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Shear-induced gradient diffusivity of a red blood
cell suspension: effects of cell dynamics from
tumbling to tank-treading†

Abhilash Reddy Malipeddi and Kausik Sarkar *

Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays

seminal roles in overall particulate rheology and its microstructure. Here we investigate the shear

induced diffusion in a red-blood cell (RBC) suspension using a numerical simulation resolving individual

motion and deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively

different regimes of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and

swinging, depending on the cell flexibility determined by the elastic capillary number. We show that the

transition from tumbling to tank-treading causes a reduction in the gradient diffusivity. The diffusivity is

computed using a continuum approach from the evolution of a randomly packed cell-layer width with

time as well as by the dynamic structure factor of the suspension. Both approaches, although

operationally different, match and show that for intermediate capillary numbers RBCs cease tumbling

accompanied by a drop in the coefficient of gradient diffusivity. A further increase of capillary number

increases the diffusivity due to increased deformation. The effects of bending modulus and viscosity

ratio variations are also briefly investigated. The computed shear induced diffusivity was compared with

values in the literature. Apart from its effects in margination of cells in blood flow and use in medical

diagnostics, the phenomenon broadly offers important insights into suspensions of deformable particles

with non-spherical equilibrium shapes, which also could play a critical role in using particle flexibility for

applications such as label free separation or material processing.

Introduction

Shear induced diffusion is the effectively diffusive motion of
suspended non-Brownian particles in the presence of a velocity
gradient. Particles interact with each other in a shear flow and
are continuously moved away from their trajectories giving rise
to a shear induced effective diffusion. Blood, a complex fluid
composed of red blood cells (RBCs), white blood cells, platelets
and other substances is a particularly special suspension where
shear induced diffusion plays an important role. RBCs consti-
tute about 45% of blood by volume in healthy human adults.1

In blood vessels more deformable RBCs are pushed away from
the vessel walls due to deformation induced lift while white
blood cells and platelets migrate closer to vessel walls—a
phenomenon known as margination.2–9 The shear-induced
down gradient diffusion balances the wall effects determining
the equilibrium concentration distribution of the cells.10,11

Recently, shear induced diffusion has been used to isolate cells

and particles directly from whole blood.12 The authors describe
a passive microfluidic setup for continuous separation of dis-
persed particles from unprocessed whole blood with extraction
efficiencies around 90% and a throughput of 106–107 cells
per second or 6.75 ml per hour. Significance of shear induced
diffusion was also noted in experiments of acoustophoretic
focusing of dense suspensions.13 One of the objectives of this
process is to separate the blood plasma from the cells. Karthick
and Sen13 have shown that the shear induced down-gradient
diffusion causes the focused layer to be much wider than
previously expected.

It is clear from the studies mentioned above that having
accurate values of the coefficient of diffusion is essential for
accurate analysis of microscale flow of suspensions and emul-
sions of deformable particles. In particular it is critical for
designing microfluidic devices dealing with suspensions. Shear
induced diffusion of rigid particles has been widely studied
experimentally and numerically14–24 and is well understood.
Since shear induced diffusion is caused by particle–particle
interactions, pairwise interactions between particles in shear
flow plays an important role. For typical microscale flows such
as that of blood, the inertia is negligible. In the absence of
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inertia when two perfect rigid spheres interact in a shear flow,
their post-collision separation is same as the initial separation.
The spheres return to their original streamlines after interac-
tions due to the reversibility of the Stokes Flow equations.25 An
additional symmetry breaking mechanism, such as surface
roughness26 or other irreversible interactions, is needed to
generate irreversible trajectories. However, even in the absence
of such irreversible effects, shear induced diffusion occurs in a
suspension because of intrinsic chaotic nature of the sphere
trajectories.27,28 They have been observed in hydrodynamic
interactions of as few as three particles.29 In case of deformable
particles, the deforming boundary between the phases intro-
duces non-linearity breaking the reversibility of the two particle
interaction, giving rise to shear induced diffusion. There have
been very few studies that measured shear-induced gradient
diffusivity of deformable particles or drops. Grandchamp
et al.11 experimentally determined the gradient diffusivities in
the gradient and vorticity directions in an RBC suspension.
Hudson30 measured the gradient diffusivity of an emulsion of
drops. The deformability of drops makes this system qualita-
tively similar to an RBC suspension. We have recently com-
puted the gradient diffusivity in an emulsion of viscous drops
through direct numerical simulation, obtaining values compar-
able to the previous experimental results.31,32 Previous attempts
at calculating shear induced diffusivity through simulations
have been restricted to self-diffusivity.5,33–35

