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Originality-Significance Statement

As the impacts of global change accelerate, ecological disturbances will increasingly impact
ecosystems due to extremes in temperature, precipitation and storms, among others. However,
research into the microbiome impacts of disturbance has been limited; in particular, few studies
include long-term pre and post disturbance measurements to quantify the persistence of impacts
on microbiome composition and function, relative to normal variation in the ecosystem. Here we
show how environmental disturbances differ in their microbiome responses which can be linked
to both disturbance type and prior ecological history. Thus, this paper contributes unique insights

into disturbance in the coastal oceans and more broadly to the field of disturbance ecology.
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Summary

Disturbances, here defined as events that directly alter the microbial community composition, are
commonly studied in host-associated and engineered systems. In spite of global change both
altering environmental averages and increasing extreme events, there has been relatively little
research into the causes, persistence and population-level impacts of disturbance in the dynamic
coastal ocean. Here, we utilize three years of observations from a coastal time series to identify
disturbances based on the largest week-over-week changes in the microbiome (i.e. identifying
disturbance as events that alter the community composition). In general, these microbiome
disturbances were not clearly linked to specific environmental factors and responsive taxa largely
differed, aside from SAR11, which generally declined. However, several disturbance
metagenomes identified increased phage-associated genes, suggesting that unexplained
community shifts might be caused by increased mortality. Further, a category 1 hurricane, the
only event that would likely be classified a priori as an environmental disturbance, was not an
outlier in microbiome composition, but did enhance a bloom in seasonally-abundant
phytoplankton. Thus, as extreme environmental changes intensify, assumptions of what
constitutes a disturbance should be re-examined in the context of ecological history and

microbiome responses.
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Introduction

As global change continues to increase the frequency and intensity of environmental
disturbances, understanding their impacts and persistence on microbiomes is critical to assess
potential changes in microbial-mediated ecosystem processes. Shade et al. 2012 define
disturbances as causal events that either alter microbiome-relevant environmental parameters or
directly alter the microbial community. However, even this definition has limitations; for
example, critical environmental parameters are undefined in many systems, limiting our ability
to accurately identify disturbed versus “normal” conditions or to characterize potential proximal
drivers of disturbance responses. Additionally, metrics that assess the microbial community as a
whole may miss disturbance events that disproportionately affect biogeochemically-important
taxa that constitute a small fraction of the total community. Despite these limitations, microbial
ecology has developed a general framework to describe disturbance responses. Microbiome
responses to disturbance include sensitivity, where the community composition changes and does
not return immediately to its prior state; resilience, where the community is initially altered but
returns to its original composition; and resistance, where community composition remains the
same (Allison and Martiny, 2008). Further, communities whose composition changes can be
functional redundant, where an altered community composition retains the original functional
capacity. In environmental systems, disturbances have been show to alter microbial diversity,
biogeochemical rates, and functional capacities (Atlas et al., 1991; Allison and Martiny, 2008;
Renes et al., 2020). In contrast to host-associated ecosystems where disturbance often results
from a disease state or drug treatment, disturbances in non-host associated ecosystems, such as

soil or aquatic environments, are often complex, frequently altering multiple factors
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simultaneously (e.g. storms, wildfires, co-occurring contaminants). While disturbances vary in
origin and specific impacts, non-resistant microbiomes generally exhibit reduced diversity (Atlas
et al., 1991; Renes et al., 2020), increased stochasticity in community assembly (Ferrenberg et
al., 2013; Zhou et al., 2014), increased physiological tolerance and metabolic versatility (Atlas et
al., 1991), and shifts towards disturbance-resistant taxa (Westergaard et al., 2001; Renes et al.,

2020).

Despite some similarities in the disturbance responses, microbiomes can differ significantly in
their resilience time (the length of time required for the microbial community to return to its
original state), due to a combination of (1) the type, extent and duration of the disturbance (2) the
ecological history of the impacted community and (3) other ecosystem characteristics (e.g.
dispersal or turnover rates, etc.). Disturbances can be classified as either pulse, or short-term,
events (e.g. rain events, washout) or press, or long-term chronic events (e.g. climate change) and
microbiome responses likely depend on the duration of altered environmental conditions with
shifts in microbiomes persisting for weeks to years even in relatively dynamic aquatic
environments (Westergaard et al., 2001; Peierls et al., 2003; Wetz and Paerl, 2008; Shade et al.,
2011). Ecosystems exposed to high levels of environmental variation, both over annual cycles
and due to episodic events, may have microbiomes that are adapted to change and thus are more
resistant or resilient to disturbance (Stegen et al., 2018; Renes et al., 2020; Wang et al., 2021).
Our ability to generalize about disturbance persistence is limited by studies that often focus on
subsets of the community (e.g. phytoplankton) (Wetz and Paerl, 2008) or relatively stable soil
communities (Westergaard et al., 2001); thus, these findings may not broadly apply to all taxa,

