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Large-scale multiple testing is a fundamental problem in high dimen-
sional statistical inference. It is increasingly common that various types of
auxiliary information, reflecting the structural relationship among the hy-
potheses, are available. Exploiting such auxiliary information can boost sta-
tistical power. To this end, we propose a framework based on a two-group
mixture model with varying probabilities of being null for different hypothe-
ses a priori, where a shape-constrained relationship is imposed between the
auxiliary information and the prior probabilities of being null. An optimal
rejection rule is designed to maximize the expected number of true posi-
tives when average false discovery rate is controlled. Focusing on the ordered
structure, we develop a robust EM algorithm to estimate the prior probabili-
ties of being null and the distribution of p-values under the alternative hypoth-
esis simultaneously. We show that the proposed method has better power than
state-of-the-art competitors while controlling the false discovery rate, both
empirically and theoretically. Extensive simulations demonstrate the advan-
tage of the proposed method. Datasets from genome-wide association studies
are used to illustrate the new methodology.

1. Introduction. Large scale multiple testing refers to simultaneously testing of many
hypotheses. Given a prespecified significance level, family-wise error rate (FWER) controls
the probability of making one or more false rejections, which can be unduly conservative in
many applications. The false discovery rate (FDR) controls the expected value of the false
discovery proportion, which is defined as the ratio of the number of false rejections divided
by the number of total rejections. Benjamini and Hochberg (BH) [5] proposed a FDR control
procedure that sets adaptive thresholds for the p-values. It turns out that the actual FDR
level of the BH procedure is the multiplication of the proportion of null hypotheses and the
prespecified significance level. Therefore, the BH procedure can be overly conservative when
the proportion of null hypotheses is far from one. To address this issue, [38] proposed a two-
stage procedure (ST), which first estimates the proportion of null hypotheses and uses the
estimated proportion to adjust the threshold in the BH procedure at the second stage. From an
empirical Bayes perspective, [15] proposed the notion of local FDR (Lfdr) based on the two-
group mixture model. [39] developed a step-up procedure based on Lfdr and demonstrated
its optimality from the compound decision viewpoint.

The aforementioned methods are based on the premise that the hypotheses are exchange-
able. However, in many scientific applications, particularly in genomics, auxiliary informa-
tion regarding the pattern of signals is available. For instance, in differential expression anal-
ysis of RNA-seq data, which tests for difference in the mean expression of the genes between
conditions, the sum of read counts per gene across all samples could be the auxiliary data
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since it is informative of the statistical power [30]. In differential abundance analysis of mi-
crobiome sequencing data, which tests for difference in the mean abundance of the detected
bacterial species between conditions, the genetic divergence among species is important aux-
iliary information, since closely-related species usually have similar physical characteristics
and tend to covary with the condition of interest [45]. In genome-wide association studies,
the major objective is to test for association between the genetic variants and a phenotype
of interest. The minor allele frequency and the pathogenicity score of the genetic variants,
which are informative of the statistical power and the prior null probability, respectively, are
potential auxiliary data, which could be leveraged to improve the statistical power as well as
enhance interpretability of the results.

Accommodating auxiliary information in multiple testing has recently been a very active
research area. Many methods have been developed adapting to different types of structure
among the hypotheses. The basic idea is to relax the p-value thresholds for hypotheses that
are more likely to be alternative and tighten the thresholds for the other hypotheses so that the
overall FDR level can be controlled. For example, [17] proposed to weight the p-values with
different weights, and then apply the BH procedure to the weighted p-values. [20] developed
a group BH procedure by estimating the proportion of null hypotheses for each group sepa-
rately. [29] generalized this idea by using the censored p-values (i.e., the p-values that are
greater than a prespecified threshold) to adaptively estimate the weights that can be designed
to reflect any structure believed to be present. [22, 23] proposed the independent hypothesis
weighting (IHW) for multiple testing with covariate information. The idea is to use cross-
weighting to achieve finite-sample FDR control. Note that the binning in IHW is only to
operationalize the procedure and it can be replaced by the proposed EM algorithm below.

The above procedures can be viewed to some extent as different variants of the weighted-
BH procedure. Another closely related method was proposed in [26], which iteratively es-
timates the p-value threshold using partially masked p-values. It can be viewed as a type
of Knockoff procedure [2] that uses the symmetry of the null distribution to estimate the
false discovery proportion. A similar idea was explored in [46] which proposed a covariate
adaptive multiple testing procedure.

Along a separate line, Lfdr-based approaches have been developed to accommodate vari-
ous forms of auxiliary information. For example, [7] considered multiple testing of grouped
hypotheses. The authors proposed an optimal data-driven procedure that uniformly improves
the pooled and separate analyses. [40] developed an Lfdr-based method to incorporate spa-
tial information. [35, 42] proposed EM-type algorithms to estimate the Lfdr by taking into
account covariate and spatial information, respectively.

Other related works include [16], which considers the two-group mixture models with
side-information. [12] develops a method for estimating the constrained optimal weights
for Bonferroni multiple testing. [6] proposes an FDR-controlling procedure based on the
covariate-dependent null probabilities.

In this paper, we develop a new method along the line of research on Lfdr-based ap-
proaches by adaptively estimating the prior probabilities of being null in Lfdr that reflect aux-
iliary information in multiple testing. The proposed Lfdr-based procedure is built on the opti-
mal rejection rule as shown in Section 2.1 and thus is expected to be more powerful than the
weighted-BH procedure when the underlying two-group mixture model is correctly specified.
Compared to existing work on Lfdr-based methods, our contributions are three-fold. (i) We
outline a general framework for incorporating various forms of auxiliary information. This is
achieved by allowing the prior probabilities of being null to vary across different hypotheses.
We propose a data-adaptive step-up procedure and show that it provides asymptotic FDR con-
trol when relevant consistent estimates are available. (ii) Focusing on the ordered structure,
where auxiliary information generates a ranked list of hypotheses, we develop a new EM-type
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algorithm [11] to estimate the prior probabilities of being null and the distribution of p-values
under the alternative hypothesis simultaneously. Under monotone constraint on the density
function of p-values under the alternative hypothesis, we utilize the Pool-Adjacent-Violators
Algorithm (PAVA) to estimate both the prior probabilities of being null and the density func-
tion of p-values under the alternative hypothesis (see [19] for early work on this kind of
problems). Due to the efficiency of PAVA, our method is scalable to large datasets arising in
genomic studies. (iii) We prove asymptotic FDR control for our procedure and obtain some
consistency results for the estimates of the prior probabilities of being null and the alternative
density, which is of independent theoretical interest. Finally, to allow users to conveniently
implement our method and reproduce the numerical results reported in Sections 5-6, we
make our code publicly available at https://github.com/jchen1981/OrderShapeEM.

The problem we considered is related but different from the one in [18, 28], where the
authors seek the largest cutoff k£ so that one rejects the first £ hypotheses while accepts the
remaining ones. So their method always rejects an initial block of hypotheses. In contrast, our
procedure allows researchers to reject the kth hypothesis but accept the k — 1th hypothesis in
the ranked list. In other words, we do not follow the order restriction strictly. Such flexibility
could result in a substantial power increase when the order information is not very strong or
even weak, as observed in our numerical studies. Also see the discussions on monotonicity
in Section 1.1 of [35].

To account for the potential mistakes in the ranked list or to improve power by incor-
porating external covariates, alternative methods have been proposed in the literature. For
example, [31] extends the fixed sequence method to allow more than one acceptance before
stopping. [27] modifies AdaPT in [26] by giving analysts the power to enforce the ordered
constraint on the final rejection set. Though aiming for addressing a similar issue, our method
is motivated from the empirical Bayes perspective, and it is built on the two-group mixture
model that allows the prior probabilities of being null to vary across different hypotheses. The
implementation and theoretical analysis of our method are also quite different from those in
[27, 31].

Finally, it is also worth highlighting the difference with respect to the recent work [10]
which is indeed closely related to ours. First of all, our Theorem 3.3 concerns about the two-
group mixture models with decreasing alternative density, while Theorem 3.1 in [10] focuses
on a mixture of Gaussians. We generalize the arguments in [43] by considering a transformed
class of functions to relax the boundedness assumption on the class of decreasing densities.
A careful inspection of the proof of Theorem 3.3 reveals that the techniques we develop
are quite different from those in [10]. Second, we provide a more detailed empirical and
theoretical analysis of the FDR-controlling procedure. In particular, we prove that the step-
up procedure based on our Lfdr estimates asymptotically controls the FDR and provide the
corresponding power analysis. We also conduct extensive simulation studies to evaluate the
finite sample performance of the proposed Lfdr-based procedure.

The rest of the paper proceeds as follows. Section 2 proposes a general multiple testing
procedure that incorporates auxiliary information to improve statistical power, and establishes
its asymptotic FDR control property. In Section 3, we introduce a new EM-type algorithm
to estimate the unknowns and study the theoretical properties of the estimators. We discuss
two extensions in Section 4. Section 5 and Section 6 are devoted respectively, to simulation
studies and data analysis. We conclude the paper in Section 7. All the proofs of the main
theorems and technical lemmas are collected in the Appendix.

2. Covariate-adjusted multiple testing. In this section, we describe a covariate-
adjusted multiple testing procedure based on Lfdr.
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2.1. Optimal rejection rule. Consider simultaneous testing of m hypotheses H; for
i=1,...,m based on m p-values xy, ..., x,,, where x; is the p-value corresponding to the
ith hypothesis H;. Let 6;,i =1, ..., m indicate the underlying truth of the ith hypothesis. In
other words, 6; = 1 if H; is nonnull/alternative and 6; = 0 if H; is null. We allow the prob-
ability that 6; = 0 to vary across i. In this way, auxiliary information can be incorporated
through

(D) PO, =0)=mny, i=1,...,m.
Consider the two-group model for the p-values (see, e.g., [13] and Chapter 2 of [14]):
(2 xi|0;~A—=6)fo+6ifi, i=1,....m

where fy is the density function of the p-values under the null hypothesis and f; is the
density function of the p-values under the alternative hypothesis. The marginal probability
density function of x; is equal to

3) FHx) = moi fo(x) + (1 — o) f1(x).

We briefly discuss the identifiability of the above model. Suppose fj is known and bounded
away from zero and infinity. Consider the following class of functions:

By = {T= (7' ) with [ = fo+ (1 =) fi: min fi() =0,
Ofﬁ',-fl,mjnﬁ,-<1}.

Suppose f fe F,,, where the ith components of f and f are given by f =7 fo+ (1 —7;) f1
and f i = 77,'l fo+ 1 —75) f1 respectively. We show that if f i(x) = f (x) for all x and i, then
f1 (x)= f1 (x) and 77; = 7t; for all x and i. Suppose f1 (x")=0forsomex’ € [0,1].If 7; < 7;
for some i, then we have

_ﬂ@@_ﬁ—%+ﬂ—ﬁMU5>

fo&x")  1—m (I —1)fo(x)
which is a contradiction. Similarly, we get a contradiction when 7; > 7; for some i. Thus,
we have 77; = 7t; for all i. As there exists a i such that 1 —7; =1 — 7; > 0, it is clear that
J'(x) = f'(x) implies that fi(x) = f1(x).

In statistical and scientific applications, the goal is to separate the alternative cases (6; = 1)
from the null cases (§; = 0). This can be formulated as a multiple testing problem, with so-

“4)

lutions represented by a decision rule § = (61, ..., §,) € {0, 1}™. It turns out that the optimal
decision rule is closely related to the Lfdr defined as
70 fo(x) _ 7o; fo(x)

Lfdr;(x) == P =0|x; =x) = =—
woi fo(x) + (I —moi) fr(x) — f1(x)

In other words, Lfdr; (x) is the posterior probability that a case is null given the corresponding
p-value is equal to x. It combines the auxiliary information (7r¢;) and data from the current
experiment. Information across tests is used in forming fo(-) and f1(-).

Optimal decision rule under mixture model has been extensively studied in the literature;
see, for example, [4, 26, 41]. For completeness, we present the derivations below and remark
that they follow somewhat directly from existing results. Consider the expected number of
false positives (EFP) and true positives (ETP) of a decision rule. Suppose that x; follows the
mixture model (2) and we intend to reject the ith null hypothesis if x; < ¢;. The size and
power of the ith test are given respectively, by

amw=Aqmmm mdﬂmw=ﬁqﬁmm.
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It thus implies that

EFP(c) = ) moiei(c;) and ETP(¢) =) (1 — mo)Bi(ci),
i=1 i=1

where ¢ = (cq, ..., cp). We wish to maximize ETP for a given value of the marginal FDR
(mFDR) defined as

EFP(c
5) mFDR(¢) = ©

ETP(c) + EFP(c)’

by an optimum choice of the cutoff value ¢. Formally, consider the problem
(6) max ETP(c) subjectto mFDR(c) <.

