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41 Originality-Significance Statement

42 As the impacts of global change accelerate, ecological disturbances will increasingly impact 

43 ecosystems due to extremes in temperature, precipitation and storms, among others. However, 

44 research into the microbiome impacts of disturbance has been limited; in particular, few studies 

45 include long-term pre and post disturbance measurements to quantify the persistence of impacts 

46 on microbiome composition and function, relative to normal variation in the ecosystem. Here we 

47 show how environmental disturbances differ in their microbiome responses which can be linked 

48 to both disturbance type and prior ecological history. Thus, this paper contributes unique insights 

49 into disturbance in the coastal oceans and more broadly to the field of disturbance ecology.
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64 Summary 

65

66 Disturbances, here defined as events that directly alter the microbial community composition, are 

67 commonly studied in host-associated and engineered systems. In spite of global change both 

68 altering environmental averages and increasing extreme events, there has been relatively little 

69 research into the causes, persistence and population-level impacts of disturbance in the dynamic 

70 coastal ocean. Here, we utilize three years of observations from a coastal time series to identify 

71 disturbances based on the largest week-over-week changes in the microbiome (i.e. identifying 

72 disturbance as events that alter the community composition). In general, these microbiome 

73 disturbances were not clearly linked to specific environmental factors and responsive taxa largely 

74 differed, aside from SAR11, which generally declined. However, several disturbance 

75 metagenomes identified increased phage-associated genes, suggesting that unexplained 

76 community shifts might be caused by increased mortality. Further, a category 1 hurricane, the 

77 only event that would likely be classified a priori as an environmental disturbance, was not an 

78 outlier in microbiome composition, but did enhance a bloom in seasonally-abundant 

79 phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what 

80 constitutes a disturbance should be re-examined in the context of ecological history and 

81 microbiome responses.
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87 Introduction

88

89 As global change continues to increase the frequency and intensity of environmental 

90 disturbances, understanding their impacts and persistence on microbiomes is critical to assess 

91 potential changes in microbial-mediated ecosystem processes. Shade et al. 2012 define 

92 disturbances as causal events that either alter microbiome-relevant environmental parameters or 

93 directly alter the microbial community. However, even this definition has limitations; for 

94 example, critical environmental parameters are undefined in many systems, limiting our ability 

95 to accurately identify disturbed versus “normal” conditions or to characterize potential proximal 

96 drivers of disturbance responses. Additionally, metrics that assess the microbial community as a 

97 whole may miss disturbance events that disproportionately affect biogeochemically-important 

98 taxa that constitute a small fraction of the total community. Despite these limitations, microbial 

99 ecology has developed a general framework to describe disturbance responses. Microbiome 

100 responses to disturbance include sensitivity, where the community composition changes and does 

101 not return immediately to its prior state; resilience, where the community is initially altered but 

102 returns to its original composition; and resistance, where community composition remains the 

103 same (Allison and Martiny, 2008). Further, communities whose composition changes can be 

104 functional redundant, where an altered community composition retains the original functional 

105 capacity. In environmental systems, disturbances have been show to alter microbial diversity, 

106 biogeochemical rates, and functional capacities (Atlas et al., 1991; Allison and Martiny, 2008; 

107 Renes et al., 2020). In contrast to host-associated ecosystems where disturbance often results 

108 from a disease state or drug treatment, disturbances in non-host associated ecosystems, such as 

109 soil or aquatic environments, are often complex, frequently altering multiple factors 
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110 simultaneously (e.g. storms, wildfires, co-occurring contaminants). While disturbances vary in 

111 origin and specific impacts, non-resistant microbiomes generally exhibit reduced diversity (Atlas 

112 et al., 1991; Renes et al., 2020), increased stochasticity in community assembly (Ferrenberg et 

113 al., 2013; Zhou et al., 2014), increased physiological tolerance and metabolic versatility (Atlas et 

114 al., 1991), and shifts towards disturbance-resistant taxa (Westergaard et al., 2001; Renes et al., 

115 2020). 

116

117 Despite some similarities in the disturbance responses, microbiomes can differ significantly in 

118 their resilience time (the length of time required for the microbial community to return to its 

119 original state), due to a combination of (1) the type, extent and duration of the disturbance (2) the 

120 ecological history of the impacted community and (3) other ecosystem characteristics (e.g. 

121 dispersal or turnover rates, etc.). Disturbances can be classified as either pulse, or short-term, 

122 events (e.g. rain events, washout) or press, or long-term chronic events (e.g. climate change) and 

123 microbiome responses likely depend on the duration of altered environmental conditions with 

124 shifts in microbiomes persisting for weeks to years even in relatively dynamic aquatic 

125 environments (Westergaard et al., 2001; Peierls et al., 2003; Wetz and Paerl, 2008; Shade et al., 

126 2011). Ecosystems exposed to high levels of environmental variation, both over annual cycles 

127 and due to episodic events, may have microbiomes that are adapted to change and thus are more 

128 resistant or resilient to disturbance (Stegen et al., 2018; Renes et al., 2020; Wang et al., 2021). 

