Inserted sequences are spaced out as a periodic distribution.

VAQEM GS: Proposed variational approach to single-
qubit gate scheduling by tuning the gate positions in idle
windows based on the VQA objective.

VAQEM GS+XY Incorporates both DD and GS within
the VAQEM framework and both are tuned in a coordinated
manner. For DD, we only target XY since it is the best
performer among the different sequences.

We evaluate VAQEM based on energy estimates using the
standard Hartree Energy metric.

VIII. EVALUATION RESULTS

A. Ground State Energy Improvements with VAQEM

Fig.12 shows the benefits from variationally tuning error
mitigation via VAQEM. The figure shows improvements
to the ground state energy measurements relative to a
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baseline with only measurement error mitigation which is
applied orthogonal to VAQEM. Note that while the actual
energy values are negative, we are showing relative improve-
ments here which are positive and thus, higher is better.
The VAQEM variational approach to tuning gate positions
enables a 2.19x better VQE energy estimate on average
compared to the baseline. Improvements as high as 7-11x
are seen for two applications but note that the absolute
energy numbers can be small so relative improvements can
seem magnified. Energy numbers (and circuit fidelity) are
especially low for HW_TFIM_6q_c_4r because the circuit
is deep and it is forced to use all but one qubit on the device
(i.e. hence using noisy qubits as well). Details in Section VII.
Deeper circuits also provide more (and longer) idle windows,
increasing the potential for optimal error mitigation benefits.

Two basic DD techniques are also shown, which were
discussed in Section VII. They are able to achieve 27-41%
improvements over the baseline. XY4 sequences have better
benefits as was discussed earlier in Section III-A. Applying
the VAQEM variational approach to the DD techniques in-
crease their benefits by 31-69%, improving the VQE energy
measurements by 1.58x-2.1x (rel. baseline). As discussed
above, benefits are higher for deeper circuits.

The last bar shows the scenario which combines both
gate scheduling and dynamic decoupling within the VAQEM
framework. VAQEM enables the techniques to only interact
constructively - the tuner will weed out any destructive
interference. In combination, the approach achieves 3.02x
energy improvements over the baseline - considerable im-
provements like this are critical to advance variational algo-
rithm usecases.

B. Energy Measurements Relative to Simulated Optimal

Next, in Fig.13 we show the VQE energy measurements
relative to the optimal value obtained from ideal classical
simulation. We show results for different VAQEM strategies,
for the baseline with MEM and for the minimum no-EM
scenario.

Measured energy can be very dependent on noise and ma-
chine characteristics. Note that the current target applications
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Figure 13: VQE energy measurements relative to the
optimal value obtained from simulation. Results are
shown for single and combined mitigation via VAQEM,
baseline with measurement mitigation, and energy under
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are small enough that they can be simulated classically for
comparison - but this will not scale to larger circuits and is
the fundamental motivation for quantum computers.

The No-EM approach achieves ground state energy esti-
mates of only 1-30% of optimal while the MEM baseline
improves to 2-35%. The VAQEM DD approach with XY
gates (VAQEM: XY) is able to achieve 10-52% of the
optimal while VAQEM gate scheduling approach (VAQEM:
GS) achieves 17-45% of the optimal. Finally, the combined
VAQEM approach incorporating both DD and GS (VAQEM:
GS+XY) always performs best, achieving 19-55% of the
optimal.

While the benefits from the variational approach to the
two chosen mitigation techniques are evident, clearly there
is room for significant improvement beyond these. Other
mitigation techniques can be employed as part of the vari-
ational framework, as well as orthogonally, outside of it.
We reiterate that incorporating techniques into the varia-
tional framework always ensures synergistic improvements
because any negative interactions are avoided by the tuning
mechanism.

C. Analyzing VAQEM circuit impact

Fig. 14 shows the gate positions as well as the number of
DD sequences (as a fraction of maximum possible), within
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Figure 15: Minimal impact of EM tuning on total VQA
Execution Time.

each idle window of HW_TFIM_6q_c_4r, as chosen by
VAQEM. It can be observed that the chosen gates positions
and the number of DD sequences widely vary across the
idle windows. This is important to highlight the usefulness
of the variational approach. Each idle window has a different
optimal error mitigation “configuration” which is dependent
on input state to the idle window, the qubit characteristics
etc. And it is not trivial to identify the optimal configuration,
clearly motivating the variational approach that VAQEM
proposes.

D. Overall Execution Time

In Fig.15 we compare the total execution time of the
different variational approaches. Time is broken down into
4 components: (1) Tuning variational angles in simulation
(first 5 applications), 2) Tuning variational angles via Qiskit
Runtime (molecular chemistry applications), 3) Tuning error
mitigation via the independent window approach and (4)
Queuing time which is the waiting time before accessing
quantum machines on the cloud. Note that the tuning
component also includes the actual computation time since
computation is part of the tuning loop.

First, note that tuning in simulation is considerably faster
than the Qiskit Runtime approach. Note that while this might
be the case at the present - it is not a trend that will last. This
is because: a) simulation will not scale to larger quantum
circuits, and b) tuning capabilities of Qiskit Runtime will
improve.

Second, queuing times are very large across all executions
and are considerably greater than actual runtimes. They are
especially high for Qiskit Runtime since: a) only a single
machine was available to us which had Runtime capability
and b) the machine needs to be held for as many as 5 hours
per VQA problem. In order for quantum computing on real
machines to scale, especially for long running applications
like VQA, it is imperative that there is a greater supply to
meet the ever growing demand.