A standard Lagrange multiplier argument gives the following result which motivates our
choice of thresholds.

PROPOSITION 2.1. Assume that f| is continuously nonincreasing, and fy is continu-
ously nondecreasing and uniformly bounded from above. Further assume that for a prespec-
ified a > 0,

(=70 /i) 1-a
min >

i 70 f0(0) o
Then (6) has at least one solution and every solution (C1, ..., Cy) satisfies

Lfdr; (¢;) = A

(N

for some X that is independent of i.

The proof of Proposition 2.1 is similar to that of Theorem 2 in [26] and we omit the details.
Under the monotone likelihood ratio assumption [8, 39],

(8) f1(x)/fo(x) is decreasing in x,

we obtain that Lfdr; (x) is monotonically increasing in x. Therefore, we may reduce our
attention to the rejection rule I{x; < ¢;} as

(9) 6 = I{Lfdri (x) < k}

for a constant A to be determined later.

2.2. Asymptotic FDR control. To fully understand the proposed method, we gradually
investigate its theoretical properties through several steps, starting with an oracle procedure
which provides key insights into the problem. Assume that {m¢;}_,, fo(-) and fi(-) are
known. The proposed method utilizes auxiliary information through {mo;}/"; and informa-
tion from the alternative through f7(-) in addition to information from the null, upon which
conventional approaches are based. In view of (9), the number of false rejections equals to

V(W) =Y I{Lfdr; (x;) <A}(1 —6;)
i=1

and the total number of rejections is given by

Dy o(h) =Y I{Lfdr; (x;) <A}
i=1
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Write a V b = max{a, b} and a A b = min{a, b}. We aim to find the critical value A in
(9) that controls the FDR, which is defined as FDR;,(A) = E{V;,(1)/(Dy0(A) vV 1)} at a
prespecified significance level . Note that

(10)  E[V,(W)] Zno, (Lfdr; (x;) < A|6; =0 =Z [Lfdr; (x)T{Lfdr; (x;) < A}].

An estimate of the FDR, (1) is given by
i1 Ldr; () I{Lfdr; (x;) < A}
I Lfdr () <A}

Let A, = sup{A € [0, 1] : FDR,,(A) < «}. Then reject H; if Lfdr; (x;) < A,,. Below we show
that the above (oracle) step-up procedure provides asymptotic control on the FDR under the
following assumptions.

(C1) Assume that for any A € [0, 1],

FDR,,(A) =

1 m
— § : Lfdr; (x;) <A} =% Do()),
m p—

1 m
— > " Lfdr; (xp)I{Lfdr; (x;) < A} = D1 (%),
m '’

i=1

and
1
(11) — V(W) =P D1(1),
m

where Dg and D are both continuous functions over [0, 1].
(C2) Write R(A) = D1(A)/Dg()r), where Dy and D; are defined in (C1). There exists a
roo € (0, 1] such that R(As) < .

We remark that (C1) is similar to those for Theorem 4 in [37]. In view of (10), (11) follows
from the weak law of large numbers. Note that (C1) allows certain forms of dependence, such
as m-dependence, ergodic dependence and certain mixing type dependence. (C2) ensures the
existence of the critical value A, to asymptotically control the FDR at level «. The following
proposition shows that the oracle step-up procedure provides asymptotic FDR control.

PROPOSITION 2.2. Under conditions (C1)-(C2),

limsupFDR,, (A;y) < c.

m—0o0

The proof of Proposition 2.2 is relegated in the Appendix. In the following, we mimic the
operation of the oracle procedure and provide an adaptive procedure. In the inference prob-
lems that we are interested in, the p-value distribution under the null hypothesis is assumed to
be known (e.g., the uniform distribution on [0, 1], or can be obtained from the distributional
theory of the test statistic in question). Below we assume fy is known and remark that our
result still holds provided that fy can be consistently estimated. In practice f1and {mo; }/L,

are often unknown and replaced by their sample counterparts. Let fl( ) and {7o; }/.; be the
estimators of fi(-) and {mo;};. | respectively. Define
i (1) = 70i fo(x) _ ﬂOifO(x),

foi fox) + (1 — 7o) fix)  fix)
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where f H(x) = Aroi fo(x) + (1 — 7g;) fl (x). A natural estimate of A,, can be obtained through

- Sup{/\ cro.1: Lfdr, (x)I{LEdr; (x;) < A} 3 a}'

I{Lfdrl (x;) <A}

Reject the ith hypothesis if LEdr; (x;) < Ap. This is equivalent to the following step-up pro-
cedure that was originally proposed in [39]. Let Lfdr(l y<---< L/far(m) be the order statistics
of {Lfdr1 (xp), . Lfdrm (xm)} and denote by H M ... H (’") the corresponding ordered hy-
potheses. Deﬁne

l%::max!lfifm ZLfdr(J)<(x}
j=l1

then reject all HY fori = 1,..., k.

We show that this step-up procedure provides asymptotic control on the FDR. To facilitate
the derivation, we make the following additional assumption.

(C3) Assume that
1 m
— Z Lfdr; (x;) — Lfdr; (x;)| —* 0.
m —

(C3) requires the Lfdr estimators to be consistent in terms of the empirical L| norm. We
shall justify Condition (C3) in Section 3.3.

THEOREM 2.3. Under Conditions (C1)—(C3),

lim sup FDR,;, () < cr.

m— 00

Theorem 2.3 indicates that we can obtain asymptotic control on the FDR using the data-
adaptive procedure when relevant consistent estimates are available. Similar algorithm has
been obtained in [39], where it is assumed that the hypotheses are exchangeable in the sense
that wo; = - - - = 7o,

3. Estimating the unknowns.

3.1. The density function f1(-) is known. We first consider the case that fo(-) and f(-)
are both known. Under such setup, we need to estimate m unknown parameters mg;,i =
1,...,m, which is prohibitive without additional constraints. One constraint that makes the
problem solvable is the monotone constraint. In statistical genetics and genomics, investiga-
tors can use auxiliary information (e.g., p-values from previous or related studies) to generate
a ranked list of hypotheses Hj, ..., H,, even before performing the experiment, where Hj is
the hypothesis that the investigator believes to most likely correspond to a true signal, while
H,, is the one believed to be least likely. Specifically, let I1g = (7o1, .- ., 7Ton) € (0, 1)™.
Define the convex set

M={l=(m1,....mtp) €O, 1D)":0<m <--- <7, <1}.

We illustrate the motivation for the monotone constraint with an example.
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EXAMPLE 3.1. Suppose that we are given data consisting of a pair of values (x;1, x;j2),
where x; represents the p-value, x;> represents auxiliary information and they are indepen-

dent conditional on the hidden true state 6; fori =1, ..., m. Suppose
ind , .
(12) xij | 6; = (I =6;) fo,j(xij) +0; f1,j(xij), i=1,....m,j=1,2,

where 6; = 1 if H; is alternative and 6; = 0 if H; is null, fy ;(-) is the density function of
p-values or auxiliary variables under the null hypothesis and f; ;(-) is the density function
of p-values or auxiliary variables under the alternative hypothesis. Suppose P (6; = 0) = 19

forall i =1, ..., m. Using the Bayes rule and the independence between x;; and x;» given
0;,i =1,...,m, we have the conditional distribution of x;{ | x;» as follows:
S (xin | xi2)

_ SGinxio |0 =010 + f(xin, xi2 |6 =11 — 70)

T fGil6 =010+ f(xi2 |6 = D(1 —10)

Sl =0)f(xi2 |6 =00+ f(xi1 |6 =1) f(xi2 | 6; = D1 — 70)
a fiz |0 =0)10 + f(xi2 | 6; = D(1 — 70)

_ Joa(xin) fop(xi2)to + f1,1(xi1) f1,2(xi2) (1 — 70)

B fo2(xi2)To + f1,2(xi2)(1 — 70)

= fo,1(xiDyo(xi2) + f1,1xin)(1 — yo(xi2)),

where
fo2(x)70 )
Yo(x) = 1 = f1.2(x) )
fo2(x)T0 + f1,2(x)(1 — 70) 0 + g (1= 1)

If f12(x)/f0.2(x) is a monotonic function, so is yp(x). Therefore, the order of x;» generates
a ranked list of the hypotheses Hy, ..., Hy,, through the conditional prior probability yp(x).

We estimate [Ty by solving the following maximum likelihood problem:

Iy = (o1, ..., Tom) = argmax [, (T1),
M=(my,...,mn)eM

(13) m
I (T1) := ) _log{m; fo(xi) + (1 =) fi(x)}.

i=1
It is easy to see that (13) is a convex optimization problem. Let ¢ (x,a) = afp(x) + (1 —
a) f1(x). To facilitate the derivations, we shall assume that fo(x;) # f1(x;) for all i, which
is a relatively mild requirement. Under this assumption, it is straightforward to see that for
any 1 <k <l <m, Zf’:k log ¢ (x;, a) is a strictly concave function for 0 < a < 1. Let dg =
argmax o, 1] Zﬁzk log ¢ (x;, a) be the unique maximizer. According to Theorem 3.1 of [32],
we have
(14) MTo; = mMax min dy;.

1<k<ii<l<m

However, this formula is not practically useful due to the computational burden when m is
very large. Below we suggest a more efficient way to solve problem (13). A general algorithm
when f] is unknown is provided in the next subsection. The main computational tools are the
EM algorithm for two-group mixture model and the Pool-Adjacent-Violator-Algorithm from
isotonic regression for the monotone constraint on the prior probability of null hypothesis
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[11, 33]. We provide the derivation of the EM algorithm from the full data likelihood in the
(t) 7%(52) be the solution at the zth iteration. Define

757 folx))
767 folxp) + (1= A i)

Appendix. In particular, let [T = (7,

0V =0V (3¢ =

o(mmn®) = Z {0 10g(mj) + (1 — Q) log(1 — )}

At the (¢ + 1)th iteration of the EM algorithm, we solve the following problem,

(15) n'Y = argmax  Q(III").

H:(”l ----- ”nz)eM
By Theorem 1.5.1 of [33] or Theorem 3.1 of [32], we only need to solve the isotonic regres-
sion problem

m
(16) H(Z+1) = argmin Z{Qy) - nJ }2'
MN=(my,..., Tm) EM =

The solution to (16) has an explicit form given by the max-min formula

b 0
A(1+1) _ Z j Q j
T~ =maxmin ————
a<i b>i b—a+ 1’
which can be obtained conveniently using the Pool-Adjacent-Violators Algorithm (PAVA)
[33]. Note that if Q(’) Qg) > .. (’) , then the solution to (16) is simply given by rr( D _
]:1 QE- ) /m for all 1 <i <m. As the EM algorithm is a hill-climbing algorithm, it is not

hard to show that /,,(IT®)) is a nondecreasing function of . .
We study the asymptotic consistency of the true maximum likelihood estimator 1y which
can be represented as (14). To this end, consider the model

. .
xi ~ woi fo+ (1 —mor) f1,  woi =mo(i/m), !

for some nondecreasing function mrg : [0, 1] — [0, 1]. Our first result concerns the point-wise
consistency for each 7g;. For a set A, denote by card(A) its cardinality.

THEOREM 3.1. Assume thatf(logfi(x))zfj (x)dx <oofori, j=0,1,and P(fo(x;) =
f1(xi)) =0. Suppose 0 < p(0) <mo(1) < 1. Forany € > 0,1let 0 <t’ <ig/m <t <1 such
that |mo(t") — mo(ip/m)| V |mo(t”) — mo(io/m)| < €/2. Denote Ay ={i :t' <i/m < iy/m}
and Ay = {i :ig/m <i/m < t"}. For card(Ay) A card(Ay) > N, we have

1
P(|7¢[0’,'0 — 70,y | < E) >1-— 0<m>

The condition on the cardinalities of A; and A, guarantees that there are sufficient ob-
servations around ip/m, which allows us to borrow information to estimate g ;, consis-
tently. The assumption P (fo(x;) = f1(x;)) = 0 ensures that the maximizer a;; is unique for
1 <k <[l <m.Itis fulfilled if the set {x € [0, 1] : fo(x) = fi1(x)} has zero Lebesgue mea-
sure. As a direct consequence of Theorem 3.1, we have the following uniform consistency
result of I1o. Due to the monotonicity, the uniform convergence follows from the pointwise
convergence.

IFor the ease of presentation, we suppress the dependence on m in ;.
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COROLLARY 3.2. For e > 0, suppose there exists a set i} < iy < --- < i, where each iy
satisfies the assumption for ig in Theorem 3.1 and that maxo<j<; (7o, i, — 70,i,_,) < €. Then
we have

I
P(llril?i(” |770,i — 70.i| < e) >1- 0(—62N>.

REMARK 3.1. Suppose g is Lipschitz continuous with the Lipschitz constant K. Then
wecansett” = (igp—1)/m+¢€/2K),t' = (ip + 1)/m — €/(2K) and thus N = |me/(2K)|.
Our result suggests that

. K
P(|7T0,i() _770,[()| < 6) >1-0(—=—),

e3m

which implies that |7 i, — 70,iy| = Op(m~1/3).

