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Humans use causality and hypothetical retro-
spection in their daily decision-making, plan-
ning, and understanding of life events.1 The

human mind, while retrospecting a given situation, think
about questions such as “What was the cause of
the given situation?,” “What would be the effect of
my action?,” “What would have happened if I had
taken another action instead?,” or “Which action
led to this effect?” The human mind has an innate
understanding of causality.15 It develops a causal
model of the world, which learns with fewer data
points, makes inferences, and contemplates coun-
terfactual scenarios.8 The unseen and unknown
scenarios are called “counterfactuals.”2

According to Gary Marcus and Judea Pearl, there
is a need for artificial intelligence (AI) systems to have
an built in understanding of causality and the ability to
reason about counterfactuals.3,4 The current KGs,
such as ConceptNet and CauseNet, represent causal-
ity as a simple binary relation.

AI algorithms use a representation based on knowl-
edge graphs (KGs) to represent the concepts of time,
space, and facts. A KG is a graphical data model which
captures the semantic relationships between entities
such as events, objects, or concepts. The existing KGs
represent causal relationships extracted from texts
based on linguistic patterns of noun phrases for
causes and effects as in ConceptNet and WordNet. A
KG represents causality as hasCausal, causes, and
mediator relationships between cause and effect enti-
ties.9,10 The KGs should model causality in terms of
entities and not just noun phrases as in Wikidata and
DBpedia. The entity-based representation model

enables broader search space by linking a causal entity
to relevant effect entities or concepts in KG. Causality
is a complex relationship that cannot be expressed as
a single link between the cause and effect entities as
represented in the current KGs. The current causality
representation in KGs makes it challenging to support
counterfactual reasoning. A richer representation of
causality in AI systems using a KG-based approach is
needed for better explainability, and support for inter-
vention and counterfactuals reasoning, leading to
improved understanding of AI systems by humans.

The causality representation requires a higher

representation framework to define the context, the
causal information, and the causal effects, as shown
in Figure 1. We show that the integration of Bayes-
ian causality representation with KG enables coun-
terfactual-based reasoning for better explainable
and human-understandable models. In (b), the total
causal effect is associated between a treatment
and an outcome, e.g., the treatment variable has a
total causal effect of 12.51 on the outcome. In (c),
the natural direct and indirect effects are associ-
ated with a mediator variable which acts as an
intermediary between a treatment and an outcome.
The natural direct effect is the effect of treatment
on the outcome in the presence of the mediator,
where the mediator is under the control (treatment
1/4 0). The natural indirect effect is the effect of treat-
ment on the outcome in the presence of the media-
tor, where the mediator receives a hypothetical
change in the treatment variable (treatment 1/4 1).

Representation of causality in AI systems using

knowledge-graph based approach is needed for

better explainability, and support for intervention
and counterfactuals, leading to improved

understanding of AI systems by humans.
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The treatment variable in the presence of a media-
tor has a natural direct effect of 7.06 and natural
indirect effect 10.68 on the outcome.

Integrating causal knowledge with the observa-
tional data can enable the machine learning (ML)
models to learn the causal relationships behind the

inaccurate conclusions, eventually improving the
model performance. The proposed causal knowledge
graph (CausalKG) framework, as shown in Figure 2,
leverages recent progress of causality and KG toward
explainability. CausalKG intends to address the lack of
a domain adaptable causal model and represent the
complex causal relations using the hyper-relational
graph representation in the KG. Furthermore, we show
that the CausalKG’s interventional and counterfactual
reasoning can be used by the AI system for the
domain explainability. The CausalKG utilizes the
1) domain knowledge embedded in the KG to provide
a comprehensive search space for possible interven-
tional and counterfactual variables that otherwise
might be missed with just a Bayesian causality repre-
sentation, and 2) the expressivity of KG to generate
human understandable explanations.

