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Abstract

Photochemically coupled micro-oscillators are studied experimentally and computationally in
star networks to investigate the modes and mechanisms of synchronization. The micro-oscillators
are catalyst-loaded beads that are placed in catalyst-free Belousov-Zhabotinsky (BZ) solutions. The
properties of the photochemical coupling between the oscillators are determined by the composition
of the BZ reaction mixtures and both excitatory coupling and inhibitory coupling are studied.
Synchronization of peripheral oscillators coupled through a hub oscillator is exhibited at coupling
strengths leading to novel modes of synchronization of the hub with the peripheral oscillators. A
theoretical analysis provides insights into the mechanism of the synchronization. The heterogeneous
peripheral oscillators have different phase velocities that give rise to a phase divergence; however,
the perturbation from the hub acts to realign the phases by delaying the faster oscillators more

than the slower oscillators.
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We study photochemically coupled Belousov-Zhabotinsky (BZ) micro-oscillators [1—
7] to explore synchronization in star networks [8-12] in both excitatory and
inhibitory systems. The BZ reaction has been used as a model system for bi-
ological oscillators because it is a relaxation oscillator [13, 14]. Many natural
oscillators have relaxation-type dynamics and can respond in an excitatory (syn-
chronizing) or inhibitory (desynchronizing) manner to a coupling perturbation.
We describe experiments, simulations and analytical theory that provide a de-
tailed characterization of synchronization in chemical oscillator networks. This
characterization is applicable to a broad class of oscillator networks, including

those in biological systems.

I. INTRODUCTION

The emergent dynamical behaviors and functionality of networks of coupled oscil-
latory biological cells, such as neurons or pancreatic beta cells, are dependent, in part, on
the topological structure of the network [15-19]. Many types of structural connectivity have
been explored in various model and experimental systems [2, 3, 20-22]. Examples include
local vs. non-local coupling, small-world and scale-free networks. These have revealed a rich
array of dynamical behaviors, such as synchronization, wave propagation, clustering and
chimera states [2, 3, 16, 17].

A defining characteristic of scale free networks is that they have a subset of nodes,
termed hubs, that are highly connected in comparison to other nodes in the network [23, 24].
These have been found to arise naturally in many biological, social and artificial systems.
A star network serves as a motif of such networks consisting of a single hub connected to
a number of peripheral oscillators [25]. The study of a network motif can reveal important
dynamical properties of the larger networks that it characterizes. In the case of star network
motifs, a number of interesting dynamical behaviors have been demonstrated, including (1)
chimera states involving subsets of the peripheral oscillators showing different dynamical
patterns [26], (2) remote synchronization involving synchronization of topologically discon-
nected elements [8-10], and (3) explosive synchronization in which there is an abrupt second
order transition to synchronization [27, 28].

Much of the work in coupled star networks has focused on the Stewart-Landau os-



cillators or Kuramoto phase oscillators [8-10, 27, 28]. In contrast, many natural oscillators
have relaxation-type dynamics. This fundamentally different oscillatory waveform can re-
spond in an excitatory (synchronizing) or inhibitory (desynchronizing) manner to a coupling
perturbation [29]. For example, in a natural network of neurons, excitatory coupling tends to
promote synchronization of oscillators whereas inhibitory coupling promotes asynchronous
irregular states [30, 31]. A more recent work extended the study of coupled star networks us-
ing oscillators more akin to such biological oscillators [32]. They carried out computational
and experimental studies of water-in-oil Belousov-Zhabotinsky micro-droplets coupled using
a reaction-diffusion mechanism. The work revealed out-of-phase synchronization between
the peripheral nodes and the hub at intermediate coupling strengths, while at larger coupling
strengths the hub’s oscillatory dynamics were suppressed.

In this work, we extend the exploration of dynamical behaviors of Belousov-
Zhabotinsky (BZ) relaxation oscillators coupled in a star network. Our system allows
us to control both frequency distributions of the oscillators and the nature of the coupling.
The Belousov-Zhabotinsky reaction involves the oxidation of an organic substrate in the
presence of a metal catalyst [14]. The BZ system has been used as a model system for
biological oscillators, owing to the relaxation form of its oscillations. The development of
a photochemical micro-oscillator version of the BZ reaction has allowed the exploration of
dynamical behaviors across a range of different network structures [1-7]. Recent work has
demonstrated that the photochemical response of a BZ micro-oscillator to a perturbation
can be varied from excitatory to inhibitory through systematic changes in the reaction
mixture composition [1].