In this paper we calculate the gradient diffusivity of red
blood cells by simulating a sheared suspension of RBCs, using
a front-tracking finite difference method used in our previous
works.31,32,36–39 We investigate the effects of the shear and
bending stiffness of a cell as well as viscosity ratio on the
diffusivity. The methodology is an extension of our previous
work for a viscous emulsion31,32 to RBC suspensions. The
values of gradient diffusivity obtained is compared with
the values in the literature. The initial non-spherical shape of
the RBC gives rise to an unexpected variation of diffusivity with
increasing capillary number. We discuss and explain the emer-
ging trends in shear induced gradient diffusivity as stiffness of
the RBCs is varied by comparing to single cell dynamics in a
shear flow. We relate the trend of diffusivity with the transition
in RBC dynamics from tumbling to tank-treading.40–46

Simulation details

The RBC suspension is modeled as an incompressible multi-
phase fluid system. The red blood cells are modeled as volumes
of fluid each enclosed by an elastic membrane. A front tracking
method is used to solve the multiphase incompressible mass
and momentum equations:

r � u ¼ 0;

@ðruÞ
@t

þr � ðruuÞ ¼ �rpþr � m ruþ ðruÞT
� �� �

�
ð
@B

f mdðx� x0ÞdSðx0Þ:

(1)

Here u, p, r and m are the velocity, pressure, density, and
viscosity, respectively. The term with fm represents the jump
in fluid stress due to the presence of the interface, which in the
present case is the cell membrane. The cell membrane is
modeled as a 2-dimensional solid hyperelastic material. Bend-
ing resistance is introduced using the widely-used Helfrich
formulation.47 The membrane force can be written as:

fm = fs + fb, (2)

where fs is the elastic force due to the in-plane shear deforma-
tion of the membrane and fb is the out-of-plane force due to
bending resistance. In a hyperelastic constitutive model, the
forces are determined from a strain energy function (W). We
use the Skalak constitutive model:48

WSkalak ¼ Gs

4
l41 þ l42 � 2l21 � 2l22 þ 2
� �

þ C l21l
2
2 � 1

� �2h i
; (3)

where Gs is the in-plane shear modulus and l1 and l2 are the
principal stretches on the membrane surface. In the Skalak
model, the parameter C, with a relatively large value of C = 10
enforces area incompressibility of the membrane.38 The expres-
sion for the in-plane force is obtained by applying the principle
of virtual work, by calculating the derivatives of the strain
energy function

f s ¼ �@W

@x
(4)

The bending force from the Helfrich formulation is given by

fb = Eb[(2k + co)(2k
2 � 2kg � cok) + 2DLBk]n, (5)

where Eb is the bending modulus, k is the membrane local
surface curvature, kg is the Gaussian curvature, DLB is the
Laplace–Beltrami operator, and c0 is the spontaneous curvature
of the membrane taken here to be zero.49 n is the unit outward
normal to the surface of the RBC. We use a widely used
equation for determining the thickness of the axisymmetric
discoidal shape of an RBC50 with radius a = 4 mm:

tðrÞ ¼ 1� r2

a2

� 	1
2

0:81þ 7:83
r2

a2
� 4:39

r4

a4

� 	
: (6)

One obtains two non-dimensional parameters of interest: an
elastic capillary number given by Ca = mm _ga/Gs and a nondi-
mensional bending parameter ÊB = EB/a

2Gs apart from the
viscosity ratio lm = mRBC/mm, where mRBC and mm are the
viscosities of the hemoglobin solution in the RBC cytosol and
the surrounding matrix fluid. (Note that many prior studies
used an effective radius R0 of a sphere with the same volume as
the RBC (R0/a = 0.72) as the length scale for non-
dimensionalization.) Under physiological condition, typical
values are Gs = 5 � 10�6 N m�1 and EB = 10�19 J.51 In the
following, we chose these values and changed other parameters
to vary Ca keeping ÊB constant. Most of the results are obtained
for lm = 1 except when we specifically investigated the effects of
viscosity ratio variation. In this numerical method, all RBCs,
and their interactions are resolved. This numerical method has
been used by our group in many problems involving drops and
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capsules in viscous and viscoelastic fluids.52–59 We recently
implemented bending resistance in our membrane constitutive
equation and also included the membrane mechanics in our
parallel code to allow simulations of large number of cells. We
assessed the accuracy of our code by comparing our results with
boundary element method (BEM) simulation results and
experimental results in the literature. Fig. 1(a) shows the
steady-state deformation of a spherical capsule in an
unbounded shear flow as a function of capillary number, with
and without the bending resistance included. The reference
results are from BEM simulations of Sinha and Graham.49 In
Fig. 1(b), we reproduce the optical tweezer experiment of Mills
et al.60 Good agreements with these cases validate the
computational tool.