129 Our ability to generalize about disturbance persistence is limited by studies that often focus on 

130 subsets of the community (e.g. phytoplankton) (Wetz and Paerl, 2008) or relatively stable soil 

131 communities (Westergaard et al., 2001); thus, these findings may not broadly apply to all taxa, 

132 environments or disturbance types. For example, aquatic microbiomes generally exhibit higher 
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133 dispersal rates compared to soil microbiomes; thus marine environments, in particular, likely 

134 exhibit faster resilience than other environments due to dispersal from adjacent undisturbed 

135 waters (Zhou et al., 2014; Shen et al., 2018; Rii et al., 2022). While disturbance remains an 

136 active area of investigation, there are still open questions of how microbiome responses vary 

137 across ecosystems and disturbance types.

138

139 Other challenges remain: commonly practiced a priori identification of disturbances limits 

140 conclusions to well-defined drivers and specific microbial responses. Additionally, 

141 environmental microbiomes are often characterized only after the disturbance has occurred, 

142 removing crucial context for both the microbiome and environment about the mean and variance 

143 of the non-disturbed state (Jones et al., 2008; Shade et al., 2011; Ferrenberg et al., 2013). To 

144 address some of these challenges, here we define disturbed communities as those with larger-

145 than-expected changes in community composition as inferred from a long-term observations. 

146 While this method is limited to the detection of disturbances that (1) alter microbial community 

147 composition, and (2) occur on a weekly timescale, it takes a microbiome-centric approach 

148 focusing on community structure and function that could be overlooked through a priori 

149 determination of disturbance events. Here, we adopt a modified definition of disturbance as 

150 events that alter microbiome composition, which we use to identify disturbance-responsive 

151 populations, and additionally, for a subset of events, examine changes in metagenomes. Further, 

152 as this study occurs at a well-studied, long-term coastal time series (Piver’s Island Coastal 

153 Observatory: PICO), changes in both environmental factors and microbiome composition can be 

154 contextualized within a background of annual and episodic changes in environmental parameters 

155 and microbiomes (Johnson et al., 2013; Ward et al., 2017; Wang et al., 2021). 

Page 6 of 30

Wiley-Blackwell and Society for Applied Microbiology



For Peer Review Only

7

156

157 Results and Discussion

158

159 We utilized three years of weekly water samples (Jan. 2011- Dec 2013) from a time series site 

160 located at the mouth of an estuary, the Piver’s Island Coastal Observatory (PICO), to examine 

161 the coastal ocean microbiome. This location exhibits annual cycles in community composition 

162 and strong seasonal population dynamics, which are correlated with light and temperature (Ward 

163 et al., 2017). Here, we utilized this dataset to identify disturbance events based on changes in 

164 microbiome composition. This microbiome-centric approach has the advantage of identifying 

165 events that alter microbial communities, but will not capture resistance events when the 

166 community composition does not change (Allison and Martiny, 2008). As the highest rates of 

167 community change occur in the spring and fall (Ward et al., 2017), we minimized seasonal bias 

168 by subtracting a time-averaged rate of community change from the weekly Bray-Curtis 

169 dissimilarity (Figure S1). After removing seasonal trends, the ten largest community weekly 

170 changes were identified as potential “disturbance events” (Figure 1A). Interestingly, this metric 

171 of disturbance did not correspond to increased βNTI-based turnover in the 200 most abundant 

172 taxa (Figure S2), or increased stochasticity compared to non-disturbance conditions (Wilcoxon 

173 test p>0.05). We did note that some disturbances were paired, with a large community change 

174 (the “disturbance”) followed by a second large community change 1-2 weeks later (Figure 1A: 

175 disturbances 3 & 4, 9 & 10), which we interpret as resilience events with the community 

176 returning to a seasonally-normal state (Figure 1B: blue arrows). A single aberrant week that was 

177 rapidly followed by a return to normal conditions (e.g. disturbances 3 & 4) could be explained as 

178 sampling a rare microenvironment such as a large particle (Yung et al., 2016). Yet, most 
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179 disturbances were not followed by a second event, suggesting that either disturbance effects 

180 persisted for more than a single week or that the microbiome returned to the seasonal normal 

181 gradually over time. 