environments or disturbance types. For example, aquatic microbiomes generally exhibit higher
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dispersal rates compared to soil microbiomes; thus marine environments, in particular, likely
exhibit faster resilience than other environments due to dispersal from adjacent undisturbed
waters (Zhou et al., 2014; Shen et al., 2018; Rii et al., 2022). While disturbance remains an
active area of investigation, there are still open questions of how microbiome responses vary

across ecosystems and disturbance types.

Other challenges remain: commonly practiced a priori identification of disturbances limits
conclusions to well-defined drivers and specific microbial responses. Additionally,
environmental microbiomes are often characterized only after the disturbance has occurred,
removing crucial context for both the microbiome and environment about the mean and variance
of the non-disturbed state (Jones et al., 2008; Shade et al., 2011; Ferrenberg et al., 2013). To
address some of these challenges, here we define disturbed communities as those with larger-
than-expected changes in community composition as inferred from a long-term observations.
While this method is limited to the detection of disturbances that (1) alter microbial community
composition, and (2) occur on a weekly timescale, it takes a microbiome-centric approach
focusing on community structure and function that could be overlooked through a priori
determination of disturbance events. Here, we adopt a modified definition of disturbance as
events that alter microbiome composition, which we use to identify disturbance-responsive
populations, and additionally, for a subset of events, examine changes in metagenomes. Further,
as this study occurs at a well-studied, long-term coastal time series (Piver’s Island Coastal
Observatory: PICO), changes in both environmental factors and microbiome composition can be
contextualized within a background of annual and episodic changes in environmental parameters

and microbiomes (Johnson et al., 2013; Ward et al., 2017; Wang et al., 2021).
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Results and Discussion

We utilized three years of weekly water samples (Jan. 2011- Dec 2013) from a time series site
located at the mouth of an estuary, the Piver’s Island Coastal Observatory (PICO), to examine
the coastal ocean microbiome. This location exhibits annual cycles in community composition
and strong seasonal population dynamics, which are correlated with light and temperature (Ward
et al., 2017). Here, we utilized this dataset to identify disturbance events based on changes in
microbiome composition. This microbiome-centric approach has the advantage of identifying
events that alter microbial communities, but will not capture resistance events when the
community composition does not change (Allison and Martiny, 2008). As the highest rates of
community change occur in the spring and fall (Ward et al., 2017), we minimized seasonal bias
by subtracting a time-averaged rate of community change from the weekly Bray-Curtis
dissimilarity (Figure S1). After removing seasonal trends, the ten largest community weekly
changes were identified as potential “disturbance events” (Figure 1A). Interestingly, this metric
of disturbance did not correspond to increased BNTI-based turnover in the 200 most abundant
taxa (Figure S2), or increased stochasticity compared to non-disturbance conditions (Wilcoxon
test p>0.05). We did note that some disturbances were paired, with a large community change
(the “disturbance”) followed by a second large community change 1-2 weeks later (Figure 1A:
disturbances 3 & 4, 9 & 10), which we interpret as resilience events with the community
returning to a seasonally-normal state (Figure 1B: blue arrows). A single aberrant week that was
rapidly followed by a return to normal conditions (e.g. disturbances 3 & 4) could be explained as

sampling a rare microenvironment such as a large particle (Yung et al., 2016). Yet, most
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disturbances were not followed by a second event, suggesting that either disturbance effects
persisted for more than a single week or that the microbiome returned to the seasonal normal

gradually over time.