We utilize photochemically coupled BZ micro-oscillators to explore synchronization
using both excitatory and inhibitory coupling in star networks. We report experimental
as well as computational findings. The experimental system consists of chemical micro-
oscillators prepared by loading a photosensitive catalyst onto cation exchange beads, which
are then immersed in a catalyst-free BZ solution. Real-time, light-based feedback allows
the development of a network of coupled oscillators. Selection of appropriate catalyst-free
reaction mixtures yields either excitatory or inhibitory responses to the light-based cou-
pling [1, 33, 34]. We utilize phase response curves for targeting reaction mixture composi-

tions that yield responses of interest [1].



II. EXPERIMENTAL

Individual chemical micro-oscillators are produced by loading cation exchange beads
(Dowex 50-100 mesh, radius = 150-200 pm) with the photosensitive tris(2,2’-bipyridyl)
ruthenium catalyst Ru(bpy)?, which are then immersed in a catalyst-free BZ solution [1, 4,
5, 35]. The oscillators are illuminated with a constant light intensity ¢y at 440 nm using a
spatial light modulator (SLM), Fig. 1. During a chemical oscillation, the oxidation state of
the catalyst cyclically changes between +2 and +3. This results in changes to the amount of
light absorbed and transmitted, allowing the state of each micro-oscillator to be monitored
in grayscale using a CCD camera. The photosensitive ruthenium catalyzed BZ reaction
allows real-time coupling through changes in the illumination of a micro-oscillator based on
the current states of the micro-oscillators within the network.

In this work, we focus on investigating star systems where there is significant natural
period difference between the hub node and the peripheral nodes[12, 25]. Such hub driven
behavior has been found in natural networks such as neuronal functional networks [12].
To achieve the period difference, two groups of micro-oscillators are loaded with different
amounts of catalyst [1]. The peripheral oscillators have a catalyst concentration of 2.5x 107°
mol g1, giving a natural period range of 80-100 s, while the hub oscillators have a catalyst
concentration of 8.36 x 107 mol g~!, with a natural period range of 50-70 s. Small variations
in the loading of the catalyst introduces a natural heterogeneity in both the peripheral and
hub micro-oscillators.

A star network of coupled oscillators, as illustrated in Fig. 1, is implemented by

illuminating each oscillator j with light intensity ®; according to
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i=1
where @ is the background light intensity, K is the coupling strength, d is the degree of each
node, A is the adjacency matrix, and g; and g; are the normalized gray levels of oscillators
7 and j. In this work, N + 1 = 6, for the hub and the five peripheral oscillators. The
response of an oscillator to changes in light intensity is dependent upon the composition of

the catalyst-free BZ solution.



FIG. 1. Experimental setup shown in left panel. The projector (a) transmits collimated light
through a 440-460 nm band pass filter (b) to the beam splitter (c). The light is reflected down to
the reactor (d) and back up to the CCD camera (e) positioned above. The image is processed by
the computer (f) and the proper feedback is calculated and applied by the modified projector. The
right panel shows a star network of oscillators with 5 peripheral nodes. When constructing a given
star network in an experiment, a set of 5 peripheral oscillators is selected that have a maximum

difference in period of approximately 2%.
A. BZ Photochemistry

A BZ oscillation profile has the pulse-like characteristic of a relaxation oscillator,
with a long, slow quiescent region of high inhibitor concentration, followed by a short,
rapidly changing ‘firing’ region of autocatalytic growth of the activator [13, 14]. The firing
is triggered when a critical ratio of activator, bromous acid, to inhibitor, bromide, is reached.

The photosensitive catalyst Ru(bpy)2" is excited by 440 nm light to form Ru(bpy)2+* [1-
3]. Two potential mechanistic pathways then exist. The excitatory path involves the excited

ruthenium complex reacting with bromate, BrO5 , to produce the autocatalyst bromous acid,

HBrO,:

Ru(bpy):™* + BrO; + 2H' — BrO3 + Ru(bpy)s" + H,0,
BrO3 + Ru(bpy)g,+ +H" — Ru(bpy)§+ + HBrOs,.

The bromous acid quickly reacts with bromide, reducing its concentration to the critical



value that allows the onset of the autocatalytic production of bromous acid [6, 13]. This
causes the oscillator to fire, shortening the period of the oscillation in comparison with the
natural period.