182

183 In order to better understand potential drivers of community changes, we examined the 

184 relationship of disturbance events with environmental parameters. Overall, we found no clear 

185 correlation between microbial community change (Bray-Curtis dissimilarity) and environmental 

186 variables (e.g. temperature, pH, chlorophyll a, dissolved oxygen, salinity, nutrients; Table S1; 

187 Figure S3A). However, we can speculate about the linkages between individual disturbances and 

188 potential environmental drivers. For example, based on environmental and microbiome context, 

189 we could re-categorized disturbance 1 as a resilience event where the microbial community 

190 recovered from a cold period (water temperature <10 °C, lower than the average winter 

191 temperature (range ~10-15 °C), for about a month prior to disturbance 1; Figure S4A). However, 

192 most disturbances had no obvious distinguishing environmental characteristics, which could be 

193 due to unmeasured environmental factors, stochastic processes or changes in biological 

194 interactions (e.g. mortality). Other disturbances were enigmatic: although disturbance 2 occurred 

195 three days prior to the landfall of a category 1 hurricane (Irene), we found no linkages between 

196 this disturbance and the environmental impacts from the hurricane (e.g. no change in wind or 

197 precipitation was evident at the study site). Further, while the hurricane altered a number of 

198 environmental factors (Figures S3, S4), it did not induce a disturbance response based on our 

199 microbiome turnover metric (Figure 1).  

200
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201 Individual populations may offer additional insights into the characteristics of disturbance-

202 responsive taxa or, potentially, the drivers of these events. Among the 20 taxa that contributed 

203 the most to community change for each disturbance (Figure 2), we found that no OTU responded 

204 in all disturbances. However some clades seemed disproportionately disturbance-responsive, 

205 such as members of the streamlined marine oligotroph SAR11 clade, which predominantly 

206 decreased post disturbance, as well as members of the OCS155 clade of Actinobacteria which 

207 both increased and decreased (Figure 2). As SAR11 are a ubiquitous marine group, we further 

208 examined SAR11 oligotypes (unique sequence types); and identified rapid shifts across multiple 

209 populations for these 10 disturbances and in response to other events not detected in the 

210 community-wide analysis (Figure S5), suggesting they may be sensitive biomarkers of 

211 environmental change (Yeo et al., 2013; Giovannoni, 2017). The greatest similarities among the 

212 disturbances were observed for spring events 5 & 8 (May 2012 and 2013) which (1) clustered 

213 based on responsive taxa (Figure 2), (2) occurred in the same season and (3) exhibited similar 

214 large community shifts on the NMDS (Figure 1B). Unlike most other disturbances, both spring 

215 events’ microbiomes contain a large fraction of conditionally rare taxa (CRT; Figure S6), 

216 phylotypes that are generally a small fraction of the microbiome but occasionally become 

217 abundant, often as a result of altered environmental conditions or microbial community 

218 dynamics (Shade et al., 2014). These rare taxa are thought to act as a “seed bank” to replenish 

219 lost diversity and functional capacities within a disturbed community (Jones and Lennon, 2010; 

220 Campbell et al., 2011; Caporaso et al., 2011). However, contrary to predictions of disturbance 

221 responsiveness, CRT did not comprise a significant fraction of the microbiome after other 

222 disturbances or Hurricane Irene (Figure S6). CRT were also abundant prior to disturbance 1 (a 

223 presumed resilience event), when the system experienced colder than normal temperatures (< 
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224 10 °C; Figure S4); suggesting that these CRT may be able to grow at lower temperatures, 

225 enabling them to out-compete winter-associated taxa (Yung et al., 2015). Overall, a population-

226 level analysis of these disturbances highlights that, while some disturbances are characterized by 

227 opportunistic taxa (disturbances 5 and 8), most disturbance-responsive taxa in fact do not all fit 

228 with the common narrative of fast-growing taxa that bloom due to an influx of new resources 

229 following a disturbance. 

230

231 As disturbances did not select for canonical opportunistic taxa (Polz et al., 2006), microbiome 

232 functional potential (i.e. metagenomes) may offer insights into these disturbances (Sjöstedt et al., 

233 2018) (Figure 1C). While metagenomes also clustered by season (Figure 1C), OTU-level 

234 community and metagenome changes did show a positive correlation (Figure 1; Mantel test on 

235 Bray-Curtis dissimilarities, r = 0.5136, p=0.0001). However, the largest community and 

236 metagenome changes were not always aligned; disturbance 2 showed the largest metagenome 

237 change despite having the smallest community change among the 10 disturbance events (Figure 

238 1B & C). Enriched disturbance 2 metagenome categories largely corresponded to phage-related 

239 genes, suggesting top down controls could cause these community changes. This decoupling 

240 between community composition and functional potential could indicate that disturbances select 

241 for specific functional traits rather than taxonomic groups (Coles et al., 2017), and it may provide 

242 insights into the biology that drives or responds to these events. As neither taxa nor functional 

243 potential are conserved across disturbances, we focused on several case studies, including the 

244 passage of a hurricane and repeated spring events, to more deeply understand these events.

