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Large-scale multiple testing is a fundamental problem in high dimen-
sional statistical inference. It is increasingly common that various types of
auxiliary information, reflecting the structural relationship among the hy-
potheses, are available. Exploiting such auxiliary information can boost sta-
tistical power. To this end, we propose a framework based on a two-group
mixture model with varying probabilities of being null for different hypothe-
ses a priori, where a shape-constrained relationship is imposed between the
auxiliary information and the prior probabilities of being null. An optimal
rejection rule is designed to maximize the expected number of true posi-
tives when average false discovery rate is controlled. Focusing on the ordered
structure, we develop a robust EM algorithm to estimate the prior probabili-
ties of being null and the distribution of p-values under the alternative hypoth-
esis simultaneously. We show that the proposed method has better power than
state-of-the-art competitors while controlling the false discovery rate, both
empirically and theoretically. Extensive simulations demonstrate the advan-
tage of the proposed method. Datasets from genome-wide association studies
are used to illustrate the new methodology.

1. Introduction. Large scale multiple testing refers to simultaneously testing of many
hypotheses. Given a prespecified significance level, family-wise error rate (FWER) controls
the probability of making one or more false rejections, which can be unduly conservative in
many applications. The false discovery rate (FDR) controls the expected value of the false
discovery proportion, which is defined as the ratio of the number of false rejections divided
by the number of total rejections. Benjamini and Hochberg (BH) [5] proposed a FDR control
procedure that sets adaptive thresholds for the p-values. It turns out that the actual FDR
level of the BH procedure is the multiplication of the proportion of null hypotheses and the
prespecified significance level. Therefore, the BH procedure can be overly conservative when
the proportion of null hypotheses is far from one. To address this issue, [38] proposed a two-
stage procedure (ST), which first estimates the proportion of null hypotheses and uses the
estimated proportion to adjust the threshold in the BH procedure at the second stage. From an
empirical Bayes perspective, [15] proposed the notion of local FDR (Lfdr) based on the two-
group mixture model. [39] developed a step-up procedure based on Lfdr and demonstrated
its optimality from the compound decision viewpoint.

The aforementioned methods are based on the premise that the hypotheses are exchange-
able. However, in many scientific applications, particularly in genomics, auxiliary informa-
tion regarding the pattern of signals is available. For instance, in differential expression anal-
ysis of RNA-seq data, which tests for difference in the mean expression of the genes between
conditions, the sum of read counts per gene across all samples could be the auxiliary data
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since it is informative of the statistical power [30]. In differential abundance analysis of mi-
crobiome sequencing data, which tests for difference in the mean abundance of the detected
bacterial species between conditions, the genetic divergence among species is important aux-
iliary information, since closely-related species usually have similar physical characteristics
and tend to covary with the condition of interest [45]. In genome-wide association studies,
the major objective is to test for association between the genetic variants and a phenotype
of interest. The minor allele frequency and the pathogenicity score of the genetic variants,
which are informative of the statistical power and the prior null probability, respectively, are
potential auxiliary data, which could be leveraged to improve the statistical power as well as
enhance interpretability of the results.

Accommodating auxiliary information in multiple testing has recently been a very active
research area. Many methods have been developed adapting to different types of structure
among the hypotheses. The basic idea is to relax the p-value thresholds for hypotheses that
are more likely to be alternative and tighten the thresholds for the other hypotheses so that the
overall FDR level can be controlled. For example, [17] proposed to weight the p-values with
different weights, and then apply the BH procedure to the weighted p-values. [20] developed
a group BH procedure by estimating the proportion of null hypotheses for each group sepa-
rately. [29] generalized this idea by using the censored p-values (i.e., the p-values that are
greater than a prespecified threshold) to adaptively estimate the weights that can be designed
to reflect any structure believed to be present. [22, 23] proposed the independent hypothesis
weighting (IHW) for multiple testing with covariate information. The idea is to use cross-
weighting to achieve finite-sample FDR control. Note that the binning in IHW is only to
operationalize the procedure and it can be replaced by the proposed EM algorithm below.

The above procedures can be viewed to some extent as different variants of the weighted-
BH procedure. Another closely related method was proposed in [26], which iteratively es-
timates the p-value threshold using partially masked p-values. It can be viewed as a type
of Knockoff procedure [2] that uses the symmetry of the null distribution to estimate the
false discovery proportion. A similar idea was explored in [46] which proposed a covariate
adaptive multiple testing procedure.

Along a separate line, Lfdr-based approaches have been developed to accommodate vari-
ous forms of auxiliary information. For example, [7] considered multiple testing of grouped
hypotheses. The authors proposed an optimal data-driven procedure that uniformly improves
the pooled and separate analyses. [40] developed an Lfdr-based method to incorporate spa-
tial information. [35, 42] proposed EM-type algorithms to estimate the Lfdr by taking into
account covariate and spatial information, respectively.

Other related works include [16], which considers the two-group mixture models with
side-information. [12] develops a method for estimating the constrained optimal weights
for Bonferroni multiple testing. [6] proposes an FDR-controlling procedure based on the
covariate-dependent null probabilities.

In this paper, we develop a new method along the line of research on Lfdr-based ap-
proaches by adaptively estimating the prior probabilities of being null in Lfdr that reflect aux-
iliary information in multiple testing. The proposed Lfdr-based procedure is built on the opti-
mal rejection rule as shown in Section 2.1 and thus is expected to be more powerful than the
weighted-BH procedure when the underlying two-group mixture model is correctly specified.
Compared to existing work on Lfdr-based methods, our contributions are three-fold. (i) We
outline a general framework for incorporating various forms of auxiliary information. This is
achieved by allowing the prior probabilities of being null to vary across different hypotheses.
We propose a data-adaptive step-up procedure and show that it provides asymptotic FDR con-
trol when relevant consistent estimates are available. (ii) Focusing on the ordered structure,
where auxiliary information generates a ranked list of hypotheses, we develop a new EM-type



OPTIMAL FALSE DISCOVERY RATE CONTROL 809

algorithm [11] to estimate the prior probabilities of being null and the distribution of p-values
under the alternative hypothesis simultaneously. Under monotone constraint on the density
function of p-values under the alternative hypothesis, we utilize the Pool-Adjacent-Violators
Algorithm (PAVA) to estimate both the prior probabilities of being null and the density func-
tion of p-values under the alternative hypothesis (see [19] for early work on this kind of
problems). Due to the efficiency of PAVA, our method is scalable to large datasets arising in
genomic studies. (iii) We prove asymptotic FDR control for our procedure and obtain some
consistency results for the estimates of the prior probabilities of being null and the alternative
density, which is of independent theoretical interest. Finally, to allow users to conveniently
implement our method and reproduce the numerical results reported in Sections 5–6, we
make our code publicly available at https://github.com/jchen1981/OrderShapeEM.

The problem we considered is related but different from the one in [18, 28], where the
authors seek the largest cutoff k so that one rejects the first k hypotheses while accepts the
remaining ones. So their method always rejects an initial block of hypotheses. In contrast, our
procedure allows researchers to reject the kth hypothesis but accept the k − 1th hypothesis in
the ranked list. In other words, we do not follow the order restriction strictly. Such flexibility
could result in a substantial power increase when the order information is not very strong or
even weak, as observed in our numerical studies. Also see the discussions on monotonicity
in Section 1.1 of [35].

To account for the potential mistakes in the ranked list or to improve power by incor-
porating external covariates, alternative methods have been proposed in the literature. For
example, [31] extends the fixed sequence method to allow more than one acceptance before
stopping. [27] modifies AdaPT in [26] by giving analysts the power to enforce the ordered
constraint on the final rejection set. Though aiming for addressing a similar issue, our method
is motivated from the empirical Bayes perspective, and it is built on the two-group mixture
model that allows the prior probabilities of being null to vary across different hypotheses. The
implementation and theoretical analysis of our method are also quite different from those in
[27, 31].

Finally, it is also worth highlighting the difference with respect to the recent work [10]
which is indeed closely related to ours. First of all, our Theorem 3.3 concerns about the two-
group mixture models with decreasing alternative density, while Theorem 3.1 in [10] focuses
on a mixture of Gaussians. We generalize the arguments in [43] by considering a transformed
class of functions to relax the boundedness assumption on the class of decreasing densities.
A careful inspection of the proof of Theorem 3.3 reveals that the techniques we develop
are quite different from those in [10]. Second, we provide a more detailed empirical and
theoretical analysis of the FDR-controlling procedure. In particular, we prove that the step-
up procedure based on our Lfdr estimates asymptotically controls the FDR and provide the
corresponding power analysis. We also conduct extensive simulation studies to evaluate the
finite sample performance of the proposed Lfdr-based procedure.

The rest of the paper proceeds as follows. Section 2 proposes a general multiple testing
procedure that incorporates auxiliary information to improve statistical power, and establishes
its asymptotic FDR control property. In Section 3, we introduce a new EM-type algorithm
to estimate the unknowns and study the theoretical properties of the estimators. We discuss
two extensions in Section 4. Section 5 and Section 6 are devoted respectively, to simulation
studies and data analysis. We conclude the paper in Section 7. All the proofs of the main
theorems and technical lemmas are collected in the Appendix.

2. Covariate-adjusted multiple testing. In this section, we describe a covariate-
adjusted multiple testing procedure based on Lfdr.

https://github.com/jchen1981/OrderShapeEM
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2.1. Optimal rejection rule. Consider simultaneous testing of m hypotheses Hi for
i = 1, . . . ,m based on m p-values x1, . . . , xm, where xi is the p-value corresponding to the
ith hypothesis Hi . Let θi, i = 1, . . . ,m indicate the underlying truth of the ith hypothesis. In
other words, θi = 1 if Hi is nonnull/alternative and θi = 0 if Hi is null. We allow the prob-
ability that θi = 0 to vary across i. In this way, auxiliary information can be incorporated
through

(1) P(θi = 0) = π0i , i = 1, . . . ,m.

Consider the two-group model for the p-values (see, e.g., [13] and Chapter 2 of [14]):

(2) xi | θi ∼ (1 − θi)f0 + θif1, i = 1, . . . ,m,

where f0 is the density function of the p-values under the null hypothesis and f1 is the
density function of the p-values under the alternative hypothesis. The marginal probability
density function of xi is equal to

f i(x) = π0if0(x) + (1 − π0i )f1(x).(3)

We briefly discuss the identifiability of the above model. Suppose f0 is known and bounded
away from zero and infinity. Consider the following class of functions:

Fm =
{
f̃ = (

f̃ 1, . . . , f̃ m)
with f̃ i = π̃if0 + (1 − π̃i)f̃1 : min

x∈[0,1] f̃1(x) = 0,

0 ≤ π̃i ≤ 1,min
i

π̃i < 1
}
.

Suppose f̃, f̆ ∈ Fm, where the ith components of f̃ and f̆ are given by f̃ i = π̃if0 + (1 − π̃i)f̃1
and f̆ i = π̆if0 + (1 − π̆i)f̆1 respectively. We show that if f̃ i(x) = f̆ i(x) for all x and i, then
f̃1(x) = f̆1(x) and π̃i = π̆i for all x and i. Suppose f̃1(x

′) = 0 for some x′ ∈ [0,1]. If π̃i < π̆i

for some i, then we have

0 = f̃1(x
′)

f0(x′)
= π̆i − π̃i

1 − π̃i

+ (1 − π̆i)f̆1(x
′)

(1 − π̃i)f0(x′)
> 0,(4)

which is a contradiction. Similarly, we get a contradiction when π̃i > π̆i for some i. Thus,
we have π̃i = π̆i for all i. As there exists a i such that 1 − π̃i = 1 − π̆i > 0, it is clear that
f̃ i(x) = f̆ i(x) implies that f̃1(x) = f̆1(x).

In statistical and scientific applications, the goal is to separate the alternative cases (θi = 1)
from the null cases (θi = 0). This can be formulated as a multiple testing problem, with so-
lutions represented by a decision rule δ = (δ1, . . . , δm) ∈ {0,1}m. It turns out that the optimal
decision rule is closely related to the Lfdr defined as

Lfdri (x) := P(θi = 0 | xi = x) = π0if0(x)

π0if0(x) + (1 − π0i )f1(x)
= π0if0(x)

f i(x)
.

In other words, Lfdri (x) is the posterior probability that a case is null given the corresponding
p-value is equal to x. It combines the auxiliary information (π0i ) and data from the current
experiment. Information across tests is used in forming f0(·) and f1(·).

Optimal decision rule under mixture model has been extensively studied in the literature;
see, for example, [4, 26, 41]. For completeness, we present the derivations below and remark
that they follow somewhat directly from existing results. Consider the expected number of
false positives (EFP) and true positives (ETP) of a decision rule. Suppose that xi follows the
mixture model (2) and we intend to reject the ith null hypothesis if xi ≤ ci . The size and
power of the ith test are given respectively, by

αi(ci) =
∫ ci

0
f0(t) dt and βi(ci) =

∫ ci

0
f1(t) dt.
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It thus implies that

EFP(c) =
m∑

i=1

π0iαi(ci) and ETP(c) =
m∑

i=1

(1 − π0i )βi(ci),

where c = (c1, . . . , cm). We wish to maximize ETP for a given value of the marginal FDR
(mFDR) defined as

mFDR(c) = EFP(c)
ETP(c) + EFP(c)

,(5)

by an optimum choice of the cutoff value c. Formally, consider the problem

max
c

ETP(c) subject to mFDR(c) ≤ α.(6)

A standard Lagrange multiplier argument gives the following result which motivates our
choice of thresholds.

PROPOSITION 2.1. Assume that f1 is continuously nonincreasing, and f0 is continu-
ously nondecreasing and uniformly bounded from above. Further assume that for a prespec-
ified α > 0,

(7) min
i

(1 − π0i )f1(0)

π0if0(0)
>

1 − α

α
.

Then (6) has at least one solution and every solution (c̃1, . . . , c̃m) satisfies

Lfdri (c̃i) = λ̃

for some λ̃ that is independent of i.

The proof of Proposition 2.1 is similar to that of Theorem 2 in [26] and we omit the details.
Under the monotone likelihood ratio assumption [8, 39],

(8) f1(x)/f0(x) is decreasing in x,

we obtain that Lfdri(x) is monotonically increasing in x. Therefore, we may reduce our
attention to the rejection rule I{xi ≤ ci} as

(9) δi = I
{
Lfdri (xi) ≤ λ

}
for a constant λ to be determined later.