The inhibitory path involves the Ru(bpy)3t* reacting with bromomalonic acid,
BrMa, to form bromide, Br~, and the oxidized form of the catalyst, Ru(bpy)s™ [1, 35—
37]. The oxidized catalyst can then react further with BrMA to produce additional free

bromide:

Ru(bpy):™* + BrMA — Ru(bpy);™ + Br~ + other products,
Ru(bpy)g+ + BrMA — Ru(bpy)?r + Br™ + other products.

The bromide delays the firing of the oscillator by increasing the time it takes to reach its
critical concentration necessary for the onset of the autocatalytic production of bromous
acid.

The dominant pathway is dependent on the composition of the catalyst-free solution.
In this study, we use the concentration of bromate in the catalyst-free solution to select
the photochemical pathway. At high concentrations of bromate, the excitatory pathway is
dominant, while at lower concentrations, the inhibitory pathway is dominant.

The excitatory and inhibitory responses of an oscillator to a perturbation in light
intensity can be illustrated by constructing their respective phase response curves (PRCs). A
PRC shows the change in phase of an oscillator due to a perturbation at a particular phase in
its cycle [38, 39]. In the experimental system, this is achieved by perturbing the independent
micro-oscillators at arbitrary phases with a light pulse and then recording the time of the next
firing. The change in phase of a given oscillator is calculated as A¢ = 27 [T — (t;11 — t;)]/T,
where T' is the natural period of the oscillator, and ¢; and ¢;,; are the occurrence times of
the peaks prior to and following a perturbation, respectively. An interval of at least three
periods between the perturbations is used, which allows the oscillators to relax back to their
natural period. The natural period T' of each oscillator is determined by measuring the
period during its oscillatory cycle immediately prior to a perturbation. Figure 2 shows the
results of the PRC experiments for both the hub and peripheral oscillators immersed in either
excitatory or inhibitory catalyst-free solutions. Using the excitatory reaction mixture, both
the hub and the peripheral oscillators have a phase resetting region in the latter half of their

cycle, Fig. 2(a) and 2(c), which results in an almost immediate firing of an oscillator during
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FIG. 2. Experimentally constructed phase response curves using excitatory or inhibitory reaction
mixtures for hub and peripheral micro-oscillators. (a) PRC for the hub oscillators in an excitatory
catalyst-free BZ reaction mixture showing both phase resetting and phase delaying regions. (b)
PRC for the hub oscillators in an inhibitory catalyst-free BZ reaction mixture showing a phase
delaying region. The PRCs for the peripheral oscillators are shown in panels (c) and (d) for

excitatory and inhibitory catalyst-free BZ reaction mixtures, respectively.

a perturbation. Preceding the phase advancing regions are small phase delaying regions.
Very early in its cycle, an oscillator is refractory and a perturbation therefore has minimal
impact on its next firing time. When placed in an inhibitory catalyst-free BZ solution, both
the hub oscillators, Fig. 2(b), and the peripheral oscillators, Fig. 2(d), exhibit only phase

delays and refractory regions.

B. Experimental Results

When excitatory BZ micro-oscillators are coupled in a star network according to
Eq. 1, two types of synchronization are observed. One has a single cluster of phase locked

peripheral oscillators (1-cluster synchronization) and the other has two clusters of phase



locked peripheral oscillators (2-cluster synchronization), with several different occupancies.
In both cases, the hub oscillator is not synchronized with the peripheral oscillators. To
visualize the behaviors, the unwrapped phase of each oscillator is plotted as a function

of time, as shown in Fig. 3. We see that the unwrapped phase plots of the peripheral
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FIG. 3. The unwrapped phase of each oscillator as a function of time from experiments with
excitatory coupling. (a) A 1-cluster synchronization state with the peripheral oscillators forming
a single phase locked cluster. The dashed lines show when the coupling was switched on and
switched off. (b) Detail of (a). (c¢) A 2-cluster synchronization state with 4-1 occupancy. The
firing times for the cluster of 4 are indicated with squares, and those of the single oscillator are
indicated with diamonds. (d) A two cluster state with 3-2 occupancy. The firing times for the
cluster of 3 are indicated with squares, and those of the cluster of 2 are indicated with diamonds.
In each plot, green, cyan, magenta or blue indicate peripheral oscillators and the red line indicates
the hub oscillator. Initial concentrations of the catalyst-free BZ solution: [BrOjz] = 0.640, [MA]
= 0.096, [H*] = 0.780, and [Br~] = 0.0600. The background light intensity was set to & = 0.095

mW cm 2.