In order to better understand potential drivers of community changes, we examined the
relationship of disturbance events with environmental parameters. Overall, we found no clear
correlation between microbial community change (Bray-Curtis dissimilarity) and environmental
variables (e.g. temperature, pH, chlorophyll a, dissolved oxygen, salinity, nutrients; Table S1;
Figure S3A). However, we can speculate about the linkages between individual disturbances and
potential environmental drivers. For example, based on environmental and microbiome context,
we could re-categorized disturbance 1 as a resilience event where the microbial community
recovered from a cold period (water temperature <10 °C, lower than the average winter
temperature (range ~10-15 °C), for about a month prior to disturbance 1; Figure S4A). However,
most disturbances had no obvious distinguishing environmental characteristics, which could be
due to unmeasured environmental factors, stochastic processes or changes in biological
interactions (e.g. mortality). Other disturbances were enigmatic: although disturbance 2 occurred
three days prior to the landfall of a category 1 hurricane (Irene), we found no linkages between
this disturbance and the environmental impacts from the hurricane (e.g. no change in wind or
precipitation was evident at the study site). Further, while the hurricane altered a number of
environmental factors (Figures S3, S4), it did not induce a disturbance response based on our

microbiome turnover metric (Figure 1).
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Individual populations may offer additional insights into the characteristics of disturbance-
responsive taxa or, potentially, the drivers of these events. Among the 20 taxa that contributed
the most to community change for each disturbance (Figure 2), we found that no OTU responded
in all disturbances. However some clades seemed disproportionately disturbance-responsive,
such as members of the streamlined marine oligotroph SAR11 clade, which predominantly
decreased post disturbance, as well as members of the OCS155 clade of Actinobacteria which
both increased and decreased (Figure 2). As SARI11 are a ubiquitous marine group, we further
examined SAR11 oligotypes (unique sequence types); and identified rapid shifts across multiple
populations for these 10 disturbances and in response to other events not detected in the
community-wide analysis (Figure S5), suggesting they may be sensitive biomarkers of
environmental change (Yeo et al., 2013; Giovannoni, 2017). The greatest similarities among the
disturbances were observed for spring events 5 & 8 (May 2012 and 2013) which (1) clustered
based on responsive taxa (Figure 2), (2) occurred in the same season and (3) exhibited similar
large community shifts on the NMDS (Figure 1B). Unlike most other disturbances, both spring
events’ microbiomes contain a large fraction of conditionally rare taxa (CRT; Figure S6),
phylotypes that are generally a small fraction of the microbiome but occasionally become
abundant, often as a result of altered environmental conditions or microbial community
dynamics (Shade et al., 2014). These rare taxa are thought to act as a “seed bank™ to replenish
lost diversity and functional capacities within a disturbed community (Jones and Lennon, 2010;
Campbell et al., 2011; Caporaso et al., 2011). However, contrary to predictions of disturbance
responsiveness, CRT did not comprise a significant fraction of the microbiome after other
disturbances or Hurricane Irene (Figure S6). CRT were also abundant prior to disturbance 1 (a

presumed resilience event), when the system experienced colder than normal temperatures (<
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224 10 °C; Figure S4); suggesting that these CRT may be able to grow at lower temperatures,

225  enabling them to out-compete winter-associated taxa (Yung et al., 2015). Overall, a population-
226  level analysis of these disturbances highlights that, while some disturbances are characterized by
227  opportunistic taxa (disturbances 5 and 8), most disturbance-responsive taxa in fact do not all fit
228  with the common narrative of fast-growing taxa that bloom due to an influx of new resources
229  following a disturbance.

230

231  As disturbances did not select for canonical opportunistic taxa (Polz et al., 2006), microbiome
232 functional potential (i.e. metagenomes) may offer insights into these disturbances (Sjostedt et al.,
233 2018) (Figure 1C). While metagenomes also clustered by season (Figure 1C), OTU-level

234  community and metagenome changes did show a positive correlation (Figure 1; Mantel test on
235  Bray-Curtis dissimilarities, r = 0.5136, p=0.0001). However, the largest community and

236  metagenome changes were not always aligned; disturbance 2 showed the largest metagenome
237  change despite having the smallest community change among the 10 disturbance events (Figure
238 1B & C). Enriched disturbance 2 metagenome categories largely corresponded to phage-related
239  genes, suggesting top down controls could cause these community changes. This decoupling
240  between community composition and functional potential could indicate that disturbances select
241  for specific functional traits rather than taxonomic groups (Coles et al., 2017), and it may provide
242 insights into the biology that drives or responds to these events. As neither taxa nor functional
243 potential are conserved across disturbances, we focused on several case studies, including the
244 passage of a hurricane and repeated spring events, to more deeply understand these events.