2.2. Asymptotic FDR control. To fully understand the proposed method, we gradually
investigate its theoretical properties through several steps, starting with an oracle procedure
which provides key insights into the problem. Assume that {π0i}mi=1, f0(·) and f1(·) are
known. The proposed method utilizes auxiliary information through {π0i}mi=1 and informa-
tion from the alternative through f1(·) in addition to information from the null, upon which
conventional approaches are based. In view of (9), the number of false rejections equals to

Vm(λ) =
m∑

i=1

I
{
Lfdri(xi) ≤ λ

}
(1 − θi)

and the total number of rejections is given by

Dm,0(λ) =
m∑

i=1

I
{
Lfdri (xi) ≤ λ

}
.
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Write a ∨ b = max{a, b} and a ∧ b = min{a, b}. We aim to find the critical value λ in
(9) that controls the FDR, which is defined as FDRm(λ) = E{Vm(λ)/(Dm,0(λ) ∨ 1)} at a
prespecified significance level α. Note that

(10) E
[
Vm(λ)

] =
m∑

i=1

π0iP
(
Lfdri (xi) ≤ λ|θi = 0

) =
m∑

i=1

E
[
Lfdri (xi)I

{
Lfdri(xi) ≤ λ

}]
.

An estimate of the FDRm(λ) is given by

FDRm(λ) =
∑m

i=1 Lfdri (xi)I{Lfdri (xi) ≤ λ}∑m
i=1 I{Lfdri (xi) ≤ λ} .

Let λm = sup{λ ∈ [0,1] : FDRm(λ) ≤ α}. Then reject Hi if Lfdri (xi) ≤ λm. Below we show
that the above (oracle) step-up procedure provides asymptotic control on the FDR under the
following assumptions.

(C1) Assume that for any λ ∈ [0,1],
1

m

m∑
i=1

I
{
Lfdri (xi) ≤ λ

} →p D0(λ),

1

m

m∑
i=1

Lfdri (xi)I
{
Lfdri (xi) ≤ λ

} →p D1(λ),

and

(11)
1

m
Vm(λ) →p D1(λ),

where D0 and D1 are both continuous functions over [0,1].
(C2) Write R(λ) = D1(λ)/D0(λ), where D0 and D1 are defined in (C1). There exists a

λ∞ ∈ (0,1] such that R(λ∞) < α.

We remark that (C1) is similar to those for Theorem 4 in [37]. In view of (10), (11) follows
from the weak law of large numbers. Note that (C1) allows certain forms of dependence, such
as m-dependence, ergodic dependence and certain mixing type dependence. (C2) ensures the
existence of the critical value λm to asymptotically control the FDR at level α. The following
proposition shows that the oracle step-up procedure provides asymptotic FDR control.

PROPOSITION 2.2. Under conditions (C1)-(C2),

lim sup
m→∞

FDRm(λm) ≤ α.

The proof of Proposition 2.2 is relegated in the Appendix. In the following, we mimic the
operation of the oracle procedure and provide an adaptive procedure. In the inference prob-
lems that we are interested in, the p-value distribution under the null hypothesis is assumed to
be known (e.g., the uniform distribution on [0,1], or can be obtained from the distributional
theory of the test statistic in question). Below we assume f0 is known and remark that our
result still holds provided that f0 can be consistently estimated. In practice, f1 and {π0i}mi=1

are often unknown and replaced by their sample counterparts. Let f̂1(·) and {π̂0i}mi=1 be the
estimators of f1(·) and {π0i}mi=1 respectively. Define

L̂fdri (x) = π̂0if0(x)

π̂0if0(x) + (1 − π̂0i )f̂1(x)
= π̂0if0(x)

f̂ i(x)
,
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where f̂ i(x) = π̂0if0(x)+ (1 − π̂0i )f̂1(x). A natural estimate of λm can be obtained through

λ̂m = sup
{
λ ∈ [0,1] :

∑m
i=1 L̂fdri (xi)I{L̂fdri (xi) ≤ λ}∑m

i=1 I{L̂fdri(xi) ≤ λ} ≤ α

}
.

Reject the ith hypothesis if L̂fdri (xi) ≤ λ̂m. This is equivalent to the following step-up pro-
cedure that was originally proposed in [39]. Let L̂fdr(1) ≤ · · · ≤ L̂fdr(m) be the order statistics
of {L̂fdr1(x1), . . . , L̂fdrm(xm)} and denote by H(1), . . . ,H (m) the corresponding ordered hy-
potheses. Define

k̂ := max

{
1 ≤ i ≤ m : 1

i

i∑
j=1

L̂fdr(j) ≤ α

}
;

then reject all H(i) for i = 1, . . . , k̂.

We show that this step-up procedure provides asymptotic control on the FDR. To facilitate
the derivation, we make the following additional assumption.

(C3) Assume that

1

m

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣ →p 0.

(C3) requires the Lfdr estimators to be consistent in terms of the empirical L1 norm. We
shall justify Condition (C3) in Section 3.3.

THEOREM 2.3. Under Conditions (C1)–(C3),

lim sup
m→∞

FDRm(λ̂m) ≤ α.

Theorem 2.3 indicates that we can obtain asymptotic control on the FDR using the data-
adaptive procedure when relevant consistent estimates are available. Similar algorithm has
been obtained in [39], where it is assumed that the hypotheses are exchangeable in the sense
that π01 = · · · = π0m.

3. Estimating the unknowns.

3.1. The density function f1(·) is known. We first consider the case that f0(·) and f1(·)
are both known. Under such setup, we need to estimate m unknown parameters π0i , i =
1, . . . ,m, which is prohibitive without additional constraints. One constraint that makes the
problem solvable is the monotone constraint. In statistical genetics and genomics, investiga-
tors can use auxiliary information (e.g., p-values from previous or related studies) to generate
a ranked list of hypotheses H1, . . . ,Hm even before performing the experiment, where H1 is
the hypothesis that the investigator believes to most likely correspond to a true signal, while
Hm is the one believed to be least likely. Specifically, let �0 = (π01, . . . , π0m) ∈ (0,1)m.
Define the convex set

M = {
� = (π1, . . . , πm) ∈ (0,1)m : 0 ≤ π1 ≤ · · · ≤ πm ≤ 1

}
.

We illustrate the motivation for the monotone constraint with an example.
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EXAMPLE 3.1. Suppose that we are given data consisting of a pair of values (xi1, xi2),
where xi1 represents the p-value, xi2 represents auxiliary information and they are indepen-
dent conditional on the hidden true state θi for i = 1, . . . ,m. Suppose

(12) xij | θi
ind∼ (1 − θi)f0,j (xij ) + θif1,j (xij ), i = 1, . . . ,m, j = 1,2,

where θi = 1 if Hi is alternative and θi = 0 if Hi is null, f0,j (·) is the density function of
p-values or auxiliary variables under the null hypothesis and f1,j (·) is the density function
of p-values or auxiliary variables under the alternative hypothesis. Suppose P(θi = 0) = τ0
for all i = 1, . . . ,m. Using the Bayes rule and the independence between xi1 and xi2 given
θi, i = 1, . . . ,m, we have the conditional distribution of xi1 | xi2 as follows:

f (xi1 | xi2)

= f (xi1, xi2 | θi = 0)τ0 + f (xi1, xi2 | θi = 1)(1 − τ0)

f (xi2 | θi = 0)τ0 + f (xi2 | θi = 1)(1 − τ0)

= f (xi1 | θi = 0)f (xi2 | θi = 0)τ0 + f (xi1 | θi = 1)f (xi2 | θi = 1)(1 − τ0)

f (xi2 | θi = 0)τ0 + f (xi2 | θi = 1)(1 − τ0)

= f0,1(xi1)f0,2(xi2)τ0 + f1,1(xi1)f1,2(xi2)(1 − τ0)

f0,2(xi2)τ0 + f1,2(xi2)(1 − τ0)

= f0,1(xi1)γ0(xi2) + f1,1(xi1)
(
1 − γ0(xi2)

)
,

where

γ0(x) = f0,2(x)τ0

f0,2(x)τ0 + f1,2(x)(1 − τ0)
= τ0

τ0 + f1,2(x)

f0,2(x)
(1 − τ0)

.

If f1,2(x)/f0,2(x) is a monotonic function, so is γ0(x). Therefore, the order of xi2 generates
a ranked list of the hypotheses H1, . . . ,Hm through the conditional prior probability γ0(x).

We estimate �0 by solving the following maximum likelihood problem:

�̂0 = (π̂01, . . . , π̂0m) = argmax
�=(π1,...,πm)∈M

lm(�),

lm(�) :=
m∑

i=1

log
{
πif0(xi) + (1 − πi)f1(xi)

}
.

(13)

It is easy to see that (13) is a convex optimization problem. Let φ(x, a) = af0(x) + (1 −
a)f1(x). To facilitate the derivations, we shall assume that f0(xi) 
= f1(xi) for all i, which
is a relatively mild requirement. Under this assumption, it is straightforward to see that for
any 1 ≤ k ≤ l ≤ m,

∑l
i=k logφ(xi, a) is a strictly concave function for 0 < a < 1. Let âkl =

argmaxa∈[0,1]
∑l

i=k logφ(xi, a) be the unique maximizer. According to Theorem 3.1 of [32],
we have

π̂0i = max
1≤k≤i

min
i≤l≤m

âkl.(14)

However, this formula is not practically useful due to the computational burden when m is
very large. Below we suggest a more efficient way to solve problem (13). A general algorithm
when f1 is unknown is provided in the next subsection. The main computational tools are the
EM algorithm for two-group mixture model and the Pool-Adjacent-Violator-Algorithm from
isotonic regression for the monotone constraint on the prior probability of null hypothesis
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[11, 33]. We provide the derivation of the EM algorithm from the full data likelihood in the
Appendix. In particular, let �(t) = (π̂

(t)
01 , . . . , π̂

(t)
0m) be the solution at the t th iteration. Define

Q
(t)
j := Q

(t)
j

(
π̂

(t)
0j

) = π̂
(t)
0j f0(xj )

π̂
(t)
0j f0(xj ) + (1 − π̂

(t)
0j )f1(xj )

,

Q
(
�|�(t)) =

m∑
j=1

{
Q

(t)
j log(πj ) + (

1 − Q
(t)
j

)
log(1 − πj )

}
.

At the (t + 1)th iteration of the EM algorithm, we solve the following problem,

�(t+1) = argmax
�=(π1,...,πm)∈M

Q
(
�|�(t)).(15)

By Theorem 1.5.1 of [33] or Theorem 3.1 of [32], we only need to solve the isotonic regres-
sion problem

�(t+1) = argmin
�=(π1,...,πm)∈M

m∑
j=1

{
Q

(t)
j − πj

}2
.(16)

The solution to (16) has an explicit form given by the max-min formula

π̂
(t+1)
0i = max

a≤i
min
b≥i

∑b
j=a Q

(t)
j

b − a + 1
,

which can be obtained conveniently using the Pool-Adjacent-Violators Algorithm (PAVA)
[33]. Note that if Q

(t)
1 ≥ Q

(t)
2 ≥ · · ·Q(t)

m , then the solution to (16) is simply given by π̂
(t+1)
0i =∑m

j=1 Q
(t)
j /m for all 1 ≤ i ≤ m. As the EM algorithm is a hill-climbing algorithm, it is not

hard to show that lm(�(t)) is a nondecreasing function of t .
We study the asymptotic consistency of the true maximum likelihood estimator �̂0 which

can be represented as (14). To this end, consider the model

xi
ind∼ π0if0 + (1 − π0i )f1, π0i = π0(i/m), 1

for some nondecreasing function π0 : [0,1] → [0,1]. Our first result concerns the point-wise
consistency for each π̂0i . For a set A, denote by card(A) its cardinality.

THEOREM 3.1. Assume that
∫
(logfi(x))2fj (x) dx < ∞ for i, j = 0,1, and P(f0(xi) =

f1(xi)) = 0. Suppose 0 < π0(0) ≤ π0(1) < 1. For any ε > 0, let 0 ≤ t ′ < i0/m < t ′′ ≤ 1 such
that |π0(t

′) − π0(i0/m)| ∨ |π0(t
′′) − π0(i0/m)| < ε/2. Denote A1 = {i : t ′ ≤ i/m ≤ i0/m}

and A2 = {i : i0/m ≤ i/m ≤ t ′′}. For card(A1) ∧ card(A2) ≥ N , we have

P
(|π̂0,i0 − π0,i0 | < ε

) ≥ 1 − O

(
1

ε2N

)
.

The condition on the cardinalities of A1 and A2 guarantees that there are sufficient ob-
servations around i0/m, which allows us to borrow information to estimate π0,i0 consis-
tently. The assumption P(f0(xi) = f1(xi)) = 0 ensures that the maximizer âkl is unique for
1 ≤ k ≤ l ≤ m. It is fulfilled if the set {x ∈ [0,1] : f0(x) = f1(x)} has zero Lebesgue mea-
sure. As a direct consequence of Theorem 3.1, we have the following uniform consistency
result of �̂0. Due to the monotonicity, the uniform convergence follows from the pointwise
convergence.

1For the ease of presentation, we suppress the dependence on m in π0i .
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COROLLARY 3.2. For ε > 0, suppose there exists a set i1 < i2 < · · · < il , where each ik
satisfies the assumption for i0 in Theorem 3.1 and that max2≤k≤l(π0,ik − π0,ik−1) < ε. Then
we have

P
(

max
i1≤i≤il

|π̂0,i − π0,i | < ε
)

≥ 1 − O

(
l

ε2N

)
.

REMARK 3.1. Suppose π0 is Lipschitz continuous with the Lipschitz constant K . Then
we can set t ′′ = (i0 − 1)/m + ε/(2K), t ′ = (i0 + 1)/m − ε/(2K) and thus N = �mε/(2K)
.
Our result suggests that

P
(|π̂0,i0 − π0,i0 | < ε

) ≥ 1 − O

(
K

ε3m

)
,

which implies that |π̂0,i0 − π0,i0 | = Op(m−1/3).

3.2. The density function f1(·) is unknown. In practice, f1 and �0 are both unknown.
We propose to estimate f1 and �0 by maximizing the likelihood, that is,

(17) (�̂0, f̂1) = argmax
�∈M,f̃1∈H

m∑
i=1

log
{
πif0(xi) + (1 − πi)f̃1(xi)

}
,

where H is a prespecified class of density functions. In (17), H might be the class of beta
mixtures or the class of decreasing density functions. Problem (17) can be solved by Algo-
rithm 1. A derivation of Algorithm 1 from the full data likelihood that has access to latent
variables is provided in the Appendix. Our algorithm is quite general in the sense that it al-
lows users to specify their own updating scheme for the density components in (19). Both
parametric and nonparametric methods can be used to estimate f1.

In the multiple testing literature, it is common to assume that f1 is a decreasing density
function (e.g., smaller p-values imply stronger evidence against the null); see, for example,
[24]. As an example of the general algorithm, let H denote the class of decreasing density
functions. We shall discuss how (19) can be solved using the PAVA. The key recipe is to use
Theorem 3.1 of [3] in obtaining f1 evaluated at the observed p-values. Specifically, it can

Algorithm 1

0. Input the initial values (�(0), f
(0)
1 ).

1. E-step: Given (�̂(t), f̂
(t)
1 ), let

Q
(t)
i = π̂

(t)
0i f0(xi)

π̂
(t)
0i f0(xi) + (1 − π̂

(t)
0i )f̂

(t)
1 (xi)

.

