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Abstract. We develop a general framework for data-driven approximation of input-output maps between infinite-
dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep
learning, in combination with ideas from model reduction. This combination results in a neural network approxi-
mation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of
finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and
suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodol-
ogy. We also include numerical experiments which demonstrate the effectiveness of the method, showing convergence
and robustness of the approximation scheme with respect to the size of the discretization, and compare it with ex-
isting algorithms from the literature; our examples include the mapping from coefficient to solution in a divergence
form elliptic partial differential equation (PDE) problem, and the solution operator for viscous Burgers’ equation.

2020 Mathematics Subject Classification. 65N75, 62M45, 68T05, 60H30, 60H15.
Keywords. approximation theory, deep learning, model reduction, neural networks, partial differential equa-
tions.

1. Introduction

At the core of many computational tasks arising in science and engineering is the problem of repeatedly
evaluating the output of an expensive forward model for many statistically similar inputs. Such settings
include the numerical solution of parametric partial differential equations (PDEs), time-stepping for
evolutionary PDEs and, more generally, the evaluation of input-output maps defined by black-box
computer models. The key idea in this paper is the development of a new data-driven emulator which
is defined to act between the infinite-dimensional input and output spaces of maps such as those
defined by PDEs. By defining approximation architectures on infinite-dimensional spaces, we provide
the basis for a methodology which is robust to the resolution of the finite-dimensionalizations used to
create implementable algorithms.

This work is motivated by the recent empirical success of neural networks in machine learning
applications such as image classification, aiming to explore whether this success has any implications
for algorithm development in different applications arising in science and engineering. We further wish
to compare the resulting new methods with traditional algorithms from the field of numerical analysis

The work is supported by MEDE-ARL funding (W911NF-12-0022). AMS is also partially supported by NSF (DMS
1818977) and AFOSR (FA9550-17-1-0185). BH is partially supported by a Von Kármán instructorship at the California
Institute of Technology.
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for the approximation of infinite-dimensional maps, such as the maps defined by parametric PDEs
or the solution operator for time-dependent PDEs. We propose a method for approximation of such
solution maps purely in a data-driven fashion by lifting the concept of neural networks to produce
maps acting between infinite-dimensional spaces. Our method exploits approximate finite-dimensional
structure in maps between Banach spaces of functions through three separate steps: (i) reducing the
dimension of the input; (ii) reducing the dimension of the output, and (iii) finding a map between
the two resulting finite-dimensional latent spaces. Our approach takes advantage of the approximation
power of neural networks while allowing for the use of well-understood, classical dimension reduction
(and reconstruction) techniques. Our goal is to reduce the complexity of the input-to-output map by
replacing it with a data-driven emulator. In achieving this goal we design an emulator which enjoys
mesh-independent approximation properties, a fact which we establish through a combination of theory
and numerical experiments; to the best of our knowledge, these are the first such results in the area
of neural networks for PDE problems.

To be concrete, and to guide the literature review which follows, consider the following prototypical
parametric PDE

(Pxy)(s) = 0, ∀ s ∈ D,
where D ⊂ Rd is a bounded open set, Px is a differential operator depending on a parameter x ∈ X
and y ∈ Y is the solution to the PDE (given appropriate boundary conditions). The Banach spaces
X and Y are assumed to be spaces of real-valued functions on D. Here, and in the rest of this paper,
we consistently use s to denote the independent variable in spatially dependent PDEs, and reserve x
and y for the input and output of the PDE model of interest. We adopt this idiosyncratic notation
(from the PDE perspective) to keep our exposition in line with standard machine learning notation
for input and output variables.

Example 1.1. Consider second order elliptic PDEs of the form
−∇ · (a(s)∇u(s)) = f(s), s ∈ D

u(s) = 0, s ∈ ∂D
(1.1)

which are prototypical of many scientific applications. As a concrete example of a mapping defined by
this equation, we restrict ourselves to the setting where the forcing term f is fixed, and consider the
diffusion coefficient a as the input parameter x and the PDE solution u as output y. In this setting,
we have X = L∞(D;R+), Y = H1

0 (D;R), and Px = −∇s · (a∇s · ) − f , equipped with homogeneous
Dirichlet boundary conditions. This is the Darcy flow problem which we consider numerically in
Section 4.3.

1.1. Literature Review

The recent success of neural networks on a variety of high-dimensional machine learning problems [49]
has led to a rapidly growing body of research pertaining to applications in scientific problems [1, 7, 13,
25, 30, 39, 68, 76, 83]. In particular, there is a substantial number of articles which investigate the use
of neural networks as surrogate models, and more specifically for obtaining the solution of (possibly
parametric) PDEs.

We summarize the two most prevalent existing neural network based strategies in the approximation
of PDEs in general, and parametric PDEs specifically. The first approach can be thought of as image-
to-image regression. The goal is to approximate the parametric solution operator mapping elements
of X to Y. This is achieved by discretizing both spaces to obtain finite-dimensional input and output
spaces of dimension K. We assume to have access to data in the form of observations of input x and
output y discretized on K-points within the domain D. The methodology then proceeds by defining a
neural network F : RK → RK and regresses the input-to-output map by minimizing a misfit functional
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defined using the point values of x and y on the discretization grid. The articles [1, 7, 29, 39, 83] apply
this methodology for various forward and inverse problems in physics and engineering, utilizing a
variety of neural network architectures in the regression step; the related paper [42] applies a similar
approach, but the output space is R. This innovative set of papers demonstrate some success. However,
from the perspective of the goals of our work, their approaches are not robust to mesh-refinement: the
neural network is defined as a mapping between two Euclidean spaces of values on mesh points. The
rates of approximation depend on the underlying discretization and an overhaul of the architecture
would be required to produce results consistent across different discretizations. The papers [54, 55]
make a conceptual step in the direction of interest to us in this paper, as they introduce an architecture
based on a neural network approximation theorem for operators from [12]; but as implemented the
method still results in parameters which depend on the mesh used. Applications of this methodology
may be found in [11, 52, 58].

The second approach does not directly seek to find the parametric map from X to Y but rather
is thought of, for fixed x ∈ X , as being a parametrization of the solution y ∈ Y by means of a
deep neural network [24, 25, 40, 47, 68, 75]. This methodology parallels collocation methods for the
numerical solution of PDEs by searching over approximation spaces defined by neural networks. The
solution of the PDE is written as a neural network approximation in which the spatial (or, in the
time-dependent case, spatio-temporal) variables in D are inputs and the solution is the output. This
parametric function is then substituted into the PDE and the residual is made small by optimization.
The resulting neural network may be thought of as a novel structure which composes the action of the
operator Px, for fixed x, with a neural network taking inputs in D [68]. While this method leads to an
approximate solution map defined on the input domain D (and not on a K−point discretization of the
domain), the parametric dependence of the approximate solution map is fixed. Indeed for a new input
parameter x, one needs to re-train the neural network by solving the associated optimization problem
in order to produce a new map y : D → R; this may be prohibitively expensive when parametric
dependence of the solution is the target of analysis. Furthermore the approach cannot be made fully
data-driven as it needs knowledge of the underlying PDE, and furthermore the operations required to
apply the differential operator may interact poorly with the neural network approximator during the
back-propagation (adjoint calculation) phase of the optimization.

The work [70] examines the forward propagation of neural networks as the flow of a time-dependent
PDE, combining the continuous time formulation of ResNet [34, 80] with the idea of neural networks
acting on spaces of functions: by considering the initial condition as a function, this flow map may be
thought of as a neural network acting between infinite-dimensional spaces. The idea of learning PDEs
from data using neural networks, again generating a flow map between infinite dimensional spaces,
was studied in the 1990s in the papers [32, 44] with the former using a PCA methodology, and the
latter using the method of lines. More recently the works [37, 79] also employ a PCA methodology
for the output space but only consider very low dimensional input spaces. Furthermore the works [28,
28, 31, 50] proposed a model reduction approach for dynamical systems by use of dimension reducing
neural networks (autoencoders). However only a fixed discretization of space is considered, yielding a
method which does not produce a map between two infinite-dimensional spaces.

The development of numerical methods for parametric problems is not, of course, restricted to the
use of neural networks. Earlier works in the engineering literature started in the 1970s focused on
computational methods which represent PDE solutions in terms of known basis functions that contain
information about the solution structure [2, 61]. This work led to the development of the reduced
basis method (RBM) which is widely adopted in engineering; see [3, 36, 67] and the references therein.
The methodology was also used for stochastic problems, in which the input space X is endowed with
a probabilistic structure, in [10]. The study of RBMs led to broader interest in the approximation
theory community focusing on rates of convergence for the RBM approximation of maps between
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Banach spaces, and in particular maps defined through parametric dependence of PDEs; see [23] for
an overview of this work.

Ideas from model reduction have been combined with data-driven learning in the sequence of pa-
pers [6, 59, 64, 65, 66]. The setting is the learning of data-driven approximations to time-dependent
PDEs. Model reduction is used to find a low-dimensional approximation space and then a system of
ordinary differential equations (ODEs) is learned in this low-dimensional latent space. These ODEs
are assumed to have vector fields from a known class with unknown linear coefficients; learning is thus
reduced to a least squares problem. The known vector fields mimic properties of the original PDE (for
example are restricted to linear and quadratic terms for the equations of geophysical fluid dynamics);
additionally transformations may be used to render the original PDE in a desirable form (such as
having only quadratic nonlinearities.)

The development of theoretical analyses to understand the use of neural networks to approximate
PDEs is currently in its infancy, but interesting results are starting to emerge [35, 45, 46, 72]. A
recurrent theme in the analysis of neural networks, and in these papers in particular, is that the
work typically asserts the existence of a choice of neural network parameters which achieve a certain
approximation property; because of the non-convex optimization techniques used to determine the
network parameters, the issue of finding these parameters in practice is rarely addressed. Recent works
take a different perspective on data-driven approximation of PDEs, motivated by small-data scenarios;
see the paper [15] which relates, in part, to earlier work focused on the small-data setting [8, 56]. These
approaches are more akin to data assimilation [48, 69] where the data is incorporated into a model.

1.2. Our Contribution

The primary contributions of this paper are as follows:

(1) we propose a novel data-driven methodology capable of learning mappings between Hilbert
spaces;

(2) the proposed method combines model reduction with neural networks to obtain algorithms
with controllable approximation errors as maps between Hilbert spaces;

(3) as a result of this approximation property of maps between Hilbert spaces, the learned maps
exhibit desirable mesh-independence properties;

(4) we prove that our architecture is sufficiently rich to contain approximations of arbitrary accu-
racy, as a mapping between function spaces;

(5) we present numerical experiments that demonstrate the efficacy of the proposed methodology,
demonstrate desirable mesh-indepence properties, elucidate its properties beyond the confines
of the theory, and compare with other methods for parametric PDEs.

Section 2 outlines the approximation methodology, which is based on use of principal component
analysis (PCA) in a Hilbert space to finite-dimensionalize the input and output spaces, and a neural
network between the resulting finite-dimensional spaces. Section 3 contains statement and proof of our
main approximation result, which invokes a global Lipschitz assumption on the map to be approxi-
mated. In Section 4 we present our numerical experiments, some of which relax the global Lipschitz
assumption, and others which involve comparisons with other approaches from the literature. Sec-
tion 5 contains concluding remarks, including directions for further study. We also include auxiliary
results in the appendix that complement and extend the main theoretical developments of the article.
Appendix A extends the analysis of Section 3 from globally Lipschitz maps to locally Lipschitz maps
with controlled growth rates. Appendix B contains supporting lemmas that are used throughout the
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Figure 2.1. A diagram summarizing various maps of interest in our proposed ap-
proach for the approximation of input-output maps between infinite-dimensional
spaces.

paper while Appendix C proves an analyticity result pertaining to the solution map of the Poisson
equation that is used in one of the numerical experiments in Section 4.

