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Abstract—Recent progress in machine learning (ML), to-
gether with advanced computational power, have provided
new research opportunities in cardiovascular modeling. While
classifying patient outcomes and medical image segmentation
with ML have already shown significant promising results,
ML for the prediction of biomechanics such as blood flow or
tissue dynamics is in its infancy. This perspective article
discusses some of the challenges in using ML for replacing
well-established physics-based models in cardiovascular
biomechanics. Specifically, we discuss the large landscape of
input features in 3D patient-specific modeling as well as the
high-dimensional output space of field variables that vary in
space and time. We argue that the end purpose of such ML
models needs to be clearly defined and the tradeoff between
the loss in accuracy and the gained speedup carefully
interpreted in the context of translational modeling. We also
discuss several exciting venues where ML could be strategi-
cally used to augment traditional physics-based modeling in
cardiovascular biomechanics. In these applications, ML is not
replacing physics-based modeling, but providing opportunities
to solve ill-defined problems, improve measurement data
quality, enable a solution to computationally expensive
problems, and interpret complex spatiotemporal data by
extracting hidden patterns. In summary, we suggest a strategic
integration of ML in cardiovascular biomechanics modeling
where the ML model is not the end goal but rather a tool to
facilitate enhanced modeling.

Keywords—Scientific machine learning, Data-driven model-

ing, Physics-based modeling, Deep learning, Hemodynamics.

INTRODUCTION

Recent advances in data science, computational
power, and open-source software have sparked an
ever-increasing interest in using machine learning
(ML) for physics-based modeling. ML models are
generally designed to learn hidden patterns in data and
use the learned representations to make predictions via
interpolation or extrapolation in cases where a uni-
versal law is learned. In particular, deep learning is a
class of ML models, which is popular in physics-based
modeling due to the complexity of physics-based
problems. In theory, one can design and train deep
neural networks to represent any nonlinear and high-
dimensional function.1 Deep neural networks usually
work well for complex function approximation prob-
lems including challenging non-convex optimizations,
which is often considered magic of deep learning where
over-parameterized optimization problems often con-
verge to the global minimum.110 This perhaps non-in-
tuitive feature of deep learning together with the
success of stochastic gradient descent applied to large
data has led to successful examples of deep learning in
various fields. In biomechanics, this is an attractive
approach because biomechanics problems are highly
nonlinear and deep learning generally is the preferred
learning method when trying to learn complex pro-
cesses.

In cardiovascular biomechanics modeling, a ques-
tion comes to mind: Can deep learning replace tradi-
tional computational or experimental physics-based
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biomechanics models? Imagine we are interested in
modeling blood flow in aneurysms or the structural
stress in heart valves. The goal is to take a represen-
tation of the geometry, boundary conditions, and
constitutive parameters as input and quantify physical
parameters of interest such as the stress tensor fields or
velocity/displacement vector fields. In an ideal setting,
a deep learning model that has been trained over the
landscape of all possible combinations in geometry,
boundary conditions, and parameters of interest could
achieve this task. The problem could also be simplified
by fixing some of the features. For example, one could
fix the geometry and the pressure loading applied to a
heart valve leaflet and vary its constitutive parameters
to learn its biomechanical response. In general, we
need to realize that many of these problems are high-
dimensional input-output problems. For example, the
large landscape of all possible aneurysm geometries
(input) and the corresponding spatiotemporally re-
solved velocity field (output) make directly finding
such high-dimensional end-to-end ML representations
a very tedious and challenging task.

In this article, while we discuss applications where
ML has high potential for improving current cardio-
vascular biomechanics approaches, we also argue that
in many cardiovascular biomechanics examples, the
modeling community needs to be aware of the pitfalls
of using ML for the sole purpose of replacing well-
established physics-based solvers such as the finite-
element or finite-volume method. We further argue
that ML models should be strategically designed to
provide results that cannot be readily achieved with
traditional methods. A nice feature of ML models is
that once trained, they can make predictions rapidly
with minimal computing time. However, this seemingly
amazing advantage should be critically interpreted: Is
this feasible for all cardiovascular biomechanics
problems? At what cost do we achieve this? When is
this fast prediction needed in practical problems? Do
we lose the high fidelity needed in translational patient-
specific biomechanics modeling? How do we quantify
the uncertainty and reliability of the ML models? We
will try to answer these questions in this perspective
article. Our goal is to promote the notion that ML is a
tool that can help us solve ill-defined physics-based
cardiovascular biomechanics problems or facilitate
further downstream tasks where fast computational
approaches are essential. We will only discuss ML in
cardiovascular biomechanics modeling of field vari-
ables such as blood flow velocity or structural stress.
There are other examples of ML in cardiovascular
biomechanics modeling, which will not be discussed
here. For example, ML could be used in predicting
cardiovascular disease outcomes based on biome-
chanics simulations,19,20,54 which at least, in theory, is

an easier task because of the binary nature of the
output (vs. spatiotemporally varying vectorial/tenso-
rial variables in physics-based modeling). Additionally,
automating image segmentation for creating 3D com-
puter models is another successful application of ML
in cardiovascular biomechanics modeling.16,53,56,62,63 A
summary of this perspective article is shown in Fig. 1.

CHALLENGES IN REPLACING TRADITIONAL

BIOMECHANICS SOLVERS WITH MACHINE

LEARNING

In this section, we will discuss some of the chal-
lenges and pitfalls of using ML to replace an estab-
lished and well-defined (all parameters known)
physics-based model.