3.2. The density function fi(-) is unknown. In practice, f; and Iy are both unknown.
We propose to estimate f7 and [Ty by maximizing the likelihood, that is,

a7 (Mo, f1) = argmax " log{m fo(x) + (1 — ) fi(x)},
NeM, fieHi=1

where H is a prespecified class of density functions. In (17), H might be the class of beta
mixtures or the class of decreasing density functions. Problem (17) can be solved by Algo-
rithm 1. A derivation of Algorithm 1 from the full data likelihood that has access to latent
variables is provided in the Appendix. Our algorithm is quite general in the sense that it al-
lows users to specify their own updating scheme for the density components in (19). Both
parametric and nonparametric methods can be used to estimate fj.

In the multiple testing literature, it is common to assume that f] is a decreasing density
function (e.g., smaller p-values imply stronger evidence against the null); see, for example,
[24]. As an example of the general algorithm, let H denote the class of decreasing density
functions. We shall discuss how (19) can be solved using the PAVA. The key recipe is to use
Theorem 3.1 of [3] in obtaining f; evaluated at the observed p-values. Specifically, it can

Algorithm 1
0. Input the initial values (1@, £*).
1. E-step: Given (f1?), f)), let

0" = ﬂo,)fo(xz)
A e + (=2 O )

2. M-step: Given Ql@, update (I, f1) through

m
(18) (B A )= argmin (0" —m)?,
N=(71,....7m)EM j_1
and
m
(19) A = argmax Y (1 — 0) log f1 (x:).

fleM i=1

3. Repeat the above E-step and M-step until the algorithm converges.
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be accomplished by a series of steps outlined below. Define the order statistics of {x;} as
x(1) <x@) <+ < x(m). Let Q(g be the corresponding Ql@ that is associated with x;).

Step 1: The objective function in (19) only looks at the value of fi at x(;). The objective
function increases if f1(x(;)) increases, and the value of f} at (x(;_1), x(;)) has no impact on
the objective function (where xg) = 0). Therefore, if f maximizes the objective function,
there is a solution that is constant on (x¢;—1), X(;)].

Step 2: Let y; = f1(x(;)). We only need to find y; which maximizes

m

> (1— Q) log(y).

i=1
subject to y; > yp > --- >y, > 0and >/, yi(x4) — xi—1)) = L. It can be formulated as a
convex programming problem which is tractable. In Steps 3 and 4 below, we further translate
it into an isotonic regression problem.

Step 3: Write Q1) = = QS%). Consider the problem
mlnz (1- QZ; )log(yi) + QW yi(xiy — xi—1))}-

®
1-94)

The solution is given by y; = rraem——

which satisfies the constraint ;" | y; (x¢y —
xi-1) =1 in Step 2.

Step 4: Rewrite the problem in Step 3 as

— 0D (x4y — xi—1))
mlnz 8 {—log(yi)— a1 (I)Q(t))(l ) )’i}.
O]

This is the generalized isotonic regression problem considered in Theorem 3.1 of [3]. Let
0 (x4 — xi-1)) u_>2
-
(1- 0
subject to u1 > uy > - -+ > u,,. The solution is given by the max-min formula

A . =00 ey — xj-1)
s = maxmin — = o
- ' @)

which can be obtained using the PAVA. By Theorem 3.1 of [3], we arrive at the solution
to the original problem (19) by letting y; = —=-. Therefore, in the EM-algorithm, one can
employ the PAVA to estimate both the prior probablhtles of being null and the p-value density
function under the alternative hypothesis. Because of this, our algorithm is fast and tuning
parameter free, and is very easy to implement in practice.

(@y,...,0y) = argmin Z (1- QE:; (

3.3. Asymptotic convergence and verification of Condition (C3). In this subsection, we
present some convergence results regarding the proposed estimators in Section 3.2. Further-
more, we propose a refined estimator for 7, and justify Condition (C3) for the corresponding
Lfdr estimator. Throughout the following discussions, we assume that

xi~ fr=mol/m)fo+ (1 —moli/m)) fi

independently for 1 <i <m and mg : [0, 1] — [0, 1] with 7o (i /m) = mp;. Let F be the class
of densities defined on [0, 1]. For f, g € F, we define the squared Hellinger distance as

H(f.g) = %/01(\/f(X) —Je@)dx=1- /01 Jr g dx.
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Suppose the true alternative density f; belongs to a class of decreasing density functions
HCF. Let E={x:[0,1] - [0, l]0<8<7'[(0)<71’(1)<1—8<1 andn() is
nondecreasmg} and assume that 0 € &. Consider f T=7(@ /m) fo+ (1 — 7 (i/m)) f1 and
f =a(/m)fo+ 1A — n(z/m))fl forl<i<m, fi, f1 € H and 77, 7 € E. Define the aver-
age squared Hellinger distance between (7, f1) and (77, fl) as

m

1 ..
HZ (7, f), (7, 1) = mZH2 (f'. fh

Suppose (79, fl) is an estimator of (77g, f1) such that
Zlog(#) > 0
izl Sra) + f1 ()

where f1(x) = #o(i/m) fo(x) + (1 — #o(i /m)) f1(x). Note that we do not require (%o, f1)
to be the global maximizer of the likelihood. We have the following result concerning the
convergence of (7o, f1) to (7o, f1) in terms of the average squared Hellinger distance.

THEOREM 3.3. Suppose mg € B, fo =1, and f| € H. Under the assumption that
fol f11+“(x)dx < 00 for some 0 < a < 1, we have

P(Hu((0, f1), (o, f1)) > Mm~3) < My exp(—Mam!/3),

for some M, My and M, > 0. We remark that f1(x) = (1 —y)x™Y with 0 < y < 1 satisfies
fo f1+“(x)dx <ooforO<a</y —1) ALl

Theorem 3.3 follows from an application of Theorem 8.14 in [43]. By the Cauchy-
Schwarz inequality, it is known that

1
[ 1700 = gwlax 207002 = 12 f ).

Under the conditions in Theorem 3.3, we have
1 &l 2i i —1/3
(20) 3 [ 1@ = @] dx =0, (™).
i=1

However, mg and f; are generally unidentifiable without extra conditions. Below we focus
on the case fy = 1. The model is identifiable in this case if there exists an ag < 1 such
that fi(ap) = 0. If f] is decreasing, then f|(x) =0 for x € [ag, 1]. Suppose ap < 1. For a
sequence b, € (0, 1) such that

Sy i) dx m=1/3

=o(l),

as m — 400, we define the refined estimator for wo(i /m) as

o fi(x)dx

Ho(i/m) = .

L.
o | T s =t /m -+ (1= ot /m)
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Under (21), we have

1 m
— Y |Fo(i/m) — mo(i/m)|
m;3

(22)

(x)dx—/ f (x)dx

m<1 - m> +op)

1 Lo i _
< m;/o | (x) = fHx)|dx 4+ o0,(1) = 0p(1).

Given the refined estimator 77g, the Lfdr can be estimated by

(i /m) m)

JED)

As g, mp € E and thus are bounded from below, by (20) and (22), it is not hard to show that

Lfdr; (x;) =

1 & ol

23) h Zf ILFdr; (x) — Lfds; ()] dx = 0, (1).
m;zi70

Moreover, we have the following result which justifies Condition (C3).

COROLLARY 3.4. Suppose mg € B, fo =1, and f; € H. Further assume Dy in Condi-
tion (C1) is continuous at zero and (21) holds. Then Condition (C3) is fulfilled.

REMARK 3.2. Although b,, needs to satisfy (21) theoretically, the rate condition is of
little use in selecting b, in practice. We use a simple heuristic procedure that performs rea-
sonably well in our simulations. To motivate our procedure, we let 6 indicate the underlying
truth of a randomly selected hypothesis from {H; };" |- Then we have

PO =0)= ZP(G =0)= Zno(l/m) = T
i=1 i=1
Without knowing the order information, the p-values follow the mixture model 7, fo(x) +
(1 — 7y) f1(x). The overall null proportion 77, can be estimated by classical methods such
as those proposed by [36] (in practice, we use the maximum of the two Storey’s global
null proportion estimates in the gvalue package for more conservativeness). Denote the
corresponding estimator by 7. Also denote 7 = m™! Yo 7o(i/m), where 7to(i/m) =
70(i/m)+8(1 —o(i /m)) is the calibrated null probability and § is the amount of calibration,
which is a function of b,,. Then it makes sense to choose b, € [0, 1] such that the difference
|77 — 7] is minimized. This results in the procedure that if the mean of 7o (i /m)’s from the EM
algorithm (denote as 77) is greater than the global estimate 7, 77o(i /m) = 79(i /m), and if the
mean is less than 77, then 779 (i /m) = 7o (i /m) + 8 (1 — 729 (i /m)), where § = (7 — ) /(1 — 7).

3.4. Asymptotic power analysis. We provide asymptotic power analysis for the proposed
method. In particular, we have the following result concerning the asymptotic power of the
Lfdr procedure in Section 2.2.

THEOREM 3.5. Suppose Conditions (C1)—(C3) hold and additionally assume that

1 m
— > 1{6; =0} - o,
m:

l m
_E: {6; = 1, Lfdr; (x;) <A} =7 Dy(M),
m
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for a continuous function D> of A on [0,1]. Let Ag be the largest A € [0, 1] such that R(A) < «
and for any small enough €, R(Ag — €) < a. Then we have

7L 16 = 1, Lidr; () < Am} _, Da(ho)
Powery sqr 1= o — .
e =11 v1 1 — ko
Recall that in Section 2.1, we have shown that the step-up procedure has the highest ex-
pected number of true positives amongst all «-level FDR rules. This result thus sheds some
light on the asymptotic optimal power amongst all «-level FDR rules when the number of
hypothesis tests goes to infinity.

REMARK 3.3. Under the two-group mixture model (1)—(2) with mo; = mo(i/m) for
some nondecreasing function 7y, we have m~! "L PO =0) = m~! mo(i/m) —
fol 1o (x) dx as monotonic functions are Riemann integrable. Thus «o = fol o (x) dx. Define
g(x) =sup{r € [0, 11: f1(1)/fo(t) > x} and w(, x) = % Denote by F; the distribu-
tion function of f;. Then we have

1 m
— > P(6; =1,Lfdr;(x;) <A) =
m:z

P(6; = 1) P(Lfdr; (x;) < A6 = 1)

S|
N

1

™

Il
—_

(1 =mo(i/m))Frogow(hr,i/m)

1
— f (1 —mo(x))F1 0 gow(h,x)dx,
0
where “o” denotes the composition of two functions, and we have used the fact that F1 o gow
is monotonic and thus Riemann integrable. So D> () = fol (1 —mex))Frogow(r,x)dx.

4. Two extensions.

4.1. Grouped hypotheses with ordering. Our idea can be extended to the case where the
hypotheses can be divided into d > 2 groups within which there is no explicit ordering but
between which there is an ordering. One can simply modify (18) by considering the problem,

m
(24) (Ror s oo Fgg ) =argmin Y {0 — ().
j=1

subject to 0 <my <-.- <my <1, where s(j) € {1,2,...,d} is the group index for the jth
hypothesis. A particular example is about using the sign to improve power while controlling
the FDR. Consider a two-sided test where the null distribution is symmetric and the test
statistic is the absolute value of the symmetric statistic. The sign of the statistic is independent
of the p-value under the null. If we have a priori belief that among the alternatives, more
hypotheses have true positive effect sizes than negative ones or vice versa, then sign could be
used to divide the hypotheses into two groups such that 71 < 7> (or 7y > m2).

2This optimization problem can be solved by slightly modifying the PAVA by averaging the estimators within
each group.
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4.2. Varying alternative distributions. Inmodel (1), we assume that the success probabil-
ities mo;, i = 1, ..., m vary with i while F} is independent of i. This assumption is reasonable
in some applications but it can be restrictive in other cases. We illustrate this point via a sim-
ple example described below.

EXAMPLE 4.1. For1 <i <m, let {x,-k}zi: | be n; observations generated independently
from N (u;, 1). Consider the one sided z-test Z; = ./n;x; with x; = ni_l Zzizl Xij for testing
H,'()Z,u,' =0 vs H,‘ail,Ll' < 0.

The p-value is equal to p; = ®(/n;X;) and the p-value distribution under the alternative
hypothesis is given by

Fij(0) = ®(®7' (1) = Vi),
with the density

(@ () — i) exp<2‘/"—iui<1>‘(x) — nm?)
P (@~1(x)) 2 '

By prioritizing the hypotheses based on the values of ,/n; 1;, one can expect more discover-

ies. Suppose

flilx) =

2 2 2 3
NI Snpuy < - Sy flhyy,.