2. M-step: Given Q
(t)
i , update (�,f1) through

(
π̂

(t+1)
01 , . . . , π̂

(t+1)
0m

) = argmin
�=(π1,...,πm)∈M

m∑
i=1

(
Q

(t)
i − πi

)2
,(18)

and

f̂
(t+1)
1 = argmax

f̃1∈H

m∑
i=1

(
1 − Q

(t)
i

)
log f̃1(xi).(19)

3. Repeat the above E-step and M-step until the algorithm converges.
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be accomplished by a series of steps outlined below. Define the order statistics of {xi} as
x(1) ≤ x(2) ≤ · · · ≤ x(m). Let Q

(t)
(i) be the corresponding Q

(t)
i that is associated with x(i).

Step 1: The objective function in (19) only looks at the value of f1 at x(i). The objective
function increases if f1(x(i)) increases, and the value of f1 at (x(i−1), x(i)) has no impact on
the objective function (where x(0) = 0). Therefore, if f maximizes the objective function,
there is a solution that is constant on (x(i−1), x(i)].

Step 2: Let yi = f1(x(i)). We only need to find yi which maximizes
m∑

i=1

(
1 − Q

(t)
(i)

)
log(yi),

subject to y1 ≥ y2 ≥ · · · ≥ ym ≥ 0 and
∑m

i=1 yi(x(i) − x(i−1)) = 1. It can be formulated as a
convex programming problem which is tractable. In Steps 3 and 4 below, we further translate
it into an isotonic regression problem.

Step 3: Write Q(t) = ∑m
i=1(1 − Q

(t)
(i)). Consider the problem

min
m∑

i=1

{−(
1 − Q

(t)
(i)

)
log(yi) + Q(t)yi(x(i) − x(i−1))

}
.

The solution is given by ŷi = 1−Q
(t)
(i)

Q(t)(x(i)−x(i−1))
, which satisfies the constraint

∑m
i=1 yi(x(i) −

x(i−1)) = 1 in Step 2.
Step 4: Rewrite the problem in Step 3 as

min
m∑

i=1

(
1 − Q

(t)
(i)

){− log(yi) − −Q(t)(x(i) − x(i−1))

(1 − Q
(t)
(i))

yi

}
.

This is the generalized isotonic regression problem considered in Theorem 3.1 of [3]. Let

(û1, . . . , ûm) = argmin
m∑

i=1

(
1 − Q

(t)
(i)

)(−Q(t)(x(i) − x(i−1))

(1 − Q
(t)
(i))

− ui

)2

subject to u1 ≥ u2 ≥ · · · ≥ um. The solution is given by the max-min formula

ûi = max
b≥i

min
a≤i

−Q(t) ∑b
j=a(x(j) − x(j−1))∑b

j=a(1 − Q
(t)
(j))

,

which can be obtained using the PAVA. By Theorem 3.1 of [3], we arrive at the solution
to the original problem (19) by letting ỹi = − 1

ûi
. Therefore, in the EM-algorithm, one can

employ the PAVA to estimate both the prior probabilities of being null and the p-value density
function under the alternative hypothesis. Because of this, our algorithm is fast and tuning
parameter free, and is very easy to implement in practice.

3.3. Asymptotic convergence and verification of Condition (C3). In this subsection, we
present some convergence results regarding the proposed estimators in Section 3.2. Further-
more, we propose a refined estimator for π0, and justify Condition (C3) for the corresponding
Lfdr estimator. Throughout the following discussions, we assume that

xi ∼ f i = π0(i/m)f0 + (
1 − π0(i/m)

)
f1

independently for 1 ≤ i ≤ m and π0 : [0,1] → [0,1] with π0(i/m) = π0i . Let F be the class
of densities defined on [0,1]. For f,g ∈ F , we define the squared Hellinger distance as

H 2(f, g) = 1

2

∫ 1

0

(√
f (x) −

√
g(x)

)2
dx = 1 −

∫ 1

0

√
f (x)g(x) dx.
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Suppose the true alternative density f1 belongs to a class of decreasing density functions
H ⊂ F . Let 
 = {π : [0,1] → [0,1],0 < ε < π(0) ≤ π(1) < 1 − ε < 1, and π(·) is
nondecreasing} and assume that π0 ∈ 
. Consider f̃ i = π̃(i/m)f0 + (1 − π̃(i/m))f̃1 and
f̆ i = π̆ (i/m)f0 + (1 − π̆(i/m))f̆1 for 1 ≤ i ≤ m, f̃1, f̆1 ∈ H and π̃ , π̆ ∈ 
. Define the aver-
age squared Hellinger distance between (π̃ , f̃1) and (π̆, f̆1) as

H 2
m

(
(π̃, f̃1), (π̆ , f̆1)

) = 1

m

m∑
i=1

H 2(f̃ i , f̆ i).
Suppose (π̂0, f̂1) is an estimator of (π0, f1) such that

m∑
i=1

log
(

2f̂ i(xi)

f̂ i(xi) + f i(xi)

)
≥ 0,

where f̂ i(x) = π̂0(i/m)f0(x) + (1 − π̂0(i/m))f̂1(x). Note that we do not require (π̂0, f̂1)

to be the global maximizer of the likelihood. We have the following result concerning the
convergence of (π̂0, f̂1) to (π0, f1) in terms of the average squared Hellinger distance.

THEOREM 3.3. Suppose π0 ∈ 
, f0 ≡ 1, and f1 ∈ H. Under the assumption that∫ 1
0 f 1+a

1 (x) dx < ∞ for some 0 < a ≤ 1, we have

P
(
Hm

(
(π0, f1), (π̂0, f̂1)

)
> Mm−1/3) ≤ M1 exp

(−M2m
1/3),

for some M , M1 and M2 > 0. We remark that f1(x) = (1 − γ )x−γ with 0 < γ < 1 satisfies∫ 1
0 f 1+a

1 (x) dx < ∞ for 0 < a < (1/γ − 1) ∧ 1.

Theorem 3.3 follows from an application of Theorem 8.14 in [43]. By the Cauchy–
Schwarz inequality, it is known that∫ 1

0

∣∣f (x) − g(x)
∣∣dx ≤2H(f,g)

√
2 − H 2(f, g).

Under the conditions in Theorem 3.3, we have

1

m

m∑
i=1

∫ 1

0

∣∣f̂ i(x) − f i(x)
∣∣dx = Op

(
m−1/3).(20)

However, π0 and f1 are generally unidentifiable without extra conditions. Below we focus
on the case f0 ≡ 1. The model is identifiable in this case if there exists an a0 ≤ 1 such
that f1(a0) = 0. If f1 is decreasing, then f1(x) = 0 for x ∈ [a0,1]. Suppose a0 < 1. For a
sequence bm ∈ (0,1) such that∫ 1

bm
f1(x) dx

1 − bm

= o(1),
m−1/3

1 − bm

= o(1),(21)

as m → +∞, we define the refined estimator for π0(i/m) as

π̆0(i/m) = 1

1 − bm

∫ 1

bm

f̂ i(x) dx = π̂0(i/m) + (
1 − π̂0(i/m)

)∫ 1
bm

f̂1(x) dx

1 − bm

.
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Under (21), we have

1

m

m∑
i=1

∣∣π̆0(i/m) − π0(i/m)
∣∣

= 1

m(1 − bm)

m∑
i=1

∣∣∣∣∫ 1

bm

f̂ i(x) dx −
∫ 1

bm

f i(x) dx

∣∣∣∣ + op(1)

≤ 1

m(1 − bm)

m∑
i=1

∫ 1

0

∣∣f̂ i(x) − f i(x)
∣∣dx + op(1) = op(1).

(22)

Given the refined estimator π̆0, the Lfdr can be estimated by

L̂fdri (xi) = π̆0(i/m)

f̂ i(xi)
.

As π̂0, π0 ∈ 
 and thus are bounded from below, by (20) and (22), it is not hard to show that

1

m

m∑
i=1

∫ 1

0

∣∣L̂fdri (x) − Lfdri (x)
∣∣dx = op(1).(23)

Moreover, we have the following result which justifies Condition (C3).

COROLLARY 3.4. Suppose π0 ∈ 
, f0 ≡ 1, and f1 ∈ H. Further assume D0 in Condi-
tion (C1) is continuous at zero and (21) holds. Then Condition (C3) is fulfilled.

REMARK 3.2. Although bm needs to satisfy (21) theoretically, the rate condition is of
little use in selecting bm in practice. We use a simple heuristic procedure that performs rea-
sonably well in our simulations. To motivate our procedure, we let θ indicate the underlying
truth of a randomly selected hypothesis from {Hi}mi=1. Then we have

P(θ = 0) = 1

m

m∑
i=1

P(θi = 0) = 1

m

m∑
i=1

π0(i/m) := π̄m.

Without knowing the order information, the p-values follow the mixture model π̄mf0(x) +
(1 − π̄m)f1(x). The overall null proportion π̄m can be estimated by classical methods such
as those proposed by [36] (in practice, we use the maximum of the two Storey’s global
null proportion estimates in the qvalue package for more conservativeness). Denote the
corresponding estimator by π̂ . Also denote π̆ = m−1 ∑m

i=1 π̆0(i/m), where π̆0(i/m) =
π̂0(i/m)+δ(1− π̂0(i/m)) is the calibrated null probability and δ is the amount of calibration,
which is a function of bm. Then it makes sense to choose bm ∈ [0,1] such that the difference
|π̆ − π̂ | is minimized. This results in the procedure that if the mean of π̂0(i/m)’s from the EM
algorithm (denote as π̃) is greater than the global estimate π̂ , π̆0(i/m) = π̂0(i/m), and if the
mean is less than π̂ , then π̆0(i/m) = π̂0(i/m)+δ(1− π̂0(i/m)), where δ = (π̂ − π̃)/(1− π̃ ).

3.4. Asymptotic power analysis. We provide asymptotic power analysis for the proposed
method. In particular, we have the following result concerning the asymptotic power of the
Lfdr procedure in Section 2.2.

THEOREM 3.5. Suppose Conditions (C1)–(C3) hold and additionally assume that

1

m

m∑
i=1

1{θi = 0} → κ0,

1

m

m∑
i=1

1
{
θi = 1,Lfdri (xi) ≤ λ

} →p D2(λ),



820 H. CAO, J. CHEN AND X. ZHANG

for a continuous function D2 of λ on [0,1]. Let λ0 be the largest λ ∈ [0,1] such that R(λ) ≤ α

and for any small enough ε, R(λ0 − ε) < α. Then we have

PowerLfdr :=
∑m

i=1 1{θi = 1, L̂fdri (xi) ≤ λ̂m}∑m
i=1 1{θi = 1} ∨ 1

→p D2(λ0)

1 − κ0
.

Recall that in Section 2.1, we have shown that the step-up procedure has the highest ex-
pected number of true positives amongst all α-level FDR rules. This result thus sheds some
light on the asymptotic optimal power amongst all α-level FDR rules when the number of
hypothesis tests goes to infinity.

REMARK 3.3. Under the two-group mixture model (1)–(2) with π0i = π0(i/m) for
some nondecreasing function π0, we have m−1 ∑m

i=1 P(θi = 0) = m−1 ∑m
i=1 π0(i/m) →∫ 1

0 π0(x) dx as monotonic functions are Riemann integrable. Thus κ0 = ∫ 1
0 π0(x) dx. Define

g(x) = sup{t ∈ [0,1] : f1(t)/f0(t) ≥ x} and w(λ,x) = π0(x)(1−λ)
(1−π0(x))λ

. Denote by F1 the distribu-
tion function of f1. Then we have

1

m

m∑
i=1

P
(
θi = 1,Lfdri (xi) ≤ λ

) = 1

m

m∑
i=1

P(θi = 1)P
(
Lfdri (xi) ≤ λ|θi = 1

)

= 1

m

m∑
i=1

(
1 − π0(i/m)

)
F1 ◦ g ◦ w(λ, i/m)

→
∫ 1

0

(
1 − π0(x)

)
F1 ◦ g ◦ w(λ,x) dx,

where “◦” denotes the composition of two functions, and we have used the fact that F1 ◦g ◦w

is monotonic and thus Riemann integrable. So D2(λ) = ∫ 1
0 (1 − π0(x))F1 ◦ g ◦ w(λ,x) dx.

4. Two extensions.

4.1. Grouped hypotheses with ordering. Our idea can be extended to the case where the
hypotheses can be divided into d ≥ 2 groups within which there is no explicit ordering but
between which there is an ordering. One can simply modify (18) by considering the problem,

(24)
(
π̂

(t+1)
01 , . . . , π̂

(t+1)
0d

) = argmin
m∑

j=1

{
Q̃

(t)
j − πs(j)

}2
, 2

subject to 0 ≤ π1 ≤ · · · ≤ πd ≤ 1, where s(j) ∈ {1,2, . . . , d} is the group index for the j th
hypothesis. A particular example is about using the sign to improve power while controlling
the FDR. Consider a two-sided test where the null distribution is symmetric and the test
statistic is the absolute value of the symmetric statistic. The sign of the statistic is independent
of the p-value under the null. If we have a priori belief that among the alternatives, more
hypotheses have true positive effect sizes than negative ones or vice versa, then sign could be
used to divide the hypotheses into two groups such that π1 ≤ π2 (or π1 ≥ π2).

2This optimization problem can be solved by slightly modifying the PAVA by averaging the estimators within
each group.
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4.2. Varying alternative distributions. In model (1), we assume that the success probabil-
ities π0i , i = 1, . . . ,m vary with i while F1 is independent of i. This assumption is reasonable
in some applications but it can be restrictive in other cases. We illustrate this point via a sim-
ple example described below.

EXAMPLE 4.1. For 1 ≤ i ≤ m, let {xik}ni

k=1 be ni observations generated independently
from N(μi,1). Consider the one sided z-test Zi = √

nix̄i with x̄i = n−1
i

∑ni

k=1 xik for testing

Hi0 : μi = 0 vs Hia : μi < 0.

The p-value is equal to pi = �(
√

nix̄i) and the p-value distribution under the alternative
hypothesis is given by

F1i (x) = �
(
�−1(x) − √

niμi

)
,

with the density

f1i (x) = φ(�−1(x) − √
niμi)

φ(�−1(x))
= exp

(
2
√

niμi�
−1(x) − niμ

2
i

2

)
.

By prioritizing the hypotheses based on the values of
√

niμi , one can expect more discover-
ies. Suppose

n1μ
2
1 ≤ n2μ

2
2 ≤ · · · ≤ nmμ2

m.3

One can consider the following problem to estimate π and μi simultaneously,

argmax
π∈[0,1],rm≤rm−1≤···≤r1<0

m∑
i=1

log
{
π + (1 − π) exp

(
2ri�

−1(pi) − r2
i

2

)}
.

This problem can again be solved using the EM algorithm together with the PAVA.