245

246 Hurricane Irene
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247 We first examined Hurricane Irene, which was not identified as a disturbance based on our 

248 community-turnover metric. In spite of a hurricane likely being categorized a priori as a 

249 disturbance, the microbiome remained within the seasonal average, suggesting some degree of 

250 resistance, even though environmental conditions formed a distinct outlier cluster (Figures S3, 

251 S4). Hurricane Irene made landfall about 10 miles from our study site (at Cape Lookout, NC, 

252 USA) as a category 1 hurricane on August 27, 2011 and was characterized by substantial 

253 precipitation (~350 mm), a large wind field, and localized flooding. As our first post-hurricane 

254 sample was taken 3 days after landfall, we may have missed some short-term impacts, e.g. 

255 introduction of storm water microbes, a first flush of nutrients, etc. (Ares et al., 2020). 

256 Nevertheless, a comparison of samples collected pre- (August 24) and post- (August 30) 

257 hurricane landfall (August 27) reveals decreases in both pH (~0.11 units) and dissolved inorganic 

258 carbon (~230 µM) as well as the highest concentrations of NOx observed over the full three years 

259 of the dataset (NOx: 1.53 µM; Figure S4F) and a substantial increase in NH4, SiOH4, and 

260 chlorophyll a relative to pre-hurricane conditions (reported as pre-hurricane -> post-hurricane 

261 values; NH4: 319.94 -> 1507.72 µM; SiOH4: 4.36 -> 25.27 µM, chlorophyll a: 5.81 -> 10.85 

262 µg/L; Figure S4E,G,H).

263

264 In addition to these short-term changes in environmental parameters, some environmental factor 

265 shifts persisted for weeks following the hurricane: decreased salinity (~7 units over five weeks; 

266 Figure S4C) and elevated levels of nutrients, including SiOH4, NO2 and PO4 (Figure S4E-G). 

267 The continued high levels (and sometimes delayed peaks) in these environmental variables 

268 points to continued nutrient fluxes and freshwater inputs from surface water movement through 

269 the watershed, groundwater discharge and long-term processing of storm-derived material in 
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270 estuaries (Johnson et al., 2013; Asmala et al., 2021). Yet, in contrast to previous hurricane 

271 research that found substantial alterations to microbial composition (Peierls et al., 2003; Ares et 

272 al., 2020; Steichen et al., 2020) and function (Yan et al., 2020), we observed only minor turnover 

273 in community composition and functional potential (Figures 3, S7). We cannot discount that 

274 disturbance 2 immediately prior to the hurricane may have masked potential hurricane effects 

275 (Wetz and Paerl, 2008), pre-selected for a more disturbance-resistant community (Sjöstedt et al., 

276 2018; Renes et al., 2020) or alternately, our weekly sampling interval may not have captured 

277 rapid and/or finer scale effects such as an influx of freshwater or terrestrial microbes in 

278 floodwaters (Ares et al., 2020) even though other environmental changes were observed. Overall, 

279 these results suggest that our capacity to predict events that alter microbiomes may be more 

280 limited than previously thought.

281

282 Although Hurricane Irene was not categorized as a disturbance based on our microbiome-change 

283 metric, a number of taxa did exhibit large changes in relative abundance (Table S2): several 

284 eukaryotic phytoplankton phylotypes increased or decreased and SAR11 taxa exhibited 

285 increases, in contrast to the general declines in SAR11 in observed for other disturbances (Figure 

286 2, Table S2). In addition to new resources (nutrients, organic matter), hurricanes potentially 

287 introduce allochthonous bacteria (Amaral-Zettler et al., 2008; Balmonte et al., 2016). A number 

288 of hurricane responsive taxa were below the sequencing detection limit either before or after the 

289 hurricane (Figure S7; Table S2), which could represent taxa which were either washed in by 

290 floodwaters/ sediment resuspension, rapidly bloomed or alternately died due to the 

291 environmental conditions present. While it can be difficult to assign habitat origins to specific 

292 taxa (e.g. terrestrial vs. aquatic), the soil-associated Sediminicola genus (OTU 883) increased 
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293 post-hurricane (Table S2). During this period, other taxa likely responded to autochthonous 

294 change - the most dramatic hurricane response occurred in two diatoms: OTU 8 (Skeletonema 

295 pseudocostatum) and OTU 10129 (Eunotogramma sp.), which, while normally abundant during 

296 the summer and fall, bloomed post-hurricane. These phylotypes increased ~10 fold (relative 

297 abundance) between pre- and post-hurricane samples and peaked four weeks after the hurricane, 

298 accounting for ~10% (OTU 8) and 6% (OTU 10129) of the libraries, compared to with 

299 maximum relative abundances of ~3% in 2012 and 2013 (Figure S8). As hurricanes alter 

300 multiple environmental factors, we sought to better link these population level-responses to 

301 potential environmental drivers using Bayesian generalized joint attribute modeling (GJAM) in 

302 conjunction with select environmental variables (temperature, NH4, chlorophyll a, salinity and 

303 Mean Lower Low Water, a metric of tidal height) (Clark et al., 2017). The two diatoms (OTUs 8 

304 & 10129) both had significant positive associations with NH4 and chlorophyll a  and a negative 