One can consider the following problem to estimate 7 and p; simultaneously,

d 2ri ®~ Y (pi) — 1}
argmax Zlog{n—i—(l—n)exp( fi (pi) = 1; )}

mel0,1],rm<rm—1==<r1<0;_ 2

This problem can again be solved using the EM algorithm together with the PAVA.

Generally, if the p-value distribution under the alternative hypothesis, denoted by Fj;, is
allowed to vary with i, model (1)-(2) is not estimable without extra structural assumptions as
we only have one observation that is informative about Fp;. On the other hand, if we assume
that Fy; := F i/, which varies smoothly over i, then one can use nonparametric approach
to estimate each Fy ;/, based on the observations in a neighborhood of i /m. However, this
method requires the estimation of m density functions at each iteration, which is computa-
tionally expensive for large m. To reduce the computational cost, one can divide the indices
into K consecutive bins, say Si, 52, ..., Sk, and assume that the density remains unchanged
within each bin. In the M-step, we update fj; via

(25) ATV =argmax Y (1 - 0Y)log fi (x)),
fieH jes;

fori =1,2,..., K. For small K, the computation is relatively efficient. We note that this
strategy is related to the independent hypothesis weighting proposed in [22, 23], which di-
vides the p-values into several bins and estimate the cumulative distribution function (CDF)
of the p-values in each stratum. Our method is different from theirs in the following aspect:
the estimated densities will be used in constructing the optimal rejection rule, while in their
procedure, the varying CDF is used as an intermediate quantity to determine the thresholds
for p-values in each stratum. In other words, the estimated CDFs are not utilized optimally
in constructing the rejection rule.

3This is the case if uj=pandny <np <---<np.
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5. Simulation studies.

5.1. Simulation setup. We conduct comprehensive simulations to evaluate the finite-
sample performance of the proposed method and compare it to competing methods. For
simplicity, we directly simulate z-values for m = 10,000 hypotheses. All simulations are
replicated 100 times except for the global null, where the results are based on 2000 Monte
Carlo replicates. We simulate different combinations of signal density (the percentage of al-
ternative) and signal strength (the effect size of alternative) since these are two main factors
affecting the power of multiple testing procedures. We first generate the hypothesis-specific
null probability (7¢;), upon which the truth, that is, null or alternative, is simulated. After-
wards, we generate z-values based on the truth of the hypothesis. We first use mg; as the
auxiliary covariate. Later, we will study the effect of using noisy mg; as auxiliary covariate.
Three scenarios, representing weakly, moderately and highly informative auxiliary informa-
tion, are simulated based on the distribution of m(; (Figure 1(a)), where the informativeness
of the auxiliary covariate is determined based on its ability to separate alternatives from nulls
(Figure 1(b)). In the weakly informative scenario, we make ;s similar for all hypotheses
by simulating mp;’s from a highly concentrated normal distribution (truncated on the unit
interval [0, 1])

moi ~ Nc (i, 0.0052).

In the moderately informative scenario, we allow mg; to vary across hypotheses with moderate
variability. This is achieved by simulating mp;’s from a beta distribution

mo; ~ Beta(a, b).

In the highly informative scenario, mp;’s are simulated from a mixture of a truncated normal
and a highly concentrated truncated normal distribution

woi ~ T Ne (int, o) + (1 — ) Ne (wna, 0.0052),

Signal density Signal density )
Low High R Low - High s
(Large pi0) (Small pi0) o (Large pi0) (Small pio) 2
[oN

754 20 1.00 4 — — —T— g o
50+ £8 0.75 - =g
254 %] % N g
> 0.50 + >

‘ 025 - $ A
- 0.00 - ®
204 1.00 4 @
>, 15- 8 = #’ o
240 5 0.75 - ]
c > (=} ;
o 54 = 8050 - ©
£ 0.25 - S
2 £
= 0.00 - =
754 5 1.00 4 5
50- D:. 0.75 - —_— o
25+ — i =~
.8 0.50 «2

o Q [v]
S 2 0.25 - g =
£
P e e F S 000 4 ; ; ! ! : 2
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Fi1G. 1. Simulation Strategy. (a) The distribution of probabilities of being null (wo;,i =1, ..., m) for three
scenarios representing weakly, moderately and highly informative auxiliary information (from bottom to top).
Different levels of signal density are simulated. (b) Distribution of the realized 1y for alternatives and nulls from
one simulated dataset.
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which represents two groups of hypotheses with strikingly different probabilities of being
null. Since the expected alternative proportion is 7" | (1 — mo;)/m, we adjust the parameters
U, a, b, Ty, Unt, 0}%1 and 2 to achieve approximately 5%, 10% and 20% signal density
level. Figure 1(a) shows the distribution of mg; for the three scenarios. Based on my;, the
underlying truth 6; is simulated from

6; ~ Bernoulli(1 — ;).

Figure 1(b) displays the distribution of mg; for 8;= 1 and 6;= 0 from one simulated dataset.
As the difference in mg; between Hy and Hy gets larger, the auxiliary covariate becomes more
informative. Finally, we simulate independent z-values using

zi ~ N(ks0;, 1),

where k; controls the signal strength and k; = 2,2.5 and 3 are chosen to represent weak,
moderate and strong signal, respectively. We convert z-values to p-values using the formula
pi = 1 —®(z;). The proposed method accepts p-values and 7rq; s as input. The specific param-
eter values mentioned above could be found in https://github.com/jchen1981/OrderShapeEM.

To examine the robustness of the proposed method, we vary the simulation setting in dif-
ferent ways. Specifically, we investigate:

1. Skewed alternative distribution. Instead of simulating normal z-values for the alternative
group, we simulate z-values from a noncentral gamma distribution with the shape parame-
ter k = 2. The scale and noncentrality parameters of the noncentral gamma distribution are
chosen to match the mean and variance of the normal distribution for the alternative group
under the basic setting.

2. Correlated hypotheses. Our theory allows certain forms of dependence. We then simulate
correlated z-values, which are drawn from a multivariate normal distribution with a block
correlation structure. The order of 7p; is random with respect to the block structure. Specif-
ically, we divide the 10,000 hypotheses into 100 blocks and each block is further divided
into two sub-blocks of equal size. Within each sub-block, there is a constant positive cor-
relation (p = 0.5). Between the sub-blocks in the same block, there is a constant negative
correlation (p = —0.5). Hypotheses in different blocks are independent. We use p = 8 to
illustrate. The correlation matrix is

1 0.5 0.5 05 -05 -05 —-05 —-05
0.5 1 0.5 05 -05 -05 —-05 -05
0.5 0.5 1 05 -05 -05 —-05 —-05
0.5 0.5 0.5 1 -05 -05 -05 -0.5
-05 —-05 —-05 -05 1 0.5 0.5 0.5
-05 -05 —-05 —-05 05 1 0.5 0.5
-05 -05 —-05 —-05 05 0.5 1 0.5
-05 -05 —-05 —-05 05 0.5 0.5 1

3. Noisy auxiliary information. In practice, the auxiliary data can be very noisy. To exam-
ine the effect of noisy auxiliary information, we shuffle half or all the mg;, representing
moderately and completely noisy order.

4. A smaller number of alternative hypotheses and a global null. 1t is interesting to study the
robustness of the proposed method under an even more sparse signal. We thus simulate
1% alternatives out of 10,000 features. We also study the error control under a global null,
where all the hypotheses are nulls. Under the global null, We increased the number of
Monte Carlo simulations to 2000 times to have a more accurate estimate of the FDR.
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(a) FDR control
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FIG. 2.  Performance under normal alternative distribution.

Weak Moderate Strong
Order Informativeness

Weak Moderate Strong

Weak Signal Moderate Signal Strong Signal
0.08 1
0.06 4 @
o - - R s o = = B
0.04 1 (g’
=]
I
0.02 -
)
©
E. 0.004 - - Method
£ 0.08 1
2 B ordershapeem
g 0061 3 [0 AdePT
a r - T LD C o™ T E - X
o 0.041 o [ sasHA
= E B Adaptiveseqst
u“_’ 0.021 o aptiveSeqStep
= | X
-2 0.004
5 ST
E‘ 0.08 .
1T}
0.06 1 N
- g P, L - - JE _ 8
0.04 1 %]
S
0.021 E
000- T T T T T T T T T
Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong
Order Informativeness
(b) power comparison
Weak Signal Moderate Signal Strong Signal
0.6 1
o
=X
0.44 (%)
«Q
3
N H. I lll )
0.0 W mm h.- . .
Method
[0 4
g 08 B ordershapeEm
o 061 3 [ agePT
= =X
% 041 2 [ snsha
]
o 0. I I s . AdaptiveSeqStep
o U029
2 BH
E .ol A ._l _ _ |
0.0 [ st
0.754
N
2
0.50 1 ;
o
=]
0.001 - - -

5. Varying f1 across alternative hypotheses. We consider the case where among the alter-
native hypotheses, the most promising 20% hypotheses (i.e., those with the lowest prior
order) follow Unif(0, 0.02) and the remaining p-values are derived from the z-values (see
the setting of Figure 2).

6. Varying fo across null hypotheses. Similar to the case of varying fi, we sample the p-
values of 20% of the null hypotheses with the highest prior order from Unif(0.5, 1), which
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mimics the composite null situations. The remaining p-values are derived from the z-
values as above.

We compare the proposed method (OrderShapeEM) with classical multiple testing meth-
ods that do not utilize external covariates (BH and ST) and recent multiple testing procedures
that exploit auxiliary information (AdaPT, SABHA, AdaptiveSeqStep). Detailed descriptions
of these methods are provided in the Appendix. The FDP estimate of AdaPT involves a finite-
sample correction term +1 in the numerator. The +1 term yields a conservative procedure
and could lose power when the signal density is low. To study the effect of the correction
term, we also compared to AdaPT+, where we removed the correction term +1 in the nu-
merator. However, we observed a significant FDR inflation when the signal density is low,
see Figure 14 in the Appendix. We thus compared to AdaPT procedure with correction term
throughout the simulations.

5.2. Simulation results. We first discuss the simulation results of Normal alternative dis-
tribution. In Figure 2, we present FDR control and power comparison with different methods
when z-values under the null hypothesis follow N (0, 1) and z-values under the alternative
hypothesis follow a normal distribution. In Figure 2(a), the dashed line indicates the prespec-
ified FDR control level 0.05 and the error bars represent empirical 95% confidence inter-
vals. We observe that all procedures control the FDR sufficiently well across settings and no
FDR inflation has been observed. Adaptive SeqStep is conservative most of the time espe-
cially when the signal is sparse and the auxiliary information is weak or moderate. AdaPT
is conservative under sparse signal and weak auxiliary information. The proposed procedure
OrderShapeEM generally controls the FDR at the target level with some conservativeness
under some settings. As expected, ST procedure controls the FDR at the target level while
BH procedure is more conservative under dense signal. In Figure 2(b), we observe that Order-
ShapeEM is overall the most powerful when the auxiliary information is not weak. When the
auxiliary information is weak and the signal is sparse, OrderShapeEM could be less powerful
than BH/ST. Close competitors are AdaPT and SABHA. However, AdaPT is significantly
less powerful when the signal is sparse and the auxiliary information is weak. AdaPT is also
computationally more intensive than the other methods. SABHA performs well when the sig-
nal is strong but becomes much less powerful than OrderShapeEM and AdaPT as the signal
weakens. Adaptive SeqStep has good power for dense signal and moderate to strong auxil-
iary information. However, it is powerless when auxiliary information is weak. If auxiliary
information is weak, SABHA, ST and BH have similar power, while Adaptive SeqStep has
little power. Under this scenario, incorporating auxiliary information does not help much. All
methods become more powerful with the increase of signal density and signal strength.

Results for the other settings are included in the Appendix. Briefly, results based on Skewed
alternative distribution and Noisy auxiliary information (Figures 5-7) have similar patterns.
OrderShapeEM has adequate FDR control under a smaller number of alternative hypotheses
and a global null (Figures 9-10). Under varying f1, we observe slight inflation for the pro-
posed method under some scenarios especially when the signal density is low (Figure 11). On
the other hand, under varying fy, the proposed method suffers from severe power deteriora-
tion (Figure 12). Although our method offers asymptotic FDR control and we have observed
adequate FDR control at m = 10,000, it is interesting to study the performance at a smaller
m. We thus tried m = 500, 1000 and 2000 under the same setup as in Figure 2 with a medium
signal density. The results are summarized in Figure 13. We observe small FDR inflation for
these sample sizes and the inflation increased with smaller sample sizes, particularly for a
weaker signal and less informative prior. We thus recommend using our method when m is
not small (e.g., m > 1000). Since our theory depends on the independence between hypothe-
ses, we also study the robustness of OrderShapeEM to correlated hypotheses. The simulation
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setup is described in Section 5.1. From Figure 6(a), we observe that there is more variability
across the replications indicated by a wider confidence interval of the empirical FDR and
power. OrderShapeEM is more conservative under the correlated hypotheses. With respect to
power (Figure 6(b)), when the signal is strong, it could be less powerful than BH/ST. How-
ever, when the signal becomes weaker and the auxiliary data is informative, OrderShapeEM
is more powerful than BH/ST but is less powerful than AdaPT and SABHA.