CAUSAL KNOWLEDGE GRAPH
A CausalKG is a hyper-relational graph. It is used to rep-
resent causality as a complex relation in the graph, which
may involve more than two entities and may be anno-
tated with additional information such as causal effect.
The edge connected with more than two nodes repre-
sents the causal relationship, mediator variable, and the
associated causal effects. The mediator is a variable,
which causes mediation between the treatment (an

SIDEBAR : EXPLAINABILITY

Explainability is the notion that an ML model and its

results can be explained in a way that “makes sense” to
a human being. The traditional ML algorithm tends to be

more explainable but less performant. In comparison,

the deep learning algorithms are more performant but

are much harder to explain. We are concentrating on the

explainability focused on helping users develop trust in

the AI system and take action. Explainability falls under

the following two categories.

Model-based explainability:
Model-based explainability is a broad concept of

analyzing and understanding the results provided byML

models. It ismost often used in the context of “black-box”

models. It is not easy to demonstrate how themodel arrived

at a specific decision. For example, a healthcaremodel

predictswhether a patient is suffering fromadisease or not.

The healthcare provider needs to knowwhat features the

model is considering to determine the prediction result.
There are existing tools for the black boxmodelswhich

assist in explaining a given result, such as feature

importance, shapley additive explanations (SHAP), and local
interpretablemodel-agnostic explanations (LIME).

Domain explainability:
Domain explainability is defined as providing human

understandable explanations for the results generated by

theMLmodels. For example, an explanation could be an

answer to the “Why?” and “What if?” questions that help

thehumanunderstand the causeof a prediction result and

gain trust in themodel. Data and statistics are not enough
for human understandablemodels. The external domain

knowledge is needed tomodel and perform the

intervention and counterfactual reasoning. For example, in

the abovementioned disease predictionmodel, amedical

guideline is provided as external domain knowledge to

generate a causal explanation for the results.

Explainability, henceforth, is referred to as domain

explainability.

FIGURE 1. (a) Causal Representation as a single cause-effect

relation. (b), (c) Causality as a complex representation of

causal effect associated with the different pathways.
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independent variable) and outcome (a dependent vari-
able). It also explains how different intervention effects
the outcome variable. The associated causal effects can
be of the following three types: total causal effect, natu-
ral direct effect, and natural indirect effect. A CausalKG
explicitly takes the causal knowledge into account, e.g.,
allowing flexible incorporation of the causal domain
knowledge represented by a CBN, and automating the
causal inference tasks. Thus, this approach blends CBN,
causal ontology design, and knowledge representation
described as follows.

The goal of CausalKG is to support the integration
of causal knowledge into the KGs for improving domain
explainability, promoting interventional, counterfac-
tual reasoning, and causal inference in downstream AI
tasks. These capabilities cannot be achieved if causal-
ity is based only on the Bayesian causality representa-
tion, and observational data, but the causal knowledge
encapsulated in the KGmakes that possible.

CAUSAL BAYESIAN NETWORK
Judea Pearl introduced the CBN as a representation tool
for causality. Similar to a Bayesian network, a CBN is a
directed acyclic graph G¼<V, E>, where nodes V repre-
sent causal variables and edges E represent the condi-
tional causal influences among the causal variables.3 A
CBN is a graphical representation that expresses causal
knowledge in a given domain. The graphical representa-
tion is intuitive and human-readable. A CBN assists in
understanding the causal relations, supporting the ability
to represent and respond to changes in the causal sys-
tem. The graphical representation of causal knowledge
allows access to the quantitative prediction of the effect
of an intervention on one or more variables using total
causal effect, natural direct effect, and natural indirect
effect. The joint distribution in the Bayesian network is
the probability of events and how the probabilities will
change given a set of observations. A CBN evaluates
how the probability would change due to external inter-
vention and estimates the effect of an intervention. This
approach is extensively used for policy analysis, planning,
and medical treatment management.11 Each possible
intervention has a new causal model, C. A causal model
cannot be interpreted in a standard propositional logic
or probability calculus because it deals with changes in
the counterfactual world (out-of-distribution) rather
than changes in our beliefs about observational data.

CAUSAL ONTOLOGY
The Causal Ontology is a taxonomical representation
of domain facts and relationships between entities
that represents a generic representation of a causal

model. The three causal classes are treatment, media-
tor, and outcome with causal relationships causes
and causesWith. In addition, total causal effect,
natural direct effect, and natural indirect effect are
represented as data properties in this ontology. The
designed ontology can be extended to a given domain
ontology to describe the causal relationships between
the domain entities. As an initial input, the framework
requires a CBN describing the causal relationships of
the domain and the domain ontology with causal rela-
tions extended using the causal ontology.