Generally, if the p-value distribution under the alternative hypothesis, denoted by F1i , is
allowed to vary with i, model (1)-(2) is not estimable without extra structural assumptions as
we only have one observation that is informative about F1i . On the other hand, if we assume
that F1i := F1,i/m which varies smoothly over i, then one can use nonparametric approach
to estimate each F1,i/m based on the observations in a neighborhood of i/m. However, this
method requires the estimation of m density functions at each iteration, which is computa-
tionally expensive for large m. To reduce the computational cost, one can divide the indices
into K consecutive bins, say S1, S2, . . . , SK , and assume that the density remains unchanged
within each bin. In the M-step, we update f1i via

f
(t+1)
1i = argmax

f̃1∈H

∑
j∈Si

(
1 − Q

(t)
j

)
log f̃1(xj ),(25)

for i = 1,2, . . . ,K . For small K , the computation is relatively efficient. We note that this
strategy is related to the independent hypothesis weighting proposed in [22, 23], which di-
vides the p-values into several bins and estimate the cumulative distribution function (CDF)
of the p-values in each stratum. Our method is different from theirs in the following aspect:
the estimated densities will be used in constructing the optimal rejection rule, while in their
procedure, the varying CDF is used as an intermediate quantity to determine the thresholds
for p-values in each stratum. In other words, the estimated CDFs are not utilized optimally
in constructing the rejection rule.

3This is the case if μi = μ and n1 ≤ n2 ≤ · · · ≤ nm.
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5. Simulation studies.

5.1. Simulation setup. We conduct comprehensive simulations to evaluate the finite-
sample performance of the proposed method and compare it to competing methods. For
simplicity, we directly simulate z-values for m = 10,000 hypotheses. All simulations are
replicated 100 times except for the global null, where the results are based on 2000 Monte
Carlo replicates. We simulate different combinations of signal density (the percentage of al-
ternative) and signal strength (the effect size of alternative) since these are two main factors
affecting the power of multiple testing procedures. We first generate the hypothesis-specific
null probability (π0i), upon which the truth, that is, null or alternative, is simulated. After-
wards, we generate z-values based on the truth of the hypothesis. We first use π0i as the
auxiliary covariate. Later, we will study the effect of using noisy π0i as auxiliary covariate.
Three scenarios, representing weakly, moderately and highly informative auxiliary informa-
tion, are simulated based on the distribution of π0i (Figure 1(a)), where the informativeness
of the auxiliary covariate is determined based on its ability to separate alternatives from nulls
(Figure 1(b)). In the weakly informative scenario, we make π0i ’s similar for all hypotheses
by simulating π0i ’s from a highly concentrated normal distribution (truncated on the unit
interval [0,1])

π0i ∼ NC

(
μw,0.0052).

In the moderately informative scenario, we allow π0i to vary across hypotheses with moderate
variability. This is achieved by simulating π0i ’s from a beta distribution

π0i ∼ Beta(a, b).

In the highly informative scenario, π0i ’s are simulated from a mixture of a truncated normal
and a highly concentrated truncated normal distribution

π0i ∼ πhNC

(
μh1, σ

2
h1

) + (1 − πh)NC

(
μh2,0.0052),

FIG. 1. Simulation Strategy. (a) The distribution of probabilities of being null (π0i , i = 1, . . . ,m) for three
scenarios representing weakly, moderately and highly informative auxiliary information (from bottom to top).
Different levels of signal density are simulated. (b) Distribution of the realized π0i for alternatives and nulls from
one simulated dataset.
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which represents two groups of hypotheses with strikingly different probabilities of being
null. Since the expected alternative proportion is

∑m
i=1 (1 − π0i )/m, we adjust the parameters

μw , a, b, πh, μh1, σ 2
h1 and μh2 to achieve approximately 5%, 10% and 20% signal density

level. Figure 1(a) shows the distribution of π0i for the three scenarios. Based on π0i , the
underlying truth θi is simulated from

θi ∼ Bernoulli(1 − π0i ).

Figure 1(b) displays the distribution of π0i for θi= 1 and θi= 0 from one simulated dataset.
As the difference in π0i between H1 and H0 gets larger, the auxiliary covariate becomes more
informative. Finally, we simulate independent z-values using

zi ∼ N(ksθi,1),

where ks controls the signal strength and ks = 2,2.5 and 3 are chosen to represent weak,
moderate and strong signal, respectively. We convert z-values to p-values using the formula
pi = 1−�(zi). The proposed method accepts p-values and π0is as input. The specific param-
eter values mentioned above could be found in https://github.com/jchen1981/OrderShapeEM.

To examine the robustness of the proposed method, we vary the simulation setting in dif-
ferent ways. Specifically, we investigate:

1. Skewed alternative distribution. Instead of simulating normal z-values for the alternative
group, we simulate z-values from a noncentral gamma distribution with the shape parame-
ter k = 2. The scale and noncentrality parameters of the noncentral gamma distribution are
chosen to match the mean and variance of the normal distribution for the alternative group
under the basic setting.

2. Correlated hypotheses. Our theory allows certain forms of dependence. We then simulate
correlated z-values, which are drawn from a multivariate normal distribution with a block
correlation structure. The order of π0i is random with respect to the block structure. Specif-
ically, we divide the 10,000 hypotheses into 100 blocks and each block is further divided
into two sub-blocks of equal size. Within each sub-block, there is a constant positive cor-
relation (ρ = 0.5). Between the sub-blocks in the same block, there is a constant negative
correlation (ρ = −0.5). Hypotheses in different blocks are independent. We use p = 8 to
illustrate. The correlation matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 1 0.5 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 1 0.5 −0.5 −0.5 −0.5 −0.5
0.5 0.5 0.5 1 −0.5 −0.5 −0.5 −0.5

−0.5 −0.5 −0.5 −0.5 1 0.5 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 1 0.5 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 1 0.5
−0.5 −0.5 −0.5 −0.5 0.5 0.5 0.5 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3. Noisy auxiliary information. In practice, the auxiliary data can be very noisy. To exam-
ine the effect of noisy auxiliary information, we shuffle half or all the π0i , representing
moderately and completely noisy order.

4. A smaller number of alternative hypotheses and a global null. It is interesting to study the
robustness of the proposed method under an even more sparse signal. We thus simulate
1% alternatives out of 10,000 features. We also study the error control under a global null,
where all the hypotheses are nulls. Under the global null, We increased the number of
Monte Carlo simulations to 2000 times to have a more accurate estimate of the FDR.

https://github.com/jchen1981/OrderShapeEM
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FIG. 2. Performance under normal alternative distribution.

5. Varying f1 across alternative hypotheses. We consider the case where among the alter-
native hypotheses, the most promising 20% hypotheses (i.e., those with the lowest prior
order) follow Unif(0,0.02) and the remaining p-values are derived from the z-values (see
the setting of Figure 2).

6. Varying f0 across null hypotheses. Similar to the case of varying f1, we sample the p-
values of 20% of the null hypotheses with the highest prior order from Unif(0.5,1), which
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mimics the composite null situations. The remaining p-values are derived from the z-
values as above.

We compare the proposed method (OrderShapeEM) with classical multiple testing meth-
ods that do not utilize external covariates (BH and ST) and recent multiple testing procedures
that exploit auxiliary information (AdaPT, SABHA, AdaptiveSeqStep). Detailed descriptions
of these methods are provided in the Appendix. The FDP estimate of AdaPT involves a finite-
sample correction term +1 in the numerator. The +1 term yields a conservative procedure
and could lose power when the signal density is low. To study the effect of the correction
term, we also compared to AdaPT+, where we removed the correction term +1 in the nu-
merator. However, we observed a significant FDR inflation when the signal density is low,
see Figure 14 in the Appendix. We thus compared to AdaPT procedure with correction term
throughout the simulations.

5.2. Simulation results. We first discuss the simulation results of Normal alternative dis-
tribution. In Figure 2, we present FDR control and power comparison with different methods
when z-values under the null hypothesis follow N(0,1) and z-values under the alternative
hypothesis follow a normal distribution. In Figure 2(a), the dashed line indicates the prespec-
ified FDR control level 0.05 and the error bars represent empirical 95% confidence inter-
vals. We observe that all procedures control the FDR sufficiently well across settings and no
FDR inflation has been observed. Adaptive SeqStep is conservative most of the time espe-
cially when the signal is sparse and the auxiliary information is weak or moderate. AdaPT
is conservative under sparse signal and weak auxiliary information. The proposed procedure
OrderShapeEM generally controls the FDR at the target level with some conservativeness
under some settings. As expected, ST procedure controls the FDR at the target level while
BH procedure is more conservative under dense signal. In Figure 2(b), we observe that Order-
ShapeEM is overall the most powerful when the auxiliary information is not weak. When the
auxiliary information is weak and the signal is sparse, OrderShapeEM could be less powerful
than BH/ST. Close competitors are AdaPT and SABHA. However, AdaPT is significantly
less powerful when the signal is sparse and the auxiliary information is weak. AdaPT is also
computationally more intensive than the other methods. SABHA performs well when the sig-
nal is strong but becomes much less powerful than OrderShapeEM and AdaPT as the signal
weakens. Adaptive SeqStep has good power for dense signal and moderate to strong auxil-
iary information. However, it is powerless when auxiliary information is weak. If auxiliary
information is weak, SABHA, ST and BH have similar power, while Adaptive SeqStep has
little power. Under this scenario, incorporating auxiliary information does not help much. All
methods become more powerful with the increase of signal density and signal strength.

Results for the other settings are included in the Appendix. Briefly, results based on Skewed
alternative distribution and Noisy auxiliary information (Figures 5–7) have similar patterns.
OrderShapeEM has adequate FDR control under a smaller number of alternative hypotheses
and a global null (Figures 9–10). Under varying f1, we observe slight inflation for the pro-
posed method under some scenarios especially when the signal density is low (Figure 11). On
the other hand, under varying f0, the proposed method suffers from severe power deteriora-
tion (Figure 12). Although our method offers asymptotic FDR control and we have observed
adequate FDR control at m = 10,000, it is interesting to study the performance at a smaller
m. We thus tried m = 500,1000 and 2000 under the same setup as in Figure 2 with a medium
signal density. The results are summarized in Figure 13. We observe small FDR inflation for
these sample sizes and the inflation increased with smaller sample sizes, particularly for a
weaker signal and less informative prior. We thus recommend using our method when m is
not small (e.g., m > 1000). Since our theory depends on the independence between hypothe-
ses, we also study the robustness of OrderShapeEM to correlated hypotheses. The simulation
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setup is described in Section 5.1. From Figure 6(a), we observe that there is more variability
across the replications indicated by a wider confidence interval of the empirical FDR and
power. OrderShapeEM is more conservative under the correlated hypotheses. With respect to
power (Figure 6(b)), when the signal is strong, it could be less powerful than BH/ST. How-
ever, when the signal becomes weaker and the auxiliary data is informative, OrderShapeEM
is more powerful than BH/ST but is less powerful than AdaPT and SABHA.

Since OrderShapeEM consists of two components: (1) the estimation of the mixing prob-
abilities and the alternative distribution using PAVA, and (2) the optimal rejection rule, it is
interesting to study the contribution of each component. We thus apply the SABHA rejection
rule using the mixing probabilities from OrderShapeEM (denoted as “SABHA+”), and com-
pare to SABHA and OrderShapeEM. In Figure 8 (see “Additional simulation results”), we
observe that SABHA and SABHA+ have a similar performance across settings, while the Or-
derShapeEM, which uses the optimal rejection rule, is much more powerful than SABHA+
and SABHA under weak signal. The results suggest that the performance improvement of
OrderShapeEM is largely contributed by the proposed optimal rejection rule. Therefore, the
power loss of SABHA under weak signal is likely due to the inefficiency of its rejection rule.

6. Data analysis. We illustrate the application of our method by analyzing data from
publicly available genome-wide association studies (GWAS). We use datasets from two large-
scale GWAS of coronary artery disease (CAD) in different populations (CARDIoGRAM and
C4D). CARDIoGRAM is a meta-analysis of 14 CAD genome-wide association studies, com-
prising 22,233 cases and 64,762 controls of European descent [34]. The study includes 2.3
million single nucleotide polymorphisms (SNP). In each of the 14 studies and for each SNP,
a logistic regression of CAD status was performed on the number of copies of one allele,
along with suitable controlling covariates. C4D is a meta-analysis of 5 heart disease genome-
wide association studies, totaling 15,420 CAD cases and 15,062 controls [9]. The samples
did not overlap those from CARDIoGRAM. The analysis steps were similar to CARDIo-
GRAM. A total of 514,178 common SNPs were tested in both the CARDIoGRAM and C4D
association analyses. Dataset can be downloaded from http://www.cardiogramplusc4d.org.
Available data comprise of a bivariate p-value sequence (x1i , x2i ), where x1i represents p-
values from the CARDIoGRAM dataset and x2i represents p-values from the C4D dataset,
i = 1, . . . ,514,178.

We are interested in identifying SNPs that are associated with CAD. Due to the shared ge-
netic polymorphisms between populations, information contained in xi1 can be helpful in the
association analysis of x2i and vice versa. We thus performed two separate analyses, where
we conducted FDR control on x1i and x2i respectively, using x2i and xi1 as the auxiliary
covariate.

In the analysis, we compare the proposed OrderShapeEM, robust method that incorporates
auxiliary information (SABHA) and method that does not incorporate auxiliary information
(ST). As BH was outperformed by ST and Adaptive SeqStep by SABHA, we only included
ST and SABHA in the comparison. AdaPT was not able to complete the analysis within 24
hours and was not included either. The results are summarized in Figure 3. From Figure 3(a),
we observe that at the same FDR level, the proposed OrderShapeEM made significantly more
discoveries than SABHA and ST. SABHA procedure, which incorporates the auxiliary infor-
mation, picked up more SNPs than the ST procedure. The performance of OrderShapeEM is
consistent with the weak signal scenario, where a significant increase in power has been ob-
served (Figure 2(b)). Due to disease heterogeneity, signals in the genetic association studies
are usually very weak. Thus, it can be extremely helpful to incorporate auxiliary informa-
tion to improve power. The power difference becomes even larger at higher target FDR level.
Figure 3(b) shows similar patterns.

http://www.cardiogramplusc4d.org
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FIG. 3. Comparison of the number of discoveries at different prespecified FDR level (left panels) as well as
the estimates of π0 (middle panels) and f1 (right panels). (a) Analysis of C4D data with CARDIoGRAM data as
auxiliary information; (b) Analysis of CARDIoGRAM data with C4D data as auxiliary information.