Cardiovascular Biomechanics Problems have a Large
Landscape of Input Variables

Suppose we want to use ML to replace a traditional
continuum biomechanics model such as the finite ele-
ment method (FEM). In that case, we need to realize
what constitutes a well-defined FEM problem. As an
input to an FEM problem, we need a discrete repre-
sentation of the geometry, boundary conditions, and
constitutive material properties. Recent studies have
attempted to build ML models that produce blood
flow data based on some of these features.35,72 While
these studies are interesting, generalization to a broad
array of input features remains challenging. In patient-
specific biomechanics applications, each of these inputs
could possess large variability. For example, aneurys-
mal diseases (e.g., cerebral or aortic) lead to very
complex 3D morphologies. Prior attempts in charac-
terizing their geometry have revealed the complexity in
geometric features.73,109 Alternatively, occlusive dis-
eases, such as, vulnerable coronary artery plaques or
peripheral vascular disease can also create very com-
plex shapes.74,80,118 The complexity in patient-specific
morphology makes it very difficult to develop ML
models that can appropriately represent all mor-
phologies. Additionally, the boundary conditions
could represent significant variability. Consider a pul-
satile volumetric flow rate waveform that is typically
used as the inlet boundary condition in computational
fluid dynamics (CFD) models of blood flow or a
transvalvular pressure waveform that is used in struc-
tural mechanics modeling of heart valves. The ML
model will need to learn a broad spectrum of physio-
logical variations in the waveform. Finally, while
constitutive modeling of blood is usually less variable
(e.g., an established constant viscosity or non-Newto-
nian model), vascular tissues often possess nonlinear,
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anisotropic properties that could vary from patient to
patient, within one patient based on the location,94 as a
result of mechanical forces such as pressure,106 and
finally during the course of disease progression. What
makes all of these challenges worse is that the com-
bined effect of these features on the biomechanical
output is nonlinear. Therefore, a broadly applicable
ML model may need to learn vast physiologically-
possible combinations of these features (at least in the
range of interest) to enable reliable interpolations or
mild extrapolations in the extremely high-dimensional
input space. Finding a reduced-order representation of
these input features is one approach to mitigate some
of these challenges. For example, statistical shape
modeling based on the principal component analysis
(PCA) discovers a mapping to a hidden reduced-order
space that can explain the geometric features more
efficiently.22,29,52

Cardiovascular Biomechanics Problems Result
in High-Dimensional Output Fields

In physics-based biomechanics modeling, we are
interested in tensor fields (e.g., structural stress ten-
sor) and vector fields (e.g., blood flow velocity or wall
shear stress vector field). In 3D patient-specific
applications, these outputs are high-dimensional
fields that vary in space and time. That is, we need to
have a good ML model that can learn vectors/tensors
that not only have more than one variable but also
could have complex spatial and temporal variations.

Although successful ML model development has been
witnessed in certain applications such as predicting
pressure drop across an aortic valve or a stenosed
vessel (e.g., fractional flow reserve), where the output
is a single scalar,28,52 developing a ML model to re-
place full-fidelity numerical solvers by directly learn-
ing a mapping between the aforementioned high-
dimensional input feature space and output solution
space remains very challenging. ML models have been
proposed for predicting structural stress tensor69 or
blood flow velocity vector fields72 with quasi-static
and steady assumptions. Admittedly, the rapid
development of advanced learning architectures based
on graphs has enabled end-to-end spatiotemporal
learning on mesh-based high-dimensional data to
certain extent. For instance, MeshGraphNet by
DeepMind has demonstrated scalable predictions of
spatiotemporal dynamics of a wide range of physical
systems in an end-to-end manner,92 and a recently
proposed discretization-aware graph net has been
successfully tested on complex turbulent combustion-
reaction applications over multiple scales of mesh
resolution.124 However, the end-to-end learning of
high-dimensional input/output relation is still a very
challenging task and has a long way to go, particu-
larly when it comes to 3D patient-specific cardiovas-
cular simulations as mentioned above. Table 1
summarizes some of the studies that have used ML to
predict hemodynamics. It could be seen that most
studies have either used simplifying assumptions and/
or have focused on simplified output variables.

FIGURE 1. Replacing a well-established cardiovascular biomechanics model of field variables with machine learning is
challenging and tedious in most cases. On the other hand, machine learning could be used to augment traditional modeling and
enable solution to difficult problems.
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Learning the Output with Respect to One Input Feature
or Specific Input Variations

One possible way to mitigate the above challenges is
to focus on just varying specific input parameters. For
example, if we focus on one specific patient, the
geometry could be fixed, and the ML model could
learn how the biomechanics fields such as stress and
velocity vary as a function of the boundary conditions.
Further, one could also simplify the output fields. For
instance, in predicting aneurysm rupture or aortic
dissection, one might be interested in finding the peak
stress instead of its spatiotemporal distribution. Col-
lectively, these will significantly reduce the complexity
of the ML model and provide a more feasible setting
for developing ML representations of the biological
system. However, some critical issues need to be con-
sidered. When do we need a model to make a rapid
prediction when specific parameters are varied? In
addition to justifying the need for rapid prediction, we
need to understand the sources of error in our ML
model. After all, the ML model is generally built based
on data produced from physics-based simulations so at
best it could have accuracy as good as the training
data. Additionally, we need to make sure that the
speedup gained by the ML model is actually needed in
practice. These issues will be discussed next.

Sources of Error in Developing a Machine Learning
Representation in Cardiovascular Biomechanics

Apurely data-drivenMLmodel relies on training data
to learn a mapping between the input parameters and the
output. Therefore, at best the ML model can hope to
achieve an accuracy as good as the training data. The
challenge here is that high-fidelity 3D computational
models are expensive. For examples, high-fidelity CFD
models of blood flow often involve O(1–10) millions ele-

ments and O(103–104) time-steps per cardiac cycle.4,60

Based on the authors’ experience, performing high-reso-
lution computational cardiovascular biomechanics
modeling on a high-performance computing cluster (e.g.,
with 40–60CPUs) typically takes 2–3 days on average.As
a result, doing hundreds of simulations to create a large
training dataset is computationally prohibitive unless a
compromise is made in the fidelity of the computational
model to reduce the computational cost. For example,
steady simulations are performed or a low-resolution
(therefore less accurate) CFD strategy is adapted to re-
duce the cost. Pretraining on low-fidelity data and sub-
sequently using the gained knowledge to train with high-
fidelity simulations using transfer learning is a promising
approach tomitigate the high computational cost issue,68

however, the success of transfer learning in complex 3D
patient-specific problems remains to be investigated.