2. Proposed Method

Our method combines PCA-based dimension reduction on the input and output spaces X ,Y with a
neural network that maps the dimension-reduced spaces. After a pre-amble in Subsection 2.1, giving
an overview of our approach, we continue in Subsection 2.2 with a description of PCA in the Hilbert
space setting, including intuition about its approximation quality. Subsection 2.3 gives the background
on neural networks needed for this paper, and Subsection 2.4 compares our methodology to existing
methods.

2.1. Overview

Let X , Y be separable Hilbert spaces and Ψ : X → Y be some, possibly nonlinear, map. Our goal
is to approximate Ψ from a finite collection of evaluations {xj , yj}Nj=1 where yj = Ψ(xj). We assume
that the xj are i.i.d. with respect to (w.r.t.) a probability measure µ supported on X . Note that with
this notation the output samples yj are i.i.d. w.r.t. the push-forward measure Ψ]µ. The approximation
of Ψ from the data {xj , yj}Nj=1 that we now develop should be understood as being designed to be
accurate with respect to norms defined by integration with respect to the measures µ and Ψ]µ on the
spaces X and Y respectively.

Instead of attempting to directly approximate Ψ, we first try to exploit possible finite-dimensional
structure within the measures µ and Ψ]µ. We accomplish this by approximating the identity mappings
IX : X → X and IY : Y → Y by a composition of two maps, known as the encoder and the decoder in
the machine learning literature [33, 38], which have finite-dimensional range and domain, respectively.
We will then interpolate between the finite-dimensional outputs of the encoders, usually referred to
as the latent codes. Our approach is summarized in Figure 2.1.

Here, FX and FY are the encoders for the spaces X ,Y respectively, whilst GX and GY are the
decoders, and ϕ is the map interpolating the latent codes. The intuition behind Figure 2.1, and, to
some extent, the main focus of our analysis, concerns the quality of the approximations

GX ◦ FX ≈ IX , (2.1a)
GY ◦ FY ≈ IY , (2.1b)

GY ◦ ϕ ◦ FX ≈ Ψ. (2.1c)

In order to achieve (2.1c) it is natural to choose ϕ as

ϕ := FY ◦Ψ ◦GX ; (2.2)
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then the approximation (2.1c) is limited only by the approximations (2.1a), (2.1b) of the identity maps
on IX and IY . We further label the approximation in (2.1c) by

ΨPCA := GY ◦ ϕ ◦ FX , (2.3)

since we later choose PCA as our dimension reduction method. We note that ΨPCA is not used in
practical computations since ϕ is generally unknown. To make it practical we replace ϕ with a data-
driven approximation χ ≈ ϕ obtaining,

ΨNN := GY ◦ χ ◦ FX . (2.4)

Later we choose χ to be a neural network, hence the choice of the subscript NN. The combination of
PCA for the encoding/decoding along with the neural network approximation χ for ϕ, forms the basis
of our computational methodology.

The compositions GX ◦ FX and GY ◦ FY are commonly referred to as autoencoders. There is a
large literature on dimension-reduction methods [5, 19, 38, 63, 71] both classical and rooted in neural
networks. In this work, we will focus on PCA which is perhaps one of the simplest such methods
known [63]. We make this choice due to its simplicity of implementation, excellent numerical perfor-
mance on the problems we study in Section 4, and its amenability to analysis. The dimension reduction
in the input and output spaces is essential, as it allows for function space algorithms that make use
of powerful finite-dimensional approximation methods, such as the neural networks we use here.

Many classical dimension reduction methods may be seen as encoders. But not all are as easily
inverted as PCA – often there is no unambiguous, or no efficient, way to obtain the decoder. Whilst
neural network based methods such as deep autoencoders [38] have shown empirical success in finite
dimensional applications they currently lack theory and practical implementation in the setting of
function spaces, and are therefore not currently suitable in the context of the goals of this paper.

Nonetheless methods other than PCA are likely to be useful within the general goals of high or
infinite-dimensional function approximation. Indeed, with PCA, we approximate the solution manifold
(image space) of the operator Ψ by the linear space defined in equation (2.7). We emphasize however
that, usually, Ψ is a nonlinear operator and our approximation succeeds by capturing the induced
nonlinear input-output relationship within the latent codes by using a neural network. We will show
in Section 3.2 that the approximation error of the linear space to the solution manifold goes to zero as
the dimension increases, however, this decay may be very slow [16, 22]. Therefore, it may be beneficial
to construct nonlinear dimension reducing maps such as deep autoencoders on function spaces. We
leave this as an interesting direction for future work.

Regarding the approximation of ϕ by neural networks, we acknowledge that there is considerable
scope for the construction of the neural network, within different families and types of networks,
and potentially by using other approximators. For our theory and numerics however we will focus on
relatively constrained families of such networks, described in the following Subsection 2.3.

2.2. PCA On Function Space

Since we will perform PCA on both X and Y, and since PCA requires a Hilbert space setting, the
development here is in a generic real, separable Hilbert space H with inner-product and norm denoted
by 〈 · , · 〉 and ‖ · ‖ respectively. We let ν denote a probability measure supported on H, and make the
assumption of a finite fourth moment: Eu∼ν‖u‖4 <∞. We denote by {uj}Nj=1 a finite collection of N
i.i.d. draws from ν that will be used as the training data on which PCA is based. Later we apply the
PCA methodology in two distinct settings where the space H is taken to be the input space X and
the data {uj} are the input samples {xj} drawn from the input measure µ, or H is taken to be the
output space Y and the data {uj} are the corresponding outputs {yj = Ψ(xj)} drawn from the push-
forward measure Ψ]µ. The following exposition, and the subsequent analysis in Section 3.1, largely
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follows the works [9, 73, 74]. We will consider the standard version of non-centered PCA, although
more sophisticated versions such as kernel PCA have been widely used and analyzed [71] and could
be of potential interest within the overall goals of this work. We choose to work in the non-kernelized
setting as there is an unequivocal way of producing the decoder.

For any subspace V ⊆ H, denote by ΠV : H → V the orthogonal projection operator and define the
empirical projection error,

RN (V ) := 1
N

N∑
j=1
‖uj −ΠV uj‖2. (2.5)

PCA consists of projecting the data onto a finite-dimensional subspace of H for which this error is
minimal. To that end, consider the empirical, non-centered covariance operator

CN := 1
N

N∑
j=1

uj ⊗ uj (2.6)

where ⊗ denotes the outer product. It may be shown that CN is a non-negative, self-adjoint, trace-
class operator on H, of rank at most N [82]. Let φ1,N , . . . φN,N denote the eigenvectors of CN and
λ1,N ≥ λ2,N ≥ · · · ≥ λN,N ≥ 0 its corresponding eigenvalues in decreasing order. Then for any d ≥ 1
we define the PCA subspaces

Vd,N = span{φ1,N , φ2,N , . . . , φd,N} ⊂ H. (2.7)

It is well known [60, Thm. 12.2.1] that Vd,N solves the minimization problem

min
V ∈Vd

RN (V ),

where Vd denotes the set of all d-dimensional subspaces of H. Furthermore

RN (Vd,N ) =
N∑

j=d+1
λj,N , (2.8)

hence the approximation is controlled by the rate of decay of the spectrum of CN .
With this in mind, we define the PCA encoder FH : H → Rd as the mapping from H to the

coefficients of the orthogonal projection onto Vd,N namely,

FH(u) = (〈u, φ1,N 〉, . . . , 〈u, φd,N 〉)T ∈ Rd. (2.9)

Correspondingly, the PCA decoder GH : Rd → H constructs an element of H by taking as its input
the coefficients constructed by FH and forming an expansion in the empirical basis by zero-padding
the PCA basis coefficients, that is

GH(s) =
d∑
j=1

sjφj,N ∀ s ∈ Rd. (2.10)

In particular,

(GH ◦ FH)(u) =
d∑
j=1
〈u, φj,N 〉φj,N , equivalently GH ◦ FH =

d∑
j=1

φj,N ⊗ φj,N .

Hence GH ◦ FH = ΠVd,N
, a d-dimensional approximation to the identity IH.

We will now give a qualitative explanation of this approximation to be made quantitative in Sub-
section 3.1. It is natural to consider minimizing the infinite data analog of (2.5), namely the projection
error

R(V ) := Eu∼ν‖u−ΠV u‖2, (2.11)
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over Vd for d ≥ 1. Assuming ν has a finite second moment, there exists a unique, self-adjoint, non-
negative, trace-class operator C : H → H termed the non-centered covariance such that 〈v, Cz〉 =
Eu∼ν [〈v, u〉〈z, u〉], ∀ v, z ∈ H (see [4]). From this, one readily finds the form of C by noting that

〈v,Eu∼ν [u⊗ u]z〉 = Eu∼ν [〈v, (u⊗ u)z〉] = Eu∼ν [〈v, u〉〈z, u〉], (2.12)
implying that C = Eu∼ν [u⊗ u]. Moreover, it follows that

trC = Eu∼ν [tru⊗ u] = Eu∼ν‖u‖2 <∞.
Let φ1, φ2, . . . denote the eigenvectors of C and λ1 ≥ λ2 ≥ . . . the corresponding eigenvalues. In the

infinite data setting (N =∞) it is natural to think of C and its first d eigenpairs as known. We then
define the optimal projection space

Vd = span{φ1, φ2, . . . , φd}. (2.13)
It may be verified that Vd solves the minimization problem minV ∈Vd

R(V ) and that R(Vd) =
∑∞
j=d+1 λj .

With this infinite data perspective in mind observe that PCA makes the approximation Vd,N ≈ Vd
from a finite dataset. The approximation quality of Vd,N w.r.t. Vd is related to the approximation
quality of φj by φj,N for j = 1, . . . , N and therefore to the approximation quality of C by CN .
Another perspective is via the Karhunen–Loeve Theorem (KL) [53]. For simplicity, assume that ν
is mean zero, then u ∼ ν admits an expansion of the form u =

∑∞
j=1

√
λjξjφj where {ξj}∞j=1 is a

sequence of scalar-valued, mean zero, pairwise uncorrelated random variables. We can then truncate
this expansion and make the approximations

u ≈
d∑
j=1

√
λjξjφj ≈

d∑
j=1

√
λj,Nξjφj,N ,

where the first approximation corresponds to using the optimal projection subspace Vd while the
second approximation replaces Vd with Vd,N . Since it holds that ECN = C, we expect λj ≈ λj,N and
φj ≈ φj,N . These discussions suggest that the quality of the PCA approximation is controlled, on
average, by the rate of decay of the eigenvalues of C, and the approximation of the eigenstructure of
C by that of CN .

2.3. Neural Networks

A neural network is a nonlinear function χ : Rn → R defined by a sequence of compositions of affine
maps with point-wise nonlinearities. In particular,

χ(s) = Wtσ(. . . σ(W2σ(W1s+ b1) + b2)) + bt, s ∈ Rn, (2.14)
where W1, . . . ,Wt are weight matrices (that are not necessarily square) and b1, . . . , bt are vectors,
referred to as biases. We refer to t ≥ 1 as the depth of the neural network. The function σ : Rd → Rd
is a monotone, nonlinear activation function that is defined from a monoton function σ : R → R
applied entrywise to any vector in Rd with d ≥ 1. Note that in (2.14) the input dimension of σ may
vary between layers but regardless of the input dimension the function σ applies the same operations
to all entries of the input vector. We primarily consider the Rectified Linear Unit (ReLU) activation
functions, i.e.,

σ(s) := (max{0, s1},max{0, s2}, . . . ,max{0, sd})T ∈ Rd ∀ s ∈ Rd. (2.15)
The weights and biases constitute the parameters of the network. In this paper we learn these

parameters in the following standard way [49]: given a set of data {xj , yj}Nj=1 we choose the parameters
of χ to solve an appropriate regression problem by minimizing a data-dependent cost functional, using
stochastic gradient methods. Neural networks have been demonstrated to constitute an efficient class
of regressors and interpolators for high-dimensional problems empirically, but a complete theory of
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their efficacy is elusive. For an overview of various neural network architectures and their applications,
see [33]. For theories concerning their approximation capabilities see [21, 45, 57, 72, 81].