For studying the shear induced diffusion of RBCs, we start
with a layer of 200 RBCs placed in the center of a computational
domain (with size Lx � Ly � Lz = 14a � 28a � 14a (the effect of
the domain size is investigated below)), where a is the radius of
the RBC. The RBC packings have been generated using the
program PackLSD.61,62 A shear flow is generated in the domain
by specifying opposite velocities on the top and bottom wall as
shown in Fig. 2. The computations are carried out on a grid of
128 � 256 � 128 points. Each RBC surface is discretized using
10580 linear triangular elements. The RBCs are initially ran-
domly packed in a thin layer of about 0.25Ly with a volume
fraction of 30%. The distribution of cells is homogeneous in the
flow (x) and vorticity (z) directions and shear induced gradient
diffusion is computed in the velocity-gradient direction (y).

Theory of shear-induced diffusivity

We compute the gradient diffusivity using two independent
analyses of the simulation results explained in detail in our
earlier work on shear induced diffusion in an emulsion of
viscous drops.31,32 Only a brief description of the theory is

presented here for completeness. The first method is a classical
continuum approach where we model the RBC concentration
as an unsteady one-dimensional diffusion equation in the
y-direction.

@f
@t

¼ @

@y
Dc

@f
@y

� 	
; (7)

where f = f(y, t) is the local RBC volume fraction, Dc = _gfa2f2
the coefficient of diffusivity, and f2 is the dimensionless diffu-
sivity in the gradient direction.11,25,63,64 Similar to the classical
diffusion equation, eqn (7) admits a self-similar solution, in
non-dimensional variables t = t0/ _g, y = y0a:

c(Z) = (f2t0)
1/3f = (b � Z2/6), Z = y0/(f2t0)

1/3. (8)

Fig. 1 Comparison of our simulation results with those available in literature (a) steady-state deformation vs. Ca for a spherical capsule in shear with and
without bending resistance compared with BEM simulations.49 (b) Validation of our method with the optical tweezer stretching experiment.60

Fig. 2 (a) Schematic of the layer of randomly placed red blood cells in
simple shear flow. (b) Cut-away section showing the triangular surface
discretization of an individual red blood cell.
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Here, Z is the similarity variable and b is a free parameter. The
half-width �w of the f(y0) profile satisfies

w3 � wo
3 ¼ Kt 0; K ¼ 9f2N0

.
4

ffiffiffi
2

p� �
; No ¼

ð
fðy0; t 0Þdy0;

(9)

where �w0 is the initial width and No is a conserved quantity
related to the number of drops. We fit the equation for the half
width to the half-width obtained from the 3D simulations to
obtain f2. The details of this fitting procedure can be found in
our previous work on drop emulsions.31,32 To obtain a smooth
concentration profile f(y, t), we approximate each RBC as a
sphere of the same volume and compute the concentration at a
resolution of one-tenth of the equivalent sphere radius.

The second method uses the rate of decay in the auto-correlation
of the dynamic structure factor to estimate the diffusivity. It has been
used in dynamic light scattering (DLS) experiments performed on
suspensions. In DLS experiments, a monochromatic laser is scat-
tered from a sample volume containing multiple particles (scat-
terers) is analyzed to compute the diffusivity and thereby the size of
the particles. In case of a dilute system of non-interacting scatterers,
the autocorrelation of the fluctuation decays exponentially and the
decay time is inversely proportional to the diffusivity. Leshansky and
Brady22 extended this analysis to shear induced diffusion of con-
centrated suspensions. The scattered response at wavenumber k

(non-dimensionalized by a) from N scatterers located at x
0
aðt 0Þ; a ¼

1; 2; . . . ;N is proportional to the intermediate scattering function

Fðk; t 0Þ ¼ 1

N

XN
a;b¼1

e
ik� x

0
aðt 0Þ�x

0
bð0Þ

� �* +
: (10)

Using the property of the Dirac delta function, the number density of
the scatterers (here RBCs) and its spatial Fourier transform can be
written as

nðx0; t 0Þ ¼
XN
a¼1

dðx0 � x
0
aÞ n̂ðk; t 0Þ ¼

XN
a¼1

eik�x
0
a : (11)