TABLE 1. Representative studies performing machine learning modeling of hemodynamics in different cardiovascular
biomechanics problems.

Study Application Sample size

Predicted mea-

sures Spatiotemporal?

Scalar/

vector Accuracy Assumptions

Feiger et al.35 Aortic

coarctation

One patient (varied

stenosis degree,

viscosity, and flow

rate)

DP and circum-

ferentially aver-

aged WSS

No (single va-

lue)

Scalar Mean error: 1.18

mmHG for DP
and 0.99 Pa for

WSS

–

Fossan et al.39 Coronary

artery

64 patients FFR No (single va-

lue)

Scalar Error: 0.005 ±

0.021

Steady flow. Com-

bined deep

learning model

with ROM

Rengarajan

et al.100
Abdominal

aortic an-

eurysm

148 patients Spatially aver-

aged wall stress

No (single va-

lue)

Scalar 17% mean rela-

tive error

Simple and fixed

constitutive

equation

Yevtushenko

et al.125
Aortic

coarctation

228 patients and

3000 synthetic

patients

Velocity and

pressure

Locally aver-

aged along cen-

terline

Scalar 1.8 ± 5.6 mmHG

for pressure

excluding out-

liers

Steady flow.

Liang et al.70 Thoracic

aorta

25 patients and

729 synthetic

patients

Velocity and

pressure

Spatial field Vector

and

scalar

1.96% error for

velocity and

1.42% error for

pressure

Steady flow and

low resolution

mesh (150–350

K elements)

Su et al.113 Coronary

artery

2000 idealized

geometries

WSS magnitude Spatial field Scalar 2.5% error Steady flow and

idealized mod-

els

Li et al.72 CABG and

aorta

110 patients and

1100 synthetic

patients

Velocity and

pressure

Spatial field Vector

and

scalar

10% error Steady flow

DP Pressure drop, WSS wall shear stress, FFR fractional flow reserve, ROM reduced-order model, CABG Coronary artery bypass graft.
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Generalization error is a common issue in MLmodels. A
ML model that has been trained appropriately should
have a small generalization error. However, this is only
true if the new input data falls within the landscape of the
training data. ML models are better at interpolation but
are generally not reliable for extrapolating outside of the
landscape of the training data. Therefore, it is important
to ensure that the training dataset covers an appropriate
combination of the input parameters that ultimately
represent the input parameters of interest.

Tradeoff Between Accuracy and Speed: Which One is
Preferred in Translating Biomechanics Models?

Based on the above discussion, we need to first an-
swer an important question before considering ML as
an alternative to an established physics-based biome-
chanics model: Is the speedup gained by the ML model
(once trained) worth the loss in accuracy? From a
translational biomechanics modeling perspective, the
clinical application of the developed biomechanics
model needs to be considered. For example, in planning
aneurysm surgery or coronary artery disease treatment,
do clinicians need results immediately, or can they af-
ford to get the results in 2 days? What level of accuracy
do they need? Ultimately, there is a tradeoff between
accuracy and speed. An established continuum biome-
chanics model can produce more accurate results but
will be more time-consuming compared to a previously
trained ML model that can produce results quickly.

Final Thoughts

We recommend approaching ML modeling with a
clear ultimate goal in mind. The speedup gained in these
models needs to be interpreted in the context of the
potential loss in accuracy based on how the input
variables can vary. We suggest that ML models be used
in these scenarios: 1. The speedup gained by the ML
model compared to the physics-based model is neces-
sary for clinical decision making. 2. The ML model
enables a solution to problems where a traditional
biomechanics model cannot readily achieve. 3. The ML
model facilitates further downstream tasks that cannot
be efficiently performed by a physics-based model. We
will discuss items two and three in the next section.

WHEN ARE MACHINE LEARNING MODELS

MORE USEFUL FOR PHYSICS-BASED

BIOMECHANICS MODELING?

In this section, we will discuss some promising
applications of ML where traditional physics-based
cardiovascular biomechanics models have difficulty.

Finally, we argue that finding a ML representation in
cardiovascular biomechanics modeling should not be
the ultimate goal but rather a step towards solving
problems where traditional models have struggled.

Need for Multiple Evaluations: Uncertainty
Quantification and Optimization

Fast predictions are an attractive feature of a
trained ML model. In certain modeling applications,
we need to run expensive computer models repetitively.
Uncertainty quantification (UQ) and optimization are
typical examples that are commonly performed in
cardiovascular biomechanics modeling.76,102 For
example, extensive work has been done in quantifying
the influence of variations in inflow/outflow boundary
conditions.57,77,82,95,116 segmented vessel geome-
try,21,26,86,87,103,104 mechanical properties,17,33,67,91,111