For the approximation results given in Section 3, we will work with a specific class of neural networks,
following [81]; we note that other approximation schemes could be used, however, and that we have
chosen a proof setting that aligns with, but is not identical to, what we implement in the computations
described in Section 4. We will fix σ ∈ C(R;R) to be the ReLU function (2.15) and consider the set
of neural networks mapping Rn to R

M(n; t, r) :=
{
χ(s) = Wtσ(. . . σ(W2σ(W1s+ b1) + b2)) + bt ∈ R,
for all s ∈ Rn and such that

∑t
k=1 |Wk|0 + |bk|0 ≤ r.

}
Here | · |0 gives the number of non-zero entries in a matrix so that r ≥ 0 denotes the number of active
weights and biases in the network while t ≥ 1 is the total number of layers. Moreover, we define the
class of stacked neural networks mapping Rn to Rm:

M(n,m; t, r) :=

χ(s) = (χ(1)(s), . . . , χ(m)(s))T ∈ Rm,

where χ(j) ∈M(n; t(j), r(j)), with t(j) ≤ t, r(j) ≤ r.


From this, we build the set of zero-extended neural networks

M(n,m; t, r,M) :=
{
χ =

{
χ̃(s), s ∈ [−M,M ]n

0, s 6∈ [−M,M ]n
, for some χ̃ ∈M(n,m, t, r)

}
,

where the new parameter M > 0 is the side length of the hypercube in Rn within which χ can be non-
zero. This construction is essential to our approximation as it allows us to handle non-compactness of
the latent spaces after PCA dimension reduction.

2.4. Comparison to Existing Methods

In the general setting of arbitrary encoders, the formula (2.1c) for the approximation of Ψ yields a
complicated map, the representation of which depends on the dimension reduction methods being
employed. However, in the setting where PCA is used, a clear representation emerges which we now
elucidate in order to highlight similarities and differences between our methodology and existing
methods appearing in the literature.

Let FX : X → RdX be the PCA encoder w.r.t. the data {xj}Nj=1 given by (2.9) and, in particular, let
φX1,N , . . . , φ

X
dX ,N

be the eigenvectors of the resulting empirical covariance. Similarly let φY1,N , . . . , φ
Y
dY ,N

be the eigenvectors of the empirical covariance w.r.t. the data {y}Nj=1. For the function ϕ defined
in (2.2), or similarly for approximations χ thereof found through the use of neural networks, we
denote the components by ϕ(s) = (ϕ1(s), . . . , ϕdY (s)) for any s ∈ RdX . Then (2.1c) becomes Ψ(x) ≈∑dY
j=1 αj(x)φYj,N with coefficients

αj(x) = ϕj
(
FX (x)

)
= ϕj

(
〈x, φX1,N 〉X , . . . , 〈x, φXdX ,N 〉X

)
, ∀ x ∈ X .

The solution data {y}Nj=1 fixes a basis for the output space, and the dependence of Ψ(x) on x is
captured solely via the scalar-valued coefficients αj . This parallels the formulation of the classical
reduced basis method [23] where the approximation is written as

Ψ(x) ≈
m∑
j=1

αj(x)φj . (2.16)

Many versions of the method exist, but two particularly popular ones are: (i) when m = N and
φj = yj ; and (ii) when, as is done here, m = dY and φj = φYj,N . The latter choice is also referred to as
the reduced basis with a proper orthogonal decomposition.
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The crucial difference between our method and the RBM is in the formation of the coefficients αj . In
RBM these functions are obtained in an intrusive manner by approximating the PDE within the finite-
dimensional reduced basis and as a consequence the method cannot be used in a setting where a PDE
relating inputs and outputs is not known, or may not exist. In contrast, our proposed methodology
approximates ϕ by regressing or interpolating the latent representations {FX (xj), FY(yj)}Nj=1. Thus
our proposed method makes use of the entire available dataset and does not require explicit knowledge
of the underlying PDE mapping, making it a non-intrusive method applicable to black-box models.

The form (2.16) of the approximate solution operator can also be related to the Taylor approx-
imations developed in [14, 17] where a particular form of the input x is considered, namely x =
x̄ +

∑
j≥1 aj x̃j where x̄ ∈ X is fixed, {aj}j≥1 ∈ `∞(N;R) are uniformly bounded, and {x̃j}j≥1 ∈ X

have some appropriate norm decay. Then, assuming that the solution operator Ψ : X → Y is ana-
lytic [18], it is possible to make use of the Taylor expansion

Ψ(x) =
∑
h∈F

αh(x)ψh,

where F = {h ∈ N∞ : |h|0 <∞} is the set of multi-indices and

αh(x) =
∏
j≥1

a
hj

j ∈ R, ψh = 1
h!∂

hΨ(0) ∈ Y;

here the differentiation ∂h is with respect to the sequence of coefficients {aj}j≥1. Then Ψ is approx-
imated by truncating the Taylor expansion to a finite subset of F . For example this may be done
recursively, by starting with h = 0 and building up the index set in a greedy manner. The method is
not data-driven, and requires knowledge of the PDE to define equations to be solved for the ψh.

3. Approximation Theory

In this section, we prove our main approximation result: given any ε > 0, we can find an ε−approxim-
ation ΨNN of Ψ. We achieve this by making the appropriate choice of PCA truncation parameters, by
choosing sufficient amounts of data, and by choosing a sufficiently rich neural network architecture to
approximate ϕ by χ.

In what follows we define FX to be a PCA encoder given by (2.9), using the input data {xj}Nj=1
drawn i.i.d. from µ, and GY to be a PCA decoder given by (2.10), using the data {yj = Ψ(xj)}Nj=1.
We also define

eNN(x) = ‖(GY ◦ χ ◦ FX )(x)−Ψ(x)‖Y
= ‖ΨNN(x)−Ψ(x)‖Y .

We prove the following theorem:

Theorem 3.1. Let X , Y be real, separable Hilbert spaces and let µ be a probability measure supported
on X such that Ex∼µ‖x‖4X < ∞. Suppose Ψ : X → Y is a µ-measurable, globally Lipschitz map.
For any ε > 0, there are dimensions dX = dX (ε) ∈ N, dY = dY(ε) ∈ N, a requisite amount of data
N = N(dX , dY) ∈ N, parameters t, r,M depending on dX , dY and ε, and a zero-extended stacked neural
network χ ∈M(dX , dY ; t, r,M) such that

E{xj}∼µEx∼µ
(
eNN(x)2) < ε.

Remark 3.2. This theorem is a consequence of Theorem 3.5 which we state and prove below. For
clarity and ease of exposition we state and prove Theorem 3.5 in a setting where Ψ is globally Lipschitz.
With a more stringent moment condition on µ, the result can also be proven when Ψ is locally Lipschitz;
we state and prove this result in Theorem A.1.
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Remark 3.3. The neural network χ ∈ M(dX , dY ; t, r,M) has maximum number of layers t ≤
c[log(M2dY/ε) + 1], with the number of active weights and biases in each component of the net-
work r ≤ c(ε/4M2)−dX /2[log(M2dY/ε) + 1], with an appropriate constant c = c(dX , dY) ≥ 0 and
support side-length M = M(dX , dY) > 0. These bounds on t and r follow from Theorem 3.5 with
τ = ε

1
2 . Note, however, that in order to achieve error ε, the dimensions dX , dY must be chosen to grow

as ε→ 0; thus the preceding statements do not explicitly quantify the needed number of parameters,
and depth, for error ε; to do so would require quantifying the dependence of c,M on dX , dY (a property
of neural networks) and the dependence of dX , dY on ε (a property of the measure µ and spaces X ,Y –
see Theorem 3.4). The theory in [81], which we employ for the existence result for the neural network
produces the constant c which depends on the dimensions dX and dY in an unspecified way.

The double expectation reflects averaging over all possible new inputs x drawn from µ (inner expec-
tation) and over all possible realizations of the i.i.d. dataset {xj , yj = Ψ(xj)}Nj=1 (outer expectation).
The theorem as stated above is a consequence of Theorem 3.5 in which the error is broken into multiple
components that are then bounded separately. Note that the theorem does not address the question
of whether the optimization technique used to fit the neural network actually finds the choice which
realizes the theorem; this gap between theory and practice is difficult to overcome, because of the
non-convex nature of the training problem, and is a standard feature of theorems in this area [45, 72].

The idea of the proof is to quantify the approximations GX ◦FX ≈ IX and GY ◦FY ≈ IY and χ ≈ ϕ
so that ΨNN given by (2.4) is close to Ψ. The first two approximations, which show that ΨPCA given
by (2.3) is close to Ψ, are studied in Subsection 3.1 (see Theorem 3.4). Then, in Subsection 3.2, we
find a neural network χ able to approximate ϕ to the desired level of accuracy; this fact is part of the
proof of Theorem 3.5. The zero-extension of the neural network arises from the fact that we employ
a density theorem for a class of neural networks within continuous functions defined on compact sets.
Since we cannot guarantee that FX is bounded, we simply set the neural network output to zero on the
set outside a hypercube with side-length 2M . We then use the fact that this set has small µ-measure,
for sufficiently large M.

3.1. PCA And Approximation

We work in the general notation and setting of Subsection 2.2 so as to obtain approximation results
that are applicable to both using PCA on the inputs and on the outputs. In addition, denote by
(HS(H), 〈 · , · 〉HS , ‖ · ‖HS) the space of Hilbert–Schmidt operators over H. We are now ready to state
the main result of this subsection. Our goal is to control the projection error R(Vd,N ) when using
the finite-data PCA subspace in place of the optimal projection space since the PCA subspace is
what is available in practice. Theorem 3.4 accomplishes this by bounding the error R(Vd,N ) by the
optimal error R(Vd) plus a term related to the approximation Vd,N ≈ Vd. While previous results such
as [9, 73, 74] focused on bounds for the excess error in probability w.r.t. the data, we present bounds in
expectation, averaging over the data. Such bounds are weaker, but allow us to remove strict conditions
on the data distribution to obtain more general results; for example, our theory allows for ν to be a
Gaussian measure.

Theorem 3.4. Let R be given by (2.11) and Vd,N , Vd by (2.7), (2.13) respectively. Then there exists
a constant Q ≥ 0, depending only on the data generating measure ν, such that

E{uj}∼ν [R(Vd,N )] ≤

√
Qd

N
+R(Vd),

where the expectation is over the dataset {uj}Nj=1
iid∼ ν.
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The proof generalizes that employed in [9, Thm. 3.1]. We first find a bound on the average excess
error E[R(Vd,N ) − RN (Vd,N )] using Lemma B.2. Then using Fan’s Theorem [27] (Lemma B.1), we
bound the average sum of the tail eigenvalues of CN by the sum of the tail eigenvalues of C, in
particular, E[RN (Vd,N )] ≤ R(Vd).

Proof. For brevity we simply write E instead of E{uj}∼ν throughout the proof. For any subspace
V ⊆ H, we have

R(V ) = Eu∼ν [‖u‖2 − 2〈u,ΠV u〉+ 〈ΠV u,ΠV u〉] = Eu∼ν [tr(u⊗ u)− 〈ΠV u,ΠV u〉]
= Eu∼ν [tr(u⊗ u)− 〈ΠV , u⊗ u〉HS ] = trC − 〈ΠV , C〉HS

where we used two properties of the fact that ΠV is an orthogonal projection operator, namely Π2
V =

ΠV = Π∗V and

〈ΠV , v ⊗ z〉HS = 〈v,ΠV z〉 = 〈ΠV v,ΠV z〉 ∀ v, z ∈ H.