oscillators are parallel to each other, indicating that they are phase locked. With its higher
frequency, the phase line of the hub diverges from phase lines of the the peripheral oscillators.
Unwrapped phases of the individual oscillators for 1-cluster synchronization are shown in
Figs. 3(a) and 3(b). Figures 3(c) and 3(d) show two different 2-cluster synchronization

states involving different occupancies of the clusters. In both cases, the two clusters are
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FIG. 4. The unwrapped phase of each oscillator as a function of time from experiments with
inhibitory coupling. (a) A 1-cluster synchronization state with the peripheral oscillators forming
a single phase locked cluster. The dashed lines show when the coupling was switched on and
switched off. (b) Detail of (a). (c) A 2-cluster synchronization state having 4-1 occupancy. The
firing times for the cluster of 4 are indicated with squares, and those of the single oscillator are
indicated with diamonds. (d) A 2-cluster state with 3-2 occupancy. The firing times for the cluster
of 3 are indicated with squares, and those of the cluster of 2 are indicated with diamonds. In each
plot, green, cyan, magenta or blue indicate peripheral oscillators and the red line indicates the hub
oscillator. Initial concentrations of the catalyst-free BZ solution: [BrOjz]| = 0.320, [MA] = 0.096,
[H*] = 0.780, and [Br~] = 0.0600. The background light intensity was set to ®; = 0.081 mW

Cm_2.
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FIG. 5. Synchronization in star networks of coupled ZBKE oscillators in simulations (insets show
long-term behavior). (a) Excitatory system and (b) inhibitory system. (c) Inhibitory system
with a 2-cluster synchronization state having 4-1 occupancy. The firing times for the cluster of
4 are indicated with squares, and those of the single oscillator are indicated with diamonds. (d)
Inhibitory system with a 2-cluster state having 3-2 occupancy. The firing times for the cluster of 3
are indicated with squares, and those of the cluster of 2 are indicated with diamonds. The natural
period of the hub oscillator is 29.72, while the natural period of the peripheral nodes are equally
spaced in the range of 44.36-44.95. Calculations are performed utilizing Euler’s method with dt =

0.0019. Time is dimensionless in all simulations (Appendix A).

approximately antiphase to each other. Remarkably, very similar results are found in a star
network of inhibitory oscillators. Figure 4 shows 1-cluster synchronization and two types of

2-cluster synchronization with inhibitory oscillators.

III. COMPUTATIONAL RESULTS

Computational studies of star networks are carried out using a modified three-

variable ZBKE model [1, 4, 5, 40] to simulate each oscillator in the network. The model

10



incorporates a parameter, «, that determines the response of the photosensitive catalyst to
light [1]. For o = 1, an oscillator responds via the excitatory pathway, in which bromous
acid is the critical product following the photoexcitation of the ruthenium complex. For
a = 0, an oscillator responds via the inhibitory channel, in which bromide is the critical
product of the photoexcitation.

Computational phase response curves, based on the modified three-variable ZBKE
model with either excitatory or inhibitory responses to light perturbations (see Appendix
A), are in good agreement with the experimental phase response curves. Similarly, star
networks of oscillators with either excitatory or inhibitory ZBKE oscillators exhibit essen-
tially all of the behavior observed in the experiments. Figures 5(a) and 5(b) show 1-cluster
synchronization states for the excitatory and inhibitory systems, respectively. Figures 5(c)
and 5(d) show 2-cluster synchronization states in inhibitory systems with 4-1 and 3-2 occu-
pancies, respectively. In all cases, the hub oscillator is not synchronized with the peripheral
oscillators.

In the experimental system, we observe that different occupancies of 2-cluster states
may occur for the same value of the coupling constant during different trials. Multistability
is also seen in the ZBKE simulations. A particular cluster state at a given value of coupling
strength can be targeted by the appropriate choice of the initial conditions. This is shown
in Figs. 5(c) and 5(d), where using the same parameters as in 5(b) giving a 1-cluster state,
4-1 and 3-2 2-cluster synchronization states have been selected.