305 relationship with salinity (GJAM), even when the data from the year of Hurricane Irene (2011) 

306 was removed (data not shown), suggesting the high nutrient, low salinity post-hurricane 

307 conditions would promote growth. Skeletonema spp. have high growth and nitrogen-uptake rates, 

308 giving these diatoms a competitive advantage when pulses of nutrients occur (Huang et al., 

309 2020). While disturbance is typically thought to allow rare taxa to bloom, altered conditions can 

310 also benefit dominant taxa, particularly those that quickly respond to increased resource 

311 availability and/or reduced competition (Polz et al., 2006; Wetz and Paerl, 2008; Steichen et al., 

312 2020). Finally, a comparison of metagenomes the week before disturbance 2, disturbance 2 (3 

313 days prior to hurricane Irene) and 9 days post-hurricane reveals a number of phage-related gene 

314 categories increased in disturbance 2 (Figure 3), suggesting that phage-mediated community 

315 selection could have altered the community before the hurricane. In contrast, the post-hurricane 
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316 sample exhibited increases in two dimethylsulfoniopropionate (DMSP)-mineralization genes, 

317 suggesting the diatom bloom has increased degradation potential for this algal osmolite (Figure 

318 3). In future work, we may consider alternate metrics for disturbance (rather than week-over-

319 week changes) as the hurricane did not result in an immediate or dramatic change in the 

320 microbiome, but rather a sustained shift in specific populations. However, we note that this event 

321 did not impact water temperature, which is predicted to be the major environmental driver at this 

322 site, and occurred in late summer when the microbiome is relatively stable and potentially more 

323 resistant to disturbance (Ward et al., 2017). Thus, when taxa are relatively well acclimated and 

324 presumably adapted to environmental conditions, even relatively large and sustained changes in 

325 environmental parameters primarily generated blooms in abundant organisms that were poised to 

326 make use of these resources.

327

328 Spring disturbance events

329

330 In contrast with relatively stable summer conditions, PICO community turnover is highest during 

331 the spring and fall (Ward et al., 2017). Therefore, we speculated that these transitional 

332 microbiomes may be more vulnerable to invasion by rare taxa and less resistant to disturbance 

333 since community members may not be adapted to the rapidly-changing environmental conditions 

334 (Gibbons et al., 2016). To better understand this process, we examined two spring disturbances 

335 (5 & 8), which occurred in May (2012, 2013) and exhibited similar responsive taxa (Figure 2). 

336 We postulate that an equivalent spring disturbance was not observed in 2011 either due to prior 

337 disruption of the microbial community due to the cold event in January 2011 (disturbance 1), 

338 interannual variability and/or missing observations in April 2011. In contrast to most of the 
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339 disturbances where conditionally rare taxa (CRT) constitute <0.5% of the community, here, CRT 

340 comprised 10-30% of the community in both spring disturbances (Figure S6). Many of these 

341 CRT were specific to these two events, including several OTUs with the best BLAST hit to the 

342 diatom Leptocylindrus danicus) and one OTU in the Alteromonadaceae family (Figure S10). 

343

344 In investigating the origin of this disturbance, we noted that many of the responsive taxa were 

345 photosynthetic, with an increase in the relative abundance of chloroplast sequences (diatoms) in 

346 both events and a decrease in the cyanobacterium Synechococcus in disturbance 5 (Figures 2, 

347 S4L; Tables S3, S4). While many aquatic environments exhibit spring phytoplankton blooms, 

348 these events did not correspond to an increase in chlorophyll a (Figure S4H) suggesting turnover 

349 in phytoplankton composition rather than an overall increase in photosynthetic biomass. Many 

350 disturbance-responsive taxa showed significant GJAM associations with temperature, salinity 

351 and chlorophyll a (Tables S3 & S4), which were important environmental factors for many 

352 microbiome populations, even outside of disturbance (Ward et al., 2017) and therefore did not 

353 point to a specific environmental trigger. These seasonal shifts in phytoplankton communities 

354 towards larger eukaryotic taxa (Figure S4K) likely release organic carbon that favors the 

355 emergence of opportunistic copiotrophs, including an Alteromonadaceae phylotype (OTU181) 

356 that increased ~103 fold during disturbance 5 (Figure S10) (Mühlenbruch et al., 2018). We 

357 examined whether metagenomes support this shift towards copiotrophy and found that in both 

358 events 5 and 8 four motility related pathways increased (Table S4). As motility demarcates 

359 oligotrophic and copiotrophic strategies (Lauro et al., 2009), increased motility-associated and 

360 also general secretion pathway genes likely reflects the increases in opportunistic copiotrophs. 

361 These consistent changes in both community composition and functional capacities during the 
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362 spring microbiome disturbances suggest that rapid, seasonally-associated turnover in 

363 phytoplankton composition alters resource availability, leading to favorable conditions for the 

364 transient invasion by conditionally rare taxa and/or fast-growing opportunistic copiotrophs. 