Therefore, F(k, t0) = 1/Nhn̂(k, t0)n̂*(k, 0)imeasures the autocorrelation
of the fluctuation n0(x0, t0) (where n(x0, t) = n0 + n0(x0, t0)) at
wavenumber k for a statistically homogeneous system, as the
constant background n0 would not contribute to the autocorrelation.
However the current system (Fig. 2a) is not homogeneous, but
evolves from a nonhomogeneous initial condition of a packed
central layer of RBCs. Leshansky and Brady22 showed that the
number density satisfies an advection diffusion equation in a shear

flow U + _C�x (U is the average flow and _G is the velocity gradient
tensor):

@n

@t
þ ðU þ _C � xÞ � rn ¼ Dcr2n: (12)

In spite of the advection terms in eqn (12), in a simple shear due to
the orthogonality of the k(=kŷ) vector to the velocity field, one obtains
a simple relation for the diffusivity in the gradient direction:22

Dc
yy ¼ � 1

k2
dðlnFÞ
dt 0

: (13)

As noted in ref. 31, one of the novelties of our work lies in the use of
dynamic structure factor approach to a non-homogeneous system.
The non-homogeneity is assumed to not affect the result at the limit
of k- 0, where we see an asymptote for ref. 13 offering an estimate
of the gradient diffusivity. We will see that this value of gradient
diffusivity when appropriately scaled by an average volume fraction,
matches with the one obtained by the layer-width computation from
assuming the classical diffusion eqn (7).

Results and discussion
Cell dynamics

The diffusivity in an RBC suspension would depend on the
individual dynamics and orientation of a single cell, as will be
clear in the discussion below. To describe the orientation of an
RBC, we find an ellipsoid with the same moment of inertia as
the RBC. The axis about which the moment of inertia is highest
is taken to be the orientation vector of the RBC. It is well known
that RBCs depending on their stiffness displays primarily two
different behaviors: tumbling or flipping and tank treading,46,65

with additional motion superimposed on them giving rise to
the complex dynamics of swinging,43 breathing and their
various combinations especially during transitions between
the two behaviors.49,66 In case of stiff cells, i.e., small capillary
number (as well as large viscosity ratio lm), the orientation
vector does not deviate much relative to the initial undeformed
orientation and coincides with the axis of symmetry of the cell,
i.e., normal to the flat part of the RBC (Fig. 3b). They tumble
with the orientation vector rotating in the flow-gradient plane
while precessing (rolling component)41 out of plane. This
dynamics has been understood in terms of the Jeffrey’s
orbits.65 In case of large capillary numbers, the RBCs deform
extensively and exhibit a tank-treading motion, with a steady
shape, similar to a viscous drop in the x–y plane, where a
material point on the cell membrane rotates around the cell.46

As a result, the orientation vector is normal to the
extension axis.

In Fig. 3 we plot the snapshots of distribution of the
orientation of the RBC population at different times on a unit
sphere for sheared RBC suspensions at three different capillary
numbers (Ca = 0.01, 0.20 and 0.40, and ÊB = 0.01). The flow is in
the x-direction (left of the figure) and the velocity gradient in
the y-direction (out of the plane). At t = 0, the distribution of the
orientation is relatively uniform in direction and identical
(same initial configuration) for each of the capillary numbers.
For the stiffest case of Ca = 0.01, we see distribution of the
points remain random except slight bias towards the central
region. Fig. 3(a) and the Supplementary Movie (ESI†) showing
the evolution of the orientations with time indicate that the
cells exhibit tumbling or flipping dynamics at this low value of
Ca = 0.01. The flipping/tumbling in the x–y plane gives rise to
the orientation vector continuously rotating giving rise to the
plot in Fig. 3(a). For Ca = 0.20, the orientations are distributed
in a narrow vertical band in the center. Looking at the Supple-
mentary Movie (ESI†) for this case, we identify a combination of
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tank-treading, rolling, and tumbling cell dynamics. The tank-
treading motion contributes to concentration of the orientation
at slightly left of center (45 degree to the extensional axis) in the
x–z plane, a process that dominates at Ca = 0.40, where we see a
very narrow distribution, indicating that nearly all the cells are
in the tank-treading regime. Below, we will see how these
different cell motion regimes affect the shear induced gradient
diffusivity of RBC suspensions.

Shear induced diffusion

Fig. 4(a) shows the paths of RBCs (Ca = 0.1, Êb = 0.01). All
analyses in this paper are based on such paths. In this relatively
dense suspension, unlike in the Brownian motion of a dilute
gas, individual interactions cannot be separated; immediately
after an encounter, an RBC approaches others. Fig. 4(b) shows
snapshots of the layer of RBCs at three different times, with the
width of the layer increasing due to shear induced diffusion. A
Supplementary Movie (ESI†) showing this simulation is pro-
vided. The concentration profile of the RBCs is plotted for a few
different times in Fig. 4(b). The shape of the profiles is para-
bolic as expected from the analytical solution. Fig. 4(b) inset
shows the collapse of all the curves on to a single curve when
plotted using the similarity variables from eqn (8).