FIG. 4. Venn diagram showing the overlap of significant SNPs (FDR < 0.001) between methods using or not
using auxiliary information. Left to right: ST procedure on C4D data; OrderShape EM on C4D data with CARDIo-
GRAM data as auxiliary; OrderShapeEM on CARDIoGRAM data with C4D data as auxiliary; and ST procedure
on CARDIoGRAM data.
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To further examine the identified SNPs based on different methods, Figure 4 shows the
overlap of significant SNPs via the Venn diagram at FDR level 0.001. We observe that there
was a significant overlap of associated SNPs between the two datasets, indicating a shared
genetic architecture between the two populations. By using auxiliary information, Order-
ShapeEM recovered almost all the SNPs by ST procedure, in addition to many other SNPs
that were missed by the ST procedure. Interestingly, for the 19 + 21 = 40 SNPs that were
identified by OrderShapeEM only, most of them were located in genes that had been reported
being associated with phenotypes or diseases related to the cardiovascular or metabolic sys-
tem. It is well known that metabolic disorders such as high blood cholesterol and triglyceride
levels are risk factors for CAD.

7. Summary and discussions. We have developed a covariate-adjusted multiple testing
procedure based on the Lfdr and shown that the oracle procedure is optimal in the sense of
maximizing the ETP for a given value of mFDR. We propose an adaptive procedure to es-
timate the prior probabilities of being null that vary across different hypotheses and the dis-
tribution function of the p-values under the alternative hypothesis. Our estimation procedure
is built on the isotonic regression which is tuning parameter free and computationally fast.
We prove that the proposed method provides asymptotic FDR control when relevant con-
sistent estimates are available. We obtain some consistency results for the estimates of the
prior probabilities of being null and the alternative density under shape restrictions. In finite
samples, the proposed method outperforms several existing approaches that exploit auxiliary
information to boost power in multiple testing. The gain in efficiency of the proposed proce-
dure is due to the fact that we incorporate both the auxiliary information and the information
across p-values in an optimal way.

Our method has a competitive edge over competing methods when the signal is weak
and the auxiliary information is moderate/strong, a practically important setting where power
improvement is critical and possible with the availability of informative prior. However, when
the auxiliary information is weak, our procedure could be less powerful than the BH/ST
procedure. The power loss is more severe under strong and sparse signals. To remedy the
power loss under these unfavorable conditions, we recommend testing the informativeness
of the prior order information before the application of our method using, for example, the
testing method from [21]. We could also examine the π̂0 plot after running our algorithm.
If π̂0’s lack variability, which indicates the auxiliary information is very weak, our method
could be less powerful than BH/ST and we advise against using it.

Our method is also robust across settings with a very moderate FDR inflation under small
feature sizes. However, there are some special cases where our approach does not work well
due to the violation of assumptions. In the varying alternative scenario, as suggested by one
of the reviewers, we did observe some FDR inflation. We found this only happens when
the order information has inconsistent effects on the π0 and f1 (i.e., the more likely the
alternative hypothesis, the smaller the effect size). We did not find any FDR inflation if the
order information has consistent effects (i.e., the more likely the alternative hypothesis, the
larger the effect size). We believe such inconsistent effects may be uncommon in practice.
In the varying null scenario, we observed a severe deterioration of the power of our method
and it has virtually no power when the signal is sparse. This is somewhat expected since our
approach assumes a uniformly distributed null p-value. Therefore, we should examine the
p-value distribution before applying our method. We advise against using our method if we
see a substantial deviation from the uniform assumption based on the right half of the p-value
distribution.

There are several future research directions. For example, it is desirable to extend our
method to incorporate other forms of structural information such as group structure, spatial
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structure or tree/hierarchical structure. Also, the proposed method is marginal based and it
may no longer be optimal in the presence of correlations. We leave these interesting topics
for future research.

APPENDIX

We provide proofs of all mathematical claims and additional simulation results.

Proof of Proposition 2.2. The following lemma can be proved using similar arguments
as in the proof of the (weak) Glivenko-Cantelli theorem (see e.g. [44]) and we omit the details
here. Define

Dm,0(λ) := 1

m

m∑
i=1

1
{
Lfdri (xi) ≤ λ

}
,

Dm,1(λ) := 1

m

m∑
i=1

Lfdri (xi)1
{
Lfdri (xi) ≤ λ

}
,

Rm(λ) = Dm,1(λ)/Dm,0(λ).

LEMMA A.1. Under Condition (C1), we have

sup
λ∈[0,1]

∣∣Dm,0(λ) − D0(λ)
∣∣ →p 0,

sup
λ∈[0,1]

∣∣Dm,1(λ) − D1(λ)
∣∣ →p 0,

sup
λ∈[0,1]

∣∣Vm(λ)/m − D1(λ)
∣∣ →p 0.

LEMMA A.2. Under Conditions (C1)–(C2),

sup
x≥λ∞

∣∣Rm(x) − R(x)
∣∣ →p 0,

and

sup
x≥λ∞

∣∣Vm(x)/Dm,0(x) − R(x)
∣∣ →p 0.

PROOF OF LEMMA A.2. By the monotonicity of D0, minx≥λ∞ D0(x) = D0(λ∞) > 0 as
D1(λ∞)/D0(λ∞) < α. Then we have∣∣∣∣Dm,1(x)

Dm,0(x)
− D1(x)

D0(x)

∣∣∣∣
=

∣∣∣∣(Dm,1(x) − D1(x))D0(x) − D1(x)(Dm,0(x) − D0(x))

D0(x)Dm,0(x)

∣∣∣∣
≤ D0(1)|Dm,1(x) − D1(x)| + D1(1)|Dm,0(x) − D0(x)|

D0(λ∞){D0(x) − supλ≥λ∞ |Dm,0(λ) − D0(λ)|}

≤ D0(1) supλ≥λ∞ |Dm,1(λ) − D1(λ)| + D1(1) supλ≥λ∞ |Dm,0(λ) − D0(λ)|
D0(λ∞){D0(λ∞) − supλ≥λ∞ |Dm,0(λ) − D0(λ)|} →p 0

uniformly for any x ≥ λ∞. Similar argument shows the other result. �
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PROOF. Set e = α − R(λ∞). By Lemma A.2,

P
(∣∣Rm(λ∞) − R(λ∞)

∣∣ < e/2
) → 1,

which implies that P(Rm(λ∞) < α) → 1. Thus, P(λm ≥ λ∞) → 1 by the definition of λm.
Then we have {

Rm(λm) − Vm(λm)/Dm,0(λm)
}

≥ inf
λ≥λ∞

{
Rm(λ) − Vm(λ)/Dm,0(λ)

}
= inf

λ≥λ∞

{
Rm(λ) − R(λ) + R(λ) − Vm(λ)/Dm,0(λ)

} = op(1)

by Lemma A.2. As Rm(λm) ≤ α, this implies that

Vm(λm)/
{
Dm,0(λm) ∨ 1

} ≤ Vm(λm)/Dm,0(λm) ≤ α + op(1).

As Vm(λm)/{Dm,0(λm) ∨ 1} ≤ 1, by Lemma A.3 below, we obtain

lim sup
m→+∞

FDRm(λm) = lim sup
m→+∞

E
[
Vm(λm)/

{
Dm,0(λm) ∨ 1

}] ≤ α. �

LEMMA A.3. Consider the random sequence {(Xm,Ym)}m. Suppose Xm ≤ C0 and
Xm ≤ α + Ym, where Ym = op(1) and C0 is some constant. Then we have

lim sup
m

E[Xm] ≤ α.

PROOF OF LEMMA A.3. Note that here exists a subsequence Xmk
such that

lim supm E[Xm] = limk E[Xmk
]. Along this subsequence, we can pick a further subsequence

Ymkj
such that Ymkj

→a.s. 0. Thus with probability one,

lim sup
j

Xmkj
≤ lim sup

j

Ymkj
+ α = α.

As Xmkj
≤ C0, by Fatou’s lemma,

lim sup
m

E[Xm] = lim sup
j

E[Xmkj
] ≤ E

[
lim sup

j

Xmkj

]
≤ α. �

Proof of Theorem 2.3. Define

D̂m,0(λ) := 1

m

m∑
i=1

1
{
L̂fdri (xi) ≤ λ

}
,

D̂m,1(λ) := 1

m

m∑
i=1

L̂fdri (xi)1
{
L̂fdri (xi) ≤ λ

}
,

R̂m(λ) = D̂m,1(λ)/D̂m,0(λ).

LEMMA A.4. Under Conditions (C1) and (C3), we have

sup
λ≥λ∞

∣∣D̂m,0(λ) − D0(λ)
∣∣ →p 0,(26)

sup
λ≥λ∞

∣∣D̂m,1(λ) − D1(λ)
∣∣ →p 0.(27)
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PROOF OF LEMMA A.4. We only prove (27) as the proof for (26) is similar. In view of
Lemma A.1, we only need to show that

sup
λ≥λ∞

∣∣D̂m,1(λ) − Dm,1(λ)
∣∣ →p 0.

To this end, we note that

sup
λ≥λ∞

∣∣D̂m,1(λ) − Dm,1(λ)
∣∣

≤ sup
λ≥λ∞

∣∣∣∣∣ 1

m

m∑
i=1

L̂fdri (xi)1
{
L̂fdri (xi) ≤ λ

} − 1

m

m∑
i=1

Lfdri (xi)1
{
L̂fdri (xi) ≤ λ

}∣∣∣∣∣
+ sup

λ≥λ∞

∣∣∣∣∣ 1

m

m∑
i=1

Lfdri (xi)1
{
L̂fdri (xi) ≤ λ

} − 1

m

m∑
i=1

Lfdri (xi)1
{
Lfdri (xi) ≤ λ

}∣∣∣∣∣
≤ m−1

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣ + sup

λ≥λ∞

1

m

m∑
i=1

∣∣1{L̂fdri (xi) ≤ λ
} − 1

{
Lfdri (xi) ≤ λ

}∣∣,
where the first term in the last line converges to zero in probability by Condition (C3). To
deal with the second term, notice that for any 0 < ε < λ∞/2,

1

m

m∑
i=1

∣∣1{L̂fdri (xi) ≤ λ
} − 1

{
Lfdri (xi) ≤ λ

}∣∣
= 1

m

m∑
i=1

[
1
{
L̂fdri (xi) ≤ λ,Lfdri (xi) > λ

} + 1
{
Lfdri (xi) ≤ λ, L̂fdri (xi) > λ

}]

= 1

m

m∑
i=1

[
1
{
L̂fdri (xi) ≤ λ,λ + ε ≥ Lfdri (xi) > λ

} + 1
{
λ − ε < Lfdri (xi) ≤ λ, L̂fdri (xi) > λ

}]

+ 1

m

m∑
i=1

[
1
{
L̂fdri (xi) ≤ λ,Lfdri (xi) > λ + ε

} + 1
{
Lfdri (xi) ≤ λ − ε, L̂fdri (xi) > λ

}]

≤ 1

m

m∑
i=1

1
{
λ − ε < Lfdri (xi) ≤ λ + ε

} + 1

mε

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣.

Together with Lemma A.1 and Condition (C3), we obtain for any 0 < ε < λ∞/2,

J := sup
λ≥λ∞

1

m

m∑
i=1

∣∣1{L̂fdri (xi) ≤ λ
} − 1

{
Lfdri (xi) ≤ λ

}∣∣
≤ sup

λ≥λ∞

1

m

m∑
i=1

1
{
λ − ε < Lfdri (xi) ≤ λ + ε

} + 1

mε

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣

≤ sup
λ≥λ∞

∣∣D0(λ + ε) − D0(λ − ε)
∣∣ + 2 sup

λ∈[0,1]
∣∣Dm,0(λ) − D0(λ)

∣∣
+ 1

mε

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣

≤ sup
λ≥λ∞

∣∣D0(λ + ε) − D0(λ − ε)
∣∣ + op(1).

As ε can be arbitrarily small, supλ≥λ∞ |D0(λ+ ε)−D0(λ− ε)| can be made small due to the
(uniform) continuity of D0. Therefore, J = op(1) and thus (27) holds. �
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PROOF OF THEOREM 2.3. Using similar arguments as in the proof of Lemma A.2, we
have

sup
λ≥λ∞

∣∣R̂m(λ) − R(λ)
∣∣ →p 0.(28)

Following the proof of Proposition 2.2, we set e = a − R(λ∞). Then we have∣∣R̂m(λ∞) − R(λ∞)
∣∣ ≤ sup

λ≥λ∞

∣∣R̂m(λ) − R(λ)
∣∣ < e/2,

with probability tending to one, which suggests that P(R̂m(λ∞) < α) → 1. Thus, P(λ̂m ≥
λ∞) → 1 by the definition of λ̂m. Then on the event {λ̂m ≥ λ∞}, we have∣∣Vm(λ̂m)/Dm,0(λ̂m) − R̂m(λ̂m)

∣∣
≤ sup

λ≥λ∞

∣∣R̂m(λ) − Vm(λ)/Dm,0(λ)
∣∣

= sup
λ≥λ∞

∣∣R̂m(λ) − R(λ)
∣∣ + sup

λ≥λ∞

∣∣R(λ) − Vm(λ)/Dm,0(λ)
∣∣ = op(1),

by Lemma A.2 and (28). As R̂m(λ̂m) ≤ α, this implies that

Vm(λ̂m)/
{
Dm,0(λ̂m) ∨ 1

} ≤ α + op(1).

As Vm(λ̂m)/{Dm,0(λ̂m) ∨ 1} ≤ 1, by Lemma A.3, we obtain

lim sup
m→+∞

FDRm(λ̂m) = lim sup
m→+∞

E
[
Vm(λ̂m)/

{
Dm,0(λ̂m) ∨ 1

}] ≤ α. �

Proof of Theorem 3.1. PROOF. As P(f0(xi) = f1(xi)) = 0, without loss of generality,
we shall assume that f0(xi) 
= f1(xi) for all i. Recall that φ(x, a) = af0(x) + (1 − a)f1(x)

and define

ρ(x, a) = ∂ logφ(x, a)

∂a
= f0(x) − f1(x)

φ(x, a)
,

which is nonincreasing in a. As f0(xi) 
= f1(xi) for all i, it is straightforward to see that for
any 1 ≤ k ≤ l ≤ m,

∑l
i=k logφ(xi, a) is a strictly concave function for 0 ≤ a ≤ 1. Let

âkl = argmax
a∈[0,1]

l∑
i=k

logφ(xi, a)

be the unique maximizer. According to Theorem 3.1 of [32], we have

π̂0i = max
1≤k≤i

min
i≤l≤m

âkl.