365 Despite their overall similarities in responsive taxa, disturbance 8 also included declines in a 

366 number of phage-related pathways, suggesting a role for density-dependent selection in rapid 

367 community changes (Figure S9). These microbiome disturbances offer unique insights into the 

368 ecology of coastal ocean microbial communities, with large, repeating, but ephemeral 

369 microbiome alterations in the absence of detectable changes in key environmental variables.

370

371 Here we utilized a long-term coastal time-series, the Piver’s Island Coastal Observatory, to 

372 identify potential disturbances in the context of annual patterns in microbiome composition and 

373 environmental variables. While these disturbances differed in origin (or remain unexplained), 

374 they frequently shared some characteristics, including decreases in SAR11. Yet this community 

375 turnover based method surprisingly did not identify a category 1 hurricane as a disturbance, 

376 likely because the hurricane resulted (generally) in gradual shifts of existing taxa rather than 

377 measured increases in rare or allochthonous organisms. This data suggests a critical need to 

378 understand the context and the role of microbiome stability (i.e. resistance) during changes in 

379 ecosystem parameters, and the potential consequence of increased invasibility of the system 

380 during periods of microbiome instability (Shade et al., 2012; Gibbons et al., 2016). As global 

381 change increases the numbers of environmental extremes (e.g. marine heat waves, strong tropical 

382 cyclones, etc.), it is critical to understand how these (potential) disturbances impact microbiomes 

383 and their associated biogeochemical processes.

384
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385 Methods 

386

387 Environmental data and microbial community analysis

388

389 The microbial time series used in this study was previously described in Ward et al. 2017.

390 In brief, samples were collected at the Piver’s Island Coastal Observatory (PICO) site 

391 (34.7181°N 76.6707°W) at the mouth of the Newport River Estuary weekly over a three-year 

392 period from January 2011 to December 2013. Seawater was collected at 10:30 AM local time 

393 and processed within one hour. Methods for determination of surface water temperature, pH, 

394 salinity, dissolved inorganic nutrient concentrations, chlorophyll a concentration, and 

395 bacterioplankton and phytoplankton abundances were described previously (Johnson et al., 2013) 

396 (Ward et al., 2017). Nucleic acids were extracted from 0.22-micron Sterivex filters (Millipore), 

397 and libraries of prokaryotic and chloroplast 16S rRNA genes were generated as previously 

398 described (Ward et al., 2017).  Briefly, 16S rRNA V3-V4 libraries (Kozich et al., 2013) were 

399 sequenced on the MiSeq (Illumina) with 2x 250 nt paired end sequencing, and sequences were 

400 processed using USEARCH v7 (Edgar, 2010). Merged paired end sequences were clustered into 

401 OTUs in which all assigned sequences are at least 97% similarity using centroid-based clustering 

402 in UPARSE (Edgar, 2013) with a pairwise identity of 98.5% to the centroid. OTUs occurring 

403 less than five times in the entire dataset were removed, yielding a total of 10,357 OTUs. 

404 Libraries were rRNA copy number corrected using rrnDB (Stoddard et al., 2014) and 

405 subsampled to 20,082 reads per library. The taxonomies of representative sequences were 

406 classified using the RDP naïve Bayesian classifier using the Greengenes version 13.5 database.

407
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408 Community-level and population level analyses

409

410 To examine short-term variability in microbial community, we quantified differences in 

411 community composition over weekly intervals using Bray-Curtis after LOWESS smoothing with 

412 a span of 0.8; and the 10 largest weekly changes in community composition were identified as 

413 disturbances. We identified conditionally rare taxa (Shade et al., 2014) as having bimodality 

414 values (a measure of taxa that are predominantly rare with occasional periods of high abundance) 

415 greater than 0.90 and a relative abundance exceeding 0.25% at least once during the 3 years of 

416 the time series. After identification of disturbance events, relative abundances of each OTU were 

417 converted to absolute abundances using total bacterioplankton counts obtained using flow 

418 cytometry (i.e. relative abundance x total prokaryotic cell counts). Although absolute abundances 

419 should not be interpreted as “cell counts”, they help to correct for the potential distortion in 

420 relative abundance due to changes in the abundance of other taxa, for example due to blooms. 

421 Top 20 contributors (OTUs with highest contributions to community dissimilarity) with a 

422 minimum pre- post-disturbance average abundance of 0.05%  in each disturbance event were 

423 identified as potentially disturbance-responsive taxa and plotted using ‘heatmap.plus’ in the R 

424 vegan package. 