Figures 6(a) and 6(b) show the dominant behaviors at different coupling strengths
from simulations of excitatory and inhibitory oscillators, respectively. In the case of exci-
tatory oscillators, synchronization behavior is dominant at intermediate coupling strengths
prior to the onset of global synchronization, Fig. 6(a). We have also observed global syn-
chronization at large coupling strengths in the experimental system. In contrast, a star
network of inhibitory oscillators exhibits oscillator death at higher coupling strengths, Fig.
6(b). The strong signal provided by the hub oscillator sufficiently delays the peripheral
oscillators such that they do not have time to fire before receiving a second signal. This
is predicted to occur at high coupling strengths corresponding to light intensities beyond
those available in our experiments. Examples of global synchronization and oscillator death
in ZBKE simulations are shown in Figs. 6(c) and 6(d), respectively.

During the transition from low coupling strength to the synchronized region and

11
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FIG. 6. Regions of behavior with increasing coupling strength in simulations of the excitatory
system (a) and the inhibitory system (b): complex behavior (C), synchronization (S), global syn-
chronization (GS), oscillator death (OD). Both 1-cluster and 2-cluster synchronization occurs across
the entire (S) regions. (c¢) Global synchronization exhibited on increasing coupling strength from
(S) region to GS region in (a). (d) Oscillator death exhibited on increasing coupling strength from

(S) region to OD region in (b). Time is dimensionless in all simulations (Appendix A).

from the synchronized region to global synchronization or oscillator death, regions of complex
behavior are found. Our investigations show that this complexity takes the form of high-

order periodicity or aperiodic dynamics.
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IV. DISCUSSION

In our studies of synchronization of BZ oscillators, we find that the coupling per-
turbation has little effect on the amplitude of the hub oscillations. It may, however, lead to
significant changes in the timing of an oscillator firing, as illustrated by the PRCs shown in
Fig. 2.

We now examine how the change in firing time leads to the 1-cluster and 2-cluster
synchronization seen in our system. Figure 7(a) shows simulation results of a star network
of excitatory photochemical oscillators. Coupling is initiated at 950 and, following a short

transient, a repeating firing sequence of the oscillators is established. We see that the hub

855 950 1045 1140 1235
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855 950 1045 1140 1235
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FIG. 7. (a) Firing sequence of single cluster state with excitatory coupling switched on at 950.
The hub oscillator fires twice within the cycle of the peripheral oscillators, where the unperturbed
cycle is the natural period of the hub. The perturbed cycle of the hub is shorter than the natural
period due to the excitatory coupling. The peripheral oscillators 1-5 align in phase due to an
inhibitory response to the perturbation from the hub. (b) Firing sequence of single cluster state
with inhibitory coupling switched on at 950. The hub oscillator fires twice within the cycle of the
peripheral oscillators, where the unperturbed cycle is the natural period of the hub. The perturbed
cycle of the hub is longer than the natural period due to the inhibitory coupling. The peripheral
oscillators 1-5 align in phase due to an inhibitory response to the perturbation from the hub. Time

is dimensionless in all simulations (Appendix A).
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fires twice during each cycle of the peripheral oscillators. The first firing occurs early in the
refractory region of their cycle, while the second firing occurs when the peripheral oscillators
are in the inhibitory portion of their cycle, and they are therefore each phase delayed. When
they fire, they do so almost at the same time, and the hub is phase advanced. The hub then
completes an unperturbed cycle and the firing sequence repeats.

The simulation shown in Fig. 7(b) demonstrates 1-cluster synchronization with
inhibitory coupling. After a short transient, the same repeating firing sequence is established
as in the excitatory system. In both cases, with excitatory or inhibitor oscillators, it is an
inhibitory signal (phase delaying) from the hub that leads to the phase alignment of the
peripheral oscillators. In both cases, the hub fires twice within the cycle of the peripheral
oscillators, and in both cases the first signal has minimal impact because they are in their
refractory period. The primary difference between the two systems is that the peripheral
oscillators phase advance the hub in the excitatory system and phase delay the hub in the
inhibitory system.