Our goal is to show that the event

π̂0,i0 = max
1≤k≤i0

min
i0≤l≤m

âkl = min
i0≤l≤m

max
1≤k≤i0

âkl < π0,i0 + ε

has probability tending to one.
To this end, we let B = B(i0,N) be the event that

∑i0+N
i=k ρ(xi, a) = 0 has a unique root

0 ≤ âk,i0+N < 1 for all 1 ≤ k ≤ i0, and note that

P
(

max
1≤k≤i0

âk,i0+N < π0,i0 + ε
)

≤ P(π̂0,i0 < π0,i0 + ε).
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On B , we have max1≤k≤i0 âk,i0+N < π0,i0 + ε if and only if

max
1≤k≤i0

i0+N∑
i=k

ρ(xi,π0,i0 + ε) < 0.(29)

We see that (29) is equivalent to

i0+N∑
i=k

{
ρ(xi,π0,i0) − ρ(xi,π0,i0 + ε)

}
>

i0+N∑
i=k

ρ(xi,π0,i0),(30)

for 1 ≤ k ≤ i0. Next, we derive an upper bound for the RHS of (30). As ρ(x, a) is nonin-
creasing in a and π0,i ≤ π0,i0 + ε/2 under the assumption in the theorem, we have

i0+N∑
i=k

ρ(xi,π0,i0) ≤
i0+N∑

i=i0+1

ρ(xi,π0,i0) +
i0∑

i=k

ρ(xi,π0,i)

=
i0+N∑

i=i0+1

(
ρ(xi,π0,i0) − ρ(xi,π0,i)

) +
i0+N∑
i=k

ρ(xi,π0,i)

≤
i0+N∑

i=i0+1

(
ρ(xi,π0,i0) − ρ(xi,π0,i0 + ε/2)

) +
i0+N∑
i=k

ρ(xi,π0,i)

=
i0+N∑

i=i0+1

ε(f1(xi) − f0(xi))
2

2φ(xi,π0,i0)φ(xi,π0,i0 + ε/2)
+

i0+N∑
i=k

ρ(xi,π0,i).

Using this upper bound and the fact that

ρ(x,π0,i0) − ρ(x,π0,i0 + ε) = f0(x) − f1(x)

φ(x,π0,i0)
− f0(x) − f1(x)

φ(x,π0,i0 + ε)

= ε(f1(x) − f0(x))2

φ(x,π0,i0)φ(x,π0,i0 + ε)
,

we know (30) is implied by

i0+N∑
i=k

ε(f1(xi) − f0(xi))
2

φ(xi,π0,i0)φ(xi,π0,i0 + ε)
−

i0+N∑
i=i0+1

ε(f1(xi) − f0(xi))
2

2φ(xi,π0,i0)φ(xi,π0,i0 + ε/2)

>

i0+N∑
i=k

ρ(xi,π0,i).

(31)

Some algebra shows that the LHS of (31) is bounded from below by

i0+N∑
i=k

ε(f1(xi) − f0(xi))
2

2φ(xi,π0,i0 + ε/2)φ(xi,π0,i0 + ε)
≥

i0+N∑
i=k

ε(f1(xi) − f0(xi))
2

2(f0(xi) ∨ f1(xi))2 .

Combining the above arguments, we get

P(π̂0,i0 < π0,i0 + ε,B)

≥ P
(

max
1≤k≤i0

âk,i0+N < π0,i0 + ε,B
)

= P

(
i0+N∑
i=k

{
ρ(xi,π0,i0) − ρ(xi,π0,i0 + ε)

}
>

i0+N∑
i=k

ρ(xi,π0,i0) for all 1 ≤ k ≤ i0,B

)
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≥ P

(
i0+N∑
i=k

ε(f1(xi) − f0(xi))
2

2(f0(xi) ∨ f1(xi))2 >

i0+N∑
i=k

ρ(xi,π0,i) for all 1 ≤ k ≤ i0

)
− P

(
Bc)

:= P(A) − P
(
Bc).

We first deal with P(A). Notice that ρ(xi,π0,i) is a sequence of independent mean zero
random variables with the variance

var
(
ρ(xi,π0i)

) =
∫

(f0(x) − f1(x))2

π0if0(x) + (1 − π0i )f1(x)
dx

≤
∫

(f0(x) − f1(x))2

{π0(0)f0(x)} ∨ {(1 − π0(1))f1(x)} dx

=
∫
π0(0)f0(x)>(1−π0(1))f1(x)

(f0(x) − f1(x))2

{π0(0)f0(x)} ∨ {(1 − π0(1))f1(x)} dx

+
∫
π0(0)f0(x)≤(1−π0(1))f1(x)

(f0(x) − f1(x))2

{π0(0)f0(x)} ∨ {(1 − π0(1))f1(x)} dx

≤
∫
π0(0)f0(x)>(1−π0(1))f1(x)

(f0(x) − f1(x))2

π0(0)f0(x)
dx

+
∫
π0(0)f0(x)≤(1−π0(1))f1(x)

(f0(x) − f1(x))2

(1 − π0(1))f1(x)
dx

≤ C1

∫
f0(x) dx + C2

∫
f1(x) dx < ∞,

for some constants C1,C2 > 0. By Lemma 3.1 of [1], for any η > 0, there exists a large
enough N such that,

P

(
max

1≤k≤i0

∣∣∣∣∣ 1

i0 + N − k + 1

i0+N∑
i=k

ρ(xi,π0,i)

∣∣∣∣∣ < εb

)
≥ 1 − O

(
1

ε2N

)
,

for some constant

b ≤ E
(f1(xi) − f0(xi))

2

4(f0(xi) ∨ f1(xi))2 .

Set Xi = (f1(xi )−f0(xi ))
2

(f0(xi )∨f1(xi ))
2 which is a bounded random variable, and X̃i = EXi − Xi . Again by

Lemma 3.1 of [1],

P

(
min

1≤k≤i0

1

i0 + N − k + 1

i0+N∑
i=k

Xi >
1

2
EX1

)

= P

(
max

1≤k≤i0

1

i0 + N − k + 1

i0+N∑
i=k

X̃i <
1

2
EX1

)

≥ P

(
max

1≤k≤i0

∣∣∣∣∣ 1

i0 + N − k + 1

i0+N∑
i=k

X̃i

∣∣∣∣∣ < 1

2
EX1

)

> 1 − O

(
1

N

)
,
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for large enough N . The above arguments thus imply that

P(A) ≥ 1 − O

(
1

ε2N

)
.

We next deal with Bc that is, there exists a 1 ≤ k ≤ i0 such that âk,i0+N = 1. Clearly, we
only need to consider the case where π0,i0 + ε < 1. In this case, we have π0,i0+N ≤ π0(t

′′) <

π0,i0 + ε/2 < 1. If âk,i0+N = 1, as the maximizer is unique, we have

i0+N∑
i=k

logφ(xi,1) >

i0+N∑
i=k

logφ(xi, a)(32)

for any 0 ≤ a < 1. Under the assumption that
∫
(logfi(x))2fj (x) dx < ∞ for i, j = 0,1, we

have E[(logφ(xi, a))2] < ∞ uniformly over i and a ∈ [0,1]. Note that for a ≥ π0i ,(
E logφ(xi, a)

)′ = E
f0(xi) − f1(xi)

φ(xi, a)

=
∫

f0(x) − f1(x)

φ(x, a)
φ(x,π0i ) dx

=
∫

f0(x) − f1(x)

φ(x, a)
φ(x,π0i ) − f0(x) − f1(x)

φ(x,π0i )
φ(x,π0i ) dx

=
∫

(f0(x) − f1(x))2(π0i − a)

φ(x, a)
dx

≤ (π0i − a)

∫
(f0(x) − f1(x))2

f0(x) ∨ f1(x)
dx := C0(π0i − a),

where we have used the fact that
∫

f0(z)dz = ∫
f1(z)dz = 1. It is clear that as a function of

a, −E logφ(xi, a) is convex. Thus, we get

C0(a − π0i )(1 − a) − E logφ(xi, a) ≤ −(
E logφ(xi, a)

)′
(1 − a) − E logφ(xi, a)

≤ −E logφ(xi,1),

that is

E logφ(xi, a) − E logφ(xi,1) ≥ C0(a − π0i )(1 − a).

Now setting π0,i0 + ε < a∗ < 1 and using the fact that a∗ − π0i ≥ ε/2 for i ≤ i0 + N , we
obtain,

i0+N∑
i=k

(
E logφ

(
xi, a

∗) − E logφ(xi,1)
) ≥ C0

(
1 − a∗) i0+N∑

i=k

(
a∗ − π0i

)
≥ C0

(
1 − a∗)(i0 + N − k + 1)ε/2.

For ε0 < C0(1 − a∗)ε/4, let

B(a) := max
1≤k≤i0

∣∣∣∣∣ 1

i0 + N − k + 1

i0+N∑
i=k

{
logφ(xi, a) − E logφ(xi, a)

}∣∣∣∣∣ < ε0.

By Lemma 3.1 of [1], we have for large enough N ,

P
(
B
(
a∗) ∩ B(1)

)
> 1 − O

(
1

ε2N

)
.
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Therefore on B(a∗) ∩ B(1), we have

{there exists a 1 ≤ k ≤ i0 such that âk,i0+N = 1}

⊂
i0⋃

k=1

{
i0+N∑
i=k

logφ(xi,1) >

i0+N∑
i=k

logφ
(
xi, a

∗)}

⊂
i0⋃

k=1

{
1

i0 + N − k + 1

i0+N∑
i=k

E logφ(xi,1) + 2ε0

>
1

i0 + N − k + 1

i0+N∑
i=k

E logφ
(
xi, a

∗)}

⊂
i0⋃

k=1

{
2ε0 > C0

(
1 − a∗)ε/2

} = ∅.

Then we get P(Bc) ≤ O( 1
ε2N

) and thus

P(π̂0,i0 < π0,i0 + ε) ≥ 1 − O

(
1

ε2N

)
.

Using similar arguments, we can prove that

P(π̂0,i0 > π0,i0 − ε) ≥ 1 − O

(
1

ε2N

)
.

Therefore, we obtain

P
(|π̂0,i0 − π0,i0 | < ε

) ≥ 1 − O

(
1

ε2N

)
. �

Proof of Corollary 3.2. PROOF. For any i1 ≤ i ≤ il , there exists a 2 ≤ k ≤ l such that
ik−1 ≤ i ≤ ik . Using the monotonicity of π̂0,i and π0,i , we get

max
i1≤i≤il

|π̂0,i − π0,i | ≤ max
1≤k≤l

|π̂0,ik − π0,ik | + ε.

Thus by Theorem 3.1, we have

P
(

max
i1≤i≤il

|π̂0,i − π0,i | < 2ε
)

≥ P
(

max
1≤i≤l

|π̂0,ik − π0,ik−1 | < ε
)

≥ 1 − O

(
l

ε2N

)
. �

Proof of Theorem 3.3. We provide some useful results from [43] and the high-level idea
before presenting the detailed proof.

Some useful results. We present some results from [43], which will play an important role
in the proof.

Recall that F denotes the class of densities on [0,1]. Let Gm = {g = (g1, . . . , gm) : gi ∈
F}. Below we shall drop the subscript m for notational simplicity. Let ν be the Lebesgue
measure (on [0,1]) and Lr(ν) = {g : [0,1] → R : ∫ 1

0 |g|r dν < ∞}. For g ∈ Lr(ν), write
‖g‖r

r,ν = ∫ 1
0 |g|r dν. We now define the entropy with bracketing. Consider G′ ⊆ G. Let

NB(δ,G′,Lr(ν)) be the smallest value of N such that there exists a collection of func-
tions {[gL

j ,gU
j ]}Nj=1 with gL

j = (g
L,1
j , . . . , g

L,m
j ) and gU

j = (g
U,1
j , . . . , g

U,m
j ) such that for

any g = (g1, . . . , gm) ∈ G′, there exists a 1 ≤ j ≤ N satisfying that g
L,i
j ≤ gi ≤ g

U,i
j for all

1 ≤ i ≤ m and ‖gL
j − gU

j ‖r
r,ν,m := m−1 ∑m

i=1 ‖gL,i
j − g

U,i
j ‖r

r,ν ≤ δ. Set NB(δ,G′,Lr(ν)) =
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+∞ if no finite set of such brackets exists. Let HB(δ,G′,Lr(ν)) = logNB(δ,G′,Lr(ν)).
Write dP = (dP1, . . . , dPm) = (f 1 dν, . . . , f m dν) and let Ai be some constant. We de-
fine HB(δ,G′,Lr(P)) in a similar way as HB(δ,G′,Lr(ν)) but with the norm ‖ · ‖r

r,P,m =
m−1 ∑m

i=1 ‖ · ‖r
r,Pi

to characterize the distance between gL
j and gU

j . Operation on vector-
valued function should be interpreted as applying the operation to each component of the
vector-valued function.

LEMMA A.5 (Lemma 7.11 of [43]). Let

F = {
f : [0,+∞) → [0,+∞), f is decreasing , f ≤ F

}
,

with F decreasing, F ≥ 1 and
∫

F 2(1+a) dν < ∞ for some a > 0. Then for some A > 0,

HB

(
δ,F,L2(ν)

) ≤ Aδ−1, for all δ > 0.

Below we present a modified version of Theorem 8.14 of [43], which is sufficient for our
application. Note that the result in Theorem 8.14 of [43] is capable of dealing with depen-
dent variables. However, to avoid unnecessary complication, we shall present a result that is
specialized to the case of independent but nonidentically distributed variables. We also men-
tion that the entropy condition is on the convex class (34), which is different from the one
in Theorem 8.14 of [43]. However, this change only requires a slightly modification (see the
arguments of Theorem A.6 below and the proof of Theorem 7.6 of [43]) of the proof in [43].

To state the result, let pi,θi
be a density indexed by a parameter θi for 1 ≤ i ≤ m. Suppose

we observe a set of random variables xi ∼ pi,θ0,i
independently for 1 ≤ i ≤ m and θ0 =

(θ0,1, . . . , θ0,m) ∈ � for a given parameter space �. Write pθ = (p1,θ1, . . . , pm,θm) with θ =
(θ1, . . . , θm). Let θ̂ = (θ̂1, . . . , θ̂m) ∈ � be an estimator of θ0 such that

m∑
i=1

logp
i,θ̂i

(xi) ≥
m∑

i=1

log
(p

i,θ̂i
(xi) + pi,θ0,i

(xi)

2

)
.(33)

Note that the maximum likelihood estimator of θ0 automatically satisfies the above condition.
Define H 2

m(pθ ,pθ ′) = m−1 ∑m
i=1 H 2(pi,θi

, pi,θ ′
i
) and

Gconv =
{

2pθ

pθ + pθ0

: θ ∈ �

}
.(34)

Let

JB(δ) :=
∫ δ

δ2/c
H

1/2
B

(
u,Gconv,L2(pθ0)

)
du ∨ δ(35)

for some large enough c.

THEOREM A.6. Suppose that {pθ : θ ∈ �} is convex. Take �(δ) ≥ JB(δ) in such a way
that �(δ)/δ2 is a nonincreasing function of δ. Then for a universal constant c̃ and for

√
mδ2

m ≥ c̃�(δm),(36)

we have for all δ ≥ δm that

P
(
Hm(p

θ̂
,pθ0) > δ

) ≤ c̃ exp
(−mδ2/c̃2).