Effects of domain size

We examine the effects of the domain size on the measured
gradient diffusivity. Tables 1 and 2 show the effect of the
domain size in the flow and gradient directions respectively
on the gradient diffusivity of the red blood cells for the case of
Ca = 0.05 and Êb = 0.01 verifying that our choice of Lx � Ly � Lz =
14a � 28a � 14a is sufficient. The choice of 200 RBCs proved
sufficient for obtaining the linear scaling needed to compuet
the diffusivity. For an viscous emulsion of drops, we found
70 drops were adequate.31

Effects of Capillary number

Using the theory and methods outlined earlier we calculate the
gradient diffusivity of RBCs as a function of cell stiffness
(elastic capillary number Ca). The viscosity ratio lm is restricted
to unity in this section. In Fig. 4(a), we provided RBC suspen-
sion in three different times for Ca = 0.1 Fig. 5 shows the
progression of the shear induced diffusion for one smaller
(Ca = 0.01) and one larger (Ca = 0.5) capillary number. Corres-
ponding movies are provided in ESI.† The width of the layer of
RBCs can be seen to increase with time. As we noted before the
tumbling motion at the lower capillary number transitions to
primarily tank-treading motion at the higher value.

Fig. 6(a) shows the cube of the width of the RBC layer
increasing linearly in time for various capillary numbers. The
slope of these lines is proportional to diffusivity and is used to
calculate f2. In Fig. 6(b) f2 is plotted as a function of Ca.
Although the capillary number for a drop based on the inter-
facial tension is very different from the one for an RBC based
on the membrane elasticity, in the same figure we also plot f2
for a viscous emulsion computed in ref. 31 showing compar-
able values for both. Using the dynamic structure factor
described before, the wavenumber dependent gradient diffu-
sivity is plotted in Fig. 7(a) showing that the values of diffusivity
asymptote for small values of the wavenumber. This asymptotic
value is the macroscopic or bulk gradient diffusivity of the
RBCs. As noted in our previous publications,31,32 even though
the approaches are operationally very different, they show very
similar curves. Note that the non-dimensional diffusivity Dc

yy B
_ga2ff2 computed from the dynamic structure factor is typically
appropriate for a homogeneous system with a constant f. Here
one can use an average f B 0.075 to bring the two curves to
roughly coincide, a phenomenon also observed in our prior
work on shear induced diffusion of drops.31 As the capillary
number is increased, the deformability of the cells increases.

Fig. 3 (a) Distribution of the orientation of the RBCs is visualized by plotting the intersection of normal vectors to each RBC with the surface of a unit
sphere seen from the gradient direction at different times (t0 = 0, 75, 150, 225) for different capillary numbers, Êb = 0.01 for all cases. (b) Schematic of the
orientation for each RBC as seen from the vorticity direction and its intersection with the unit sphere.
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The increased deformability leads to a larger irreversibility of
the cell interactions giving rise to a larger diffusivity.

An interesting observation from Fig. 6(b) is the dip in
diffusivity for the intermediate values of capillary number,

where the diffusivity decreases before increasing again towards
the end of the range considered. Diffusivity seems to reduce as
Ca increases from Ca = 0.15 till Ca = 0.30. The diffusivity for
viscous drops plotted in the same figure also increases with Ca,
reaches a higher peak and decreases but unlike RBCs doesn’t
again increase. The results for drops were limited to Ca = 0.35
due to breakup beyond this value.

In view of the complexity of the multiple RBCs interacting with
each other, we turn to single cell dynamics in search of an
explanation of the observed trend of the shear induced diffusivity.
For the viscous drops, the nonmonotonic variation with capillary
number (Fig. 6b) was explained in terms of pair-interactions of
drops.31 For the RBCs with a non-spherical rest shape, pairwise
interactions depend on the orientation of RBCs which continuously
change as two RBC approach each other rendering such an analysis
unhelpful. Prior work on calculating shear induced self-diffusivity
through pairwise interaction35 was restricted to a physical parameter
space where the cell dynamics does not depend on the initial
orientation, i.e. tank-treading at large capillary numbers.

Fig. 4 (a) Paths of RBCs at Ca = 0.10, Êb = 0.01. (b) Snapshot of the RBCs at different points in the simulation. (c) Concentration profile of the RBCs
reaches a self-similar state and becomes parabolic. Inset shows collapse of the concentration profile in the similarity space.