CAUSAL KNOWLEDGE
REPRESENTATION

A CausalKG utilizes the benefits of CBNs, causal
ontology, and KGs to provide robust and explainable
insights. The KGs have often used the resource
description framework (RDF) to represent information
on the web. RDF consists of triples or statements with
subject, predicate, object. RDF captures binary enti-
ties, connecting two objects, or the relationship
between two entities. RDF uses reification to repre-
sent n-ary relations, i.e., relations linking more than
two entities. Reification creates an intermediate node
which groups two or more entities, making the RDF
complex and less intuitive. RDF" (pronounced as
RDF-star) is an extension to RDF that treats a triple as
a single entity using nested or embedded triples. An
entire triple can become the subject of a second triple,
which enables assigning metadata and attributes to a
triple. CausalKG uses RDF" to represent complex
causal relationships (as shown in Figure 6).

EXPLAINABILITY
There is a gap between the observation-based and
counterfactual-based explainability in AI. Figure 3 illus-
trates the future of AI systems transforming from purely
statistical (i.e., associational) explainability based on the
observational data to context explainability (i.e., inter-
ventional), eventually leading to domain explainability
involving counterfactuals and causal reasoning. We
emphasize the need for explainability in AI that goes
beyond explaining the algorithmic inner working to also
provide human-understandable explanations necessary
for users to trust a given AI model using three catego-
ries of explainability—statistical, context, and domain
explainability.

STATISTICAL EXPLAINABILITY
Statistical explainability generates an explanation for the
co-occurrence of a given phenomenon based on the sta-
tistical (or associational) methods such as correlations.6
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The statistical explainability may fail to capture the
underlying relationship between the observational data,
which can lead to inaccurate conclusions (such as spuri-
ous correlations). For example, the statistical pattern of
higher ice cream sales and a higher number of people
drowning leads to the incorrect conclusion that increas-
ing ice cream sales leads to an increase in people drown-
ing in water. The abovementioned result is analyzed out
of context, which disregards the hidden causal knowl-
edge leading to an inaccurate conclusion.

CONTEXT EXPLAINABILITY
Context explainability is a means to generate a
human-understandable explanation taking the con-
text information of a given observation into account.5

The inaccurate conclusions are a result of out-of-con-
text analyses of the relationship between entities. The
context information is at times not present in the
observational data. However, it can be deduced from
the underlying causal variables called confounders
(also confounding variables). A given context can be
represented using a causal ontology and a CBN. The
causal ontology gives us the causal relationship
between the entities for a given context. The CBN
presents a graphical representation of a given context
enabling interventional reasoning (e.g., “What if I had
taken action B instead?”). In the above mentioned
example, the statistical results need to be analyzed in
the context of the weather or the temperature. The
higher ice cream sales and the higher number of peo-
ple drowning are both due to the rise in temperature

during the summer months. As the temperature rises
during the summer months, people are out in the
water leading to water-related accidents. The hike in
temperature also shows the increase in ice cream
sales to relieve the high temperature. The causal
knowledge of temperature affecting the ice cream
sales, and water-related accidents can be captured
using a KG and can assist in pointing out the underly-
ing cause to both the consequences. A CBN con-
structed using the above context information enables
interventional reasoning such as “What if the tempera-
ture was cold? How would it affect the ice cream sale
and the number of people drowning?,” and “What if
the temperature was hot? How would it affect the ice
cream sale and the number of people drowning?”

DOMAIN EXPLAINABILITY
Domain explainability explains the underlying causal
relations using observational data, domain knowledge,
and counterfactual reasoning. Domain explainability
considers existing domain knowledge and causal rela-
tions between entities. David Hume, a philosopher,
and empiricist analyzed causality in terms of sufficient
and necessary conditions, A causes B such that A is
necessary and sufficient cause for B.7 As defined by
Hume, causality can be achieved using domain
explainability accounting for the sufficient and neces-
sary conditions for causality. The CausalKG, with the
causal relations, enables domain explainability using
counterfactual reasoning (“e.g., was it action A which
led to this effect?”).