When a simulation is started with different initial conditions, a different firing se-

quence can be established and 2-cluster synchronization may be observed. A 3-2 two-cluster

Hub

[ N

Hub

noR W N =

FIG. 8. Firing sequence of two cluster states with coupling switched on at 475. (a) A 3-2 two
cluster state in an excitatory system, and (b) a 4-1 two cluster state in an inhibitory system. Time

is dimensionless in all simulations (Appendix A).
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state is shown in Fig. 8(a) for an excitatory system, and a 4-1 two-cluster state is shown
in Fig. 8(b) for an inhibitory system. During 2-cluster synchronization, the firing sequence
is the following: the hub fires, and then the first cluster fires, the hub fires again, and the
second cluster fires. When the peripheral oscillators fire in the inhibitory system, the hub
firing is delayed; however, when they fire in the excitatory system, the hub fires almost im-
mediately and is phase advanced. The occupancy of the clusters is dependent on the initial
conditions.

We can use the well defined sequence of firings of the oscillators during one-cluster
synchronization to develop a map representation of the sequential firings and perturbations
of the oscillators. This map can then be used to reveal the underlying dynamics that leads
to synchronization. We use a minimal star network consisting of two peripheral oscillators
and a hub oscillator. A schematic of their firing sequence is shown in Fig. 9. In the map
representation, we assume that the response of each oscillator, following a perturbation at
phase ¢, can be determined directly from the PRC. The only exception to this is that the
first perturbation the peripheral oscillators receive from the hub, during a given cycle, occurs
too early to significantly impact their behavior. This perturbation is therefore ignored in the
analysis. The order of firing of the peripheral oscillators, following the second perturbation
by the hub, is based on the experiments and ZBKE simulations, with the faster oscillator
(oscillator 1) always firing first. Since it fires first and is the faster oscillator, it must be
receiving the perturbation from the hub at a phase, ¢}, later in its cycle than the phase,

Y, at which the slower oscillator receives the perturbation. Figure 9 is representative of the
inhibitory coupled single cluster state since the period of the hub on the perturbed cycle,
T} is larger than T7**. In the excitatory system, the period of the hub on its perturbed
cycle is less than 7;'*. However, the sequence of firings are the same in the excitatory and
inhibitory systems and the mapping approach is valid for both.

It is shown in Appendix B that by using a piecewise continuous approximation to

the PRC, the time difference between successive firings is given by

by =t = AT + (14+ Z') (1" — t}1), (2)
where AT =T, — T}, the difference in the natural periods of the two peripheral oscillators

and t’]}j is the time after the perturbation on the i-th cycle that oscillator j fires. Here, Z’ is

the slope of the linearly decreasing region of the piecewise continuous PRC. The fixed point

15
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FIG. 9. Schematic map representation of the 1-cluster synchronization firing sequence for an
inhibitory system. The hub oscillator fires twice for each cycle of the peripheral oscillators. The
first firing of the hub is considered to have have no effect on the peripheral oscillators. On the i-th
cycle, oscillator 1 receives the perturbation from the hub at phase ¢Zi and oscillator 2 receives the

perturbation at phase ¢5.

of the map is given by
AT
trp—tpn=—-— . (3)

Stability analysis shows the fixed point to be stable for —2 < Z’ < 0. Qualita-
tively, Eq. 3 can be interpreted as a competition between two processes, divergence and
realignment. On any given cycle, the difference in their natural periods leads to the oscilla-
tors having different phase velocities that creates an initial divergence of their phases. The
larger the difference in their natural periods the larger this divergence. Counteracting this on
a given cycle, the perturbation from the hub acts to realign this divergence by delaying the
faster oscillator more than the slower oscillator. This is guaranteed since both the real and
piece-wise continuous PRCs are monotonically decreasing functions in the phase range of
interest, with the faster oscillator always perturbed at a later phase. The net result of these

two competing processes is the stable difference in the firing times of the two oscillators, Eq.

16



We have observed in ZBKE simulations of both the inhibitory and excitatory cou-
pled systems that at a given coupling strength there is a maximum heterogeneity, AT},.z,
above which synchronization is no longer observed. The mechanism for synchronization,
as outlined above, requires that the divergence due to period heterogeneity is compensated
for by delaying the faster oscillator more than the slower oscillator. In order for this to
happen, oscillator 1 should be perturbed at a later phase than oscillator 2 but before ¢,
where ¢..;; corresponds to the abrupt decrease in the value of the inhibitory PRC close to
27, If oscillator 1 were to be perturbed after ¢..;, it would be delayed less then oscillator

2. Therefore, the value of ¢; must be within the range

P2 < 1 < Perit- (4)

As the phase velocity of oscillator 1 increases, relative to oscillator 2, the divergence
between their pertubation phase will increase until eventually oscillator 1 is perturbed after
¢eriv- Therefore, at some critical heteorgeneity we would no longer expect synchronization
to occur.