Repeating the above arguments for RN (V ) in place of R(V ), with the expectation replaced by the
empirical average, yields RN (V ) = trCN − 〈ΠV , CN 〉HS . By noting that E[CN ] = C we then write

E[R(Vd,N )−RN (Vd,N )] = E〈ΠVd,N
, CN − C〉HS ≤

√
d E‖CN − C‖HS

≤
√
d
√
E‖CN − C‖2HS

where we used Cauchy–Schwarz twice along with the fact that ‖ΠVd,N
‖HS =

√
d since Vd,N is d-

dimensional. Now by Lemma B.2, which quantifies the Monte Carlo error between C and CN in the
Hilbert–Schmidt norm, we have that

E[R(Vd,N )−RN (Vd,N )] ≤

√
Qd

N
,

for a constant Q ≥ 0. Hence by(2.8),

E[R(Vd,N )] ≤

√
Qd

N
+ E

N∑
j=d+1

λj,N .

It remains to estimate the second term above. Letting Sd denote the set of subspaces of d orthonormal
elements in H, Fan’s Theorem (Proposition B.1) gives

d∑
j=1

λj = max
{v1,...,vd}∈Sd

d∑
j=1
〈Cvj , vj〉 = max

{v1,...,vd}∈Sd

Eu∼ν
d∑
j=1
|〈u, vj〉|2

= max
{v1,...,vd}∈Sd

Eu∼ν
d∑
j=1
‖Πspan{vj}u‖

2 = max
V ∈Vd

Eu∼ν‖ΠV u‖2

= Eu∼ν‖u‖2 − min
V ∈Vd

Eu∼ν‖ΠV ⊥u‖2.

Observe that
∑∞
j=1 λj = trC = Eu∼ν‖u‖2 and so

∞∑
j=d+1

λj = Eu∼ν‖u‖2 −
d∑
j=1

λj = min
V ∈Vd

Eu∼ν‖ΠV ⊥u‖2.

We now repeat the above calculations for λj,N , the eigenvalues of CN , by replacing the expectation
with the empirical average to obtain

N∑
j=d+1

λj,N = min
V ∈Vd

1
N

N∑
k=1
‖ΠV ⊥uk‖2,
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and so

E
N∑

j=d+1
λj,N ≤ min

V ∈Vd

E
1
N

N∑
k=1
‖ΠV ⊥uk‖2 = min

V ∈Vd

Eu∼µ‖ΠV ⊥u‖2 =
∞∑

j=d+1
λj .

Finally, we conclude that

E[R(Vd,N )] ≤

√
Qd

N
+

∞∑
j=d+1

λj =

√
Qd

N
+R(Vd).

3.2. Neural Networks And Approximation

In this subsection we study the approximation of ϕ given in (2.2) by neural networks, combining
the analysis with results from the preceding subsection to prove our main approximation result,
Theorem 3.5. We will work in the notation of Section 2. We assume that (X , 〈 · , · 〉X , ‖ · ‖X ) and
(Y, 〈 · , · 〉Y , ‖ · ‖Y) are real, separable Hilbert spaces; µ is a probability measure supported on X with
a finite fourth moment Ex∼µ‖x‖4X <∞, and Ψ : X → Y is measurable and globally L-Lipschitz: there
exists a constant L > 0 such that

∀ x, z ∈ X ‖Ψ(x)−Ψ(z)‖Y ≤ L‖x− z‖X .
Note that this implies that Ψ is linearly bounded: for any x ∈ X

‖Ψ(x)‖Y ≤ ‖Ψ(0)‖Y + ‖Ψ(x)−Ψ(0)‖Y ≤ ‖Ψ(0)‖Y + L‖x‖X .
Hence we deduce existence of the fourth moment of the pushforward Ψ]µ:

Ey∼Ψ]µ‖y‖
4
Y =

∫
X
‖Ψ(x)‖4Ydµ(x) ≤

∫
X

(‖Ψ(0)‖Y + L‖x‖X )4dµ(x) <∞

since we assumed Ex∼µ‖x‖4X <∞.
Let us recall some of the notation from Subsections 2.2 and 2.4. Let V XdX

be the dX -dimensional
optimal projection space given by (2.13) for the measure µ and V XdX ,N

be the dX -dimensional PCA sub-
space given by (2.7) with respect to the input dataset {xj}Nj=1. Similarly let V YdY

be the dY -dimensional
optimal projection space for the pushforward measure Ψ]µ and V YdY ,N

be the dY -dimensional PCA sub-
space with respect to the output dataset {yj = Ψ(xj)}Nj=1. We then define the input PCA encoder
FX : X → RdX by (2.9) and the input PCA decoder GX : RdX → X by (2.10) both with respect to the
orthonormal basis used to construct V XdX ,N

. Similarly we define the output PCA encoder FY : Y → RdY

and decoder GY : RdY → Y with respect to the orthonormal basis used to construct V YdY ,N
. Finally we

recall ϕ : RdX → RdY the map connecting the two latent spaces defined in (2.2). The approximation
ΨPCA to Ψ based only on the PCA encoding and decoding is given by (2.3). In the following theorem,
we prove the existence of a neural network giving an ε-close approximation to ϕ for fixed latent code
dimensions dX , dY and quantify the error of the full approximation ΨNN, given in (2.4), to Ψ. We will
be explicit about which measure the projection error is defined with respect to. In particular, we will
write (2.11) as

Rµ(V ) = Ex∼µ‖x−ΠV x‖2X
for any subspace V ⊆ X and similarly

RΨ]µ(V ) = Ey∼Ψ]µ‖y −ΠV y‖2Y
for any subspace V ⊆ Y .
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Theorem 3.5. Let X , Y be real, separable Hilbert spaces and let µ be a probability measure supported
on X such that Ex∼µ‖x‖4X < ∞. Suppose Ψ : X → Y is a µ-measurable, globally Lipschitz map. Fix
dX , dY , N ≥ max{dX , dY}, δ ∈ (0, 1) and τ > 0. Define M =

√
Ex∼µ‖x‖2X /δ. Then there exists a

constant c = c(dX , dY) ≥ 0 and a zero-extended stacked neural network χ ∈ M(dX , dY ; t, r,M) with
t ≤ c(dX , dY)[log(M

√
dY/τ) + 1] and r ≤ c(dX , dY)(τ/2M)−dX [log(M

√
dY/τ) + 1], so that

E{xj}∼µEx∼µ
(
eNN(x)

)2 ≤ C(τ2 +
√
δ +

√
dX
N

+Rµ(V XdX ) +

√
dY
N

+RΨ]µ(V YdY
)
)
, (3.1)

where C > 0 is independent of dX , dY , N, δ and τ .

The first two terms on the r.h.s. arise from the neural network approximation of ϕ while the last two
pairs of terms are from the finite-dimensional approximation of X and Y respectively as prescribed
by Theorem 3.4. The way to interpret the result is as follows: first choose dX , dY so that Rµ(V XdX

)
and RΨ]µ(V YdY

) are small – these are intrinsic properties of the measures µ and Ψ]µ; secondly, choose
the amount of data N large enough to make max{dX , dY}/N small, essentially controlling how well
we approximate the intrinsic covariance structure of µ and Ψ]µ using samples; thirdly choose δ small
enough to control the error arising from restricting the domain of ϕ; and finally choose τ sufficiently
small to control the approximation of ϕ by a neural network restricted to a compact set. Note that
the size and values of the parameters of the neural network χ will depend on the choice of δ as well
as dX , dY and N in a manner which we do not specify. In particular, the dependence of c on dX , dY is
not explicit in the theorem of [81] which furnishes the existence of the requisite neural network χ. The
parameter τ specifies the error tolerance between χ and ϕ on [−M,M ]dX . Intuitively, as (δ, τ) → 0,
we expect the number of parameters in the network to also grow [57]. Quantifying this growth would
be needed to fully understand the computational complexity of our method.

Proof. Recall the constant Q from Theorem 3.4. In what follows we take Q to be the maximum of
the two such constants when arising from application of the theorem on the two different probability
spaces (X , µ) and (Y,Ψ]µ). Through the proof we use E to denote E{xj}∼µ the expectation with respect
to the dataset {xj}Nj=1.
We begin by approximating the error incurred by using ΨPCA given by (2.3):

EEx∼µ‖ΨPCA(x)−Ψ(x)‖2Y = EEx∼µ‖(GY ◦ FY ◦Ψ ◦GX ◦ FX )(x)−Ψ(x)‖2Y

= EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(ΠV X

dX ,N
x)−Ψ(x)

∥∥∥∥2

Y

≤ 2EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(ΠV X

dX ,N
x)−ΠV Y

dY ,N
Ψ(x)

∥∥∥∥2

Y

+ 2EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(x)−Ψ(x)

∥∥∥∥2

Y

≤ 2L2EEx∼µ
∥∥∥∥ΠV X

dX ,N
x− x

∥∥∥∥2

X
+ 2EEy∼Ψ]µ

∥∥∥∥ΠV Y
dY ,N

y − y
∥∥∥∥2

Y

= 2L2E[Rµ(V XdX ,N )] + 2E[RΨ]µ(V YdY ,N
)]

(3.2)
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noting that the operator norm of an orthogonal projection is 1. Theorem 3.4 allows us to control this
error, and leads to

EEx∼µ
(
eNN(x)2) = EEx∼µ‖ΨNN(x)−Ψ(x)‖2Y

≤ 2EEx∼µ‖ΨNN(x)−ΨPCA(x)‖2Y + 2EEx∼µ‖ΨPCA(x)−Ψ(x)‖2Y
≤ 2Ex∼µ‖ΨNN(x)−ΨPCA(x)‖2Y

+ 4L2

√QdX
N

+Rµ(V XdX )

+ 4

√QdY
N

+RΨ]µ(V YdY
)

 .
(3.3)

We now approximate ϕ by a neural network χ as a step towards estimating ‖ΨNN(x) − ΨPCA(x)‖Y .
To that end we first note from Lemma B.3 that ϕ is Lipschitz, and hence continuous, as a mapping
from RdX into RdY . Identify the components ϕ(s) = (ϕ(1)(s), . . . , ϕ(dY )(s)) where each function ϕ(j) ∈
C(RdX ;R). We consider the restriction of each component function to the set [−M,M ]dX . Let us
now change variables by defining ϕ̃(j) : [0, 1]dX → R by ϕ̃(j)(s) = (1/2M)ϕ(j)(2Ms − M) for any
s ∈ [0, 1]dX . Note that equivalently we have ϕ(j)(s) = 2Mϕ̃(j)((s + M)/2M) for any s ∈ [−M,M ]dX

and further ϕ(j) and ϕ̃(j) have the same Lipschitz constants on their respective domains. Applying [81,
Thm. 1] to the ϕ̃(j)(s) then yields existence of neural networks χ̃(1), . . . , χ̃(dY ) : [0, 1]dX → R such that

|χ̃(j)(s)− ϕ̃(j)(s)| < τ

2M
√
dY

∀ s ∈ [0, 1]dX ,

for any j ∈ {1, . . . , dY}. In fact, each neural network χ̃(j) ∈ M(dX ; t(j), r(j)) with parameters t(j) and
r(j) satisfying

t(j) ≤ c(j)
[
log(M

√
dY/τ) + 1

]
, r(j) ≤ c(j)

(
τ

2M

)−dX
[
log(M

√
dY/τ) + 1

]
,

with constants c(j)(dX ) > 0. Hence defining χ(j) : RdX → R by χ(j)(s) := 2Mχ̃(j)((s + M)/2M) for
any s ∈ [−M,M ]dX , we have that∣∣(χ(1)(s), . . . , χ(dY )(s)

)
− ϕ(s)

∣∣
2 < τ ∀ s ∈ [−M,M ]dX .