FIGURE 2. CausalKG framework consists of three main steps, 1) a CBN and a domain-specific observational dataset, 2) Causal

Ontology creation and enriching the domain ontology with causal relationships, and 3) Estimating the causal effects of the treat-

ment, mediator, and outcome variable in the domain for a given context.
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The abovementioned example can be explained in
terms of a given domain using counterfactual reason-
ing such as “Was it the new marketing strategy that
caused the increase in the ice cream sale?,” “Was it
the lack of supervision near the pool that caused the
increase in drowning?” CausalKG provides the context
to consider necessary and sufficient conditions
needed to improve domain explainability using coun-
terfactual reasoning.

USE CASE: AUTONOMOUS
DRIVING (AD)

AI systems and domain problems require an accurate
representation of cause(s) and their effect(s). Therefore,
it is not sufficient solely to understand the cause(s) of
an outcome but the underline effect(s) and mediator(s),
if any. We present a use case in AD to explain how the
CausalKG for causal representation supports domain
explainability.

Tesla customers can now request a fully self-driv-
ing car equipped with the beta version of Tesla’s
advanced driver-assistance suite.a Driving is a com-
plex system that requires meticulous planning and vig-
ilance during execution. A human brain, while driving,
analyses the environment based on the observation

and, at the same time, retrospects and prospects pos-
sible scenarios and the corresponding measures to be
taken. While AD systems are well trained on observa-
tional data, they perform poorly in unseen, uncertain,
and risky driving scenarios.12

TheADvehicleworks in parallel with other entities in
the driving scenes, such as pedestrians, traffic signs,
and other vehicles. A representation of the relationship
and interaction of the entities within a driving scene is
essential for better understanding the AD vehicle’s
behavior in a given context. Some of the interventional
and counterfactual reasoning which can assist in AD
understanding is—“How does the entities in the driving
scene effects the AD vehicle?,” “What if a pedestrian is
jay-walking; how would it effect the vehicle’s behavior
(i.e., stop or keep moving)?,” “What if the vehicle fails to
identify the stop line marking? How would it effect the
vehicle’s behavior concerning a pedestrian?,” and “How
does the sudden lane change by a vehicle effect the
adjacent vehicle?”

According to the National Highway Traffic Safety
Administration (NHTSA), in 2019, there were 3142 fatal
accidents due to distracted driving, 697 accidents due
to drowsy driving, 718,000 accidents due to rain (2569
of which were fatal), and 182,000 accidents due to
snow (440 of which were fatal) (https://bit.ly/
3D8cWdS). The U.S. Department of Labor, Mine Safety,
and Health Administration Safety Manual No. 10 is
used for accident investigation (https://bit.ly/3d5kW4z).

FIGURE 3. Causal AI: From statistical explainability based on data representation and associational support to context explain-

ability based on causal relation and interventional support eventually leading to domain explainability based on causal represen-

tation in KG leading to counterfactual support.

ahtt_ps://wapo.st/3pfx8FB
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The safety manual presents a detailed analysis of an
accident investigation on what, how, and why the acci-
dent happened. It reveals the following three cause lev-
els of an accident: basic, direct, indirect cause, which
correspond to total, natural direct, and natural indirect
cause, respectively, in the CausalKG. With the fully auto-
matedADvehicles on the road, it is crucial to understand
the sequence of the events which led to an accident to
devise a mitigation plan for similar situations in the
future, and assist with insurance and law related pro-
ceedings. CausalKG is instrumental in the context of AD
vehicles to represent and understand the causal rela-
tionships between entities in a driving scene, their
behaviors, and possible hypothetical scenarios. It can
further assist in interventional and counterfactual rea-
soning to equip AD vehicles for unseen and risky
scenarios.

The typical accident scenario is a collision due to a
distracted driver or slippery road, leading to sudden
lane change, as shown in Figure 4. In addition, a driver
could be distracted due to phone usage or be under
the influence of alcohol, which might lead to sudden
lane change and collision into the vehicle in the next
lane. The collision due to sudden lane change can also
be due to bad weather leading to slippery roads and
loss of control.