425

426 To employ the Beta Mean Nearest Taxon Distance (MNTD) method of comparing stochastic 

427 and deterministic processes (Stegen et al., 2012), we first calculated the niche value as the 

428 abundance-weighted mean of temperature for the 200 most abundant OTUs using the dniche 

429 function in R. A mantel correlogram using the pairwise matrix of OTU niche distances and 

430 phylogenetic distances (Tamura and Nei, 1993) with 999 permutations verified that closely-
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431 related taxa have similar temperature niches. Calculated MNTD values (a measure of 

432 abundance-weighted mean phylogenetic distance between closely related taxa between 

433 communities) were compared to a mean null distribution of MNTD values obtained by 

434 randomizing OTUs across the phylogeny 999 times. The number of standard deviations between 

435 the observed and null MNTD yielded Beta Nearest Taxon Index (NTI) values. Mean |NTI| > 

436 2 indicate communities with significantly higher (>2; heterogeneous selection) or lower (<-2; 

437 homogeneous selection) community turnover than expected under a null model.

438

439 Metagenome sequencing and analysis

440

441 Metagenomes were constructed from the same DNA extractions used for 16S rRNA gene 

442 libraries (Table S6), 10 ng of DNA was sheared to 300 bp using the Covaris LE220 and size 

443 selected using SPRI beads (Beckman Coulter). The fragments were treated with end-repair, A-

444 tailing, and ligation of Illumina compatible adapters using the KAPA-Illumina library creation 

445 kit followed by 5 cycles of PCR to enrich for the final library. These libraries were sequenced 

446 with 2x150 nt reads on the Illumina HiSeq 2500 1T platform at either the Joint Genome Institute 

447 or Duke’s Genome Sequencing and Analysis Center. In analyzing the resulting data, we first 

448 used Trimmomatic (Bolger et al., 2014) to remove adapters, the first 10 bases, and low quality 

449 regions in the first and last 20 bases. We used a sliding window of 4 with an average quality 

450 cutoff of 20 for the entire read and a minimum length cutoff of 50 base pairs. We retained an 

451 average sequencing depth of 17.8Gbp with an average read length above 125 base pairs for all 

452 samples. We assembled the reads with MEGAHIT, which is a de Brujin graph approach that is 

453 time and energy efficient, and produces high quality metagenome assemblies (Li et al., 2016). 
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454 The assembly was performed using the default options and from the resulting contigs only those 

455 greater than 1000 base pairs in length were retained for further analysis. Many of the resulting 

456 assemblies had over 50% of the metagenomic reads represented (range 22 to 64%). 

457

458 We used MiGA (Rodriguez-R et al., 2018) for downstream analysis following assembly, 

459 including gene prediction with Prodigal (Hyatt et al., 2010). After gene prediction, we used 

460 BLAST to functionally annotate genes based on the UniProt database. We estimated the 

461 abundance of genes in each metagenome by read mapping using BLASTn (mapping the reads of 

462 each metagenome to the combined genes file and normalized for the number of reads in each 

463 metagenome). The abundance of each gene was estimated by the BlastTab.seqdepth.pl script of 

464 the enve-omics collection (Rodriguez-R and Konstantinidis, 2016), which normalizes the read 

465 counts by gene length and reports the X coverage of the gene. We used these normalized read 

466 counts to find the abundance in each SEED subsystem category per sample by combining the 

467 counts in each category. Metagenomic reads are deposited as NCBI bioproject PRJNA643505 

468 and NCBI Projects 441405 -441416 (Hunt, 2016) and 16S rRNA gene libraries are available as 

469 PRJNA309156 

470

471 GJAM Analysis

472

473 Generalized joint attribute modelling (GJAM) was applied to model the 200 most abundant 

474 OTUs and environmental factors [temperature, tidal height (MLLW), NH4, chlorophyll a, and 

475 salinity] using the GJAM v. 2.3.2 package in R. Iteration was set at 20,000 and burning at 

476 10,000. Results were visualized using the built‐in function ‘gjamPlot’. 

Page 20 of 30

Wiley-Blackwell and Society for Applied Microbiology



For Peer Review Only

21

477

478 Acknowledgements: We acknowledge the contribution of the entire PICO sampling team to 

479 field work and sample processing. We specifically acknowledge funding from the National 

480 Science Foundation: to DEH and ZIJ (OCE 1416665), to DEH (ICER 2033934) and to KTK 

481 (OCE 1416673). The work conducted by the U.S. Department of Energy Joint Genome Institute, 

482 a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. 

483 Department of Energy under Contract No. DE-AC02-05CH11231.

484

485 Figures

486

487 Figure 1. Microbiome disturbance identification ordination plots (A) Community 

488 dissimilarity over three years (Jan 2011 – Dec 2013) of weekly samples from the PICO (Piver’s 

489 Island Coastal Observatory) time series. Bray-Curtis dissimilarity (black line) was calculated 

490 over one-week intervals, excluding missing samples. Values presented are relative to those 

491 expected based on a smoothed local average (LOWESS, Locally Weighted Scatterplot 

492 Smoothing) for that time period. Mean Bray-Curtis dissimilarity (blue line) is shown. Numbers 

493 indicate the ten largest community changes (disturbance events 1-10). A category 1 hurricane 

494 that directly impacted the study site immediately following disturbance 2. (B) Non-metric 

495 multidimensional scaling (NMDS) ordination computed based on Bray-Curtis dissimilarity for 

496 16S rRNA gene libraries of weekly samples at the Piver’s Island Coastal Observatory over three 

497 years (2011-2013). Disturbance events are labeled with numbers and indicated by red arrows. 