Since OrderShapeEM consists of two components: (1) the estimation of the mixing prob-
abilities and the alternative distribution using PAVA, and (2) the optimal rejection rule, it is
interesting to study the contribution of each component. We thus apply the SABHA rejection
rule using the mixing probabilities from OrderShapeEM (denoted as “SABHA+""), and com-
pare to SABHA and OrderShapeEM. In Figure 8 (see “Additional simulation results”), we
observe that SABHA and SABHA+ have a similar performance across settings, while the Or-
derShapeEM, which uses the optimal rejection rule, is much more powerful than SABHA+
and SABHA under weak signal. The results suggest that the performance improvement of
OrderShapeEM is largely contributed by the proposed optimal rejection rule. Therefore, the
power loss of SABHA under weak signal is likely due to the inefficiency of its rejection rule.

6. Data analysis. We illustrate the application of our method by analyzing data from
publicly available genome-wide association studies (GWAS). We use datasets from two large-
scale GWAS of coronary artery disease (CAD) in different populations (CARDIoGRAM and
C4D). CARDIoGRAM is a meta-analysis of 14 CAD genome-wide association studies, com-
prising 22,233 cases and 64,762 controls of European descent [34]. The study includes 2.3
million single nucleotide polymorphisms (SNP). In each of the 14 studies and for each SNP,
a logistic regression of CAD status was performed on the number of copies of one allele,
along with suitable controlling covariates. C4D is a meta-analysis of 5 heart disease genome-
wide association studies, totaling 15,420 CAD cases and 15,062 controls [9]. The samples
did not overlap those from CARDIoGRAM. The analysis steps were similar to CARDIo-
GRAM. A total of 514,178 common SNPs were tested in both the CARDIoGRAM and C4D
association analyses. Dataset can be downloaded from http://www.cardiogramplusc4d.org.
Available data comprise of a bivariate p-value sequence (x1;, x2;), where x1; represents p-
values from the CARDIOGRAM dataset and x»; represents p-values from the C4D dataset,
i=1,...,514,178.

We are interested in identifying SNPs that are associated with CAD. Due to the shared ge-
netic polymorphisms between populations, information contained in x;1 can be helpful in the
association analysis of x»; and vice versa. We thus performed two separate analyses, where
we conducted FDR control on x; and xp; respectively, using x2; and x;; as the auxiliary
covariate.

In the analysis, we compare the proposed OrderShapeEM, robust method that incorporates
auxiliary information (SABHA) and method that does not incorporate auxiliary information
(ST). As BH was outperformed by ST and Adaptive SeqStep by SABHA, we only included
ST and SABHA in the comparison. AdaPT was not able to complete the analysis within 24
hours and was not included either. The results are summarized in Figure 3. From Figure 3(a),
we observe that at the same FDR level, the proposed OrderShapeEM made significantly more
discoveries than SABHA and ST. SABHA procedure, which incorporates the auxiliary infor-
mation, picked up more SNPs than the ST procedure. The performance of OrderShapeEM is
consistent with the weak signal scenario, where a significant increase in power has been ob-
served (Figure 2(b)). Due to disease heterogeneity, signals in the genetic association studies
are usually very weak. Thus, it can be extremely helpful to incorporate auxiliary informa-
tion to improve power. The power difference becomes even larger at higher target FDR level.
Figure 3(b) shows similar patterns.
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FIG. 3. Comparison of the number of discoveries at different prespecified FDR level (left panels) as well as
the estimates of 7wy (middle panels) and f| (right panels). (a) Analysis of C4D data with CARDIoGRAM data as
auxiliary information; (b) Analysis of CARDIoGRAM data with CAD data as auxiliary information.

Overlap of SNPs with FDR < 0.001

OrderShapeEM OrderShapeEM
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(CARDIoGRAM)

FI1G. 4. Venn diagram showing the overlap of significant SNPs (FDR < 0.001) between methods using or not
using auxiliary information. Left to right: ST procedure on CAD data; OrderShape EM on CAD data with CARDIo-
GRAM data as auxiliary; OrderShapeEM on CARDIoGRAM data with C4D data as auxiliary; and ST procedure
on CARDIoGRAM data.
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To further examine the identified SNPs based on different methods, Figure 4 shows the
overlap of significant SNPs via the Venn diagram at FDR level 0.001. We observe that there
was a significant overlap of associated SNPs between the two datasets, indicating a shared
genetic architecture between the two populations. By using auxiliary information, Order-
ShapeEM recovered almost all the SNPs by ST procedure, in addition to many other SNPs
that were missed by the ST procedure. Interestingly, for the 19 + 21 = 40 SNPs that were
identified by OrderShapeEM only, most of them were located in genes that had been reported
being associated with phenotypes or diseases related to the cardiovascular or metabolic sys-
tem. It is well known that metabolic disorders such as high blood cholesterol and triglyceride
levels are risk factors for CAD.

7. Summary and discussions. We have developed a covariate-adjusted multiple testing
procedure based on the Lfdr and shown that the oracle procedure is optimal in the sense of
maximizing the ETP for a given value of mFDR. We propose an adaptive procedure to es-
timate the prior probabilities of being null that vary across different hypotheses and the dis-
tribution function of the p-values under the alternative hypothesis. Our estimation procedure
is built on the isotonic regression which is tuning parameter free and computationally fast.
We prove that the proposed method provides asymptotic FDR control when relevant con-
sistent estimates are available. We obtain some consistency results for the estimates of the
prior probabilities of being null and the alternative density under shape restrictions. In finite
samples, the proposed method outperforms several existing approaches that exploit auxiliary
information to boost power in multiple testing. The gain in efficiency of the proposed proce-
dure is due to the fact that we incorporate both the auxiliary information and the information
across p-values in an optimal way.

Our method has a competitive edge over competing methods when the signal is weak
and the auxiliary information is moderate/strong, a practically important setting where power
improvement is critical and possible with the availability of informative prior. However, when
the auxiliary information is weak, our procedure could be less powerful than the BH/ST
procedure. The power loss is more severe under strong and sparse signals. To remedy the
power loss under these unfavorable conditions, we recommend testing the informativeness
of the prior order information before the application of our method using, for example, the
testing method from [21]. We could also examine the 77 plot after running our algorithm.
If 71o’s lack variability, which indicates the auxiliary information is very weak, our method
could be less powerful than BH/ST and we advise against using it.

Our method is also robust across settings with a very moderate FDR inflation under small
feature sizes. However, there are some special cases where our approach does not work well
due to the violation of assumptions. In the varying alternative scenario, as suggested by one
of the reviewers, we did observe some FDR inflation. We found this only happens when
the order information has inconsistent effects on the mg and f; (i.e., the more likely the
alternative hypothesis, the smaller the effect size). We did not find any FDR inflation if the
order information has consistent effects (i.e., the more likely the alternative hypothesis, the
larger the effect size). We believe such inconsistent effects may be uncommon in practice.
In the varying null scenario, we observed a severe deterioration of the power of our method
and it has virtually no power when the signal is sparse. This is somewhat expected since our
approach assumes a uniformly distributed null p-value. Therefore, we should examine the
p-value distribution before applying our method. We advise against using our method if we
see a substantial deviation from the uniform assumption based on the right half of the p-value
distribution.

There are several future research directions. For example, it is desirable to extend our
method to incorporate other forms of structural information such as group structure, spatial
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structure or tree/hierarchical structure. Also, the proposed method is marginal based and it
may no longer be optimal in the presence of correlations. We leave these interesting topics
for future research.
APPENDIX
We provide proofs of all mathematical claims and additional simulation results.
Proof of Proposition 2.2. The following lemma can be proved using similar arguments

as in the proof of the (weak) Glivenko-Cantelli theorem (see e.g. [44]) and we omit the details
here. Define

Dpo(h) = % > 1{Lfdr; (x;) <1},

i=1

Dy i(V) == % > Lidr; (x;)1{Lfdr; (x;) < A},

i=1

Ry (X) = D 1 () / Dy o(R).

LEMMA A.1. Under Condition (C1), we have

sup | Dy 0(A) — Do(L)| =70,

A€[0,1]
sup ’Dm,l()\) - Dl()\)| —70,
1€[0,1]
sup |Vin(A)/m — D1(X)| =7 0.
r€[0,1]

LEMMA A.2. Under Conditions (C1)-(C2),
sup |Ru(x) — R(x)| =70,

X>Aoo

and

sup |Viu(x)/Dm.o(x) — R(x)| =7 0.

X>Aoo

PROOF OF LEMMA A.2. By the monotonicity of Dy, miny>;  Do(x) = Do(As) > 0 as
D1(Moo)/Do(Aso) < . Then we have

‘Dm,l(x) _ Di(»)
Dpo(x)  Do(x)
. ‘ (D, 1(x) — D1(x))Do(x) — D1(x)(Dp,0(x) — Do(x))
a Do(x) Dy 0(x)
= DoM)[Dp,1(x) = D1 (x)[ + D1 (D[ Dm0 (x) — Do(x)]
= Do(Aoo){Do(x) = sup; =, [Dm,o(A) — Do(M) !}
- Do(1) sup; >, [Dm,1(A) — Di(M)[+ Di(1)sup; >, |Dm.o(A) — Do(1)]
- Do(Aoo){Do(Aoo) — Supy =y . [Dm,0(A) — Do(2)}

uniformly for any x > Ao. Similar argument shows the other result. [J

-7’0




830 H. CAO, J. CHEN AND X. ZHANG

PROOF. Sete=«a — R(’Aso). By Lemma A.2,
P(|Rn(koo) — R(hoo)| < €/2) — 1,

which implies that P(R;,(Aso) < &) — 1. Thus, P(A,; > Aso) — 1 by the definition of A,,.
Then we have

{Rm()\m) - Vm()\m)/Dm,O()\m)}
= )L1>I}Lf {Rm A) — Vi ()\)/Dm,O()\)}

= inf {Rn(A) = RO + R(A) = Viu (W) / D,o(M)} = 0p(1)

o0

by Lemma A.2. As R, (Ay) < «, this implies that
Vin ()\m)/{Dm,O()\m) Vv 1} < Vi) /Di,o(Am) <o + Op(l)-
AS V(M) /{Dm,o(AMm) V 1} < 1, by Lemma A.3 below, we obtain

lim sup FDR,, (Ay) = limsup E[V,y (An)/{ Dim.o(Am) Vv 1}] < .

m—>—+00 m——+00 O

LEMMA A.3. Consider the random sequence {(Xn, Yim)}m. Suppose X, < Co and
Xm <o+ Yy, where Yy, = 0,(1) and Cy is some constant. Then we have

limsup E[X,] < «.
m
PROOF OF LEMMA A.3. Note that here exists a subsequence X,, such that

limsup,, E[X,,] =1lim; E[X,,,]. Along this subsequence, we can pick a further subsequence
Y K such that Ymkj — % 0. Thus with probability one,

lim sup kaj <limsup Ymkj +a=a.
J J

As kaj < Cp, by Fatou’s lemma,

limsup E[X,,] =limsup E[X,,, ] < E[limsupka,] <a.
m j J j J O

Proof of Theorem 2.3. Define

—~ 12 —
Dm,()()\.) = Z Zl{Lfdl‘l’ (x) < )\,},
i=1

~ | L —
Din,1(3) = — > Lidr; (x;)1{Lfdr; (x;) < A},
i=1

Rn(A) = D1 (1) / Do (O0).

LEMMA A.4. Under Conditions (C1) and (C3), we have

(26) sup |D.o(A) — Do(x)| =7 0,
A>Aoo
(27) sup | Dy 1 (M) — Di(A)| =P 0.

A>Aoo
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PROOF OF LEMMA A.4. We only prove (27) as the proof for (26) is similar. In view of
Lemma A.1, we only need to show that

sup [Dim,1(X) = D1 (V)| =7 0.