which are often uncertain/unknown in practice. Rig-
orous UQ frameworks can be formulated by modeling
the uncertain inputs as random variables/fields, which
are propagated to the outputs of interests via, e.g.,
stochastic collocation methods10,11,105 or Monte Carlo
methods.71,89,101 If additional indirect observations of
the state are available, the uncertainty can be reduced
within a Bayesian framework, and unknown variables
can be inferred via variational optimization. However,
these processes usually need large ensembles of for-
ward simulations, especially when the input dimension
is high. In most practical scenarios, traditional full-
fidelity solvers are computationally infeasible, even
with many remedies, e.g., sparse grid,78,85 multi-reso-
lution expansion,65,108 or sparsity-promoting tech-
niques.31,90 To address the challenges in multi-query
applications, researchers usually resorted to developing
reduced-order models (e.g., lumped parameter
model,41,81 1D model,32 Galerkin-projection-based re-
duced-order model13,14,75) or surrogate models (e.g.,
Gaussian process,8,59 radial basis99 etc.) with lower
accuracy but fast evaluation speed, enabling UQ for
complex cardiovascular systems. Nonetheless, most of
these traditional model-reduction approaches only fo-
cus on global information (e.g., scalar/integral quan-
tities) instead of local information (e.g.,
spatiotemporal fields of velocity or wall shear stresses),
and the latter is critical in many areas of cardiovas-
cular research/healthcare. Deep learning has become a
popular surrogate modeling approach and shown great
potential to deal with high-dimensional nonlinear UQ
problems.15,43,132,133 These models extend the linear
fitting in most data-driven reduced-order models, ea-
sily incorporate 3D variability compared to geometric
reduced-order models (e.g., 1D and lumped parameter
models), and are faster (in the evaluation phase) than
reduced-order modeling. Moreover, multi-fidelity
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strategy (leveraging the efficiency of low-fidelity mod-
els and accuracy of high-fidelity models to balance the
trade-off of speed and accuracy) has been developed
for years and demonstrated effectiveness in UQ and
optimization tasks.18,38 For example, Gao et al.
developed a bi-fidelity approach to solve both forward
and inverse high-dimensional UQ problems in 3-D
patient-specific modeling applications.44,45 In the
multi-fidelity modeling framework, the development of
ML models of different fidelities using multi-resolution
data, together with a high-fidelity traditional solver, is
very promising for maintaining a balance of accuracy
and efficiency in high-dimensional many-query UQ
and optimization applications.

Interestingly, in many of these problems, the accu-
racy of the ML model is less crucial compared to its
use for deterministic hemodynamics analysis. For
example, in forward and inverse UQ applications,
Markov chain Monte Carlo (MCMC) is the gold
standard Bayesian sampling approach, where ML-
based surrogate (e.g., Gaussian process) is widely used
to assist the convergence. If ML-surrogate is directly
used in likelihood evaluations, the prediction error of
ML models could distort the sampled posterior to a
certain extent, but the overall probability distribution
can be captured reasonably well if the surrogate pre-
diction is not completely wrong.130 Additionally, in
optimization problems, the purpose of model evolu-
tion is to obtain the gradient information, guiding the
optimization direction (e.g., for gradient descent).
Even if the ML-based surrogate model is not as
accurate as the full-order model, it can still provide
roughly correct gradient direction, enabling efficient
optimization. Finally, it should be noted that there is
always a trade-off between surrogate predictive accu-
racy and costs of data generation and training, which
can significantly benefit the UQ and optimization tasks
that require numerous model queries. For example,
MCMC usually requires hundreds of thousands of
model evaluations to reach convergence, which justifies
the data generation at the cost of hundreds of model
evaluations during training.

Solving Ill-Defined Problems

As mentioned above, a common difficulty in pa-
tient-specific biomechanics modeling is the lack of
information about certain parameters and/or bound-
ary conditions. For example, patient-specific constitu-
tive material properties of the vascular wall or heart
are usually not known in structural mechanics finite
element analysis, and the inlet flow rate waveform
measurement is not available in many patient-specific
CFD models. Lack of such data makes these problems
ill-defined and not possible to solve using a purely

physics-based model. A common approach in the lit-
erature is to use population-averaged or idealized data
in assigning these parameters, which introduces
error.97,126 It is possible to solve these problems within
an ‘‘inverse modeling framework’’ by estimating the
unknown parameters with data measured from the
patient. In general, data assimilation Bayesian infer-
ence methods have been used to combine imperfect
experimental measurements with uncertain computa-
tional models to obtain more accurate blood flow data
(e.g., References 5, 25, 42, and 49). ML models can be
very useful in inverse modeling.79 In addition to being
used as a fast surrogate model to enable scalable
Bayesian inference and data assimilation, the ML
models can also be directly used as inverse models
themselves where unknown physical parameters are
discovered along with trainable parameters during the
training process based on measurement data. For
example, one can estimate constitutive material prop-
erties based on experimental data.51 Interestingly, not
only the material constants but also the form of the
constitutive equation could be learned.37 It should be
noted that in inverse modeling, typically parameters
(e.g., material constants) or boundary/initial condi-
tions need to be learned, which exhibit simpler vari-
ability compared to the aforementioned
spatiotemporal variations in vector/tensor field vari-
ables that need to be estimated when ML is replacing a
comprehensive forward model.

A more recent ML paradigm that has shown pro-
mise in solving hybrid physics-based and data-driven
problems is physics-informed neural network
(PINN).58,96 In PINN, the governing partial differen-
tial equations are integrated into the deep learning
framework where the physical variables of interest
such as velocity are represented as a function of space
and time. PINN provides an intuitive framework for
estimating physical field variables as functions of space
and time similar to traditional numerical methods. The
nice feature in PINN is that these functions could be
approximated to satisfy the governing equations,
boundary conditions, and measurement data. That is,
PINN provides a hybrid physics-based and data-driven
ML model. PINN could use measurement data, even
sparse, to solve ill-defined problems and simultane-
ously identify unknown parameters. For instance,
PINN has been used to identify wall shear stress in
blood flow problems where the inlet and outlet
boundary conditions are not known but instead sparse
measurement data are available.7 PINN can be used to
find the best velocity and pressure fields such that the
governing equations (Navier-Stokes), the partially
imposed boundary conditions (e.g., the no-slip condi-
tion), and available measurement data are satisfied.7

PINN has shown success in solving fluid24 and solid50
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mechanics problem and is gaining attention in car-
diovascular biomechanics modeling.7,23,61,112 We
should point out that PINN could also be used to solve
well-defined PDE models without any data.55 Unfor-
tunately, currently, PINN’s computational cost for
solving well-defined forward problems is much higher
than traditional numerical methods such as FEM.
Additionally, unlike traditional numerical methods, no
theoretical guarantee exists for achieving machine
precision accuracy. Therefore, using PINN for a well-
defined cardiovascular biomechanics problem cur-
rently is not as attractive as an ill-defined problem
augmented with data.