245

246  Hurricane Irene

10
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We first examined Hurricane Irene, which was not identified as a disturbance based on our
community-turnover metric. In spite of a hurricane likely being categorized a priori as a
disturbance, the microbiome remained within the seasonal average, suggesting some degree of
resistance, even though environmental conditions formed a distinct outlier cluster (Figures S3,
S4). Hurricane Irene made landfall about 10 miles from our study site (at Cape Lookout, NC,
USA) as a category 1 hurricane on August 27, 2011 and was characterized by substantial
precipitation (~350 mm), a large wind field, and localized flooding. As our first post-hurricane
sample was taken 3 days after landfall, we may have missed some short-term impacts, e.g.
introduction of storm water microbes, a first flush of nutrients, etc. (Ares et al., 2020).
Nevertheless, a comparison of samples collected pre- (August 24) and post- (August 30)
hurricane landfall (August 27) reveals decreases in both pH (~0.11 units) and dissolved inorganic
carbon (~230 uM) as well as the highest concentrations of NO, observed over the full three years
of the dataset (NO,: 1.53 uM; Figure S4F) and a substantial increase in NH4, SiOH,4, and
chlorophyll a relative to pre-hurricane conditions (reported as pre-hurricane -> post-hurricane
values; NHy: 319.94 -> 1507.72 uM; SiOHy: 4.36 -> 25.27 uM, chlorophyll a: 5.81 -> 10.85

ug/L; Figure S4E,G,H).

In addition to these short-term changes in environmental parameters, some environmental factor
shifts persisted for weeks following the hurricane: decreased salinity (~7 units over five weeks;
Figure S4C) and elevated levels of nutrients, including SiOH4, NO, and PO, (Figure S4E-G).
The continued high levels (and sometimes delayed peaks) in these environmental variables
points to continued nutrient fluxes and freshwater inputs from surface water movement through

the watershed, groundwater discharge and long-term processing of storm-derived material in

11
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estuaries (Johnson et al., 2013; Asmala et al., 2021). Yet, in contrast to previous hurricane
research that found substantial alterations to microbial composition (Peierls et al., 2003; Ares et
al., 2020; Steichen et al., 2020) and function (Yan et al., 2020), we observed only minor turnover
in community composition and functional potential (Figures 3, S7). We cannot discount that
disturbance 2 immediately prior to the hurricane may have masked potential hurricane effects
(Wetz and Paerl, 2008), pre-selected for a more disturbance-resistant community (Sjostedt et al.,
2018; Renes et al., 2020) or alternately, our weekly sampling interval may not have captured
rapid and/or finer scale effects such as an influx of freshwater or terrestrial microbes in
floodwaters (Ares et al., 2020) even though other environmental changes were observed. Overall,
these results suggest that our capacity to predict events that alter microbiomes may be more

limited than previously thought.

Although Hurricane Irene was not categorized as a disturbance based on our microbiome-change
metric, a number of taxa did exhibit large changes in relative abundance (Table S2): several
eukaryotic phytoplankton phylotypes increased or decreased and SAR11 taxa exhibited
increases, in contrast to the general declines in SAR11 in observed for other disturbances (Figure
2, Table S2). In addition to new resources (nutrients, organic matter), hurricanes potentially
introduce allochthonous bacteria (Amaral-Zettler et al., 2008; Balmonte et al., 2016). A number
of hurricane responsive taxa were below the sequencing detection limit either before or after the
hurricane (Figure S7; Table S2), which could represent taxa which were either washed in by
floodwaters/ sediment resuspension, rapidly bloomed or alternately died due to the
environmental conditions present. While it can be difficult to assign habitat origins to specific

taxa (e.g. terrestrial vs. aquatic), the soil-associated Sediminicola genus (OTU 883) increased