A>Aso
To this end, we note that
Sup | Dy, 1 (M) — Dyt (V)]
A>Aso
< sup ZLfdrl (x)1{Lfdr; (x;) <A} — — ZLfdr, (xi)1{Lfdr; (x;) < A}
AZhoo | 1T i=1 i=1
+ sup ZLfdr, (xp)1{LEdr; (x;) <A} — — ZLfdr, (x)1{Lfdr; (x;) < A}
AZhoo| i=1 m; i=1

neo__ 1 & —
<m~" > |Lfdr; (x;) — Lfdr; (x;)] + sup — > |1{Lfdr; (x;) < A} — 1{Lfdr; (x;) < A},
i=1 hzhoo ;2

where the first term in the last line converges to zero in probability by Condition (C3). To
deal with the second term, notice that for any 0 < € < Ax/2,

— Z\l Lfdr; (x;) < A} — 1{Lfdr; (x;) < A}
i=1
1 . .
= Z Z[I{Lfdr,’ (x;) < A, Lfdr; (x;) > )L} + I{Lfdr,’ (x;) < A, Lfdr; (x;) > )L}]
i=1

3=

'M§

[1 {Lfdr, (x;) <A, A +e€>Lfdr;(x;) > A} + 1{r — e < Lfdr; (x;) < A, LEdr; (x;) > A}
1

[1{Cfdr; (x;) < &, Lfdr; (x;) > A + €} + 1{Lfdr; (x;) < A — €, Lfdr; (x;) > 1}]

3
i

+
| —

1

1 &
1{1 — € <Lfdr; (x;) <A +€}+— Y |Lfdr; (x;) — Lfdr; (x;)].
1 me 2

'Mﬁ

=<

SRS

1

Together with Lemma A.1 and Condition (C3), we obtain for any 0 < € < Aoo/2,

1 &
J:= sup — > [1{Lfdr;(x;) <A} — 1{Lfdr; (x;) < A}

Azhoo M ;24
1 & -
< sup — Z 1{1 — e < Lfdr; (x;) <A+ €} + — > |Lfdr; (x;) — Lfdr; (x;) |
A>hoo M2 me —
< sup |Do(A+€) — Do(h —€)|+2 sup |Dm 0(A) — Do(1)]|
A>Aoo 1€[0,

| R
+— §|Lfdri (x;) — Lfdr; (x;)|

IA

sup |Do(A + €) — Do(r — €)| 4+ 0p(1).
A>hoo

As € can be arbitrarily small, sup, -, [Do(A+€) — Do(A — €)| can be made small due to the
(uniform) continuity of Dyg. Therefore, J = 0, (1) and thus (27) holds. [J
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PROOF OF THEOREM 2.3. Using similar arguments as in the proof of Lemma A.2, we
have

(28) sup |R,(A) — R(W)| =7 0.
A>Aoo

Following the proof of Proposition 2.2, we set e = a — R(Aso). Then we have

|Rn(hoo) — R(hoo)| < sup |Rn(A) — R(V)| < e/2,
A>Aoo

with probability tending to one, which suggests that P(Rm (Aoo) < @) — 1. Thus, P(A, >
Aoso) — 1 by the definition of k . Then on the event {A > Ao}, We have

|Vm()\m)/Dm,0()Lm) - Rm()\m)|

< sup |Rn (L) = Vin(A)/ Do)

= sup |Rn(3) — ROV + sup |[R(A) — Vi (W) / Do) = 0, (1),

by Lemma A.2 and (28). As R, (An) < a, this implies that
Vin Gn) /{ Dm0 Gom) V 1} < @ + 0, (1).
AS Vi Gom) /{Dm.o(Am) v 1} < 1, by Lemma A.3, we obtain

lim sup EDR,, (A,) = lim sup E[ Vi (An)/{ Din.o o) V 1}] < @

m—400 m——+00

Proof of Theorem 3.1. PROOF. As P(fo(x;) = f1(x;)) =0, without loss of generality,
we shall assume that fo(x;) # f1(x;) for all i. Recall that ¢ (x,a) = afo(x) + (1 — a) f1(x)
and define

dlogp(x,a)  fo(x)— fi(x)
p(x,a) = = ,
da o(x,a)
which is nonincreasing in a. As fo(x;) # f1(x;) for all i, it is straightforward to see that for
any 1 <k <l <m, Zﬁzk log ¢ (x;, a) is a strictly concave function for 0 <a < 1. Let

l

ag = argmaleogrp(x,-, a)
ae[O,l] i=k

be the unique maximizer. According to Theorem 3.1 of [32], we have

To; = mMax min dy;.
I<k<ii<Ii<m

Our goal is to show that the event

JT() ip = max min ay = min max ay < 70,ip T €
1<k<ipip<I<m ig<I<m 1<k<iy
has probability tending to one.

To this end, we let B = B(ip, N) be the event that Z"H'N o(x;,a) =0 has a unique root
0 < ag,ip+n < 1 forall 1 <k <ip, and note that

P<1H}<aX Akig+N < T00,iq +6) < P(70,iy < 70,iy + €)-
< <[0
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On B, we have max|<x<j, dk,ig+N < 70,i, + € if and only if

io+N
(29) max ; p(xi, 70,5 + €) < 0.
We see that (29) is equivalent to
io+N io+N
(30) > {p (i, mo,ip) — p(xiy M0, + O} > Y p(xi, mo.4),
i=k i=k

for 1 <k <ip. Next, we derive an upper bound for the RHS of (30). As p(x, a) is nonin-
creasing in a and 7o ; < mo i, + €/2 under the assumption in the theorem, we have

io+N io+N io
Z /O(xi,ﬂo,io) =< Z /O(X,',JT()’Z-O) +Zp(xi’770,i)
i=k i=ip+1 ik
io+N i N
= > (i, moy) = pxiy0,)) + D p(xi, 7o,i)
i=ip+1 i—k
io+N i AN
< Z (IO(-xi’ 770,[()) - ,O(X,', 7'[0,['0 —+ 6/2)) 4+ Z ,O(xi, T[O,i)
i=ip+1 Py’
io+N E(f] (Xi _ fo(xi))2 io+N
- Z Z Io(xla 7'[() 1)
i=ip+1 2¢('xl ’ 7T0 lo)d)(xl 5 7[0 io + 6/2)

Using this upper bound and the fact that
o) — i) folx) — f1(x)
¢ (x, 10,i0) ¢ (x, m0,ip + €)
__eth) = fox)?
¢(-x’ 770,1‘0)¢(X, T[O,io + 6) '

p(x, 70.iy) — P (X, 700,y + €) =

we know (30) is implied by

"(i” €(fita) = fota)® "%V €(f100) — foxi)?
ok P T0.00)P (Xis Toig +€) ;S 20 (i, T0,i0) P (X, To,ig + €/2)

(3D
io+N
> Y p(xi,m0.0).
i=k
Some algebra shows that the LHS of (31) is bounded from below by
"%V e(fix) — folxi))? . "%N €(fix) = foxi))?

= 20 (xi, 0,5 +€/2)P (xi, T0,ip +€) T = 2(folxi) vV fi(xi))?
Combining the above arguments, we get

P(ﬁo,io < 7TO,l’o + €, B)

> P(ln}(ax ax, io+N < T0,ip T €, B)
<

io+N io+N
= P( Z {p(xi, m0,iy) — p(xi, 0,5y +€)} > Z p(x;, mo,4,) forall 1 <k <, B)
i=k i=k
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io+N N 2 io+N
ZP Z G(fl(-xl) fo(xl))z - Z ,O(x,',n’o,i) foralllfkflo _P(BL)

= 20 v A

:= P(A) — P(B").
We first deal with P(A). Notice that p(x;, mo ;) is a sequence of independent mean zero
random variables with the variance

(fox) — f1(x))?
moi fo(x) + (1 — mo;) f1(x)
_ (fox) = f1(x))? J
= X
{70(0) fo(x)} vV {(1 = mo (1)) f1(x)}
(fo(x) — f1(x))?
70(0) fo(x)>(1—mo(1) f1(x) {70(0) fo(x)} vV {(1 —mo(1)) f1(x)}
N / (fox) — f1(x))?
70(0) fox)<(1—mo (1)) f1(x) {70 (0) fo(x)} Vv {(1 — 7o(1)) f1(x)}
- f (fo) = i)
~ Jro0) foo)>(1—m) i) 70(0) folx)
N / (fox) — f1(x))? i
70(0) fo(x) <(1—mo (1) f1(x) (I — 0(1)) f1(x)

var(p(x;, wo;)) = f

<c f folx)dx + Cz/fl(x)dx < o0,

for some constants Cy, C» > 0. By Lemma 3.1 of [1], for any n > 0, there exists a large

enough N such that,
1
€-N

P( max
1<k<iyp
for some constant

p < g 1) = fo(xi)? '
4(fo(xi) V f1(xi))?

1 io+N
—_— p(xi,70,;)
io+N—k+1 2 o

L (D)= foli)?
Set Xi = R GV fixi)?
Lemma 3.1 of [1],

which is a bounded random variable, and X i = EX; — X;. Again by

1 io+N 1
Pl min —— Z X;>-EX,
I<k<ipig + N —k+1 = 2

1 io+N N 1
=P max ———— > X; <-EX|
I<k<igiog + N —k+1 = 2

1 io+N
> P< max

1<k<igp

1
< —EX1>

> X
io+N—k+1 = 2

1
>1-— O(—),
N
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for large enough N. The above arguments thus imply that
1
PA)>1-0(——|.
Wz1-0(y)
We next deal with B¢ that is, there exists a 1 <k < ig such that a; ;,+y = 1. Clearly, we

only need to consider the case where 7 ;, + € < 1. In this case, we have 7 ;j,+n < 70 " <
70,ip +€/2 < 1. If g j,4+n = 1, as the maximizer is unique, we have

ioc+N ig+N
(32) Y loggp(xi, 1) > Y logg(xi,a)
i=k i=k

for any 0 < a < 1. Under the assumption that [ (log fi(x))zfj (x)dx <oofori, j=0,1, we
have E[(log ¢ (x;, a))?] < oo uniformly over i and a € [0, 1]. Note that for a > m;,

(Elog ¢ (i, a)) = g 2001 = J1xi)

¢ (xi,a)
[ Jo) = fikx) .
—f—(p(x’a) ¢ (x, 7o;) dx
_ [ Jo) = fikx) N Jo) — fikx) A
= ) ¢ (x, 7woi) 0 00) ¢ (x, o) dx
B / (for) = fix))(moi —a) |
= X
¢(x,a)
. (fox) — fix)? o
< (woi —a) @V A1) dx := Co(moi —a),

where we have used the fact that [ fy(z)dz = [ fi1(z)dz = 1. It is clear that as a function of
a, —Elog¢(x;,a) is convex. Thus, we get

Co(a — m0i)(1 —a) — Elog ¢ (xi,a) < —(Elog ¢ (xi, ) (1 —a) — Elog ¢ (xi, a)
<—Elogo(x;, 1),
that is
Elog¢(xi,a) — Elog¢(x;, 1) = Cola — moi) (1 — a).

Now setting ¢ ;, + € < a* < 1 and using the fact that a* — mp; > €/2 fori <ip+ N, we
obtain,

io+N ig+N
> (Elog(xi,a*) — Elogg(x;, 1)) = Co(1 —a*) > (a* — mor)
i=k i=k

> Co(l —a*)(io+ N —k+ 1)e/2.
For €9 < Co(1 — a*)e/4, let

1 io+N
B(a) := 1rsr}casxio io—i-N——k—I-l l:Zk {logq&(xi, a) — Elogo(x;, a)} < €p.

By Lemma 3.1 of [1], we have for large enough N,

P(B(a®) A B(D) > 1 —0(#).
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Therefore on B(a*) N B(1), we have

{there exists a 1 < k < iq such that ay ;,+n = 1}

io (io+N io+N
C U{ > logg(xi, 1) > Z logp(x;,a }

k=1Ui=k

io 1 io+N

- —_— E1l i, 1)+2
g{iow—kﬂ; 0g (xi, 1) + 2€0

1 io+N
S — El L a*
>i0+N—k+1i§k Og¢(x’a)}

c [J{2e0 > Co(1 — a*)e/2} =

k=1
Then we get P(B°) < 0(#) and thus

P(J'Aro,,'o < 700,io +e)>1—-0

/N
NH

g

N—

Using similar arguments, we can prove that

P(7o,iy > mo,iy —€)>1—0

N
N

Y

N——"

Therefore, we obtain

P(|70,ip — 70.ip| <€) >1— 0(@) 0

Proof of Corollary 3.2. PROOF. For any i| <i <, there exists a 2 < k </ such that
ix—1 <i <ir. Using the monotonicity of 7o ; and ¢ ;, we get

max |7 — mo,i| < max | 770, i — 70,i, | + €.
11<i<ij 1<k<

Thus by Theorem 3.1, we have

l
P( max |7g,; — 70,i <2€> > P(lmai( |700,i, — 70,0, | < e) >1-— 0(—)

11 <i<i €2N 0

Proof of Theorem 3.3. We provide some useful results from [43] and the high-level idea
before presenting the detailed proof.

Some useful results. We present some results from [43], which will play an important role
in the proof.