Improving Data Quality

While in computational biomechanics modeling, we
are usually faced with unknown parameters, experi-
mental measurements are accompanied by noise, have
low resolution, and are sometimes incomplete (limited
field of view). ML could be used to improve the quality
of the data collected by these measurements. Super-
resolution is a classical ML application commonly
used in image processing.120 ML models such as deep
learning can learn a mapping from a low-resolution
image to a high-resolution image. Similar ideas have
been used for superresolution of turbulent flow
data.40,47 In cardiovascular fluid mechanics, similar
methods have been applied to 4D flow magnetic res-
onance imaging (MRI) data.36 Alternatively, PINN
has shown promise in superresolution by incorporating
physical equations43 and has been successfully applied
to 4D flow MRI hemodynamics data.34 Deep learning
models can also be trained for denoising purposes.123

For instance, autoencoders, which are a class of deep
learning models that learn a nonlinear low-dimen-
sional representation of data, have been trained for
denoising data.46 Finally, ML algorithms have been
developed for treating corrupt and outlier data, which
typically arise in experimental measurements. Variants
of principal component analysis (PCA), which is a key
tool at the heart of many unsupervised learning algo-
rithms, could be used to learn models that can discover
corrupt or outlier data.119

Solving Multiscale Problems

ML models could be developed within multiscale
biomechanics models to accelerate spatially and tem-
porally multiscale problems. Vascular tissues have
spatially multiscale material properties. For example,
smooth muscle cells and fibroblasts regulate their
surrounding extracellular matrix, and the collagen fi-
bers, elastin, and other constituents determine vascular
tissue’s mechanical properties. Multiscale models have

been developed to couple micro-scale models repre-
senting these vascular wall constituents to organ-scale
models representing the vascular tissue.12,122,128 These
models are computationally expensive as the micro-
scale model needs to be computed multiple times. ML
has the potential to facilitate the execution of these
multiscale models. Namely, representative volume
elements (RVE) could be defined to represent the mi-
cro-scale model. The RVEs are typically defined as
structured cubes and therefore have simple geometries,
which mitigates the issue raised above regarding
learning ML models of complex morphologies.
Namely, due to their simple geometry, they are com-
putationally easier to simulate and could exhibit less
complicated variability in their output. The RVE could
be trained over the landscape of different constituent
distributions and/or loading conditions and the
learned model could be used in the multiscale model.
Additionally, turbulence models specifically tailored
for the unique physics of turbulence in blood flow3,107

could be learned based on direct numerical simulation
(DNS). In these problems, ML is not replacing phy-
sics-based modeling but it is enabling physics-based
modeling by providing a closure model that could be
used within the physics-based model. ML could also be
used to facilitate temporally multiscale models. For
example, coupling cell-scale particle dynamics models
such as molecular dynamics with organ-scale models is
restricted by the limited time-step of the molecular
dynamics model. Machine learning models have shown
promise in learning the temporal behavior of the
molecular dynamics model and advancing the model
forward in time in a computationally efficient manner.
Such models have been developed in modeling platelet
activation coupled with blood flow.131 The readers are
referred to an excellent review in Ref. 2 for integrating
ML in multiscale biomechanics models.

Need for Real-Time Data Integration and Evaluation:
Digital Twins

A digital twin is a predictive computer model rep-
resentation of a complex system.84 The digital twin
should be designed to interact with data as they
become available to update its structure and remain
predictive.84 Ideally, a digital twin should interact with
available data in real-time. In cardiovascular biome-
chanics applications, hybrid physics-based and ML
models are essential to combine first-principle contin-
uum governing equations with data to build a predic-
tive digital twin model. For example, a digital twin
could be designed to model hemodynamics-driven
cardiovascular disease growth. The hybrid physics-
based and data-driven nature of the digital twin will
allow the integration of sparse measurement data from
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the actual system (the patient) as such measurements
become available. The continuous interaction with new
data through ML techniques will improve model pre-
diction.

The fidelity of any digital twin depends on a detailed
understanding of the system as a whole and its sub-
units. Multiscale approaches will thus be a critical
modeling component for organ and system-level
function, which occur at the molecular, cell, tissue, and
organ scales. However, there remain both theoretical
and practical challenges in applying traditional multi-
scale techniques to digital twin systems in biome-
chanics. For example, defining something as basic as
the RVE can be problematic in any biological structure
due to the presence of a large number of relevant
length scales, whose magnitudes are not sufficiently
differentiated. For example, within the apparently
simple heart valve leaflet lies a complex micro-envi-
ronment of interstitial cells and collagen/elastin fibers.9

Even when identifiable, it can be quite difficult to ob-
tain representative material properties. Moreover,
digital twins require knowledge of real-time material
properties, which in living systems typically evolve
over time and are generally inaccessible in vivo.
Therefore, there are several exciting future research
opportunities for developing digital twins in biome-
chanics problems.

One of the major limitations in developing digital
twins is that computational tasks can be enormous and
preclude real-time direct simulations. For example, in-
silico implementation of complex 3D continuum soft
tissue constitutive models to obtain the responses of
varying boundary conditions and fibrous structures
requires the solution of the associated hyperelasticity
problem. Novel ML methods are being developed for
the simulation of hyperelastic soft tissues such as those
of the heart using real-time deep learning.127,129 Such
approaches for solving the governing PDEs can
potentially allow for greater simulation realism across
scales in practical time frames.115 In addition to the
real-time evaluation, digital twin models should ideally
be able to incorporate sparse longitudinal clinical data
to update their structure and remain predictive for a
longer duration. These features (real-time model eval-
uation and integration of new data) are key aspects of
digital twins that distinguish them from standard pre-
dictive patient-specific models.