PROOF OF THEOREM A.6. Let

Zi(θ) = 2pi,θi
(xi)

pi,θi
(xi) + pi,θ0,i

(xi)
, 1 ≤ i ≤ m.
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We first claim the following basic inequality

H 2
m(p

θ̂
,pθ0) ≤ 1

m

m∑
i=1

(
Zi(θ̂) − P0,iZi(θ̂)

)
,(37)

P0,iZi(θ) = ∫ 2pi,θi

pi,θi
+pi,θ0,i

pi,θ0,i
dν. Note that

0 ≤
m∑

i=1

logZi(θ̂) ≤
m∑

i=1

(
Zi(θ̂) − 1

)

=
m∑

i=1

(
Zi(θ̂) − P0,iZi(θ̂)

) −
m∑

i=1

(
1 − P0,iZi(θ̂ )

)
,

where the first inequality follows from (33) and the second inequality follows from the fact
that log(x) ≤ x − 1 for x > 0. On the other hand, we have

m∑
i=1

(
1 − P0,iZi(θ̂ )

) =
m∑

i=1

∫ pi,θ0,i
− p

i,θ̂

pi,θ0,i
+ p

i,θ̂i

pi,θ0,i
dν

=
m∑

i=1

1

2

∫ (pi,θ0,i
− p

i,θ̂
)2

pi,θ0,i
+ p

i,θ̂i

dν ≥ H 2
m(p

θ̂
,pθ0),

which gives (37). Applying the basic inequality and the peeling device, we have

P
(
Hm(p

θ̂
,pθ0) > δ

)
≤ P

(
sup

θ∈�:Hm(pθ ,pθ0 )>δ

1

m

m∑
i=1

{
Zi(θ) − P0,iZi(θ)

} − H 2
m(pθ ,pθ0) > 0

)

≤
S∑

s=0

P

(
sup

θ∈�:Hm(pθ ,pθ0 )≤2s+1δ

1

m

m∑
i=1

{
Zi(θ) − P0,iZi(θ)

}
> 22sδ2

)

with S = min{s : 2s+1δ > 1}. Observe the connection between Zi(θ) and Gconv. The entropy
condition can be used to control the upper bound above. The rest of the argument is similar
to those in [43]. �

The high-level idea. To apply the above result, we shall take � = 
 ×H and θ = (π,f ) ∈
� in the above theorem. Most parts of our proof is devoted to showing the entropy condition
(45). This is achieved in several steps. (1) We first apply Lemma A.5 to the class of functions
defined in (40), which implies a bound on the entropy of the class of functions GU,conv

k,i in (43).

(2) We then argue that one can construct the delta-bracketing set for GU,conv
k,i with 2 ≤ i ≤ m

based on the one for GU,conv
k,1 . Thus, the entropy of GU,conv

k in (42) is of the same order as

that of GU,conv
k,i , which leads to (45) after some algebra. (3) Under (45), (36) is satisfied with

δ = Mm−1/3 for some large enough M . The result thus follows from Theorem A.6.

PROOF. Consider the collection of mixture densities F = {f̃ = (f̃ 1, . . . , f̃ m) : f̃ i =
π̃(i/m)f0 + (1 − π̃(i/m))f̃1, π̃ ∈ 
, f̃1 ∈ H}. It is known that

HB

(
δ,
,L2(μm)

) ≤ A1/δ,(38)
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where μm denotes the discrete probability measure with equal mass 1/m on the grid
{1/m,2/m, . . . ,1}; see, for example, [44]. Let {[πL

k ,πU
k ]}Nk=1 be the delta-bracketing set

for 
. For any π̃ ∈ 
 and f̃1 ∈H, there exists a 1 ≤ k ≤ N such that

f̃
L,i
k := πL

k (i/m)f0 + (
1 − πU

k (i/m)
)
f̃1 ≤ π̃(i/m)f0 + (

1 − π̃ (i/m)
)
f̃1

≤ πU
k (i/m)f0 + (

1 − πL
k (i/m)

)
f̃1 := f̃

U,i
k .

(39)

We focus on the upper bound in the following analysis. For 1 ≤ k ≤ N , let

FL
k = {(

f̃
L,1
k , . . . , f̃

L,m
k

) : f̃1 ∈ H
}
,

FU
k = {(

f̃
U,1
k , . . . , f̃

U,m
k

) : f̃1 ∈ H
}
,

where f̃
L,i
k and f̃

U,i
k are defined in (39). Further define

GU
k,i =

{(
f̃ if i

f̃ i + f i

)1/2
: f̃ i is the ith component of f̃ ∈ FU

k

}
.(40)

Note that (
f̃ if i

f̃ i+f i
)1/2 ≤ (f i)1/2 ∨ 1. Under the assumption that

∫ 1
0 f 1+a

1 dν < ∞, we have

sup1≤i≤m

∫
(f i)1+a ∨ 1dν < ∞. Applying Lemma A.5 with F = (f i)1/2 ∨ 1, we know that

HB

(
δ,GU

k,i,L2(ν)
) ≤ A3/δ.

Next, we define

Gconv =
{

f̃

f̃ + f
: f̃ ∈ F

}
,(41)

G
U,conv
k =

{
f̃

f̃ + f
: f̃ ∈ FU

k

}
,(42)

G
U,conv
k,i =

{
f̃ i

f̃ i + f i
: f̃ i is the ith component of f̃ ∈ FU

k

}
.(43)

Our goal is to derive an upper bound for the entropy with bracketing of Gconv, and then apply
Theorem A.6 to obtain the desired result. To this end, we shall first derive the entropy with
bracketing for the classes GU,conv

k,i and G
U,conv
k .

For f̃ i and g̃i being the ith components of f̃ and g̃ in FU
k , we have∫ (

f̃ i

f̃ i + f i
− g̃i

g̃i + f i

)2
dPi

=
∫ {(

f̃ i

f̃ i + f i

)1/2
−

(
g̃i

g̃i + f i

)1/2}2{( f̃ i

f̃ i + f i

)1/2
+

(
g̃i

g̃i + f i

)1/2}2
dPi

≤ 4
∫ {(

f̃ i

f̃ i + f i

)1/2
−

(
g̃i

g̃i + f i

)1/2}2
dPi

= 4
∫ {(

f̃ if i

f̃ i + f i

)1/2
−

(
g̃if i

g̃i + f i

)1/2}2
dν.

Hence, we get

HB

(
2δ,G

U,conv
k,i ,L2(Pi)

) ≤HB

(
δ,GU

k,i,L2(ν)
) ≤ A3/δ.
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Below we argue that one can construct the delta-bracketing set for GU,conv
k,i with 2 ≤ i ≤ m

based on the one for GU,conv
k,1 . Consider f̃ 1 which is the ith component of f̃ ∈ FU

k and a pair
of functions (ζL, ζU) such that

πU
k (1/m)f0 + (1 − πL

k (1/m))ζL

πU
k (1/m)f0 + (1 − πL

k (1/m))ζL + f i
≤ πU

k (1/m)f0 + (1 − πL
k (1/m))f̃1

πU
k (1/m)f0 + (1 − πL

k (1/m))f̃1 + f i

≤ πU
k (1/m)f0 + (1 − πL

k (1/m))ζU

πU
k (1/m)f0 + (1 − πL

k (1/m))ζU + f i

(44)

and∫ (
πU

k (1/m)f0 + (1 − πL
k (1/m))ζL

πU
k (1/m)f0 + (1 − πL

k (1/m))ζL + f i
− πU

k (1/m)f0 + (1 − πL
k (1/m))ζU

πU
k (1/m)f0 + (1 − πL

k (1/m))ζU + f i

)2
dPi

=
∫ {

(1 − πL
k (1/m))(ζL − ζU )f i

(πU
k (1/m)f0 + (1 − πL

k (1/m))ζL + f i)(πU
k (1/m)f0 + (1 − πL

k (1/m))ζU + f i)

}2
dPi

≤ δ2.

Clearly, (44) implies that ζL ≤ f̃1 ≤ ζU . Moreover, (44) still holds if we replace (πL
k (1/m),

πU
k (1/m)) by (πL

k (i/m),πU
k (i/m)) for any 2 ≤ i ≤ m. Using the following bounds (which

hold as ε ≤ πL
k , πU

k ≤ 1 − ε)

(1 − πL
k (i/m))

(1 − πL
k (1/m))

≤ 1,

πU
k (1/m)f0 + (1 − πL

k (1/m))ζU + f i

πU
k (i/m)f0 + (1 − πL

k (i/m))ζU + f i
≤ πU

k (1/m)

πU
k (i/m)

+ 1 − πU
k (1/m)

1 − πU
k (i/m)

+ 1 ≤ C1,

πU
k (1/m)f0 + (1 − πL

k (1/m))ζL + f i

πU
k (i/m)f0 + (1 − πL

k (i/m))ζL + f i
≤ πU

k (1/m)

πU
k (i/m)

+ 1 − πU
k (1/m)

1 − πU
k (i/m)

+ 1 ≤ C1,

for some constant C1 > 0, we can show that∫ (
πU

k (i/m)f0 + (1 − πL
k (i/m))ζL

πU
k (i/m)f0 + (1 − πL

k (i/m))ζL + f i
− πU

k (i/m)f0 + (1 − πL
k (i/m))ζU

πU
k (i/m)f0 + (1 − πL

k (i/m))ζU + f i

)2
dPi

=
∫ {

(1 − πL
k (i/m))(ζL − ζU )f i

(πU
k (i/m)f0 + (1 − πL

k (i/m))ζL + f i)(πU
k (i/m)f0 + (1 − πL

k (i/m))ζU + f i)

}2
dPi

≤ C4
1δ2.

The above arguments suggest that we can construct the delta-bracketing set for GU,conv
k,i with

2 ≤ i ≤ m based on the one for GU,conv
k,1 . Therefore, we have

HB

(
δ,G

U,conv
k ,L2(P)

) ≤ A4/δ.

Similarly, we can get

HB

(
δ,G

L,conv
k ,L2(P)

) ≤ A5/δ,

where G
L,conv
k is defined in a similar way as G

U,conv
k but with f̃ ∈ FL

k . For any f̃ ∈ F, there
exists a 1 ≤ k ≤ N and f̃L ∈ FL

k and f̃U ∈ FU
k such that

f̃L

f̃L + f
≤ f̃

f̃ + f
≤ f̃U

f̃U + f
.
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Let {[bL
i , cL

i ]}NL
k

i=1 and {[bU
i , cU

i ]}NU
k

i=1 be the delta-bracketing sets for G
L,conv
k and G

U,conv
k ,

respectively. Then there exists a (i, j) such that,

bL
i ≤ f̃L

f̃L + f
≤ f̃

f̃ + f
≤ f̃U

f̃U + f
≤ cU

j .

By the triangle inequality,

∥∥cU
j − bL

i

∥∥
2,P,m ≤

∥∥∥∥cU
j − f̃U

f̃U + f

∥∥∥∥
2,P,m

+
∥∥∥∥ f̃U

f̃U + f
− f̃

f̃ + f

∥∥∥∥
2,P,m

+
∥∥∥∥ f̃

f̃ + f
− f̃L

f̃L + f

∥∥∥∥
2,P,m

+
∥∥∥∥ f̃L

f̃L + f
− bL

i

∥∥∥∥
2,P,m

≤
∥∥∥∥ f̃U

f̃U + f
− f̃

f̃ + f

∥∥∥∥
2,P,m

+
∥∥∥∥ f̃

f̃ + f
− f̃L

f̃L + f

∥∥∥∥
2,P,m

+ 2δ.

We focus on the first component of the first term. Note that∫ (
πU

k (1/m)f0 + (1 − πL
k (1/m))f̃i

πU
k (1/m)f0 + (1 − πL

k (1/m))f̃i + f i
− π(1/m)f0 + (1 − π(1/m))f̃i

π(1/m)f0 + (1 − π(1/m))f̃i + f i

)2
dPi

=
∫ {

(πU
k (1/m) − π(1/m))f0f

i + (π(1/m) − πL
k (1/m))f̃ if i

(πU
k (1/m)f0 + (1 − πL

k (1/m))f̃i + f i)(π(1/m)f0 + (1 − π(1/m))f̃i + f i)

}2
dPi

≤ C2
{(

πU
k (1/m) − π(1/m)

)2 + (
π(1/m) − πL

k (1/m)
)2}

,

for some constant C2 > 0. Hence, we obtain

HB

(
δ,Gconv,L2(P)

) ≤ A6/δ.

Note that ∫ δ

δ2/c
H

1/2
B

(
u,Gconv,L2(P)

)
du ≤ A7

√
δ.(45)

Finally, we apply Theorem A.6 (also see Theorem 7.6 of [43]). Consider � = 
 × H and
θ = (π,f ) ∈ �. In view of (45), (36) is satisfied with δ = Mm−1/3 for some large enough
M . Thus, by Theorem A.6, we have

P
(
Hm

(
(π0, f1), (π̂0, f̂1)

)
> Mm−1/3) ≤ M1 exp

(−M2m
1/3),

for some M1,M2 > 0. �

Proof of Corollary 3.4. PROOF. Using (23), we obtain

1

m

m∑
i=1

∫
Lfdri (x)>dm

∣∣L̂fdri (x) − Lfdri(x)
∣∣f i(x) dx

= 1

m

m∑
i=1

∫
Lfdri (x)>dm

∣∣L̂fdri (x) − Lfdri (x)
∣∣π0(i/m)f0(x)

Lfdri (x)
dx

≤ C

mdm

m∑
i=1

∫ 1

0

∣∣L̂fdri (x) − Lfdri (x)
∣∣dx = op(1),
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for some constant C > 0 and a sequence dm with dm = o(1) and m−1/3/dm = o(1). As D0 in
Condition (C1) is continuous at 0,

1

m

m∑
i=1

∫
Lfdri (x)≤dm

∣∣L̂fdri (x) − Lfdri (x)
∣∣f i(x) dx

≤ 1

m

m∑
i=1

P
(
Lfdri (xi) ≤ dm

)
= D0(dm) + op(1) = op(1).

Thus, we have

1

m

m∑
i=1

∫ 1

0

∣∣L̂fdri (x) − Lfdri (x)
∣∣f i(x) dx = op(1).(46)

In view of (46), to justify Condition (C3), it suffices to show the following uniform law of
large numbers,

sup
π∈
,f ∈H

∣∣∣∣∣ 1

m

m∑
i=1

(
gi(xi) − E

[
gi(xi)

])∣∣∣∣∣ = op(1),(47)

where

gi(xi) =
∣∣∣∣ π(i/m)f0(xi)

π(i/m)f0(xi) + (1 − π(i/m))f (xi)
− Lfdri (xi)

∣∣∣∣.
We justify this claim in Lemma A.7 below. By (46) and (47), we must have

1

m

m∑
i=1

∣∣L̂fdri (xi) − Lfdri (xi)
∣∣ = op(1),(48)

which verifies Condition (C3). �

LEMMA A.7. For 
 and H as defined in Section 3.3, we have

sup
π∈
,f ∈H

∣∣∣∣∣ 1

m

m∑
i=1

(
gi(xi) − E

[
gi(xi)

])∣∣∣∣∣ = Op

(
m−1/3).