While the above mapping approach was developed for the inhibitory system, we can
use an equivalent approach to develop an understanding of synchronization in the excitatory
system. The only difference is that the perturbation received by the hub from the peripheral
oscillators results in it firing sooner than its natural period. Other than this, the firing
sequence, see Fig. 9, and underlying competition between divergence and realignment of
the peripheral oscillators by a later, in phase perturbation to the faster oscillator remains

identical.

V. CONCLUSION

Our work reports on the identification of synchronization in a star network of cou-
pled BZ chemical oscillators for both activatory and inhibitory coupling. Examination of the
firing patterns in simulations shows that in both cases the synchronization of the peripheral
oscillators arises via a delaying signal from the hub. Owing to the monotonically decreasing
PRC, this acts to slow the faster oscillators more than the slower oscillators and aligns the

firing times of the oscillators, Eq. 3. A maximum allowed heterogeneity for the existence of

17



synchronization is associated with the presence of the sharp transition in the PRC. If the
faster oscillator fires at a phase later than this, it is no longer delayed more than the slow
oscillator and their phases diverge. At higher coupling strengths, we see larger heterogeneity
allowed due to stronger realignment of the faster oscillators relative to the slower oscillators.
The minimal piece-wise linear PRC used in our mapping approach satisfies the condition
that the PRC is a monotonically decreasing function of phase in the region where the oscil-
lators are perturbed. For this reason, the mapping approach is able to reproduce much of

the behavior seen in the more complex BZ system.
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APPENDIX A: COMPUTATIONAL STUDIES

Simulations are carried out using a modified three-variable ZBKE model [1, 4, 5, 40].

The photosensitive chemistry of oscillator j is described by the following:

dX

617dtj = O[(I)j — )(]2 — Xj + 62’7’11?5 + uss(l - ZJ) + MY} - XjY}, (Al)
dy; 4\ Z;
—J—(1-a)®, - X;Y; —pY; + — 22 A2
64dt ( a)] J=7J MJ+€3+1723+67 ( )
dz; \Z;
st p— ] P (1= 2Z:) — 73, A
dt (L4 a)®; + uss( i) a+1-2, (A3)

where X, Y; and Z; represent [HBrO,], [Br~] and [Ru(bpy)3'], respectively, and ®; is
the light intensity. The steady state approximation of [HBrO3] is represented as u,, with

Uss = 47162 Z; — 1+ (167 Xje2 + Z7 — sZ; + 1)2z]. The nondimensional model parameters
are € = 0.11, e = 1.7x 1075, €3 = 1.6 x 1072, ¢, = 42 x 1074, v = 1.1, A = 0.10, B =
1.7x1075, = 2.4 x 10~%. The excitatory-inhibitory photochemical response of an oscillator
is determined by the parameter «. When a = 1, a light perturbation leads to production
of HBrOj, an excitatory response. When a = 0, a light perturbation leads primarily to the
production of bromide, an inhibitory response. Hub-peripheral oscillator period mismatch

is introduced by variation in the stoichiometric coefficient, g;, so that a hub oscillator has

a natural period of 29.72 and the peripheral oscillators typically have periods within the
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range of 44.36-44.95. This corresponds to an approximately 1.5% range in the period of the

peripheral oscillators, similar to that seen in the experimental system.

(a) (b)

0.5+ 0.5+

Ag
Ad

-0.57 -0.57
0 /2 T 3w/2 27 0 2 T 3mi2 2w
¢ ¢
c d
0.5+ ( ) 0.5+ ( )
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< N q 0
=0.57 -0.57
0 /2 T 3n/2 27 0 al2 T 372 27
¢ ¢

FIG. 10. Computational PRCs constructed using the modified three-variable ZBKE model. Pan-
els (a) and (b) show the results for the hub oscillator using excitatory and inhibitory coupling,
respectively. The peripheral oscillators are shown in panels (¢) and (d) also using excitatory and

inhibitory coupling, respectively.