For example, a neural network-based method that
can simulate the 3D mechanical behavior of soft tissues
has been developed using a physics-informed approach
to train the neural network surrogate model to give a
physically correct solution for a range of loading
conditions by minimizing the potential energy without
any training dataset generated by finite element

solver.127 The finite element discretization of the
solution field is applicable to problems defined with
complex geometry and boundary conditions such as
ventricular simulations and it enables strong enforce-
ment of the Dirichlet boundary conditions in a natural
manner. Although a specific type of hyperelastic
material model was developed, the approach does not
restrict the applicability for other types of hyperelastic
materials. By shifting the computation expense from
finite element solutions to neural network training in a
physics-informed manner, these surrogate models can
be used to give significantly fast predictions of complex
3D deformations in full kinematic space with given
fiber structures by forward propagation in the neural
network. Similar methods may pave the way for
building an efficient template model of hearts with
add-on heart-specific attributes, with neural network-
based surrogates for fast predictions to evaluate the
need to conduct high-fidelity real-time simulations.

Using Unsupervised Learning to Learn Physics
and Interpret Data

Physics-based cardiovascular biomechanics models
typically generate large spatiotemporal datasets of field
variables. While we discussed how ML could facilitate
such modeling, often in well-defined problems obtain-
ing these datasets is not the main issue. In many
problems, these datasets have complex and chaotic
spatiotemporal variations, which make their physical
interpretation difficult. For example, blood flow in
diseased vasculature is often chaotic,6 transitional,117

or turbulent,83 and therefore difficult to interpret.
Unsupervised learning could reduce the dimensionality
of the data by clustering the data into different modes.
Specifically, proper orthogonal decomposition (POD)
and dynamic mode decomposition (DMD) are com-
mon modal analysis approaches114 that have also been
used in cardiovascular fluid mechanics27,30,48,66 and
structural biomechanics modeling64,93,98 to facilitate
physical interpretation of large spatiotemporal data-
sets. At the heart of these algorithms, singular value
decomposition (SVD) is used to detect redundancy and
high correlation within the data and provide an opti-
mal basis for reconstructing the data (POD) or provide
a dynamically interpretable basis for the temporal
evolution of the dataset (DMD). The low dimension-
ality discovered by these models could also facilitate
the solution to ill-defined problems and denoising of
blood flow data (and possibly vascular mechanics
data) as reviewed in Ref. 5. These methods have also
been successfully applied to inverse modeling in car-
diovascular solid mechanics problems93,121 and medi-
cal image segmentation.88
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CONCLUSION

We have summarized some of the key challenges in
using ML for the purpose of replacing a well defined
physics model and suggested applications where ML
could augment physics-based modeling. We suggest
that ML models without a ‘‘clearly justified end goal’’
are not attractive for cardiovascular biomechanics
modeling of field variables. If the ML model is devel-
oped to replace a well-defined continuum biomechan-
ics model, it should justify the application of the model
and justify the need for the gained speedup vs. the loss
in accuracy. Finally, we suggest many exciting appli-
cations of ML in biomechanics modeling where the
ML model is not the purpose but a tool to enable
further modeling and solve difficult problems.
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47Güemes, A., S. Discetti, A. Ianiro, B. Sirmacek, H.
Azizpour, and R. Vinuesa. From coarse wall measure-
ments to turbulent velocity fields through deep learning.
Phys. Fluids 33(7):075121, 2021.

48Habibi, M., S. T. M. Dawson, and A. Arzani. Data-driven
pulsatile blood flow physics with dynamic mode decom-
position. Fluids 5(3):111, 2020.

49Habibi, M., R. M. D’Souza, S. Dawson, and A. Arzani.
Integrating multi-fidelity blood flow data with reduced-
order data assimilation. Comput. Biol. Med. 135:104566,
2021.

50Haghighat, E., M. Raissi, A. Moure, H. Gomez, and R.
Juanes. A physics-informed deep learning framework for
inversion and surrogate modeling in solid mechanics.
Comput. Methods Appl. Mech. Eng. 379:113741, 2021.

51He, Q., D. W. Laurence, C. H. Lee, and J. S. Chen.
Manifold learning based data-driven modeling for soft
biological tissues. J. Biomech. 117:110124, 2021.

52Hoeijmakers, M. J. M. M., I. Waechter-Stehle, J. Weese,
and F. N. Van de Vosse. Combining statistical shape
modeling, CFD, and meta-modeling to approximate the
patient-specific pressure-drop across the aortic valve in
real-time. Int. J. Numer. Methods Biomed. Eng.
36(10):e3387, 2020.

BIOMEDICAL
ENGINEERING 
SOCIETY

ARZANI et al.

http://arxiv.org/abs/2105.09506
http://arxiv.org/abs/2105.09506


53Iyer, K., C. P. Najarian, A. A. Fattah, C. J. Arthurs, S. M.
R. Soroushmehr, V. Subban, M. A. Sankardas, R. R.
Nadakuditi, B. K. Nallamothu, and C. A. Figueroa. An-
gioNet: a convolutional neural network for vessel seg-
mentation in X-ray angiography. Sci. Rep. 11:18066,
2021.

54Jiang, Z., H. N. Do, J. Choi, W. Lee, and S. Baek. A deep
learning approach to predict abdominal aortic aneurysm
expansion using longitudinal data. Front. Phys. 7:235,
2020.

55Jin, X., S. Cai, H. Li, and G. E. Karniadakis. NSFnets
(Navier-Stokes flow nets): Physics-informed neural net-
works for the incompressible Navier-Stokes equations. J.
Comput. Phys. 426:109951, 2021.