12

Wiley-Blackwell and Society for Applied Microbiology

Page 12 of 30



Page 13 of 30

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

post-hurricane (Table S2). During this period, other taxa likely responded to autochthonous
change - the most dramatic hurricane response occurred in two diatoms: OTU 8 (Skeletonema
pseudocostatum) and OTU 10129 (Eunotogramma sp.), which, while normally abundant during
the summer and fall, bloomed post-hurricane. These phylotypes increased ~10 fold (relative
abundance) between pre- and post-hurricane samples and peaked four weeks after the hurricane,
accounting for ~10% (OTU 8) and 6% (OTU 10129) of the libraries, compared to with
maximum relative abundances of ~3% in 2012 and 2013 (Figure S8). As hurricanes alter
multiple environmental factors, we sought to better link these population level-responses to
potential environmental drivers using Bayesian generalized joint attribute modeling (GJAM) in
conjunction with select environmental variables (temperature, NHy, chlorophyll a, salinity and
Mean Lower Low Water, a metric of tidal height) (Clark et al., 2017). The two diatoms (OTUs 8
& 10129) both had significant positive associations with NH4 and chlorophyll ¢ and a negative
relationship with salinity (GJAM), even when the data from the year of Hurricane Irene (2011)
was removed (data not shown), suggesting the high nutrient, low salinity post-hurricane
conditions would promote growth. Skeletonema spp. have high growth and nitrogen-uptake rates,
giving these diatoms a competitive advantage when pulses of nutrients occur (Huang et al.,
2020). While disturbance is typically thought to allow rare taxa to bloom, altered conditions can
also benefit dominant taxa, particularly those that quickly respond to increased resource
availability and/or reduced competition (Polz et al., 2006; Wetz and Paerl, 2008; Steichen et al.,
2020). Finally, a comparison of metagenomes the week before disturbance 2, disturbance 2 (3
days prior to hurricane Irene) and 9 days post-hurricane reveals a number of phage-related gene
categories increased in disturbance 2 (Figure 3), suggesting that phage-mediated community

selection could have altered the community before the hurricane. In contrast, the post-hurricane
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sample exhibited increases in two dimethylsulfoniopropionate (DMSP)-mineralization genes,
suggesting the diatom bloom has increased degradation potential for this algal osmolite (Figure
3). In future work, we may consider alternate metrics for disturbance (rather than week-over-
week changes) as the hurricane did not result in an immediate or dramatic change in the
microbiome, but rather a sustained shift in specific populations. However, we note that this event
did not impact water temperature, which is predicted to be the major environmental driver at this
site, and occurred in late summer when the microbiome is relatively stable and potentially more
resistant to disturbance (Ward et al., 2017). Thus, when taxa are relatively well acclimated and
presumably adapted to environmental conditions, even relatively large and sustained changes in
environmental parameters primarily generated blooms in abundant organisms that were poised to

make use of these resources.

Spring disturbance events

In contrast with relatively stable summer conditions, PICO community turnover is highest during
the spring and fall (Ward et al., 2017). Therefore, we speculated that these transitional
microbiomes may be more vulnerable to invasion by rare taxa and less resistant to disturbance
since community members may not be adapted to the rapidly-changing environmental conditions
(Gibbons et al., 2016). To better understand this process, we examined two spring disturbances
(5 & 8), which occurred in May (2012, 2013) and exhibited similar responsive taxa (Figure 2).
We postulate that an equivalent spring disturbance was not observed in 2011 either due to prior
disruption of the microbial community due to the cold event in January 2011 (disturbance 1),

interannual variability and/or missing observations in April 2011. In contrast to most of the

14
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disturbances where conditionally rare taxa (CRT) constitute <0.5% of the community, here, CRT
comprised 10-30% of the community in both spring disturbances (Figure S6). Many of these
CRT were specific to these two events, including several OTUs with the best BLAST hit to the

diatom Leptocylindrus danicus) and one OTU in the Alteromonadaceae tamily (Figure S10).

In investigating the origin of this disturbance, we noted that many of the responsive taxa were
photosynthetic, with an increase in the relative abundance of chloroplast sequences (diatoms) in
both events and a decrease in the cyanobacterium Synechococcus in disturbance 5 (Figures 2,
S4L; Tables S3, S4). While many aquatic environments exhibit spring phytoplankton blooms,
these events did not correspond to an increase in chlorophyll a (Figure S4H) suggesting turnover
in phytoplankton composition rather than an overall increase in photosynthetic biomass. Many
disturbance-responsive taxa showed significant GJAM associations with temperature, salinity
and chlorophyll a (Tables S3 & S4), which were important environmental factors for many
microbiome populations, even outside of disturbance (Ward et al., 2017) and therefore did not
point to a specific environmental trigger. These seasonal shifts in phytoplankton communities
towards larger eukaryotic taxa (Figure S4K) likely release organic carbon that favors the
emergence of opportunistic copiotrophs, including an Alteromonadaceae phylotype (OTU181)
that increased ~103 fold during disturbance 5 (Figure S10) (Miihlenbruch et al., 2018). We
examined whether metagenomes support this shift towards copiotrophy and found that in both
events 5 and 8 four motility related pathways increased (Table S4). As motility demarcates
oligotrophic and copiotrophic strategies (Lauro et al., 2009), increased motility-associated and
also general secretion pathway genes likely reflects the increases in opportunistic copiotrophs.