Table 1 Effect of changing the domain size in the flow direction

Domain size, Lx � Ly � Lz Diffusivity

14a � 28a � 14a 0.276 � 0.012
28a � 28a � 14a 0.281 � 0.020
42a � 28a � 14a 0.283 � 0.017

Table 2 Effect of changing the domain size in the gradient direction

Domain size, Lx � Ly � Lz Diffusivity

14a � 21a � 14a 0.258 � 0.017
14a � 28a � 14a 0.276 � 0.012
14a � 42a � 14a 0.280 � 0.011
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Fig. 5 Snapshots of the RBCs from simulations for two different capillary numbers showing the individual cells diffusing.

Fig. 6 (a) Cube of the width of RBC vs. time shows the linear growth which confirms the 1/3rd scaling that is expected in shear induced diffusion. (b) f2
vs. Ca calculated from the rate of increase of the RBC layer thickness.

Fig. 7 (a) Wavenumber dependent diffusivity calculated using the dynamic structure factor approach for a few different Ca showing asymptotic behavior
in the limit of k- 0. (b) The asymptotic value (k- 0) of wavenumber dependent diffusivity is the bulk gradient diffusivity, plotted here as a function of Ca.
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RBCs are known to exhibit different kind of motion,
tumbling, breathing, tank-treading and their various combina-
tions with variation of capillary number as has been recently
observed through careful detail computation66 and
experiments.40 We show that these different cell dynamics give
rise to the above non-monotonic behavior of the diffusivity. Cell
interactions which give rise to the shear induced diffusivity is
characterized by the cell dimension and orientation. We com-
pute a quantity that describes the extent of the deformed size of
the RBCs. For drops, considering that they assume an elliptical
shape in shear, Taylor suggested a deformation measure, called
the Taylor deformation parameter D = (L � B)/(L + B) using the
major (L) and minor (B) axes of the ellipsoid. For an RBC, with
an initial discoidal shape, we find the major and minor axis of a
solid ellipsoid with the same moments of inertia as the RBC
and compute D. The deformation parameter averaged over all
RBCs in the suspension as a function of capillary number is
plotted in Fig. 8(a) along with the diffusivity as a function of the
elastic capillary number. Note that the D is also changing with
time, therefore it is also averaged over time. Initially, there is a
plateau with the value of deformation parameter equal to that
of the undeformed RBC shape. In this regime the cells being
quite rigid exhibit solid-like tumbling motion. On further
increasing the capillary number, the average deformation
decreases. This counter intuitive result can be explained by
looking at the actual cell geometry. In the intermediate regime
of capillary number, RBCs exhibit various transient breathing
motions (breathing–tumbling and breathing–swinging)66

where cells deform into and out of a compact folded up
configuration. The effective size of the cell in this configuration
is lower than that of the undeformed cell and hence the
deformation is reduced. In Fig. 8(b), we plot the deformation
of an isolated RBC in a shear flow with the cell axis initially
parallel to the flow direction. It shows a very similar behavior to
that of the value averaged over the RBC suspension (Fig. 8a). In

the same figure, RBC shapes corresponding to three different
Ca values were shown; we notice the transient breathing
motion of a single RBC for the intermediate capillary number.
The diffusivity and the average deformation curves show a
slight non-monotonicity—a decrease for intermedia values of
Ca and subsequently an increase (Fig. 8a)—indicating that the
transition of the RBC dynamics form the tumbling motion at
lower Ca to tank-treading at higher Ca with transient motion in
between gives rise to the non-monotonic variation of deforma-
tion which in turn leads to a similar variation in diffusivity.

To further illustrate the effects of this transition, we com-
pute tumbling frequency by investigating the individual RBC
orientation. During tumbling, the orientation angle to the flow
direction of an RBC undergoes rough periodic motion, from
which we compute a tumbling frequency. In Fig. 9(a) we plot
tumbling frequency as well as orientation angle averaged over
all RBCs in the suspension (also averaged over time). At low
capillary numbers we notice a non-zero tumbling rate with
slight increase with capillary number, before precipitously
decreasing with increasing capillary number at about Ca =
0.15 and becoming zero at Ca = 0.4 as tumbling transitions
eventually into tank-treading, the transition marking the
regime of the dip in shear diffusivity. A similar shear rate
driven cross-over between tumbling and tank-treading was
previously observed from lattice Boltzmann simulations of
sheared dense suspensions of RBCs.67 Contemporaneously, in
Fig. 8(b), we show that the orientation averaged over all RBCs
changes from very close to zero (random orientation) during
tumbling to �731 during tank treading.