56Karimi-Bidhendi, S., A. Arafati, A. L. Cheng, Y. Wu, A.
Kheradvar, and H. Jafarkhani. Fully-automated deep-
learning segmentation of pediatric cardiovascular mag-
netic resonance of patients with complex congenital heart
diseases. J. Cardiovasc. Magn. Reson. 22(1):1–24, 2020.

57Karmonik, C., C. Yen, O. Diaz, R. Klucznik, R. G.
Grossman, and G. Benndorf. emporal variations of wall
shear stress parameters in intracranial aneurysms-impor-
tance of patient-specific inflow waveforms for CFD cal-
culations. Acta Neurochirurgica 152(8):1391–1398, 2010.

58Karniadakis, G. E., I. G. Kevrekidis, L. Lu, P. Perdi-
karis, S. Wang, and L. Yang. Physics-informed machine
learning. Nat. Rev. Phys. 1–19, 2021.

59Kennedy, M. C., and A. O’Hagan. Predicting the output
from a complex computer code when fast approximations
are available. Biometrika 87(1):1–13, 2000.

60Khan, M. O., K. Valen-Sendstad, and D. A. Steinman.
Narrowing the expertise gap for predicting intracranial
aneurysm hemodynamics: impact of solver numerics ver-
sus mesh and time-step resolution. Am. J. Neuroradiol.
36(7):1310–1316, 2015.

61Kissas, G., Y. Yang, E. Hwuang, W. R. Witschey, J. A.
Detre, and P. Perdikaris. Machine learning in cardiovas-
cular flows modeling: predicting arterial blood pressure
from non-invasive 4D flow MRI data using physics-in-
formed neural networks. Comput. Methods Appl. Mech.
Eng. 358:112623, 2020.

62Kong, F., and S. C. Shadden. Automating model gener-
ation for image-based cardiac flow simulation. J. Biomech.
Eng. 142(11):111011, 2020.

63Kong, F., N. Wilson, and S. Shadden. A deep-learning
approach for direct whole-heart mesh reconstruction.
Medical Image Anal. 74:102222, 2021.

64Laksari, K., M. Kurt, H. Babaee, S. Kleiven, and D.
Camarillo. Mechanistic insights into human brain impact
dynamics through modal analysis. Phys. Rev. Lett.
120(13):138101, 2018.

65Le Maıtre, O. P., H. N. Najm, R. G. Ghanem, and O. M.
Knio. Multi-resolution analysis of wiener-type uncertainty
propagation schemes. J. Computat. Phys. 197(2):502–531,
2004.

66Le, T. B. Dynamic modes of inflow jet in brain aneurysms.
J. Biomech. 116:110238, 2021.

67Lee, S. W., and D. A. Steinman. On the relative impor-
tance of rheology for image-based CFD models of the
carotid bifurcation. J. Biomech. Eng. 129(2):273–278,
2007.

68Lejeune, E., and B. Zhao. Exploring the potential of
transfer learning for metamodels of heterogeneous mate-
rial deformation. J. Mech. Behav. Biomed. Mater.
117:104276, 2021.

69Liang, L., M. Liu, C. Martin, and W. Sun. A deep
learning approach to estimate stress distribution: a fast
and accurate surrogate of finite-element analysis. J. R.
Soc. Interface 15(138):20170844, 2018.

70Liang, L., W. Mao, and W. Sun. A feasibility study of
deep learning for predicting hemodynamics of human
thoracic aorta. J. Biomech. 99:109544, 2020.

71Liu, N., and D. S. Oliver. Evaluation of Monte Carlo
methods for assessing uncertainty. SPE J. 8(2):188–195,
2003.

72Li, G., H. Wang, M. Zhang, S. Tupin, A. Qiao, Y. Liu, M.
Ohta, and H. Anzai. Prediction of 3D cardiovascular
hemodynamics before and after coronary artery bypass
surgery via deep learning. Commun. Biol. 4(1):1–12, 2021.

73Ma, B., R. E. Harbaugh, and M. L. Raghavan. Three-
dimensional geometrical characterization of cerebral an-
eurysms. Ann. Biomed. Eng. 32(2):264–273, 2004.

74Mahmoudi, M., A. Farghadan, D. R. McConnell, A. J.
Barker, J. J. Wentzel, M. J. Budoff, and A. Arzani. The
story of wall shear stress in coronary artery atheroscle-
rosis: biochemical transport and mechanotransduction. J.
Biomech. Eng., 143(4), 2021.

75Manzoni, A., A. Quarteroni, and G. Rozza. Model
reduction techniques for fast blood flow simulation in
parametrized geometries. Int. J. Numer. Methods Biomed.
Eng. 28(6–7):604–625, 2012.

76Marsden, A. L. Optimization in cardiovascular modeling.
Annu. Rev. Fluid Mech. 46:519–546, 2014.

77Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U.
Patel, and R. Hose. Influence of inlet boundary conditions
on the local haemodynamics of intracranial aneurysms.
Comput. Methods Biomech. Biomed. Eng. 12(4):431–444,
2009.

78Ma, X., and N. Zabaras. An adaptive hierarchical sparse
grid collocation algorithm for the solution of stochastic
differential equations. J. Comput. Phys. 228(8):3084–3113,
2009.

79McCann, M. T., K. H. Jin, and M. Unser. Convolutional
neural networks for inverse problems in imaging: a review.
IEEE Signal Process. Mag. 34(6):85–95, 2017.

80Mirramezani, S. M., P. Cimadomo, E. Ahsan, D. Sha-
velle, L. Clavijo, and S. C. Shadden. Mathematical mod-
eling of blood flow to evaluate the hemodynamic
significance of peripheral vascular lesions. J. Angiography
Vasc. Surg., 6(76):16856 2021.

81Mirramezani, M., and S. C. Shadden. A distributed
lumped parameter model of blood flow. Ann. Biomed.
Eng. 48(12):2870–2886, 2020.

82Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet
conditions for image-based CFD models of the carotid
bifurcation: is it reasonable to assume fully developed
flow? J. Biomech. Eng. 128(3):371–379, 2006.

83Nicoud, F., C. Chnafa, J. Siguenza, V. Zmijanovic, and
S. Mendez. Large-eddy simulation of turbulence in car-
diovascular flows. In: Biomedical Technology, pp. 147–
167, 2018.

84Niederer, S. A., M. S. Sacks, M. Girolami, and K. Will-
cox. Scaling digital twins from the artisanal to the
industrial. Nat. Comput. Sci. 1(5):313–320, 2021.

85Nobile, F., R. Tempone, and C. G. Webster. A sparse grid
stochastic collocation method for partial differential
equations with random input data. SIAM J. Numer. Anal.
46(5):2309–2345, 2008.

86Nolte, D., and C. Bertoglio. Reducing the impact of
geometric errors in flow computations using velocity

BIOMEDICAL
ENGINEERING 
SOCIETY

Machine Learning for Cardiovascular Biomechanics



measurements. Int. J. Numer. Methods Biomed. Eng.
35(6):e3203, 2019.

87Omodaka, S., T. Inoue, K. Funamoto, S. I. Sugiyama, H.
Shimizu, T. Hayase, A. Takahashi, and T. Tominaga.
Influence of surface model extraction parameter on com-
putational fluid dynamics modeling of cerebral aneur-
ysms. J. Biomech. 45(14):2355–2361, 2012.

88Onofrey, J. A., L. H. Staib, X. Huang, F. Zhang, X. Pa-
pademetris, D. Metaxas, D. Rueckert, and J. S. Duncan.
Sparse data-driven learning for effective and efficient
biomedical image segmentation. Annu. Rev. Biomed. Eng.
22:127–153, 2020.

89Peherstorfer, B., P. S. Beran, and K. E. Willcox. Multifi-
delity Monte Carlo estimation for large-scale uncertainty
propagation. In: 2018 AIAA Non-Deterministic Ap-
proaches Conference, p. 1660, 2018.

90Peng, J., J. Hampton, and A. Doostan. A weighted l1-
minimization approach for sparse polynomial chaos
expansions. J. Comput. Phys. 267:92–111, 2014.

91Pereira, J. M. C., J. P. S. e Moura, A. R. Ervilha, and
J. C. F. Pereira. On the uncertainty quantification of
blood flow viscosity models. Chem. Eng. Sci. 101:253–265,
2013.

92Pfaff, T., M. Fortunato, A. Sanchez-Gonzalez, and P. W.
Battaglia. Learning mesh-based simulation with graph
networks. In: International Conference on Learning
Representations, 2020.

93Pfaller, M. R., M. Cruz Varona, J. Lang, C. Bertoglio,
and W. A. Wall. Using parametric model order reduction
for inverse analysis of large nonlinear cardiac simulations.
Int. J. Numer. Methods Biomed. Eng. 36(4):e3320, 2020.

94Pillalamarri, N. R., S. S. Patnaik, S. Piskin, P. Gueldner,
and E. A. Finol. Ex vivo regional mechanical characteri-
zation of porcine pulmonary arteries. Exp. Mech.
61(1):285–303, 2021.

95Pirola, S., O. A. Jarral, D. P. O’Regan, G. Asi-
makopoulos, J. R. Anderson, J. R. Pepper, T. Athana-
siou, and X. Y. Xu. Computational study of aortic
hemodynamics for patients with an abnormal aortic valve:
the importance of secondary flow at the ascending aorta
inlet. APL Bioeng. 2(2):026101, 2018.

96Raissi, M., P. Perdikaris, and G. E. Karniadakis. Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378:686–
707, 2019.

97Rajabzadeh-Oghaz, H., P. van Ooij, S. S. Veeturi, V. M.
Tutino, J. J. M. Zwanenburg, and H. Meng. Inter-patient
variations in flow boundary conditions at middle cerebral
artery from 7T PC-MRI and influence on computational
fluid dynamics of intracranial aneurysms. Comput. Biol.
Med. 120:103759, 2020.

98Rama, R. R., S. Skatulla, and C. Sansour. Real-time
modelling of diastolic filling of the heart using the proper
orthogonal decomposition with interpolation. Int. J. So-
lids Struct. 96:409–422, 2016.

99Regis, R. G., and C. A. Shoemaker. A stochastic radial
basis function method for the global optimization of
expensive functions. INFORMS J. Comput. 19(4):497–
509, 2007.

100Rengarajan, B., S. S. Patnaik, and E. A. Finol. A pre-
dictive analysis of wall stress in abdominal aortic aneur-
ysms using a neural network model. J. Biomech. Eng.
143(12), 2021.

101Rubinstein, R. Y., and D. P. Kroese. Simulation and the
Monte Carlo Method, Vol. 10. New York: Wiley, 2016.

102Sankaran, S., and A. L. Marsden. A stochastic collocation
method for uncertainty quantification and propagation in
cardiovascular simulations. J. Biomech. Eng. 133(3), 2011.

103Sankaran, S., L. Grady, and C. A. Taylor. Fast compu-
tation of hemodynamic sensitivity to lumen segmentation
uncertainty. IEEE Trans. Med. Imaging 34(12):2562–2571,
2015.

104Sankaran, S., H. J. Kim, G. Choi, and C. A. Taylor.
Uncertainty quantification in coronary blood flow simu-
lations: impact of geometry, boundary conditions and
blood viscosity. J. Biomech. 49(12):2540–2547, 2016.

105Sankaran, S., and A. L. Marsden. A stochastic collocation
method for uncertainty quantification and propagation in
cardiovascular simulations. J. Biomech. Eng.
133(3):031001, 2011.

106Sanz, J., M. Kariisa, S. Dellegrottaglie, S. Prat-González,
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