We can now simply define χ : RdX → RdY as the stacked network (χ(1), . . . , χdY ) extended by zero
outside of [−M,M ]dX to immediately obtain

sup
s∈[−M,M ]dX

∣∣χ(s)− ϕ(s)
∣∣
2 < τ. (3.4)

Thus, by construction χ ∈ M(dX , dY , t, r,M) with at most t ≤ maxj t(j) many layers and r ≤ r(j)

many active weights and biases in each of its components.
Let us now define the set A = {x ∈ X : FX (x) ∈ [−M,M ]dX }. By Lemma B.4, µ(A) ≥ 1 − δ and
µ(Ac) ≤ δ. Define the approximation error

ePCA(x) = ‖ΨNN(x)−ΨPCA(x)‖Y
and decompose its expectation as

Ex∼µ
(
ePCA(x)2) =

∫
A
ePCA(x)2dµ(x)︸ ︷︷ ︸

:=IA

+
∫
Ac
ePCA(x)2dµ(x)︸ ︷︷ ︸

:=IAc

.

For the first term,

IA ≤
∫
A
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖2Ydµ(x) ≤ τ2, (3.5)

by using the fact, established in Lemma B.3, that GY is Lipschitz with Lipschitz constant 1, the
τ -closeness of χ to ϕ from (3.4), and µ(A) ≤ 1. For the second term we have, using that GY has
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(a) µG (b) µL (c) µP (d) µB

Figure 4.1. Representative samples for each of the probability measures
µG, µL, µP, µB defined in Subsection 4.1. µG and µP are used in Subsection 4.2 to
model the inputs, µL and µP are used in Subsection 4.3, and µB is used in Subsec-
tion 4.4.

Lipschitz constant 1 and that χ vanishes on Ac,

IAc ≤
∫
Ac
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖2Ydµ(x)

≤
∫
Ac
|χ(FX (x))− ϕ(FX (x))|22dµ(x) =

∫
Ac
|ϕ(FX (x))|22dµ(x).

(3.6)

Once more from Lemma B.3, we have that
|FX (x)|2 ≤ ‖x‖X ; |ϕ(x)|2 ≤ |ϕ(0)|2 + L|x|2,

so that
IAc ≤ 2

(
µ(Ac)|ϕ(0)|22 + µ(Ac)

1
2L2(Ex∼µ‖x‖4X )

1
2
)
,

≤ 2
(
δ|ϕ(0)|22 + δ

1
2L2(Ex∼µ‖x‖4X )

1
2
)
.

(3.7)

Combining (3.3), (3.5) and (3.7), we obtain the desired result.

4. Numerical Results

We now present a series of numerical experiments that demonstrate the effectiveness of our proposed
methodology in the context of the approximation of parametric PDEs. We work in settings which both
verify our theoretical results and show that the ideas work outside the confines of the theory. The key
idea underlying our work is to construct the neural network architecture so that it is defined as a
map between Hilbert spaces and only then to discretize and obtain a method that is implementable
in practice; prevailing methodologies first discretize and then apply a standard neural network. Our
approach leads, when discretized, to methods that have properties which are uniform with respect to
the mesh size used. We demonstrate this through our numerical experiments. In practice, we obtain
an approximation Ψnum to ΨNN, reflecting the numerical discretization used, and the fact that µ and
its pushforward under Ψ are only known to us through samples and, in particular, samples of the
pushforward of µ under the numerical approximation of the input-output map. However since, as we
will show, our method is robust to the discretization used, we will not explicitly reflect the dependence
of the numerical method in the notation that appears in the remainder of this section.

In Subsection 4.1 we introduce a class of parametric elliptic PDEs arising from the Darcy model
of flow in porous media, as well as the time-dependent, parabolic, Burgers’ equation, that define
a variety of input-output maps for our numerical experiments; we also introduce the probability
measures that we use on the input spaces. Subsection 4.2 presents numerical results for a Lipschitz
map. Subsections 4.3, 4.4 present numerical results for the Darcy flow problem and the flow map
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(a) Input (b) Ground Truth (c) Approximation (d) Error

(e) Input (f) Ground Truth (g) Approximation (h) Error

(i) Input (j) Ground Truth (k) Approximation (l) Error

(m) Input (n) Ground Truth (o) Approximation (p) Error

(q) Input (r) Ground Truth (s) Approximation (t) Error

Figure 4.2. Randomly chosen examples from the test set for each of the five consid-
ered problems. Each row is a different problem: linear elliptic, Poisson, Darcy flow with
log-normal coefficients, Darcy flow with piecewise constant coefficients, and Burgers’
equation respectively from top to bottom. The approximations are constructed with
our best performing method (for N = 1024): Linear d = 150, Linear d = 150, NN
d = 70, NN d = 70, NN d = 15 respectively from top to bottom.
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for the Burgers’ equation; this leads to non-Lipschitz input-output maps, beyond our theoretical
developments. We emphasize that while our method is designed for approximating nonlinear operators
Ψ, we include some numerical examples where Ψ is linear. Doing so is helpful for confirming some of our
theory and comparing against other methods in the literature. Note that when Ψ is linear, each piece in
the approximate decomposition (2.3) is also linear, in particular, ϕ is linear. Therefore it is sufficient to
parameterize ϕ as a linear map (matrix of unknown coefficients) instead of a neural network. We include
such experiments in Section 4.2 revealing that, while a neural network approximating ϕ arbitrarily well
exists, the optimization methods used for training the neural network fail to find it. It may therefore be
beneficial to directly build into the parametrization known properties of ϕ, such as linearity, when they
are known. We emphasize that, for general nonlinear maps, linear methods significantly underperform
in comparison with our neural network approximation and we will demonstrate this for the Darcy flow
problem, and for Burgers’ equation.

We use standard implementations of PCA, with dimensions specified for each computational exam-
ple below. All computational examples use an identical neural network architecture: a 5-layer dense
network with layer widths 500, 1000, 2000, 1000, 500, ordered from first to last layer, and the SELU
nonlinearity [43]. We note that Theorem 3.5 requires greater depth for greater accuracy but that we
have found our 5-layer network to suffice for all of the examples described here. Thus we have not
attempted to optimize the architecture of the neural network. We use stochastic gradient descent with
Nesterov momentum (0.99) to train the network parameters [33], each time picking the largest learning
rate that does not lead to blow-up in the error. While the network must be re-trained for each new
choice of reduced dimensions dX , dY , initializing the hidden layers with a pre-trained network can help
speed up convergence.

4.1. PDE Setting

We will consider a variety of solution maps defined by second order elliptic PDEs of the form (1.1).
which are prototypical of many scientific applications. We take D = (0, 1)2 to be the unit box,
a ∈ L∞(D;R+), f ∈ L2(D;R), and let u ∈ H1

0 (D;R) be the unique weak solution of (1.1). Note
that, since D is bounded, L∞(D;R+) is continuously embedded within the Hilbert space L2(D;R+).
We will consider two variations of the input-output map generated by the solution operator for (1.1);
in one, it is Lipschitz and lends itself to the theory of Subsection 3.2 and, in the other, it is not
Lipschitz. We obtain numerical results which demonstrate our theory as well as demonstrating the
effectiveness of our proposed methodology in the non-Lipschitz setting.

Furthermore, we consider the one-dimensional viscous Burgers’ equation on the torus given as

∂

∂t
u(s, t) + 1

2
∂

∂s
(u(s, t))2 = β

∂2

∂s2u(s, t), (s, t) ∈ T1 × (0,∞)

u(s, 0) = u0(s), s ∈ T1
(4.1)

where β > 0 is the viscosity coefficient and T1 is the one dimensional unit torus obtained by equipping
the interval [0, 1] with periodic boundary conditions. We take u0 ∈ L2(T1;R) and have that, for any
t > 0, u( · , t) ∈ Hr(T1;R) for any r > 0 is the unique weak solution to (4.1) [78]. In Subsection 4.4,
we consider the input-output map generated by the flow map of (4.1) evaluated at a fixed time which
is a locally Lipschitz operator.

We make use of four probability measures which we now describe. The first, which will serve as
a base measure in two dimensions, is the Gaussian µG = N (0, (−∆ + 9I)−2) with a zero Neumann
boundary condition on the operator ∆. Then we define µL to be the log-normal measure defined as the
push-forward of µG under the exponential map i.e. µL = exp] µG. Furthermore, we define µP = T]µG
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to be the push-forward of µG under the piecewise constant map

T (s) =
{

12 s ≥ 0,
3 s < 0.

Lastly, we consider the Gaussian µB = N (0, 74(− d2

ds2 + 72I)−2.5) defined on T1. Figure 4.1 shows an
example draw from each of the above measures. We will use as µ one of these four measures in each
experiment we conduct. Such probability measures are commonly used in the stochastic modeling of
physical phenomenon [53]. For example, µP may be thought of as modeling the permeability of a
porous medium containing two different constituent parts [41]. Note that it is to be expected that
a good choice of architecture will depend on the probability measure used to generate the inputs.
Indeed good choices of the reduced dimensions dX and dY are determined by the input measure and
its pushforward under Ψ, respectively.

For each subsequently described problem we use, unless stated otherwise, N = 1024 training ex-
amples from µ and its pushforward under Ψ, from which we construct ΨNN, and then 5000 unseen
testing examples from µ in order to obtain a Monte Carlo estimate of the relative test error:

Ex∼µ
‖(G2 ◦ χ ◦ F1)(x)−Ψ(x)‖Y

‖Ψ(x)‖Y
.

For problems arising from (1.1), all data is collected on a uniform 421 × 421 mesh and the PDE
is solved with a second order finite-difference scheme. For problems arising from (4.1), all data is
collected on a uniform 4096 point mesh and the PDE is solved using a pseudo-spectral method. Data
for all other mesh sizes is sub-sampled from the original. We refer to the size of the discretization in
one direction e.g. 421, as the resolution. We fix dX = dY (the dimensions after PCA in the input and
output spaces) and refer to this as the reduced dimension. We experiment with using a linear map
as well as a dense neural network for approximating ϕ; in all figures we distinguish between these by
referring to Linear or NN approximations respectively. When parameterizing with a neural network,
we use the aforementioned stochastic gradient based method for training, while, when parameterizing
with a linear map, we simply solve the linear least squares problem by the standard normal equations.

We also compare all of our results to the work of [83] which utilizes a 19-layer fully-connected
convolutional neural network, referencing this approach as Zhu within the text. This is done to show
that the image-to-image regression approach that many such works utilize yields approximations
that are not consistent in the continuum, and hence across different discretizations; in contrast, our
methodology is designed as a mapping between Hilbert spaces and as a consequence is robust across
different discretizations. For some problems in Subsection 4.2, we compare to the method developed
in [14], which we refer to as Chkifa. For the problems in Subsection 4.3, we also compare to the reduced
basis method [23, 67] when instantiated with PCA. We note that both Chkifa and the reduced basis
method are intrusive, i.e., they need knowledge of the governing PDE. Furthermore the method of
Chkifa needs full knowledge of the generating process of the inputs. We re-emphasize that our proposed
method is fully data-driven.

4.2. Globally Lipschitz Solution Map

We consider the input-output map Ψ : L2(D;R) → H1
0 (D;R) mapping f 7→ u in (1.1) with the

coefficient a fixed. Since (1.1) is a linear PDE, Ψ is linear and therefore Lipschitz. We study two
instantiations of this problem. In the first, we draw a single a ∼ µP and fix it. We then solve (1.1) with
data f ∼ µG. We refer to this as the linear elliptic problem. See row 1 of Figure 4.2 for an example.
In the second, we set a(w) = 1 ∀ w ∈ D, in which case (1.1) becomes the Poisson equation which we
solve with data f ∼ µ = µG. We refer to this as the Poisson problem. See row 2 of Figure 4.2 for an
example.
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(a) (b) (c)

Figure 4.3. Relative test errors on the linear elliptic problem. Using N = 1024 train-
ing examples, panel (a) shows the errors as a function of the resolution while panel (b)
fixes a 421×421 mesh and shows the error as a function of the reduced dimension. Panel
(c) only shows results for our method using a neural network, fixing a 421× 421 mesh
and showing the error as a function of the reduced dimension for different amounts of
training data.