Effects of bending parameter and viscosity ratio

We investigated the underlying physics of shear induced diffu-
sion by varying the capillary number but keeping the nondi-
mensional bending parameter ÊB and viscosity ratio lm (kept at
unity) constant. Note that under physiological condition

Fig. 8 (a) f2 and average deformation parameter vs. capillary number for the RBC suspension in shear flow. (b) Deformation parameter vs. capillary
number for an isolated red blood cell in shear flow. RBC shapes for three different Ca values: tumbling (TU), tank treading (TT), and in the intermediate
transition regime, continuously changing shapes.
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typically lm = 5 (with blood plasma viscosity mPlasma = 1.2 mPa s,
and that of the hemoglobin solution inside mRBC = 6 mPa s).49,66

However, in vitro experimental investigations of RBC dynamics
have been performed in a suspending medium of Dextran
solutions of different concentrations with different mm leading
to a wide range of lm. (Note that Minetti et al.40 and Fisher and
Korzeniewski44 indicated that at room temperature mRBC =
10 mPa s. Grandchamp et al.11 assumed a value of 3.9 mPa s
for their in vitro experiments. A direct measurement by Koter68

yielded 4.38 mPa s at room temperature with slight increase
with increasing temperature). In Fig. 10(a) we plot the non-
dimensional gradient diffusivity of RBCs as a function of the
cell bending modulus. We perform simulations for a range of
bending moduli for two different capillary numbers, Ca = 0.05
and Ca = 0.3 corresponding to a relatively low and a high in-
plane elasticity. For the lower capillary number of Ca = 0.05,
corresponding to a tumbling case, there is initially a significant
reduction in diffusivity as Êb is increased from 0 to 0.005 but
further change does not have much effect. For the higher
capillary number Ca = 0.3 in the tank treading regime, increas-
ing the bending modulus does not have much of an effect on
the diffusivity except a slight increase. The effect of viscosity
ratio on the gradient diffusivity is plotted in Fig. 10(b) for Ca =
0.05 and 0.30. There is an overall reduction in the diffusivity as
viscosity ratio is increased which is expected due to reduced
deformation. For the stiffer Ca = 0.05 case, increasing the
viscosity ratio does not affect their deformability in any appre-
ciable manner, but for Ca = 0.3, the deformation shows a
significant decrease (deformation not plotted for brevity). In
Fig. 10(c), the tumbling rate of the cells as a function of
viscosity ratio shows a very slight decrease for the low Ca (stiff
cells), but a steady rise for the more deformable cells as the
viscosity ratio is increased. To further understand this phenom-
enon, we plot the distribution of the orientation of the RBCs as
in Fig. 3(a) by plotting the intersection of normal vectors to
each RBC with the surface of a unit sphere seen from
the gradient direction at one time instant. For the stiffer cell

(Ca = 0.05), the direction is uniformly spread indicting tum-
bling with significant precession (rolling component) which
didn’t change with changing viscosity ratio. On the other hand,
for the more flexible Ca = 0.3 case, the effect of viscosity ratio
change is prominent. For the smallest viscosity ratio, one sees
tank treading (clustering at the left of center), which changes to
tumbling at higher viscosity ratios. In fact, their clustering in
the equatorial region indicates lack of precession (rolling) in
tumbling. As we noted before, one cannot exactly compare
capillary numbers for a drop with the elastic capillary number
for a capsule. Nevertheless, we plot the values of diffusivity in a
viscous emulsion for the same capillary numbers in the same
figure (Fig. 10b).

Comparison with previous studies of shear induced
diffusivities

As noted in the Introduction, shear induced diffusivities for
suspensions of rigid particles have been studied far more
widely than those of deformable particles or drops. The first
reported study of shear induced gradient diffusion for deform-
able drops was experimentally measured by King and
Leighton69 resulting in what the authors thought to be too
low a value (f2 = 0.018–0.1 for Ca = 0.167–0.922) due to the
presence of surfactants added to stabilize the drops against
coalescence. Hudson30 overcame this problem and accurately
measured f2 to be about B0.2 (for Ca = 0.02, 0.05 and 0.4).
These values matched very well with the values that we
obtained for a viscous emulsion in our recent computational
study.31 Grandchamp et al.11 have experimentally measured
RBC diffusion in a rectangular high-aspect-ratio microfluidic
channel (with RBCs suspended in a PBS buffer solution, lm B
6–10) which allowed a direct observation of diffusion in the
vorticity direction obtaining a value of f3 B 0.12. By shifting the
stream of RBCs to the channel edge and applying a few
simplifying assumptions they also indirectly obtained diffusiv-
ities both in the vorticity (f3) and the velocity gradient direc-
tions: f3 B 0.07 and f2 B 1.7. Note that recognizing that the