Recall that F denotes the class of densities on [0, 1]. Let G, = {g = (g1,...,8m) : & €
F}. Below we shall drop the subscript m for notational simplicity. Let v be the Lebesgue
measure (on [0,1]) and L,(v) ={g:[0,1] - R: fol lg|" dv < oo}. For g € L,(v), write
lglly., = fol |g|" dv. We now define the entropy with bracketing. Consider G’ C G. Let
Ng(8,G, L, (v)) be the smallest value of N such that there exists a collection of func-
tions {[gJ gj }N , with gj (gf’l,...,gf’m) and gy = (gj-]’l, ...,gJ[-]’m) such that for

any g = (g!,...,g") € G/ thereexistsa 1 < j < N satisfying that gf’i <g' < gfj’i for all
=i=mand ligh =gV I, =m0 lg) " — &I, <8 Set No(5, G, L, (v)) =
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+o00 if no finite set of such brackets exists. Let Hp (8, G', L, (v)) =log Ng(§, G, L, (v)).
Write dP = (dPy,...,dPy) = (f'dv,..., f™dv) and let A; be some constant. We de-
fine Hp (8, G/, L, (P)) in a similar way as Hp (8, G/, L,(v)) but with the norm | - ”:,P,m =
m~! >l ||;’ p, tO characterize the distance between gf and g;]. Operation on vector-
valued function should be interpreted as applying the operation to each component of the
vector-valued function.

LEMMA A.5 (Lemma 7.11 of [43]). Let
§={f:10,400) — [0, 400), f is decreasing , f < F},
with F decreasing, F > 1 and [ F2U+9 gy < 00 for some a > 0. Then for some A > 0,

Hp (8, T, La(v)) < AS™!,  forall § > 0.

Below we present a modified version of Theorem 8.14 of [43], which is sufficient for our
application. Note that the result in Theorem 8.14 of [43] is capable of dealing with depen-
dent variables. However, to avoid unnecessary complication, we shall present a result that is
specialized to the case of independent but nonidentically distributed variables. We also men-
tion that the entropy condition is on the convex class (34), which is different from the one
in Theorem 8.14 of [43]. However, this change only requires a slightly modification (see the
arguments of Theorem A.6 below and the proof of Theorem 7.6 of [43]) of the proof in [43].

To state the result, let p; o, be a density indexed by a parameter 6; for 1 <i < m. Suppose
we observe a set of random variables x; ~ p; g, independently for 1 <i <m and 6y =
Bo,1,-..,00,m) € © for a given parameter space ©. Write pg = (p1,6;, - - Pm,6,,) With 0 =
©01,...,0,). Let 0= (91, e ém) € © be an estimator of gy such that

Pi g (xi) + pig ,i(xl)
(33) > Ingi’éi(xi)ZE 10g< - > - )
i=1 i=1

Note that the maximum likelihood estimator of 6y automatically satisfies the above condition.
Define H, (po, po) =m™"' Y1 H(pig;, p;g) and

2
(34) @Convz{i;ee@)}.
Po + P,
Let
L, -
(35) T(8) = [8 , HY? (u, 8™, Ly (pg,)) du v 8
C

for some large enough c.

THEOREM A.6. Suppose that {pg : 0 € ®} is convex. Take WV (8) > Jp(§) in such a way
that W (8) /8% is a nonincreasing function of 8. Then for a universal constant & and for

(36) Vmdg, = EW (),
we have for all § > §,, that

P(Hpu(py. poy) > 8) < Eexp(—ms?/&?).

PROOF OF THEOREM A.6. Let
2pi 6 (x;)

Zi(0) = ,
Di.o; (X[) + pi,@o’i (X[)

1<i<m.
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We first claim the following basic inequality

1 m R R
(37) H2 (g, Po) < — > (Zi(0) — Po,i Zi (),
i=1

2pi,
Po,iZi(0) =fﬁp, 6,,; dv. Note that

0<> logZi() Z (Zi(®) —1)

i=1
=Y (Zi®) — Po;i Zi(0)) = >_(1— Po,: Zi(9)),
i=1 i=1

where the first inequality follows from (33) and the second inequality follows from the fact
that log(x) <x — 1 for x > 0. On the other hand, we have

" Di, 6o — , 6
> (1= PoiZi(9)) Z —————= i gy, dv
i=1

Di, 0o, i +p10
(Pz Go,i — l9)2
: dv > H,, (P, Pay)-
/ pt@(),+p,9 " 0 0

which gives (37). Applying the basic inequality and the peeling device, we have

P(Hu(pg. Pa,) > 8)

A

1 m
P( sup —>Zi(0) — Po.i Z;(®)} — H,}(Po. Pay) > 0)

0€®:Hm(P97P90)>5 m i=1

S
<P ( sup — Z Z;(0) — Py Zi(0)) > 225'52>
s=0

0€0:H,, (po.pey) <2516 M ;21

with § = min{s : 21§ > 1}. Observe the connection between Z; () and &°™ . The entropy
condition can be used to control the upper bound above. The rest of the argument is similar
to those in [43]. O

The high-level idea. To apply the above result, we shall take ® = E x H and 6 = (7, f) €
® in the above theorem. Most parts of our proof is devoted to showing the entropy condition
(45). This is achieved in several steps. (1) We first apply Lemma A.5 to the class of functions

defined in (40), which implies a bound on the entropy of the class of functions QﬁU 2 in (43).
(2) We then argue that one can construct the delta-bracketing set for Q5U OV with2 <i <m
based on the one for Q5,I€J lc ™. Thus, the entropy of (’5,[(/ “™'in (42) is of the same order as
that of (’5,?, O™ which leads to (45) after some algebra. (3) Under (45), (36) is satisfied with

8 = Mm~'/3 for some large enough M. The result thus follows from Theorem A.6.

PROOF. Consider the collection of mixture densities F = {f=( fro My =
a(/m)fo+ (1 —m(i/m))fi,7 € E, f1 € H}. Itis known that

(38) Hp(8, &, La(1m)) < A1/8,
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where u,, denotes the discrete probability measure with equal mass 1/m on the grid
{1/m,2/m,...,1}; see, for example, [44]. Let {[nkL, rr,f] ]},1(\’:1 be the delta-bracketing set
for E. For any 7 € E and fl € H, there exists a 1 <k < N such that

fEt=mm fo+ (== G /m) fi <7 /m) fo+ (1 =7 G /m)) fi
<7 G/m) fo+ (L= mfG/m) fi= fi".
We focus on the upper bound in the following analysis. For 1 <k < N, let
B = (0 fE) e ),
F{ = {7 ) fre ),

where ka’i and ka’i are defined in (39). Further define

(39)

fifi 172 B
(40) 05,91. = {( = ) : f' is the ith component of f € F,lcj}
’ fl + fl

Note that (%)1/2 < (fHY2 v 1. Under the assumption that [01 11+“ dv < 0o, we have
SUP|<j<m f(f’j”“ v 1dv < co. Applying Lemma A.5 with F = (f)!/? v 1, we know that
Hp (8, & ;. La(v)) < A3/5.

Next, we define

f .
(41) 6C01’1V: - :fGF},
f+f
f .
(42) lelcl,conv: - :fEFIICJ},
f+f
(43) B — A the ith tof fe F{
= f"—i—f"'f is the ith component of f € F; .

Our goal is to derive an upper bound for the entropy with bracketing of &°", and then apply

Theorem A.6 to obtain the desired result. To this end, we shall first derive the entropy with

bracketing for the classes QS,?;COIW and (’5}{]’“)“,

For f% and g’ being the ith components of f and gin F,l(/, we have

/(f"]jrif" _giiiff)zdp"
N -G TR ) e
=+/{( ijff)l/z_ (a57) T
G5 -G

Hence, we get

Hp(28, 8™, Lo(P) <Hp(8, 8, La(v)) < A3/8.
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U,conv

Below we argue that one can construct the delta-bracketing set for &, ;" with2 <i <m

based on the one for QiU O™ Consider f! which is the ith component of fe F,g and a pair
of functions (¢%, ¢Y) such that

m (1/m) fo+ (A —mf(/myet ol (A/m) fo+ (1 —mf(1/m)) fi
af(A/m) fo+ A —mfA/mNet+ 17 7V (A m) fo+ (1 —afF (A /m) fi + f

(44) U L U
g (1/m) fo+ (1 — e (1/m))¢
nl (1/m) fo+ (1 —xl(1/m)cV + fi
and
/( mf (1/m) fo+ (A =l (/m)et— wf (/m) fo+ A = (1/m)cY >2dp_
7 (/m) fo+ (1 —xFA/m)ct + 1 7l (1/m) fo+ (1 —mE(1/m)cV + fi ’
:/{ (I —mg(/m)Et = ¢ f! }2 P
@ (1/m) fo+ (1 —nkL(l/m));L + @Y A /m) fo+ (1 —mE(1/m)cU + f1)
<52,

Clearly, (44) implies that ;L < f~1 < ;‘U. Moreover, (44) still holds if we replace (nkL(l /m),
7Y (1/m)) by (zf (i /m), w7 (i/m)) for any 2 <i < m. Using the following bounds (which
holdase <}, nl <1—%¢)
(1 —nk (z/m))
(1 —m; (l/m))
i (/m) fo+ (L =me (1/m)e + f1_w (1/m) 1= ud ¢ (1/m)
wd @/m) fo+ (=l /m)eY + f1 7 xf (i/m)  1—m (i /m)
7 (1/m) fo+ (A — (1 /m)ct + f - m (1/m) L 1—xY(1/m) n

’

70 /m) fo+ (= xbGmnet+ fi = xlGm) 1\ —xlGm)
for some constant C; > 0, we can show that
/( wg G/m) fo+ (A —mfG/myct  wl@/m)fo+ (1 - G@/m)cY )de.
md (/m) fo+ (U —xlG/m)ct + f1 7l (/m) fo+ (A —xfG/m)cV + fi l
=/{ (1 —mfi/m)ch—¢Y) }de_
@ (i/m) fo+ A = afG/m)et + @ /m) fo+ (1=l /m)cY + f1) l
<Cls2.

The above arguments suggest that we can construct the delta-bracketing set for QiU O with

2 <i < m based on the one for @U " Therefore, we have

Hp (8, 8™, Ly(P)) < As/8.
Similarly, we can get

Hp (8, 7", Ly(P)) < As/S,

where 6,6 "V s defined in a similar way as (’5,[(/ conv

existsal <k <N and L eFL and fV eFk such that
fL f v

= <=z <z .

fL+f f+f U +f

but with f € F,% . For any f e F, there
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L
Let {[biL, ciL]}:v:"1 and {[biU , ciU]} be the delta-bracketing sets for (’5,6 M and QﬁU conv.
respectively. Then there exists a (i, ]) such that,
A R
z =z =z =c;.
L4t F+f U £

] =

By the triangle inequality,
P H U f
e — + ||z o
Tt tlopm IFU 4+ F+f
‘ f fL
+ = ==
f+f fL4f
H v f ‘ f fL
~ - = + ~ T =
fU +f f+flopm If+f fL4f
We focus on the first component of the first term. Note that
/( af A/m) fo+ (A —mfA/m)fi — w/m)fo+ (1 —n(1/m)fi >2dp
rl (/m) fo+ (A=l /m) fi+ f1 w(/m) fo+ A —m(/m)fi + f1
:/{ Gz (1/m) — 2 (1/m)) fo f' + Gu(1/m) —mf- (1/m)) f* f' }de
@ (1/m) fo + (1= mF(/m)) fi + fHG(A/m) fo+ (1= (1/m) fi + f1)

< Co{(@Y A /m) — (1 /m))? + ((1/m) — 2} (1/m))?},

le§ =i lopm <

2,P.m
L
LAY

fL+f

2,P.m 2,P.m

=

+ 26.
2,P.m

for some constant C> > 0. Hence, we obtain
HB (87 ®COHV, LZ(P)) S 146/6

Note that

)
(45) ” 1/2( ®conv L2(P))du<A7«[
Cc

Finally, we apply Theorem A.6 (also see Theorem 7.6 of [43]). Consider ® = E x H and
0 = (m, f) € O. In view of (45), (36) is satisfied with § = Mm~'/3 for some large enough
M. Thus, by Theorem A.6, we have

P(Hpu((mo. f1). (Ro. f1)) > Mm™'?) < My exp(—Mom' /),
for some My, M, > 0. [

Proof of Corollary 3.4. PROOF. Using (23), we obtain

— / |I}Hr,- (x) — Lfdr; (x)] f' (x) dx
m i1 Lfdr; (x)>dp,

- e 7o/ m) fo(x)
Zthdr, (x)>dm|Lfdrl (x) — Lidr; (x)| Lfdr; (x) dx

i=1

m 1 o
< % Z/O |Lfdr; (x) — Lfdr; (x)|dx = 0,(1),
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for some constant C > 0 and a sequence d,, with d,, = o(1) and m~'/3/d,, = o(1). As Dy in
Condition (C1) is continuous at 0,

1 & . .
— Z/ |Lfdr; (x) — Lfdr; (x)| £ (x) dx
m ; Lfdr; (x)<d,,

1 m
SZ;P(Lfdrl(x,)<d )
= Do(dp) +o0p(1) =0p(1).
Thus, we have
| RS N .
46 — Lfdr; (x) — Lfdr; (xX)dx = o0,(1).
(46) m;ﬁ|ru> B )| () dx = 0,(1)