(a) (b) (c)

Figure 4.4. Relative test errors on the Poisson problem. Using N = 1024 training
examples, panel (a) shows the errors as a function of the resolution while panel (b) fixes
a 421 × 421 mesh and shows the error as a function of the reduced dimension. Panel
(c) only shows results for our method using a neural network, fixing a 421× 421 mesh
and showing the error as a function of the reduced dimension for different amounts of
training data.

Figure 4.3 (a) shows the relative test errors as a function of the resolution on the linear elliptic
problem, while Figure 4.4 (a) shows them on the Poisson problem. The primary observation to make
about panel (a) in these two figures is that it shows that the error in our proposed method does
not change as the resolution changes. In contrast, it also shows that the image-to-image regression
approach of Zhu [83], whilst accurate at low mesh resolution, fails to be invariant to the size of the
discretization and errors increase in an uncontrolled fashion as greater resolution is used. The fact
that our dimension reduction approach achieves constant error as we refine the mesh, reflects its
design as a method on Hilbert space which may be approximated consistently on different meshes.
Since the operator Ψ here is linear, the true map of interest ϕ given by (2.2) is linear since FY and
GX are, by the definition of PCA, linear. It is therefore unsurprising that the linear approximation
consistently outperforms the neural network, a fact also demonstrated in panel (a) of the two figures.
While it is theoretically possible to find a neural network that can, at least, match the performance
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(a) (b) (c)

Figure 4.5. Panel (a) shows a sample drawn from the model (4.2) while panel (b)
shows the solution of the Poisson equation with the sample from (a) as the r.h.s. Panel
(c) shows the relative test error as a function of the amount of PDE solves/ training data
for the method of Chkifa and our method respectively. We use the reduced dimension
d = N .

of the linear map, in practice, the non-convexity of the associated optimization problem can cause
non-optimal behavior. Panels (b) of Figures 4.3 and 4.4 show the relative error as a function of the
reduced dimension for a fixed mesh size. We see that while the linear maps consistently improve with
the reduced dimension, the neural networks struggle as the complexity of the optimization problem is
increased. This problem can usually be alleviated with the addition of more data as shown in panels
(c), but there are still no guarantees that the optimal neural network is found. Since we use a highly-
nonlinear 5-layer network to represent the linear ϕ, this issue is exacerbated for this problem and
the addition of more data only slightly improves the accuracy as seen in panels (c). In Appendix D,
we show the relative test error during the training process and observe that some overfitting occurs,
indicating that the optimization problem is stuck in a local minima away from the optimal linear
solution. This is an issue that is inherent to most deep neural network based methods. Our results
suggest that building in a priori information about the solution map, such as linearity, can be very
beneficial for the approximation scheme as it can help reduce the complexity of the optimization.

To compare to the method of Chkifa [14], we will assume the following model for the inputs,

f =
∞∑
j=1

ξjφj (4.2)

where ξj ∼ U(−1, 1) is an i.i.d. sequence, and φj =
√
λjψj where λj , ψj are the eigenvalues and

eigenfunctions of the operator (−∆ + 100I)−4.1 with a zero Neumann boundary. This construction
ensures that there exists p ∈ (0, 1) such that (‖φj‖L∞)j≥1 ∈ `p(N;R) which is required for the theory
in [18]. We assume this model for f , the r.h.s. of the Poisson equation, and consider the solution
operator Ψ : `∞(N;R)→ H1

0 (D;R) mapping (ξj)j≥1 7→ u. Figure 4.5 panels (a)-(b) show an example
input from (4.2) and its corresponding solution u. Since this operator is linear, its Taylor series
representation simply amounts to

Ψ((ξj)j≥1) =
∞∑
j=1

ξjηj (4.3)

where ηj ∈ H1
0 (D;R) satisfy

−∆ηj = φj .

This is easily seen by plugging in our model (4.2) for f into the Poisson equation and formally
inverting the Laplacian. We further observe that the `1(N;R) summability of the sequence (‖ηj‖H1

0
)j≥1
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(a) (b) (c)

Figure 4.6. Relative test errors on the Darcy flow problem with log-normal coeffi-
cients. Using N = 1024 training examples, panel (a) shows the errors as a function of
the resolution while panel (b) fixes a 421× 421 mesh and shows the error as a function
of the reduced dimension. Panel (c) only shows results for our method using a neural
network, fixing a 421 × 421 mesh and showing the error as a function of the reduced
dimension for different amounts of training data.

(inherited from (‖φj‖L∞)j≥1 ∈ `p(N;R)) implies that our power series (4.3) is summable in H1
0 (D;R).

Combining the two observations yields analyticity of Ψ with the same rates as in [18] obtained via
Stechkin’s inequality. For a proof, see Theorem C.1.

We employ the method of Chkifa simply by truncation of (4.3) to d elements, noting that in this
simple linear setting there is no longer a need for greedy selection of the index set. We note that this
truncation requires d PDE solves of the Poisson equation hence we compare to our method when using
N = d data points, since this also counts the number of PDE solves. Since the problem is linear, we use
a linear map to interpolate the PCA latent spaces and furthermore set the reduced dimension of our
PCA(s) to N . Panel (c) of Figure 4.5 shows the results. We see that the method of Chkifa outperforms
our method for any fixed number of PDE solves, although the empirical rate of convergence appears
very similar for both methods. Furthermore we highlight that while our method appears to have a
larger error constant than that of Chkifa, it has the advantage that it requires no knowledge of the
model 4.2 or of the Poisson equation; it is driven entirely by the training data.

4.3. Darcy Flow

We now consider the input-output map Ψ : L∞(D;R+) → H1
0 (D;R) mapping a 7→ u in (1.1) with

f(s) = 1 ∀ s ∈ D fixed. In this setting, the solution operator is nonlinear and is locally Lipschitz as a
mapping from L∞(D;R+) to H1

0 (D;R) [20]. However our results require a Hilbert space structure, and
we view the solution operator as a mapping from L2(D;R+) ⊃ L∞(D;R+) into H1

0 (D;R+), noting
that we will choose the probability measure µ on L2(D;R+) to satisfy µ(L∞(D;R+)) = 1. In this
setting, Ψ is not locally Lipschitz and hence Theorem 3.5 is not directly applicable. Nevertheless,
our methodology exhibits competitive numerical performance. See rows 3 and 4 of Figure 4.2 for an
example.

Figure 4.6 (a) shows the relative test errors as a function of the resolution when a ∼ µ = µL is
log-normal while Figure 4.7 (a) shows them when a ∼ µ = µP is piecewise constant. In both settings,
we see that the error in our method is invariant to mesh-refinement. Since the problem is nonlinear,
the neural network outperforms the linear map. However we see the same issue as in Figure 4.3
where increasing the reduced dimension does not necessarily improve the error due to the increased
complexity of the optimization problem. Panels (b) of Figures 4.6 and 4.7 confirm this observation.
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(a) (b) (c)

Figure 4.7. Relative test errors on the Darcy flow problem with piecewise constant
coefficients. Using N = 1024 training examples, panel (a) shows the errors as a function
of the resolution while panel (b) fixes a 421×421 mesh and shows the error as a function
of the reduced dimension. Panel (c) only shows results for our method using a neural
network, fixing a 421 × 421 mesh and showing the error as a function of the reduced
dimension for different amounts of training data.

(a) Online (b) Offline

Figure 4.8. The online and offline computation times for the Darcy flow problem with
piecewise constant coefficients. The number of training examples N = 1024 and grid
resolution 421×421 are fixed. The results are reported in seconds and all computations
are done on a single GTX 1080 Ti GPU.

This issue can be alleviated with additional training data. Indeed, panels (c) of Figures 4.6 and 4.7
show that the error curve is flattened with more data. We highlight that these results are consistent
with our interpretation of Theorem 3.1: the reduced dimensions dX , dY are determined first by the
properties of the measure µ and its pushforward, and then the amount of data necessary is obtained
to ensure that the finite data approximation error is of the same order of magnitude as the finite-
dimensional approximation error. In summary, the size of the training dataset N should increase with
the number of reduced dimensions.

For this problem, we also compare to the reduced basis method (RB) when instantiated with PCA.
We implement this by a standard Galerkin projection, expanding the solution in the PCA basis and
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(a) µL (b) µP

Figure 4.9. Relative test errors on both Darcy flow problems with reduced dimension
d = 70, training on a single mesh and transferring the solution to other meshes. When
the training mesh is smaller than the desired output mesh, the PCA basis are inter-
polated using cubic splines. When the training mesh is larger than the desired output
mesh, the PCA basis are sub-sampled.

using the weak form of (1.1) to find the coefficients. We note that the errors of both methods are
very close, but we find that the online runtime of our method is significantly better. Letting K denote
the mesh-size and d the reduced dimension, the reduced basis method has a runtime of O(d2K + d3)
while our method has the runtime O(dK) plus the runtime of the neural network which, in practice,
we have found to be negligible. We show the online inference time as well as the offline training time
of the methods in Figure 4.8. While the neural network has the highest offline cost, its small online
cost makes it a more practical method. Indeed, without parallelization when d = 150, the total time
(online and offline) to compute all 5000 test solutions is around 28 hours for the RBM. On the other
hand, for the neural network, it is 28 minutes. The difference is pronounced when needing to compute
many solutions in parallel. Since most modern architectures are able to internally parallelize matrix-
matrix multiplication, the total time to train and compute the 5000 examples for the neural network is
only 4 minutes. This issue can however be slightly alleviated for the reduced basis method with more
stringent multi-core parallelization. We note that the linear map has the lowest online cost and only a
slightly worse offline cost than the RBM. This makes it the most suitable method for linear operators
such as those presented in Section 4.2 or for applications where larger levels of approximation error
can be tolerated.

We again note that the image-to-image regression approach of [83] does not scale with the mesh
size. We do however acknowledge that for the small meshes for which the method was designed, it does
outperform all other approaches. This begs the question of whether one can design neural networks
that match the performance of image-to-image regression but remain invariant with respect to the
size of the mesh. The contemporaneous work [51] takes a step in this direction.

Lastly, we show that our method also has the ability to transfer a solution learned on one mesh
to another. This is done by interpolating or sub-sampling both of the input and output PCA basis
from the training mesh to the desired mesh. Justifying this requires a smoothness assumption on the
PCA basis; we are, however, not aware of any such results and believe this is an interesting future
direction. The neural network is fixed and does not need to be re-trained on a new mesh. We show this
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(a) (b) (c)

Figure 4.10. Relative test errors on the Burgers’ Equation problem. Using N = 1024
training examples, panel (a) shows the errors as a function of the resolution while panel
(b) fixes a 4096 mesh and shows the error as a function of the reduced dimension. Panel
(c) only shows results for our method using a neural network, fixing a 4096 mesh and
showing the error as a function of the reduced dimension for different amounts of
training data.

in Figure 4.9 for both Darcy flow problems. We note that when training on a small mesh, the error
increases as we move to larger meshes, reflecting the interpolation error of the basis. Nevertheless, this
increase is rather small: as shown in Figure 4.9, we obtain a 3% and a 1% relative error increasing
when transferring solutions trained on a 61×61 grid to a 421×421 grid on each respective Darcy flow
problem. On the other hand, when training on a large mesh, we see almost no error increase on the
small meshes. This indicates that the neural network learns a property that is intrinsic to the solution
operator and independent of the discretization.

4.4. Burgers’ Equation

We now consider the input-output map Ψ : L2(T1;R)→ Hr(T1;R) mapping u0 7→ u|t=1 in (4.1) with
β = 10−2 fixed. In this setting, Ψ is nonlinear and locally Lipschitz but since we do not know the precise
Lipschitz constant as defined in Appendix A, we cannot verify that the assumptions of Theorem A.1
hold; nevertheless the numerical results demonstrate the effectiveness of our methodology. We take
u0 ∼ µ = µB; see rows 5 of Figure 4.2 for an example. Figure 4.10 (a) shows the relative test errors
as a function of the resolution again demonstrating that our method is invariant to mesh-refinement.
We note that, for this problem, the linear map does significantly worse than the neural network in
contrast to the Darcy flow problem where the results were comparable. This is likely attributable to
the fact that the solution operator for Burgers’ equation is more strongly nonlinear. As before, we
observe from Figure 4.10 panel (b) that increasing the reduced dimension does not necessarily improve
the error due to the increased complexity of the optimization problem. This can again be mitigated
by increasing the volume of training data, as indicated in Figure 4.10 (c); the curve of error versus
reduced dimension is flattened as N increases.