Observational data can assist with the following:

› Statistical Explainability—What is the likelihood
of a vehicle crashing if the driver is distracted?

› Context Explainability—What if the driver is
distracted?

› Domain Explainability—Was the collision due to
phone usage or the slippery roads?

The abovementioned collision scenario can be
graphically represented as a CBN expressing causal
relations between the driving scene entities. In
Figure 5, the distraction of a driver (e.g., caused due to

FIGURE 4. Highway Collision scene, a snapshot of possible scenarios on a highway that might lead to a collision between two

vehicles when either 1) the driver fails to identify the passing vehicle in the nearby lane due to distraction or blind spots, or

2) loses control of the vehicle due to slippery road.

FIGURE 5. Collision Bayesian Network, a graphical represen-

tation of the causal relations and interaction between enti-

ties in collision scenarios.
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cell phone usage) or slippery roads (e.g., caused due to
snow, or rain) causes a sudden lane change, leading to
a collision. These variables are dependent on other
observed variables in the system and are known as
endogenous (dependent) variables. The external varia-
bles such as cellphone usage, driving under the influ-
ence of alcohol, weather conditions such as snow and
rain are not affected by other variables in the system
and are known as exogenous (independent) variables.
The existing driving scene ontology is enriched with
the causal relation from the causal ontology to cap-
ture the relationships between the entities, such as
distracted driving (or slippery road) causes a sudden
lane change and collision; and a sudden lane change
causes a collision into the nearby vehicle.14

The different types of causal effects (i.e., total causal
effect, natural direct effect, and natural indirect effect)
are estimated using the AD dataset for the above CBN.
They express the quantitative effect of the various inter-
ventions on theADentities and aid in explainability using
interventional and counterfactual reasoning. The gener-
ated CausalKG shown in Figure 6 captures the causal
relations between the AD entities and their quantitative
effects. The CausalKG demonstrates the explainability in
the AD using the counterfactual and interventional rea-
soning listed as follows. Such representation supports a
better understanding of the behavior of entities in the
driving scene in an unseen, risky situation.

› Total causal effect (Basic cause): How would the
driver’s distraction (or slippery road) effect the
occurrence of a vehicle collision?

› Natural direct effect (unplanned or direct cause):
What if the vehicle fails to identify the passing
vehicle in the adjacent lane (what if there is a
blind spot), how would it effect the vehicle’s

collision? In this scenario, the lane change is not
due to the distraction (or slippery road), but the
collision is due to the distraction.

› Natural indirect effect (unsafe act or indirect
cause): What if, there is a lane change due to the
distraction (or slippery road), how would it effect
the vehicle’s collision? In this scenario, the lane
change is due to distraction (or losing control
over the vehicle under risky situations). However,
the collision is not due to distraction.

KNOWLEDGE-INFUSED LEARNING
USING A CAUSALKG

Causalkg is a step toward symbolic AI for causality-
based knowledge-infused learning.13 CausalKG AI sys-
tems do not learn solely from correlations but, instead,
have a causal representation of the world around
them. Apart from causality, CausalKG, with the help of
a KG, also represents time, space, physical objects,
and humans and their interactions.

Current AI algorithms rely on independent and
identically distributed data. As a result, they cannot
infer out-of-distribution or hypothetical, interventional
scenarios. CausalKG can be used to infuse existing
KGs with causal knowledge of the domain to enable
interventional and counterfactual reasoning that can
be deduced using observational data and domain
expert knowledge. The advantage of constructing a
CausalKG is the integration of causality in reasoning
and prediction processes, such as the agent action
understanding, planning, and medical diagnosis pro-
cess. Such integration can improve the accuracy and
reliability of existing AI algorithms by providing better
explainability of the outcome.

FIGURE 6. Snapshot of CausalKG for collisions due to driver distraction or slippery road scenarios. Each node in the CausalKG is

a concept in KG and is associated with a conditional probability estimated using the CBN in the previous step (as shown in

Figure 2). The edges between the nodes represent the causal relationships between the concepts.
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