These consistent changes in both community composition and functional capacities during the

15

Wiley-Blackwell and Society for Applied Microbiology



362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

Page 16 of 30

spring microbiome disturbances suggest that rapid, seasonally-associated turnover in
phytoplankton composition alters resource availability, leading to favorable conditions for the
transient invasion by conditionally rare taxa and/or fast-growing opportunistic copiotrophs.
Despite their overall similarities in responsive taxa, disturbance 8 also included declines in a
number of phage-related pathways, suggesting a role for density-dependent selection in rapid
community changes (Figure S9). These microbiome disturbances offer unique insights into the
ecology of coastal ocean microbial communities, with large, repeating, but ephemeral

microbiome alterations in the absence of detectable changes in key environmental variables.

Here we utilized a long-term coastal time-series, the Piver’s Island Coastal Observatory, to
identify potential disturbances in the context of annual patterns in microbiome composition and
environmental variables. While these disturbances differed in origin (or remain unexplained),
they frequently shared some characteristics, including decreases in SAR11. Yet this community
turnover based method surprisingly did not identify a category 1 hurricane as a disturbance,
likely because the hurricane resulted (generally) in gradual shifts of existing taxa rather than
measured increases in rare or allochthonous organisms. This data suggests a critical need to
understand the context and the role of microbiome stability (i.e. resistance) during changes in
ecosystem parameters, and the potential consequence of increased invasibility of the system
during periods of microbiome instability (Shade et al., 2012; Gibbons et al., 2016). As global
change increases the numbers of environmental extremes (e.g. marine heat waves, strong tropical
cyclones, etc.), it is critical to understand how these (potential) disturbances impact microbiomes

and their associated biogeochemical processes.
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385  Methods

386

387  Environmental data and microbial community analysis

388

389  The microbial time series used in this study was previously described in Ward et al. 2017.

390 In brief, samples were collected at the Piver’s Island Coastal Observatory (PICO) site

391  (34.7181°N 76.6707°W) at the mouth of the Newport River Estuary weekly over a three-year
392  period from January 2011 to December 2013. Seawater was collected at 10:30 AM local time
393  and processed within one hour. Methods for determination of surface water temperature, pH,
394  salinity, dissolved inorganic nutrient concentrations, chlorophyll @ concentration, and

395  Dbacterioplankton and phytoplankton abundances were described previously (Johnson et al., 2013)
396 (Ward et al., 2017). Nucleic acids were extracted from 0.22-micron Sterivex filters (Millipore),
397  and libraries of prokaryotic and chloroplast 16S rRNA genes were generated as previously

398  described (Ward et al., 2017). Briefly, 16S rRNA V3-V4 libraries (Kozich et al., 2013) were
399  sequenced on the MiSeq (Illumina) with 2x 250 nt paired end sequencing, and sequences were
400  processed using USEARCH v7 (Edgar, 2010). Merged paired end sequences were clustered into
401  OTUs in which all assigned sequences are at least 97% similarity using centroid-based clustering
402  in UPARSE (Edgar, 2013) with a pairwise identity of 98.5% to the centroid. OTUs occurring
403  less than five times in the entire dataset were removed, yielding a total of 10,357 OTUs.

404  Libraries were rRNA copy number corrected using »rnDB (Stoddard et al., 2014) and

405  subsampled to 20,082 reads per library. The taxonomies of representative sequences were

406  classified using the RDP naive Bayesian classifier using the Greengenes version 13.5 database.

407

17
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Community-level and population level analyses

To examine short-term variability in microbial community, we quantified differences in
community composition over weekly intervals using Bray-Curtis after LOWESS smoothing with
a span of 0.8; and the 10 largest weekly changes in community composition were identified as
disturbances. We identified conditionally rare taxa (Shade et al., 2014) as having bimodality
values (a measure of taxa that are predominantly rare with occasional periods of high abundance)
greater than 0.90 and a relative abundance exceeding 0.25% at least once during the 3 years of
the time series. After identification of disturbance events, relative abundances of each OTU were
converted to absolute abundances using total bacterioplankton counts obtained using flow
cytometry (i.e. relative abundance x total prokaryotic cell counts). Although absolute abundances
should not be interpreted as “cell counts”, they help to correct for the potential distortion in
relative abundance due to changes in the abundance of other taxa, for example due to blooms.
Top 20 contributors (OTUs with highest contributions to community dissimilarity) with a
minimum pre- post-disturbance average abundance of 0.05% in each disturbance event were
identified as potentially disturbance-responsive taxa and plotted using ‘heatmap.plus’ in the R

vegan package.