5. Conclusion

In this paper, we proposed a general data-driven methodology that can be used to learn mappings
between separable Hilbert spaces. We proved consistency of the approach when instantiated with PCA
in the setting of globally Lipschitz forward maps. We demonstrated the desired mesh-independent
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properties of our approach on parametric PDE problems, showing good numerical performance even
on problems outside the scope of the theory.

This work leaves many interesting directions open for future research. To understand the interplay
between the reduced dimension and the amount of data needed requires a deeper understanding of
neural networks and their interaction with the optimization algorithms used to produce the approx-
imation architecture. Even if the optimal neural network is found by that optimization procedure,
the question of the number of parameters needed to achieve a given level of accuracy, and how this
interacts with the choice of reduced dimensions dX and dY (choice of which is determined by the input
space probability measure), warrants analysis in order to reveal the computational complexity of the
proposed approach. Furthermore, the use of PCA limits the scope of problems that can be addressed
to Hilbert, rather than general Banach spaces; even in Hilbert space, PCA may not be the optimal
choice of dimension reduction. The development of autoenconders on function space is a promising
direction that has the potential to address these issues; it also has many potential applications that are
not limited to deployment within the methodology proposed here. Finally we also wish to study the
use of our methodology in more challenging PDE problems, such as those arising in materials science,
as well as for time-dependent problems such as multi-phase flow in porous media. Broadly speaking
we view our contribution as a first step in the development of methods that generalize the ideas and
applications of neural networks by operating on, and between, spaces of functions.
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Appendix A. Neural Networks And Approximation (Locally Lipschitz Case)

This extends the approximation theory of Subsection 3.2 to the case of solution maps Ψ : X → Y that
are µ-measurable and locally Lipschitz in the following sense

∀ x, z ∈ X ‖Ψ(x)−Ψ(z)‖Y ≤ L(x, z)‖x− z‖X . (A.1)

where the function L : X × X → R+ is symmetric in its arguments, i.e., L(x, z) = L(z, x), and for
any fixed w ∈ X the function L(·, w) : X → R+ is µ-measurable and non-decreasing in the sense that
L(s, w) ≤ L(x,w) if ‖x‖X ≥ ‖w‖X . Note that this implies that Ψ is locally bounded: for any x ∈ X

‖Ψ(x)‖Y ≤ ‖Ψ(0)‖Y + ‖Ψ(x)−Ψ(0)‖Y ≤ ‖Ψ(0)‖Y + L(x, 0)‖x‖X .

Hence we deduce that the pushforward Ψ]µ has bounded fourth moments provided that
Ex∼µ(L(x, 0)‖x‖X )4 < +∞:

Ey∼Ψ]µ‖y‖
4
Y =

∫
X
‖Ψ(x)‖4Ydµ(x) ≤

∫
X

(‖Ψ(0)‖Y + L(x, 0)‖x‖X )4dµ(x)

≤ 23
(
‖Ψ(0)‖Y +

∫
X
L(x, 0)4‖x‖4Xdµ(x)

)
<∞,

where we used a generalized triangle inequality proven in [77, Cor. 3.1].

Theorem A.1. Let X , Y be real, separable Hilbert spaces, Ψ a mapping from X into Y and let µ be
a probability measure supported on X such that

Ex∼µL(x, x)2 < +∞, Ex∼µL(x, 0)2‖x‖2X <∞,
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where L( · , · ) is given in (A.1). Fix dX , dY , N ≥ max{dX , dY}, δ ∈ (0, 1), τ > 0 and define M =√
Ex∼µ‖x‖2X /δ. Then there exists a constant c(dX , dY) ≥ 0 and neural network χ ∈M(dX , dY ; t, r,M)

with t ≤ c(log(
√
dY/τ) + 1) layers and r ≤ c(ε−dX log(

√
dY/τ) + 1) active weights and biases in each

component, so that

E{xj}∼µEx∼µ
(
eNN(x)

)
≤ C

(
τ +
√
δ +

(√
dX
N

+Rµ(V XdX )
)1/2

+
(√

dY
N

+RΨ]µ(V YdY
)
)1/2)

, (A.2)

where eNN(x) := ‖ΨNN(x)−Ψ(x)‖Y and C > 0 is independent of dX , dY , N, δ and ε.

Proof. Our method of proof is similar to the proof of Theorem 3.5 and for this reason we shorten
some of the arguments. Recall the constant Q from Theorem 3.4. In what follows we take Q to be
the maximum of the two such constants when arising from application of the theorem on the two
different probability spaces (X , µ) and (Y,Ψ]µ). As usual we employ the shorthand notation E to
denote E{xj}∼µ the expectation with respect to the dataset {xj}Nj=1.
We begin by approximating the error incurred by using ΨPCA given by (2.3):

EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y = EEx∼µ‖(GY ◦ FY ◦Ψ ◦GX ◦ FX )(x)−Ψ(x)‖Y

= EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(ΠV X

dX ,N
x)−Ψ(x)

∥∥∥∥
Y

≤ EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(ΠV X

dX ,N
x)−ΠV Y

dY ,N
Ψ(x)

∥∥∥∥
Y

+ EEx∼µ
∥∥∥∥ΠV Y

dY ,N
Ψ(x)−Ψ(x)

∥∥∥∥
Y

≤ EEx∼µL(ΠV X
dX ,N

x, x)
∥∥∥∥ΠV X

dX ,N
x− x

∥∥∥∥
X

+ EEy∼Ψ]µ

∥∥∥∥ΠV Y
dY ,N

y − y
∥∥∥∥
Y
,

(A.3)

noting that the operator norm of an orthogonal projection is 1. Now since L(·, x) is non-decreasing we
infer that L(ΠV X

dX ,N
x, x) ≤ L(x, x) and then using Cauchy–Schwarz we obtain

EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y ≤
(
Ex∼µ|L(x, x)|2

)1/2
(
EEx∼µ

∥∥∥∥ΠV X
dX ,N

x− x
∥∥∥∥2

X

)1/2

+ EEy∼Ψ]µ

∥∥∥∥ΠV Y
dY ,N

y − y
∥∥∥∥
Y
,

= L′
(
ERµ(V XdX ,N )

)1/2
+
(
E[RΨ]µ(V YdY ,N

)]
)1/2

(A.4)

where we used Hölder’s inequality in the last line and defined the new constant L′ :=
(
Ex∼µ|L(x, x)|2

)1/2.
Theorem 3.4 allows us to control this error, and leads to

EEx∼µeNN ≤ EEx∼µ‖ΨNN(x)−ΨPCA(x)‖Y + EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y
≤ Ex∼µ‖ΨNN(x)−ΨPCA(x)‖Y

+ L′

√QdX
N

+Rµ(V XdX )

1/2

+

√QdY
N

+RΨ]µ(V YdY
)

1/2

.

(A.5)

We now approximate ϕ by a neural network χ as before. To that end we first note from Lemma B.3
that ϕ is locally Lipschitz, and hence continuous, as a mapping from RdX into RdY . Identify the
components ϕ(s) = (ϕ(1)(s), . . . , ϕ(dY )(s)) where each function ϕ(j) ∈ C(RdX ;R). We consider the
restriction of each component function to the set [−M,M ]dX .
By [81, Thm. 1] and using the same arguments as in the proof of Theorem 3.5 there exist neural
networks χ(1), . . . , χ(dY ) : RdX → R, χ(j) ∈ M(dX ; t(j), r(j)), with layer and active weight parameters
t(j) and r(j) satisfying t(j) ≤ c(j)[log(M

√
dY/τ) + 1], and r(j) ≤ c(j)(τ/2M)−dX [log(M

√
dY/τ) + 1]
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with constants c(j)(dX ) > 0, so that∣∣(χ(1)(s), . . . , χ(dY )(s)
)
− ϕ(s)

∣∣
2 < τ ∀ s ∈ [−M,M ]dX .

We now simply define χ : RdX → RdY as the stacked network (χ(1), . . . , χdY ) extended by zero outside
of [−M,M ]dX to immediately obtain

sup
s∈[−M,M ]dX

∣∣χ(s)− ϕ(s)
∣∣
2 < τ. (A.6)

Thus, by construction χ ∈ M(dX , dY , t, r,M) with at most t ≤ maxj t(j) many layers and r ≤ r(j)

many active weights and biases in each of its components.
Define the set A = {x ∈ X : FX (x) ∈ [−M,M ]dX }. By Lemma B.4 below, µ(A) ≥ 1−δ and µ(Ac) ≤ δ.
Define the approximation error ePCA(x) := ‖ΨNN(x)−ΨPCA(x)‖Y and decompose its expectation as

Ex∼µ[ePCA(x)] =
∫
A
ePCA(x)dµ(x) +

∫
Ac
ePCA(x)dµ(x) =: IA + IAc .

For the first term,

IA ≤
∫
A
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖Ydµ(x) ≤ τ, (A.7)

by using the fact, established in Lemma B.3, that GY is Lipschitz with Lipschitz constant 1, the
τ -closeness of χ to ϕ from (A.6), and µ(A) ≤ 1. For the second term we have, using that GY has
Lipschitz constant 1 and that χ takes value zero on Ac,

IAc ≤
∫
Ac
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖Ydµ(x)

≤
∫
Ac
|χ(FX (x))− ϕ(FX (x))|2dµ(x) =

∫
Ac
|ϕ(FX (x))|2dµ(x).

(A.8)

Once more from Lemma B.3 we have that
|FX (x)|2 ≤ ‖x‖X ; |ϕ(v)|2 ≤ |ϕ(0)|2 + L(GX (v), 0)|v|2

so that, using the hypothesis on L and global Lipschitz property of FX and GX we can write

IAc ≤ µ(Ac)|ϕ(0)|2 +
∫
Ac
L(x, 0)|FX (x)|2dµ(x)

≤ µ(Ac)|ϕ(0)|2 +
∫
Ac
L(x, 0)‖x‖Xdµ(x)

≤ µ(Ac)|ϕ(0)|2 + µ(Ac)
1
2
(
Ex∼µL(x, 0)2‖x‖2X

)1/2

≤ δ|ϕ(0)|2 + δ
1
2L′′

≤
√
δ(|ϕ(0)|2 + L′′)

(A.9)

where L′′ :=
(
Ex∼µL(x, 0)2‖x‖2X

)1/2. Combining (3.3), (3.5) and (3.7) we obtain the desired result.

Appendix B. Supporting Lemmas

In this Subsection we present and prove auxiliary lemmas that are used throughout the proofs in the
article. The proof of Theorem 3.4 made use of the following proposition, known as Fan’s Theorem,
proved originally in [27]. We state and prove it here in the infinite-dimensional setting as this gen-
eralization may be of independent interest. Our proof follows the steps of Fan’s original proof in the
finite-dimensional setting. The work [62], through which we first became aware of Fan’s result, gives
an elegant generalization; however it is unclear whether that approach is easily applicable in infinite
dimensions due to issues of compactness.
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Lemma B.1 (Fan [27]). Let (H, 〈 · , · 〉, ‖ · ‖) be a separable Hilbert space and C : H → H a non-
negative, self-adjoint, compact operator. Denote by λ1 ≥ λ2 ≥ . . . the eigenvalues of C and, for any
d ∈ N \ {0}, let Sd denote the set of collections of d orthonormal elements of H. Then

d∑
j=1

λj = max
{u1,...,ud}∈Sd

d∑
j=1
〈Cuj , uj〉.