Coupling of the oscillators is accomplished using the simulated light intensity, ®,
with
5o Nl
Dy =D+ > AZi - 7). (A4)
i=1
where A is an adjacency matrix corresponding to a star network, @5 = 0, d is the degree of
each node, and the coupling constant K ranges from 0 to 6.0 x 1073,

PRCs for the model system are constructed in a manner similar to the PRCs in the
experimental system. A given oscillator is briefly perturbed through a change in the light
intensity at a given phase and the impact on the timing of next firing is measured. This
process is then repeated at all phases. The resulting PRCs for both the hub and peripheral

oscillators are shown in Fig. 10 for the cases a =1 and a = 0.

19



APPENDIX B: MAPPING APPROACH

A mapping description is developed for a star network consisting of a hub and two
peripheral nodes. The natural periods of oscillator 1, 2 and the hub are T3, Ty and T;"*,
respectively. Oscillator 1 and 2 receive a perturbation at phases ¢ and ¢», respectively. We
assume that T, > T, , ¢ > ¢9 and ¢, is subject to the constraints from Eq. 4.

The difference in firing times of the two peripheral oscillators following a perturba-
tion is related to their phase synchronization. The map ¢ of this difference in firing times
acts on their previous cycles difference in firing times such that t;z — 3“1 = g(t;g1 — t;‘ll).

The time of firing after perturbation of oscillator 1 on its i-th cycle is obtained
directly from Fig. 9 as

1= o (2n — 6}~ Ad),
with the change in phase, A¢;, calculated using the PRC, A¢; = Z(¢1),

. T . .
1= o (21— 61— Z(6))).

To facilitate the development of the mapping approach, a piece-wise linear approxi-
mation to the PRC is made, as shown in Fig. 11(a). The phase response is defined to be zero
between 0 and ¢* (for the definition of ¢* see Fig. 11(a)). Z(¢) then decreases linearly to
a minimum value, at phase ¢..;;, Fig. 11(a). Between phase ¢..; and 27, the PRC is again
defined to be zero. Z’ is the slope of the linearly decreasing region of the piecewise contin-
uous PRC. A larger (more negative) slope corresponds to a higher coupling strength in the
ZBKE simulations. Figure 11(a) shows an example piece-wise linear approximation as well
as the actual PRC. Also shown are two other PRCs generated using larger perturbations,
i.e., corresponding to larger coupling strengths.

Here, we use the appropriate section of the piece-wise linear PRC, Z(¢) = Z'(¢ —

nat

2 Tr}l ), giving

) T )
f1=Ti— 5 (1+ 26 + 2T

If the phase at which oscillator 1 is perturbed,

i 2 na i—
01 = Tl((Th + T t) - tfll)

is now substituted, and the time of firing after perturbation of oscillator 1 can be expressed
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(a)

FIG. 11. (a) Three PRCs, blue line, red line and orange line, produced using an increasing size,
respectively, of perturbation. A larger perturbation corresponds to a larger coupling strength in
the coupled oscillator system. Black line: piece-wise linear representation of the blue line PRC.

nat
¢* corresponds to QW% where T} is the natural period of peripheral oscillator j. Examination

of Fig. 9 shows that in the indicated firing sequence, a length of time of at least T** occurs
before the peripheral oscillators are perturbed for the second time within their cycle. Therefore,
for convenience the value of the PRC is set to 0 in the region, 0 < ¢ < ¢*. (b) The dependence
of firing time difference, ¢ 2 —tf; following perturbation on the difference in natural periods (fixed

coupling strength).
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in terms of its time of firing on its previous cycle,
thy =T — 1+ 21 —th")+ 2Ty,

where 7 = (T} + T;).

A similar expression for t’J)Q is given as
thy =Ty — 1+ Z')(1r —t},") + Z'T;*.
Subtracting the difference in firing times gives the expression for the map g,
by =t = AT + (1 4+ Z')(t)," —t}").

Solving for the fixed point t}, — t}y = ;" — ;" of this map results in Eq. 3.

This equation also predicts that the difference in firing times will increase as the
heterogeneity, AT, in the system increases. Close examination of the ZBKE simulation, Fig.
7, shows that the oscillators do not fire at exactly the same phase and the phase difference
between them increases as the difference in their natural periods increases. To illustrate this
further, Fig. 11(b) shows the observed phase separation in a ZBKE simulation, consisting
of a hub and two peripheral oscillator as AT increases. The difference in the firing times of

the peripheral oscillators increases approximately linearly with AT as in Eq. 3.

DATA AVAILABILITY
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