To employ the Beta Mean Nearest Taxon Distance (BMNTD) method of comparing stochastic
and deterministic processes (Stegen et al., 2012), we first calculated the niche value as the
abundance-weighted mean of temperature for the 200 most abundant OTUs using the dniche
function in R. A mantel correlogram using the pairwise matrix of OTU niche distances and

phylogenetic distances (Tamura and Nei, 1993) with 999 permutations verified that closely-
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related taxa have similar temperature niches. Calculated BMNTD values (a measure of
abundance-weighted mean phylogenetic distance between closely related taxa between
communities) were compared to a mean null distribution of BMNTD values obtained by
randomizing OTUs across the phylogeny 999 times. The number of standard deviations between
the observed and null BMNTD yielded Beta Nearest Taxon Index (BNTI) values. Mean |BNTI| >
2 indicate communities with significantly higher (>2; heterogeneous selection) or lower (<-2;

homogeneous selection) community turnover than expected under a null model.

Metagenome sequencing and analysis

Metagenomes were constructed from the same DNA extractions used for 16S rRNA gene
libraries (Table S6), 10 ng of DNA was sheared to 300 bp using the Covaris LE220 and size
selected using SPRI beads (Beckman Coulter). The fragments were treated with end-repair, A-
tailing, and ligation of Illumina compatible adapters using the KAPA-Illumina library creation
kit followed by 5 cycles of PCR to enrich for the final library. These libraries were sequenced
with 2x150 nt reads on the [llumina HiSeq 2500 1T platform at either the Joint Genome Institute
or Duke’s Genome Sequencing and Analysis Center. In analyzing the resulting data, we first
used Trimmomatic (Bolger et al., 2014) to remove adapters, the first 10 bases, and low quality
regions in the first and last 20 bases. We used a sliding window of 4 with an average quality
cutoff of 20 for the entire read and a minimum length cutoff of 50 base pairs. We retained an
average sequencing depth of 17.8Gbp with an average read length above 125 base pairs for all
samples. We assembled the reads with MEGAHIT, which is a de Brujin graph approach that is

time and energy efficient, and produces high quality metagenome assemblies (Li et al., 2016).
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The assembly was performed using the default options and from the resulting contigs only those
greater than 1000 base pairs in length were retained for further analysis. Many of the resulting

assemblies had over 50% of the metagenomic reads represented (range 22 to 64%).

We used MiGA (Rodriguez-R et al., 2018) for downstream analysis following assembly,
including gene prediction with Prodigal (Hyatt et al., 2010). After gene prediction, we used
BLAST to functionally annotate genes based on the UniProt database. We estimated the
abundance of genes in each metagenome by read mapping using BLASTn (mapping the reads of
each metagenome to the combined genes file and normalized for the number of reads in each
metagenome). The abundance of each gene was estimated by the BlastTab.seqdepth.pl script of
the enve-omics collection (Rodriguez-R and Konstantinidis, 2016), which normalizes the read
counts by gene length and reports the X coverage of the gene. We used these normalized read
counts to find the abundance in each SEED subsystem category per sample by combining the
counts in each category. Metagenomic reads are deposited as NCBI bioproject PRINA643505
and NCBI Projects 441405 -441416 (Hunt, 2016) and 16S rRNA gene libraries are available as

PRINA309156

GJAM Analysis

Generalized joint attribute modelling (GJAM) was applied to model the 200 most abundant
OTUs and environmental factors [temperature, tidal height (MLLW), NHy, chlorophyll a, and
salinity] using the GJAM v. 2.3.2 package in R. Iteration was set at 20,000 and burning at

10,000. Results were visualized using the built-in function ‘gjamPlot’.
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Figures

Figure 1. Microbiome disturbance identification ordination plots (A) Community
dissimilarity over three years (Jan 2011 — Dec 2013) of weekly samples from the PICO (Piver’s
Island Coastal Observatory) time series. Bray-Curtis dissimilarity (black line) was calculated
over one-week intervals, excluding missing samples. Values presented are relative to those
expected based on a smoothed local average (LOWESS, Locally Weighted Scatterplot
Smoothing) for that time period. Mean Bray-Curtis dissimilarity (blue line) is shown. Numbers
indicate the ten largest community changes (disturbance events 1-10). A category 1 hurricane
that directly impacted the study site immediately following disturbance 2. (B) Non-metric
multidimensional scaling (NMDS) ordination computed based on Bray-Curtis dissimilarity for
16S rRNA gene libraries of weekly samples at the Piver’s Island Coastal Observatory over three
years (2011-2013). Disturbance events are labeled with numbers and indicated by red arrows.
Three events (1, 4 and 10) believed to be resilience events are indicated by blue arrows. (C) Non-

metric multidimensional scaling (NMDS) ordination computed based on Bray-Curtis
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dissimilarity for all metagenome samples. Disturbance events are numbered and are indicated by

red arrows. Predicted post-disturbance resilience events are shown with blue arrows (1, 4).