Proof. Let φ1, φ2, . . . denote the orthonormal eigenfunctions of C corresponding to the eigenvalues
λ1, λ2, . . . respectively. Note that for {φ1, . . . , φd} ∈ Sd, we have

d∑
j=1
〈Cφj , φj〉 =

d∑
j=1

λj‖φj‖2 =
d∑
j=1

λj .

Now let {u1, . . . , ud} ∈ Sd be arbitrary. Then for any j ∈ {1, . . . , d}, we have uj =
∑∞
k=1〈uj , φk〉φk

and thus

〈Cuj , uj〉 =
∞∑
k=1

λk|〈uj , φk〉|2

= λd

∞∑
k=1
|〈uj , φk〉|2 +

∞∑
k=d+1

(λk − λd)|〈uj , φk〉|2 +
d∑

k=1
(λk − λd)|〈uj , φk〉|2.

Since ‖uj‖2 = 1, we have ‖uj‖2 =
∑∞
k=1 |〈uj , φk〉|2 = 1 therefore

λd

∞∑
k=1
|〈uj , φk〉|2 +

∞∑
k=d+1

(λk − λd)|〈uj , φk〉|2 = λd

d∑
k=1
|〈uj , φk〉|2 +

∞∑
k=d+1

λk|〈uj , φk〉|2

≤ λd
∞∑
k=1
|〈uj , φk〉|2 = λd

using the fact that λk ≤ λd, ∀ k > d. We have shown 〈Cuj , uj〉 ≤ λd +
∑d
k=1(λk − λd)|〈uj , φk〉|2. Thus

d∑
j=1

(λj − 〈Cuj , uj〉) ≥
d∑
j=1

(
λj − λd −

d∑
k=1

(λk − λd)|〈uj , φk〉|2
)

=
d∑
j=1

(λj − λd)
(

1−
d∑

k=1
|〈uk, φj〉|2

)
.

We now extend the finite set of {uk}dk=1 from a d−dimensional orthonormal set to an orthonormal
basis {uk}∞k=1 for H. Note that λj ≥ λd, ∀ j ≤ d and that

d∑
k=1
|〈uk, φj〉|2 ≤

∞∑
k=1
|〈uk, φj〉|2 = ‖φj‖2 = 1

therefore
∑d
j=1(λj − 〈Cuj , uj〉) ≥ 0 concluding the proof.

Theorem 3.4 relies on a Monte Carlo estimate of the Hilbert–Schmidt distance between C and CN
that we state and prove below.

Lemma B.2. Let C be given by (2.12) and CN by (2.6) then there exists a constant Q ≥ 0, depending
only on ν, such that

E{uj}∼ν‖CN − C‖
2
HS = Q

N
.
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Proof. Define C(uj) := uj ⊗ uj for any j ∈ {1, . . . , N} and C(u) := u⊗ u for any u ∈ H, noting that
Eu∼ν [C(u)] = C = Euj∼ν [C(uj)]. Further we note that

Eu∼ν‖C(u)‖2HS = Eu∼ν‖u‖4 <∞
and, by Jensen’s inequality, ‖C‖2HS ≤ Eu∼ν‖C(u)‖2HS <∞. Once again using the shorthand notation
E in place of E{uj}∼ν we compute,

E‖CN − C‖2HS = E‖ 1
N

N∑
j=1

C(uj) − C‖2HS = E‖ 1
N

N∑
j=1

C(uj)‖2HS − ‖C‖2HS

= 1
N

Eu∼ν‖C(u)‖2HS + 1
N2

N∑
j=1

N∑
k 6=j
〈E[C(uj)],E[C(uk)]〉HS − ‖C‖2HS

= 1
N

Eu∼ν‖C(u)‖2HS + N2 −N
N2 ‖C‖2HS − ‖C‖2HS

= 1
N

(
Eu∼ν‖C(u)‖2HS − ‖C‖2HS

)
= 1
N

Eu∼ν‖C(u) − C‖2HS .

Setting Q = Eu∼ν‖C(u) − C‖2HS completes the proof.

The following lemma, used in the proof of Theorem 3.5, estimates Lipschitz constants of various
maps required in the proof.

Lemma B.3. The maps FX , FY , GX and GY are globally Lipschitz:

|FX (v)− FX (z)|2 ≤ ‖v − z‖X , ∀ v, z ∈ X
|FY(v)− FY(v)|2 ≤ ‖v − z‖Y , ∀ v, z ∈ Y

‖GX (v)−GX (z)‖X ≤ |v − z|2, ∀ v, z ∈ RdX

‖GY(v)−GY(z)‖X ≤ |v − z|2, ∀ v, z ∈ RdY .

Furthermore, if Ψ is locally Lipschitz and satisfies

∀ x,w ∈ X ‖Ψ(x)−Ψ(w)‖Y ≤ L(x,w)‖x− w‖X ,

with L : X × X → R+ that is symmetric with respect to its arguments, and increasing in the sense
that L(s, w) ≤ L(x,w), if ‖x‖X ≥ ‖s‖X . Then ϕ is also locally Lipschitz and

|ϕ(v)− ϕ(z)|2 ≤ L(GX (v), GX (z))|v − z|2, ∀ v, z ∈ RdX .

Proof. We establish that FY and GX are Lipschitz and estimate the Lipschitz constants; the proofs
for FX and GY are similar. Let φY1,N , . . . , φ

Y
dY ,N

denote the eigenvectors of the empirical covariance
with respect to the data {yj}Nj=1 which span V YdY ,N

and let φYdY +1,N , φ
Y
dY +2,N , . . . be an orthonormal

extension to Y. Then, by Parseval’s identity,

|FY(v)− FY(z)|22 =
dY∑
j=1
〈v − z, φYj,N 〉

2
Y ≤

∞∑
j=1
〈v − z, φYj,N 〉

2
Y = ‖v − z‖2Y .

A similar calculation for GX , using φX1,N , . . . , φXdX ,N
the eigenvectors of the empirical covariance of the

data {xj}Nj=1 yields

‖GX (v)−GX (z)‖2X =

∥∥∥∥∥∥
dX∑
j=1

(vj − zj)φXj,N

∥∥∥∥∥∥
2

X

=
dX∑
j=1
|vj − zj |2 = |v − z|22
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for any v, z ∈ RdX , using the fact that the empirical eigenvectors can be extended to an orthonormal
basis for X . Recalling that ϕ = FY ◦Ψ ◦GX , the above estimates immediately yield

|ϕ(v)− ϕ(z)|2 ≤ L(GX (v), GX (z))|v − z|2, ∀ v, z ∈ RdX .

The following lemma establishes a bound on the size of the set A that was defined in the proof of
Theorems 3.5 and A.1.

Lemma B.4. Fix 0 < δ < 1, let x ∼ µ be a random variable and set M =
√
Ex∼µ‖x‖2X /δ. Define FX

using the random dataset {xj}Nj=1 ∼ µ then,

P
(
FX (x) 6∈ [−M,M ]dX

)
≤ δ,

where the probability is computed with respect to both x and the xj’s.

Proof. Denote by φX1,N , . . . , φXdX ,N
the orthonormal set used to define V XdX ,N

(2.7) and let φXdX +1,N ,

φXdX +2,N , . . . be an orthonormal extension of this basis to X . For any j ∈ {1, . . . , dX }, by Chebyshev’s
inequality, we have

Px∼µ(|〈x, φXj,N 〉X | ≥M) ≤
Ex∼µ|〈x, φXj,N 〉X |2

M2 .

Note that the expectation is taken only with respect to the randomness in x and not φX1,N , . . . , φXdX ,N
,

so the right hand side is itself a random variable. We further compute
Px∼µ(|〈x, φX1,N 〉X | ≥M, . . . , |〈x, φXdX ,N 〉X | ≥M)

≤ 1
M2Ex∼µ

dX∑
j=1
|〈x, φXj,N 〉X |2 ≤

1
M2Ex∼µ

∞∑
j=1
|〈x, φXj,N 〉X |2 = 1

M2Ex∼µ‖x‖
2
X

noting that ‖x‖2X =
∑∞
j=1 |〈x, ξj〉X |2 for any orthonormal basis {ξj}∞j=1 of X hence the randomness in

φX1,N , φ
X
2,N , . . . is inconsequential. Thus we find that, with P denoting probability with respect to both

x ∼ µ and the random data used to define FX ,

P(|〈x, φX1,N 〉X | ≤M, . . . , |〈x, φXdX ,N 〉X | ≤M) ≥ 1− 1
M2Ex∼µ‖x‖

2
X ,= 1− δ

the desired result.

Appendix C. Analyticity of the Poisson Solution Operator

Define X = {ξ ∈ `∞(N;R) : ‖ξ‖`∞ ≤ 1} and let {φj}∞j=1 be some sequence of functions with the
property that (‖φj‖L∞)j≥1 ∈ `p(N;R) for some p ∈ (0, 1). Define Ψ : X → H1

0 (D;R) as mapping a set
of coefficients ξ = (ξ1, ξ2, . . . ) ∈ X to u ∈ H1

0 (D;R) the unique weak solution of

−∆u =
∞∑
j=1

ξjφj in D, u|∂D = 0.

Note that since D is a bounded domain and ξ ∈ X , we have that
∑∞
j=1 ξjφj ∈ L2(Ω;R) since our

assumption implies (‖φj‖L∞)j≥1 ∈ `1(N;R). Therefore u is indeed the unique weak-solution of the
Poisson equation [26, Chap. 6] and Ψ is well-defined.
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Theorem C.1. Suppose that there exists p ∈ (0, 1) such that (‖φj‖L∞)j≥1 ∈ `p(N;R). Then

lim
K→∞

sup
ξ∈X
‖Ψ(ξ)−

K∑
j=1

ξjηj‖H1
0

= 0

where, for each j ∈ N, ηj ∈ H1
0 (D;R) satisfies
−∆ηj = φj in D, u|∂D = 0.

Proof. By linearity and Poincaré inequality, we obtain the Lipschitz estimate

‖Ψ(ξ(1))−Ψ(ξ(2))‖H1
0
≤ C‖

∞∑
j=1

(ξ(1)
j − ξ

(2)
j )φj‖L2 , ∀ ξ(1), ξ(2) ∈ X

for some C > 0. Now let ξ = (ξ1, ξ2, . . . ) ∈ X be arbitrary and define the sequence ξ(1) = (ξ1, 0, 0, . . . ),
ξ(2) = (ξ1, ξ2, 0, . . . ), . . .. Note that, by linearity, for any K ∈ N, Ψ(ξ(K)) =

∑K
j=1 ξjηj . Then, using our

Lipschitz estimate,

‖Ψ(ξ)−Ψ(ξK)‖H1
0
. ‖

∞∑
j=K+1

ξjφj‖L2 .
∞∑

j=K+1
‖φj‖L∞ ≤ K1− 1

p ‖(‖φj‖L∞)j≥1‖`p

where the last line follows by Stechkin’s inequality [18, Sec. 3.3]. Taking the supremum over ξ ∈ X
and the limit K →∞ completes the proof.

Appendix D. Error During Training

Figures D.1 and D.2 show the relative test error computed during the training process for the problems
presented in Section 4.2. For both problems, we observe a slight amount of overfitting when more
training samples are used and the reduced dimension is sufficiently large. This is because the true
map of interest ϕ is linear while the neural network parameterization is highly non-linear hence more
prone to overfitting larger amounts of data. While this suggests that simpler neural networks might
perform better on this problem, we do not carry out such experiments as our goal is simply to show
that building in a priori information about the problem (here linearity) can be beneficial as show in
Figures 4.3 and 4.4.

(a) N = 1000 (b) N = 2000 (c) N = 4000 (d) N = 5000

Figure D.1. Relative test errors as a function of the training epoch on the linear
elliptic problem. The amount of training examples used is varied in each panel.
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(a) N = 1000 (b) N = 2000 (c) N = 4000 (d) N = 5000

Figure D.2. Relative test errors as a function of the training epoch on the Poisson
problem. The amount of training examples used is varied in each panel.
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