498 Three events (1, 4 and 10) believed to be resilience events are indicated by blue arrows. (C) Non-

499 metric multidimensional scaling (NMDS) ordination computed based on Bray-Curtis 
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500 dissimilarity for all metagenome samples. Disturbance events are numbered and are indicated by 

501 red arrows. Predicted post-disturbance resilience events are shown with blue arrows (1, 4).

502

503 Figure 2. Heatmap showing OTU abundance changes pre- and post- disturbances. Plotted is 

504 the log2 of (post-disturbance absolute abundance+1)/(pre-disturbance absolute disturbance+1) of 

505 the 20 taxa contributing the most to the community change in each disturbance event (identified 

506 with asterisks), excluding presumed resilience events (Disturbances 4 and 10). Responsive taxa 

507 for each disturbance included only those with a minimum average relative abundance across pre- 

508 and post-disturbance samples of 0.05%. In other disturbances, taxa below the 0.05% minimum 

509 threshold abundance were removed from analysis (colored in grey). Absolute abundances are 

510 calculated based on relative abundances multiplied by total cell counts. Disturbance events are 

511 grouped by a cladogram based on the similarity of the heatmap. Taxa are ordered based on a 

512 maximum likelihood phylogenetic tree, with the major phyla labeled and Thermus aquaticus 

513 strain YF-1 as the outgroup. Conditionally rare taxa (CRT) are identified with black on the right. 

514

515

516 Figure 3. Heatmap of metagenome changes Log2-fold-change between pre- and post-

517 disturbance 2 and 3 days pre-Irene (disturbance 2) and 9 days post-Irene. Includes 20 SEED 

518 categories with the highest |Log2FC| for each pair, indicated by black outlines. Only SEED 

519 categories with a minimum average relative abundance across the three samples of >0.05% are 

520 included.

521
522
523
524
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Figure 1. Microbiome disturbance identification ordination plots (A) Community dissimilarity over three years 
(Jan 2011 – Dec 2013) of weekly samples from the PICO (Piver’s Island Coastal Observatory) time series. 
Bray-Curtis dissimilarity (black line) was calculated over one-week intervals, excluding missing samples. 
Values presented are relative to those expected based on a smoothed local average (LOWESS, Locally 

Weighted Scatterplot Smoothing) for that time period. Mean Bray-Curtis dissimilarity (blue line) is shown. 
Numbers indicate the ten largest community changes (disturbance events 1-10). A category 1 hurricane that 

directly impacted the study site immediately following disturbance 2. (B) Non-metric multidimensional 
scaling (NMDS) ordination computed based on Bray-Curtis dissimilarity for 16S rRNA gene libraries of 

weekly samples at the Piver’s Island Coastal Observatory over three years (2011-2013). Disturbance events 
are labeled with numbers and indicated by red arrows. Three events (1, 4 and 10) believed to be resilience 
events are indicated by blue arrows. (C) Non-metric multidimensional scaling (NMDS) ordination computed 
based on Bray-Curtis dissimilarity for all metagenome samples. Disturbance events are numbered and are 
indicated by red arrows. Predicted post-disturbance resilience events are shown with blue arrows (1, 4). 
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Figure 2. Heatmap showing OTU abundance changes pre- and post- disturbances. Plotted is the log2 of 
(post-disturbance absolute abundance+1)/(pre-disturbance absolute disturbance+1) of the 20 taxa 

contributing the most to the community change in each disturbance event, excluding presumed resilience 
events (Disturbances 4 and 10). Responsive taxa for each disturbance included only those with a minimum 

average relative abundance across pre- and post-disturbance samples of 0.05%. In other disturbances, taxa 
below the 0.05% minimum threshold abundance were removed from analysis (colored in grey). Absolute 

abundances are calculated based on relative abundances multiplied by total cell counts. Disturbance events 
are grouped by a cladogram based on the similarity of the heatmap. Taxa are ordered based on a maximum 

likelihood phylogenetic tree, with the major phyla labeled and Methanosarcina strain MSH10X4 as the 
outgroup. Conditionally rare taxa (CRTs) are identified in black on the right. 
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Figure 3. Heatmap of metagenome changes Log2-fold-change between pre- and post-disturbance 2 and 3 
days pre-Irene (disturbance 2) and 9 days post-Irene. Includes 20 SEED categories with the highest 

|Log2FC| for each pair, indicated by black outlines. Only SEED categories with a minimum average relative 
abundance across the three samples of >0.05% are included. 
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