Figure 2. Heatmap showing OTU abundance changes pre- and post- disturbances. Plotted is
the log2 of (post-disturbance absolute abundance+1)/(pre-disturbance absolute disturbance+1) of
the 20 taxa contributing the most to the community change in each disturbance event (identified
with asterisks), excluding presumed resilience events (Disturbances 4 and 10). Responsive taxa
for each disturbance included only those with a minimum average relative abundance across pre-
and post-disturbance samples of 0.05%. In other disturbances, taxa below the 0.05% minimum
threshold abundance were removed from analysis (colored in grey). Absolute abundances are
calculated based on relative abundances multiplied by total cell counts. Disturbance events are
grouped by a cladogram based on the similarity of the heatmap. Taxa are ordered based on a
maximum likelihood phylogenetic tree, with the major phyla labeled and Thermus aquaticus

strain YF-1 as the outgroup. Conditionally rare taxa (CRT) are identified with black on the right.

Figure 3. Heatmap of metagenome changes Log,-fold-change between pre- and post-
disturbance 2 and 3 days pre-Irene (disturbance 2) and 9 days post-Irene. Includes 20 SEED
categories with the highest [Log2FC]| for each pair, indicated by black outlines. Only SEED
categories with a minimum average relative abundance across the three samples of >0.05% are

included.
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Figure 1. Microbiome disturbance identification ordination plots (A) Community dissimilarity over three years
(Jan 2011 - Dec 2013) of weekly samples from the PICO (Piver’s Island Coastal Observatory) time series.
Bray-Curtis dissimilarity (black line) was calculated over one-week intervals, excluding missing samples.
Values presented are relative to those expected based on a smoothed local average (LOWESS, Locally
Weighted Scatterplot Smoothing) for that time period. Mean Bray-Curtis dissimilarity (blue line) is shown.
Numbers indicate the ten largest community changes (disturbance events 1-10). A category 1 hurricane that
directly impacted the study site immediately following disturbance 2. (B) Non-metric multidimensional
scaling (NMDS) ordination computed based on Bray-Curtis dissimilarity for 16S rRNA gene libraries of
weekly samples at the Piver’s Island Coastal Observatory over three years (2011-2013). Disturbance events
are labeled with numbers and indicated by red arrows. Three events (1, 4 and 10) believed to be resilience
events are indicated by blue arrows. (C) Non-metric multidimensional scaling (NMDS) ordination computed
based on Bray-Curtis dissimilarity for all metagenome samples. Disturbance events are numbered and are
indicated by red arrows. Predicted post-disturbance resilience events are shown with blue arrows (1, 4).
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Figure 2. Heatmap showing OTU abundance changes pre- and post- disturbances. Plotted is the log2 of
(post-disturbance absolute abundance+1)/(pre-disturbance absolute disturbance+1) of the 20 taxa
contributing the most to the community change in each disturbance event, excluding presumed resilience
events (Disturbances 4 and 10). Responsive taxa for each disturbance included only those with a minimum
average relative abundance across pre- and post-disturbance samples of 0.05%. In other disturbances, taxa
below the 0.05% minimum threshold abundance were removed from analysis (colored in grey). Absolute
abundances are calculated based on relative abundances multiplied by total cell counts. Disturbance events
are grouped by a cladogram based on the similarity of the heatmap. Taxa are ordered based on a maximum
likelihood phylogenetic tree, with the major phyla labeled and Methanosarcina strain MSH10X4 as the
outgroup. Conditionally rare taxa (CRTs) are identified in black on the right.
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Figure 3. Heatmap of metagenome changes Log2-fold-change between pre- and post-disturbance 2 and 3
days pre-Irene (disturbance 2) and 9 days post-Irene. Includes 20 SEED categories with the highest
|Log2FC| for each pair, indicated by black outlines. Only SEED categories with a minimum average relative
abundance across the three samples of >0.05% are included.
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