In view of (46), to justify Condition (C3), it suffices to show the following uniform law of
large numbers,

m

1
47 — i(xi) — E[gi(x;)])|=0p(1),
(47) Ngwm§@u> kuw 0p(1)
where
g,-(xl-)z’ : 7(i/m) folxi) — Lfdr; (x,)|.
w(i/m)fo(x;) + (1 —m(@i/m))f(x;)

We justify this claim in Lemma A.7 below. By (46) and (47), we must have

1
(48) ~

§

m
Z Lfdr; (x;) — Ldr; (x;)| = 0, (1),
which verifies Condition (C3). O

LEMMA A.7. For B and H as defined in Section 3.3, we have

m

1
. > (gi(xi) - E[gi(xi)])’ =0,(m173).

i=1

sup
nel, feH

PROOF OF LEMMA A.7. Let

(i/m) fo(x;)
() = : : — Lfdr; (x; ,
8+ (x1) (n(z/m)fo(Xi) + (A =7 (@i/m)) f (xi) ne ))+
o o w(i/m) fo(x;)
g—.i(x;) = (Lfdl”l (x) (i /m) fo(xi) + (1 — n(i/m))f(xi)>+

where (a)+ =a Vv 0. Note that g; (x;) = g+.;(x;) + g—.i (x;). Thus, we just need to show that

1 m

(49) sup 1~ Z(ng i(xi) — E[g+,i(x,-)])‘ =0,(m™'3),
Tel, feH|Mm i=1
1 m

(50) sup  [— Y (g—i(xi) — _’i(xl.)])‘ = 0,(m~17).
nel, fer|M ;5




OPTIMAL FALSE DISCOVERY RATE CONTROL 843

We only prove (49) as the arguments for (50) is essentially the same. Below we shall adopt
the notation defined in the proof of Theorem 3.3. Note that g4 ; (x;) is a decreasing function
of f(x;) and increasing function of 7 (i /m). Recall from (38) that

(1) Hg (8, 8, L1(1m)) < A1/8

for some A; > 0, where w,, denotes the discrete probability measure with equal mass 1/m
at the grids {1/m,2/m, ..., 1} Let {[n,f,n,g]},ill be a &-bracketing set for E such that
m= " mEG/m) — xl (i/m)| < 8. Suppose 7 € [}, ]. Note that

1
- (8+.i (i) = E[g+.i(xi)])

s

1

5

Z {(F0 () = Lidr; (7)), — E(f (i) — Lidr; (x7)., }.

where for any given f € H, we define

Ui . 7 (i /m) fo
fk T U, Uy ’
(52) Ty (i/m)fo+ (1 Ty (i/m)) f
L wfi/m) fo
k=

wl G /m) fo+ (-l G/m)f

This observation motivates us to consider the following classes of vector-valued functions

Fe=1t = (0 fUm) s f e,
Fl={tk=(flt 5B e,

where ka’i and ka’i are defined in (52). Note that .F,g{i = {ka’i : f € H}is aclass of increas-
ing functions that are bounded from below and above. Thus, H g (8, F, ,g i L1(P;)) < Ay/8. Us-
ing similar arguments as in the proof of Theorem 3.3, we can construct the delta-bracketing
sets for ]-",g] with 2 < i < m based on the one for ]-",fjl Thus, we have Hp (6, ]—"kU, Li(P) <

A3/8 and similarly Hp (8, FF, L1(P)) < A4/8. Let {[¢/ ; ¢l j]}N2 and {[g,gj, g,g{j]}jyil be

the §-bracketing sets for fk and fk respectively. For fk € fk and ka € FE, there exists
(j, 1) such that g“kljj < f,lcj < g“k[{j and S,él < f,lg < S,gl. Thus, we get

%é(&ﬂxﬁ — E[g+,i(x)])
< % é{ (£E (i) = Lfdri (x))) , — E(fE () — Lidr; (x7)), )
< % é{(;,f{ ! (xi) — Lidr; (x,)) , — E(&¢; (x;) — Lfdr; (x;)) . }
< % i{(g,ff}" (xi) — Lfdr; (x;)) | — E(g7 (x;) — Lidr; (x))) , } + C18,

~
[
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for some C; > 0. Here, we have used the fact that

— Z (¢ (x;) — Lidr; (x;)) . — E(&]" (xi) — Lfdr; (x) , }

<— ZE|<;k ) — & ()

1 & ‘ . . . ,
< — D ElG (i = 7 o+ f ) — £ + A5 = &G ()l
i=1
1 & .
= ZZ £ ) = fE G| + 28
i=1
C m
= ;Zlnk (i/m) — k(i /m)| +28 = (C +2)8,

I
—_

for some C > 0. Similarly,

1 m
— > (84 (xi) — E[g+,i(x))])
mi2y

{(FE () = Ltdr; () — E(f () — Lidr; (1)), }

-

S|~
i

=

> A& () — Lfdry(x) | — E(§' (xi) — Lidri () , } = Ca9.

|\/
Ms

Il
—_

By the Hoeffding’s inequality, we have forany 1 <k < Nj,1 <j <Ny and 1 </ < N3,

1 & : :
P (; S {(5 (i) — Lidr () . — E(g (i) — Lidr; (x)) , } = e> < exp(—Came?),

i=1
( Z {65 () — Ldri (), — E(&/} (xi) — Lfdr; (7)), } > e) < exp(—Czme?),

for some C 3 > 0. Hence, we get

m
P( sup Zg+z(xz)— [g+.i(x0)]) >e>
TEE, feH|M i1
=P <1<k<}v?%x<1<,v2n—12 (& (i) — Lidr; (x))

E(¢ (xi) — Lfdri (x;)) . } > € — Cla)

+ P( max — Z §kl ' (xi) — Lfdr; (Xi))+

1<k<Nj,1<I<N; m *

— E(g) () — Lfdr; (x;)), } < C28 — e)

<2exp{—Cam(e —8C; v C2)* + (A1 + A3 V Ag)/8),
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where we have used the union bound and the Hoeffding’s inequality to obtain the second in-
equality. The result follows by choosing € = C4m~'/3 and § = m~1/3 for some large enough
Cy. O

Proof of Theorem 3.5. PROOF. We first show that im —P Lo. Recall from (28) that
sup |R,(A) — R(W)| =7 0.
A>Aoo

For any small enough € > 0, by the definition of A9, we have infy;;c<3<1 R(A) > a. There-
fore,

P( inf ﬁm(x)>a)gp(im<x0+e)—>1.
rM+e<i<l

On the other hand, as R(Ag — €) < «, we have
P(Ru(ho—€) <a) < P(hy =20 —€) — 1.

Combing the above arguments, we get A, — Ag. Next, following the arguments in the proof
of Lemma A.4, we have
1 & —
sup |— Y 1{6; = 1,Lfdr; (x;) <A} — Da(M)| -7 0.
A=hoo/2|M T4

As Ao > Ao, P():m > Aoo/2) — 1. Thus, we get

1 & — . .
— > 1{6; = 1, Lidr; (x;) < A} — D2(Am) —7 0.

m:2
By the continuity of D,, we have Dz(im) —P Dy (Xp). The conclusion thus follows. []

Derivation of the EM-algorithm from the full data likelihood. The EM algorithm can
be motivated by the full data likelihood that has access to hidden/latent variables. To see this,
we note that the full log-likelihood of {(x;,6;) :i =1,2..., m} is given by

log p(x,0) = > log{(1 —6;) fo(x;) + 6; fi(x;)}
i=1

+ > {1 — 6) log(mwoi) + 6; log(1 — i)},
i=1

where x = (x1,...,x,) and @ = (1, ...,0,). Let 1V = (fré’), e, 7?52). We note that the
posterior distribution of 6; given X, f] and IT is equal to Bernoulli(1 — Q(z)) where Q(Z)

A0 foid 1D foi) + (1 — 28%) £1(x7)}. The EM algorithm seeks to find the MLE of the
marginal likelihood by iteratively applying these two steps:
E-step: Define

D(f1, H|f(t) no) = E0|f(r) no [log p(x, 8)]

Z [0 Tog foxi) + (1 — 0 log f1(xp)}

Z (0P 1og7i + (1 — 0" log(1 — 7))
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as the expected value of the log-likelihood function with respect to the current conditional
distribution of @ given the current estimates fl(z) and T,

(0

M-step: Find the parameters that maximize D( f1, IT| f;"", 11?). Equivalently, we have

m
I =arg max Y {0 logm; + (1 — 0”)log(1 — 7))
He/\/lizl

m
_argl'rlrél./{l/l Z(Q( ) —m)z,

£ = arg max (1 — 1) log fix).

JieM =1

Competing methods. A classic procedure for multiple testing is the BH procedure pro-
posed in [5]. We now briefly describe the BH procedure. Let x(jy < --- < x(;) be the order
statistics of the p-values x, ..., x,,. Given a control level « € (0, 1), let

i
k:max{i6{0,1,...,m+1}:xmfoz—},
m

where xg = 0 and x(,,4+1) = 1. The BH procedure rejects all hypotheses for which x; < x). If
k = 0, then no hypotheses will be rejected. It has been shown that the BH procedure controls
the FDR at the level amg, where g is the proportion of null hypothesis. R function p.adjust
in the base stats package is used to obtain results based on the BH procedure. To improve
power, [38] (ST) estimates the proportion of null hypothesis

#{xi>k;i=1,...,m}}
m(l —A) ’

T(A) = min{l,

where A is a tuning parameter. Let

a i
k_max{ze{O,l Lm—41}: X(,)_A(k)m}
The ST procedure rejects all hypotheses for which x; < x). If k =0, no hypotheses will
be rejected. The bioconductor R package gvalue is used to obtain results based on the ST
procedure.

To incorporate auxiliary information in a data-adaptive way, [29] proposed the structure
adaptive BH algorithm (SABHA). Specifically, given a target FDR level «, a threshold 7 €
[0, 1], and values 7g1, ..., Tom € [0, 1], where 71p; represents an estimated probability that
the ith test corresponds to a null, define

k:max{i e{l,...,m},x; < (Ail—> /\‘L’}.
TToi m

Reject hypotheses with corresponding p-value x; satisfying

oa k
Xi<|—— | AT.
TTo; M

We use the code provided in [29] to implement SABHA. [25] proposed to use two parame-
ters to estimate proportion of null hypothesis and number of rejections (Adaptive SeqStep).
Specifically, let A(A, k) = Zf: 1 1 (x; > A) count p-values exceeding the threshold A within
the first k& ordered hypotheses and R(s, k) = Z{-‘Zl I(x; <s) count number of rejections
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within the first k ordered hypotheses. Then the proportion of null hypotheses can be esti-

mated by

7 k)=

14+ AQ, k)
n(l—n)

The Adaptive SeqStep procedure thus works as follows: for some 0 <5 <A < 1, reject all
hypotheses with x; <s and H(;),i =1, ..., kas, where H; are ordered hypotheses based on
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p-values, and

where

FDPyg(k; s, 1) =

kas = max{k : FDPsg(k; s, ) < a},

s 14+ ALk

1—ARGs, bV
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We use the code provided in [25] for implementation. We also compare to the adaptive p-
value thresholding procedure (AdaPT) [26] and use the “adapt_glm” function in R package
“adaptMT” (v0.2.1.9000) with natural splines of 6 d.f. as covariates for both the null probabil-
ity and the alternative distribution. OrderShapeEM, AdaPT, SABHA and Adaptive SeqStep
are multiple testing procedures that incorporate auxiliary information.
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We evaluate the performance based on FDR control (empirical FDR) and power (true
positive rate, i.e., number of true positives divided by number of alternatives) with the tar-
get FDR level o = 0.05. Results are averaged over 100 replications (except for the global
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null where the number of replications is 2000) and the 95% confidence interval are re-
ported.

Additional simulation results. Figure 5 shows the numerical results when z-values un-
der the alternative hypothesis are from the noncentral gamma distribution. Figure 7 shows the

0.06
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0.02 4

Empirical False Discovery Rate

—l

OrderShapeEM  AdaPT SABHA AdaptiveSeqStep  BH ST
Method

0.00- -

FIG. 10. FDR control under the global null.
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numerical results when there is noise in the auxiliary information. Figure 8 compares Order-
ShapeEM to SABHA+, which uses the SABHA rejection rule and the mixing probabilities
estimated by OrderShapeEM. The setting is the same as Figure 2. Figure 9 and Figure 10
show the numerical results under a lower signal density and under a global null, respectively.
Figure 11 and Figure 12 show the numerical results under varying f; and varying fy, respec-
tively. Figure 13 shows the performance with m = 500, 100, 2000. Figure 14 shows the FDR
control for AdaPT without the correction term (AdaPT+).
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