PROOF OF LEMMA A.7. Let

g+,i(xi) =
(

π(i/m)f0(xi)

π(i/m)f0(xi) + (1 − π(i/m))f (xi)
− Lfdri (xi)

)
+
,

g−,i(xi) =
(

Lfdri (x) − π(i/m)f0(xi)

π(i/m)f0(xi) + (1 − π(i/m))f (xi)

)
+
,

where (a)+ = a ∨ 0. Note that gi(xi) = g+,i(xi) + g−,i(xi). Thus, we just need to show that

sup
π∈
,f ∈H

∣∣∣∣∣ 1

m

m∑
i=1

(
g+,i(xi) − E

[
g+,i(xi)

])∣∣∣∣∣ = Op

(
m−1/3),(49)

sup
π∈
,f ∈H

∣∣∣∣∣ 1

m

m∑
i=1

(
g−,i(xi) − E

[
g−,i(xi)

])∣∣∣∣∣ = Op

(
m−1/3).(50)
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We only prove (49) as the arguments for (50) is essentially the same. Below we shall adopt
the notation defined in the proof of Theorem 3.3. Note that g+,i(xi) is a decreasing function
of f (xi) and increasing function of π(i/m). Recall from (38) that

HB

(
δ,
,L1(μm)

) ≤ A1/δ(51)

for some A1 > 0, where μm denotes the discrete probability measure with equal mass 1/m

at the grids {1/m,2/m, . . . ,1} Let {[πL
k ,πU

k ]}N1
k=1 be a δ-bracketing set for 
 such that

m−1 ∑m
i=1 |πL

k (i/m) − πU
k (i/m)| ≤ δ. Suppose π ∈ [πL

k ,πU
k ]. Note that

1

m

m∑
i=1

(
g+,i(xi) − E

[
g+,i(xi)

])

≤ 1

m

m∑
i=1

{(
f

U,i
k (xi) − Lfdri (xi)

)
+ − E

(
f

L,i
k (xi) − Lfdri (xi)

)
+
}
,

where for any given f ∈ H, we define

f
U,i
k := πU

k (i/m)f0

πU
k (i/m)f0 + (1 − πU

k (i/m))f
,

f
L,i
k := πL

k (i/m)f0

πL
k (i/m)f0 + (1 − πL

k (i/m))f
.

(52)

This observation motivates us to consider the following classes of vector-valued functions

FU
k := {

fUk = (
f

U,1
k , . . . , f

U,m
k

) : f ∈ H
}
,

FL
k := {

fLk = (
f

L,1
k , . . . , f

L,m
k

) : f ∈ H
}
,

where f
U,i
k and f

L,i
k are defined in (52). Note that FU

k,i = {f U,i
k : f ∈ H} is a class of increas-

ing functions that are bounded from below and above. Thus, HB(δ,FU
k,i,L1(Pi)) ≤ A2/δ. Us-

ing similar arguments as in the proof of Theorem 3.3, we can construct the delta-bracketing
sets for FU

k,i with 2 ≤ i ≤ m based on the one for FU
k,1. Thus, we have HB(δ,FU

k ,L1(P)) ≤
A3/δ and similarly HB(δ,FL

k ,L1(P)) ≤ A4/δ. Let {[ζL
k,j , ζ

U
k,j ]}N2

j=1 and {[ξL
k,j , ξ

U
k,j ]}N3

j=1 be

the δ-bracketing sets for FU
k and FL

k respectively. For f U
k ∈ FU

k and f L
k ∈ FL

k , there exists
(j, l) such that ζL

k,j ≤ fUk ≤ ζU
k,j and ξL

k,l ≤ fLk ≤ ξU
k,l . Thus, we get

1

m

m∑
i=1

(
g+,i(xi) − E

[
g+,i(xi)

])

≤ 1

m

m∑
i=1

{(
f

U,i
k (xi) − Lfdri (xi)

)
+ − E

(
f

L,i
k (xi) − Lfdri (xi)

)
+
}

≤ 1

m

m∑
i=1

{(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+ − E

(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+
}

≤ 1

m

m∑
i=1

{(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+ − E

(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+
} + C1δ,
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for some C1 > 0. Here, we have used the fact that

1

m

m∑
i=1

{
E
(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+ − E

(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+
}

≤ 1

m

m∑
i=1

E
∣∣ζU,i

k,j (xi) − ξ
L,i
k,l (xi)

∣∣
≤ 1

m

m∑
i=1

E
∣∣ζU,i

k,j (xi) − f
U,i
k (xi) + f

U,i
k (xi) − f

L,i
k (xi) + f

L,i
k (xi) − ξ

L,i
k,l (xi)

∣∣
≤ 1

m

m∑
i=1

E
∣∣f U,i

k (xi) − f
L,i
k (xi)

∣∣ + 2δ

≤ C

m

m∑
i=1

∣∣πU
k (i/m) − πL

k (i/m)
∣∣ + 2δ = (C + 2)δ,

for some C > 0. Similarly,

1

m

m∑
i=1

(
g+,i(xi) − E

[
g+,i(xi)

])

≥ 1

m

m∑
i=1

{(
f

L,i
k (xi) − Lfdri (xi)

)
+ − E

(
f

U,i
k (xi) − Lfdri (xi)

)
+
}

≥ 1

m

m∑
i=1

{(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+ − E

(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+
} − C2δ.

By the Hoeffding’s inequality, we have for any 1 ≤ k ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ l ≤ N3,

P

(
1

m

m∑
i=1

{(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+ − E

(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+
} ≥ ε

)
≤ exp

(−C3mε2),
P

(
1

m

m∑
i=1

{(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+ − E

(
ξ

L,i
k,l (xi) − Lfdri (xi)

)
+
} ≥ ε

)
≤ exp

(−C3mε2),
for some C3 > 0. Hence, we get

P

(
sup

π∈
,f ∈H

∣∣∣∣∣ 1

m

m∑
i=1

(
g+,i(xi) − E

[
g+,i(xi)

])∣∣∣∣∣ > ε

)

≤ P

(
max

1≤k≤N1,1≤j≤N2

1

m

m∑
i=1

{(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+

− E
(
ζ

U,i
k,j (xi) − Lfdri (xi)

)
+
}
> ε − C1δ

)

+ P

(
max

1≤k≤N1,1≤l≤N3

1

m

m∑
i=1

{(
ζ

L,i
k,l (xi) − Lfdri (xi)

)
+

− E
(
ζ

L,i
k,l (xi) − Lfdri (xi)

)
+
}
< C2δ − ε

)

≤ 2 exp
{−C3m(ε − δC1 ∨ C2)

2 + (A1 + A3 ∨ A4)/δ
}
,
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where we have used the union bound and the Hoeffding’s inequality to obtain the second in-
equality. The result follows by choosing ε = C4m

−1/3 and δ = m−1/3 for some large enough
C4. �

Proof of Theorem 3.5. PROOF. We first show that λ̂m →p λ0. Recall from (28) that

sup
λ≥λ∞

∣∣R̂m(λ) − R(λ)
∣∣ →p 0.

For any small enough ε > 0, by the definition of λ0, we have infλ0+ε≤λ≤1 R(λ) > α. There-
fore,

P
(

inf
λ0+ε≤λ≤1

R̂m(λ) > α
)

≤ P(λ̂m < λ0 + ε) → 1.

On the other hand, as R(λ0 − ε) < α, we have

P
(
R̂m(λ0 − ε) < α

) ≤ P(λ̂m ≥ λ0 − ε) → 1.

Combing the above arguments, we get λ̂m →p λ0. Next, following the arguments in the proof
of Lemma A.4, we have

sup
λ≥λ∞/2

∣∣∣∣∣ 1

m

m∑
i=1

1
{
θi = 1, L̂fdri (xi) ≤ λ

} − D2(λ)

∣∣∣∣∣ →p 0.

As λ0 ≥ λ∞, P(λ̂m > λ∞/2) → 1. Thus, we get

1

m

m∑
i=1

1
{
θi = 1, L̂fdri (xi) ≤ λ̂m

} − D2(λ̂m) →p 0.

By the continuity of D2, we have D2(λ̂m) →p D2(λ0). The conclusion thus follows. �

Derivation of the EM-algorithm from the full data likelihood. The EM algorithm can
be motivated by the full data likelihood that has access to hidden/latent variables. To see this,
we note that the full log-likelihood of {(xi, θi) : i = 1,2 . . . ,m} is given by

logp(x, θ) =
m∑

i=1

log
{
(1 − θi)f0(xi) + θif1(xi)

}

+
m∑

i=1

{
(1 − θi) log(π0i ) + θi log(1 − π0i )

}
,

where x = (x1, . . . , xm) and θ = (θ1, . . . , θm). Let �(t) = (π̂
(t)
01 , . . . , π̂

(t)
0m). We note that the

posterior distribution of θi given x, f1 and � is equal to Bernoulli(1 − Q
(t)
i ), where Q

(t)
i =

π̂
(t)
0i f0(xi)/{π̂ (t)

0i f0(xi) + (1 − π̂
(t)
0i )f1(xi)}. The EM algorithm seeks to find the MLE of the

marginal likelihood by iteratively applying these two steps:
E-step: Define

D
(
f1,�|f (t)

1 ,�(t)) = E
θ |f (t)

1 ,�(t)

[
logp(x, θ)

]
=

m∑
i=1

{
Q

(t)
i logf0(xi) + (

1 − Q
(t)
i

)
logf1(xi)

}

+
m∑

i=1

{
Q

(t)
i logπi + (

1 − Q
(t)
i

)
log(1 − πi)

}
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as the expected value of the log-likelihood function with respect to the current conditional
distribution of θ given the current estimates f

(t)
1 and �(t).

M-step: Find the parameters that maximize D(f1,�|f (t)
1 ,�(t)). Equivalently, we have

�̂ = arg max
�∈M

m∑
i=1

{
Q

(t)
i logπi + (

1 − Q
(t)
i

)
log(1 − πi)

}

= arg min
�∈M

m∑
i=1

(
Q

(t)
i − πi

)2
,

f
(t+1)
1 = arg max

f̃1∈H

m∑
i=1

(
1 − Q

(t)
i

)
log f̃1(xi).

Competing methods. A classic procedure for multiple testing is the BH procedure pro-
posed in [5]. We now briefly describe the BH procedure. Let x(1) ≤ · · · ≤ x(m) be the order
statistics of the p-values x1, . . . , xm. Given a control level α ∈ (0,1), let

k = max
{
i ∈ {0,1, . . . ,m + 1} : x(i) ≤ α

i

m

}
,

where x0 = 0 and x(m+1) = 1. The BH procedure rejects all hypotheses for which xi ≤ x(k). If
k = 0, then no hypotheses will be rejected. It has been shown that the BH procedure controls
the FDR at the level απ0, where π0 is the proportion of null hypothesis. R function p.adjust
in the base stats package is used to obtain results based on the BH procedure. To improve
power, [38] (ST) estimates the proportion of null hypothesis

π̂(λ) = min
{

1,
#{xi > λ; i = 1, . . . ,m}

m(1 − λ)

}
,

where λ is a tuning parameter. Let

k = max
{
i ∈ {0,1, . . . ,m + 1} : x(i) ≤ α

π̂(λ)

i

m

}
.

The ST procedure rejects all hypotheses for which xi ≤ x(k). If k = 0, no hypotheses will
be rejected. The bioconductor R package qvalue is used to obtain results based on the ST
procedure.

To incorporate auxiliary information in a data-adaptive way, [29] proposed the structure
adaptive BH algorithm (SABHA). Specifically, given a target FDR level α, a threshold τ ∈
[0,1], and values π̂01, . . . , π̂0m ∈ [0,1], where π̂0i represents an estimated probability that
the ith test corresponds to a null, define

k = max
{
i ∈ {1, . . . ,m}, xi ≤

(
α

π̂0i

i

m

)
∧ τ

}
.

Reject hypotheses with corresponding p-value xi satisfying

xi ≤
(

α

π̂0i

k

m

)
∧ τ.

We use the code provided in [29] to implement SABHA. [25] proposed to use two parame-
ters to estimate proportion of null hypothesis and number of rejections (Adaptive SeqStep).
Specifically, let A(λ, k) = ∑k

i=1 I (xi > λ) count p-values exceeding the threshold λ within
the first k ordered hypotheses and R(s, k) = ∑k

i=1 I (xi ≤ s) count number of rejections
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FIG. 5. Performance under skewed alternative distribution.

within the first k ordered hypotheses. Then the proportion of null hypotheses can be esti-
mated by

π̂(λ, k) = 1 + A(λ, k)

n(1 − λ)
.

The Adaptive SeqStep procedure thus works as follows: for some 0 ≤ s ≤ λ ≤ 1, reject all
hypotheses with xi ≤ s and H(i), i = 1, . . . , k̂AS , where H(i) are ordered hypotheses based on
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FIG. 6. Performance under correlated hypotheses.

p-values, and

k̂AS = max
{
k : FDPAS(k; s, λ) ≤ α

}
,

where

FDPAS(k; s, λ) = s

1 − λ

1 + A(λ, k)

R(s, k) ∨ 1
.
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FIG. 7. Performance under noisy auxiliary information.

We use the code provided in [25] for implementation. We also compare to the adaptive p-
value thresholding procedure (AdaPT) [26] and use the “adapt_glm” function in R package
“adaptMT” (v0.2.1.9000) with natural splines of 6 d.f. as covariates for both the null probabil-
ity and the alternative distribution. OrderShapeEM, AdaPT, SABHA and Adaptive SeqStep
are multiple testing procedures that incorporate auxiliary information.
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FIG. 8. The effect of the optimal rejection rule.

We evaluate the performance based on FDR control (empirical FDR) and power (true
positive rate, i.e., number of true positives divided by number of alternatives) with the tar-
get FDR level α = 0.05. Results are averaged over 100 replications (except for the global
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FIG. 9. Performance under a lower signal density (1%).

null where the number of replications is 2000) and the 95% confidence interval are re-
ported.

Additional simulation results. Figure 5 shows the numerical results when z-values un-
der the alternative hypothesis are from the noncentral gamma distribution. Figure 7 shows the

FIG. 10. FDR control under the global null.
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FIG. 11. Performance under varying f1.
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FIG. 12. Performance under varying f0.

numerical results when there is noise in the auxiliary information. Figure 8 compares Order-
ShapeEM to SABHA+, which uses the SABHA rejection rule and the mixing probabilities
estimated by OrderShapeEM. The setting is the same as Figure 2. Figure 9 and Figure 10
show the numerical results under a lower signal density and under a global null, respectively.
Figure 11 and Figure 12 show the numerical results under varying f1 and varying f0, respec-
tively. Figure 13 shows the performance with m = 500,100,2000. Figure 14 shows the FDR
control for AdaPT without the correction term (AdaPT+).
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FIG. 13. Performance under normal alternative distribution with m = 500,100,2000.

FIG. 14. Inadequate FDR control for AdaPT without the correction term (AdaPT+).
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