Fig. 9 Tumbling rate and f2 vs. Ca (a) and RBC Orientation angle vs. Ca (b) in an RBC suspension in shear flow.
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discoidal shape effectively increases the volume of interaction
while tumbling, Grandchamp et al. rescaled the volume frac-
tion (replacing f by f(4pa3/3)/VRBC) to obtain a smaller value
f2 B 0.77, closer to f2 B 0.2 found by Hudson for a viscous
emulsion.11

Goldsmith and Marlow,65 in their experimental study of the
motion of ghost RBCs flowing through a tube, noted difference
in behavior between soft and hardened RBCs in conformity
with behavior seen here. They measured shear induced self-
diffusivity in this system to be f2s B 0.1. A slightly lower value
was measured by another group.70 Computationally, self-
diffusivity for deformable drops and particles has been com-
puted in the dilute limit using pair-dynamics between two
particles. For both drops and vesicles f2s B O(10�2) were
obtained by Loewenberg and Hinch63 (drops: f2s = 2 � 10�2

–4 � 10�2) and Zhao and Shaqfeh71 (vesicles: f2s = 2.81 � 10�2)
respectively. However for RBCs, Omori et al.35 using a similar
pair-dynamics obtained f2s B O(10�3) restricted to the tank

treading regime (they used the effective sphere radius R0 as a
length scale rather than a). Experimentally, Lima et al.70 mea-
sured Dyy B 2–5 � 10�12 m2 s�1, for a RBC dispersion through
glass capillaries with _g = 2–12 s�1 and f = 0.35 resulting in an
f2s B 0.03–0.2. Omori et al. pointed to RBC migration, Brow-
nian motion, and finite volume fraction in the experiment as
the possible causes for the difference of their computation
from the experimental measurement. These self-diffusivity
values could be compared to our computed result of B0.3 for
the gradient diffusivity. Typically the gradient diffusivity is
higher than the self-diffusivity by a factor of 6 in case of hard
sphere suspension as noted by da Cunha and Hinch25

(a theoretical ratio of 8 was also noted in ref. 69).

Conclusions

We have shown how the red blood cell dynamics affect the
shear-induced gradient diffusivity by performing a detailed

Fig. 10 (a) Effect of bending modulus on the diffusivity of RBCs for two different Ca. (b) Gradient diffusivity in RBCs as a function of viscosity ratio for stiff
(Ca = 0.05) and soft (Ca = 0.3) cases. (c) Tumbling rate as a function of viscosity ratio for the two capillary numbers. (d) Distribution of the orientations of
the cells visualized on the surface of a sphere for three different viscosity ratios at t0 = 200.
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study of the dynamics of concentrated RBC suspensions in a
shear flow, with initially the cells being concentrated in a
packed layer in the middle of the flow domain. The cell
concentration profile as well as a novel dynamic structure
factor based approach was used to compute the gradient
diffusivity. It has been noted that decreasing cell stiffness
results in cell dynamics transitioning from stiff cells primarily
tumbling in shear to flexible cells tank treading. That in turn
resulted in the gradient diffusivity rising in the tumbling region
and then decreasing in the transition region before again rising
in the tank-treading regime. We have carefully established the
connection between the cell dynamics and the trend in gradient
diffusivity by investigating the average tumbling frequency, cell
deformation and inclination. We briefly investigated the effects
of bending resistance and viscosity ratio on the gradient
diffusivity and compared with experimental and computational
results from the literature. As noted in the Introduction, shear
induced diffusivity is an important component in determining
the microscopic structure as well as the macroscopic behaviors
of a suspension. The change in diffusivity with changing
stiffness and correspondingly individual cell dynamics varying
from tumbling to tank-treading could be used as an important
marker for diagnosis of diseases that results in altered RBC
flexibility such as malaria72 and sickle cell anemia.73 However,
we also should note the challenges in such diagnostic applica-
tions due to the heterogeneity of the RBC properties (cell
geometry, viscosity, and membrane characteristics) even in a
healthy population. The close relationship between stiffness
and diffusivity for non-spherical cells such as RBCs is impor-
tant in margination of cells including that of circulating tumor
cells (CTC). The margination of CTCs have been hypothesized
to aid in their eventual arrest on the endothelial lining of a
vessel resulting in cancer metastasis.74,75

Author contributions

ARM was responsible for development of the code, its verifica-
tion, and all simulations. He along with KS were responsible for
conceptualization of the problem, analysis of the results and
writing the article. KS supervised the research.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors thank Dr Thomas Podgorski, (Laboratoire Rhéologie et
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