Third, the additional time from error mitigation is under
one hour (roughly equals the original tuning time) and is
very reasonable for the benefits gained. In an emerging field
like quantum computing, fidelity improvement potentially
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leading to quantum speedup is worth considerably more
than tuning / runtime. As circuits scale, tuning times can
be reduced by being more selective about which mitigation
techniques to apply, where to apply them and how to best
tune them. Further, it is possible that adding additional
mitigation parameters can make some of the weaker ansatz
gate rotation parameters redundant and might also help break
through tuning barren plateaus. These are worth exploration
but are beyond the current scope.

IX. DIsCUSSION
A. Scope of the Current Experiments

We acknowledge that employing a plethora of other error
mitigation techniques (such as those discussed in Section
II-C), as well as utilizing optimized ansatz with a potentially
more suitable search space, can improve the baseline beyond
what we have here. But these are orthogonal to the main goal
of this paper which is to show that the variational tuning
approach can improve existing error mitigation techniques
substantially. We expect that building a more optimal base-
line and adding the variational approach to error mitigation
on top of it can achieve promising strides in further improv-
ing the energy estimates and bring it closer to optimal. We
intend to pursue more optimal baselines in future work.

B. Maximizing the Capability of the Current Approach

Next, it should be noted that there is potential to further
optimize the idle time error mitigation techniques that are
tuned in this work. While we identify some specific features
for each technique to variationally tune (the gate positions
and the number of DD rounds), the identified features are
by no means exhaustive. For example, spacing between DD
sequences could also be tuned to be more optimal than the
period / even spacing that is employed in this work. Further,
different DD sequence types (XY, XX, YY etc.) can be
employed in conjunction.

C. Variational Approach for other QC Optimizations

Most importantly, the variational approach introduced in
this paper should be decoupled from the specific error
mitigation techniques used. The proposed approach can be
utilized to optimally tune a variety of noise-combating and
other quantum optimization techniques, both individually
and in unison, especially as classical-quantum co-processing
frameworks like Qiskit Runtime mature.

We envision the suitability of the variational approach
to tuning techniques such as (but not limited to): (D ap-
plication and machine aware pulse generation for quantum
gates [16], [40], @ optimizing native gate sets [33], 3
optimizing gate placements [29] throughout the circuit ,
(3 trade-offs between different QC optimizations (such as
noise-aware mapping [28] and choosing the best qubits
for measurement), which as a whole presents a complex
tuning space with unknown inter-relations, (4) block-based
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Figure 16: Deviating VQE estimation trends over a 24
hour period on ibmg_casablanca.

quantum circuit synthesis with block-level variable fidelity
thresholds [50], and (5) possibly even towards better error
correction for Fault Tolerant QC.

Further, as shown here, multiple mitigation techniques
can always be applied in conjunction through VAQEM if
they are suitably integrated into the framework. This is
because any destructive interference between techniques will
automatically be weeded out by the tuning logic and only
the suitable instances of each will be retained.

D. Temporal Variability in Quantum Machines

Finally, we discuss the concern of temporal variability in
machine characteristics due to re-calibration and machine
drift. While temporal variability impacts all quantum circuit
execution in general, it is especially critical to VQA since
these are long running jobs and every new iteration of
circuit optimization is based on prior measurement feedback
from the machine. Thus, stability and continuity in machine
characteristics is important.

Fig.16 shows how the measured VQA objective function
varies for the same set of VQA gate rotation angle param-
eters over a 24 hour period on ibmg_casablanca. The
range of variation is nearly 10-20% of the ideal objective
value, so they are not insignificant.

Each colored cluster is a set of the same 900 VQA
parameter configurations added to the ansatz and transpiled
in the same manner. On an ideal machine, it would be
expected that the same set of configurations would return
the same objective function values over time. Clearly in
this case the objective function values vary widely over the
24 hour period. Note that machine re-calibration occurred
between the pink and the grey clusters, and the distribution
of objective function values vastly changes post calibration.
Considering long running quantum jobs for VQA and queu-
ing times, it is expected that these VQA problems can often
cross machine calibration cycles. Moreover, even within a
calibration cycle, there is considerable variation. While most

Authorized licensed use limited to: University of lllinois. Downloaded on July 06,2022 at 14:29:55 UTC from IEEE Xplore. Restrictions apply.



current VQA problems are small enough to be completed
in a few hours, and thus less affected by these trends, it
is critical to develop tuning approaches which are able to
account for these temporal variations.

X. CONCLUSION

While VQAs are highly suited to the NISQ era, the
effect of noise is still a significant detriment to VQA’s
target estimations on real quantum machines - they are far
from ideal. Thus, it is imperative to employ effective error
mitigation strategies in an optimal manner to maximally
improve the fidelity of these quantum algorithms on near-
term machines.

We proposed VAQEM, which dynamically tailors existing
error mitigation techniques to the actual, dynamic noisy
execution characteristics of VQAs on a target quantum
machine. We do so by tuning specific features of these
mitigation techniques similar to the traditional rotation angle
parameters - by targeting improvements towards a specific
objective function which represents the VQA problem at
hand.

While we showed the benefits of VAQEM for two error
mitigation techniques in this paper, the proposed variational
approach is general and can be extended to many other error
mitigation techniques whose specific configurations are hard
to select a priori. Integrating more mitigation techniques into
the VAQEM framework in the future can lead to formidable
gains, potentially realizing practically useful VQA benefits
on today’s noisy quantum machines.
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