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PROJECTION-BASED INFERENCE
FOR HIGH-DIMENSIONAL LINEAR MODELS

Sangyoon Yi and Xianyang Zhang

Texas AEM University

Abstract: We develop a new method to estimate the projection direction in the
debiased Lasso estimator. The basic idea is to decompose the overall bias into two
terms, corresponding to strong and weak signals, respectively. We propose esti-
mating the projection direction by balancing the squared biases associated with
the strong and weak signals and the variance of the projection-based estimator. A
standard quadratic programming solver can solve the resulting optimization prob-
lem efficiently. We show theoretically that the unknown set of strong signals can be
estimated consistently, and that the projection-based estimator enjoys asymptotic
normality under suitable assumptions. A slight modification of our procedure leads
to an estimator with a potentially smaller order of bias than that of the original
debiased Lasso. We further generalize our method to conduct an inference for a
sparse linear combination of the regression coefficients. Numerical studies demon-
strate the advantage of the proposed approach in terms of coverage accuracy over
several existing alternatives.

Key words and phrases: Confidence interval, high-dimensional linear models, Lasso,
quadratic programming.

1. Introduction

Uncertainty quantification after model selection is an active field of research
in statistics. The problem is challenging because the Lasso-type estimator does
not admit a tractable asymptotic limit, owing to its noncontinuity at zero. Stan-
dard bootstrap and subsampling techniques cannot capture such noncontinuity
and thus fail for the Lasso estimator, even in a low-dimensional regime. Several
attempts have been made to tackle this challenge. For example, (Multi-) sample
splitting and subsequent statistical inference procedures are developed in Wasser-
man and Roeder (2009) and Meinshausen, Meier and Bithlmann (2009). Mein-
shausen and Bithlmann (2010) proposed the so-called stability selection method,
based on subsampling in combination with selection algorithms. Chatterjee and
Lahiri (2011, 2013) considered bootstrap methods that provide valid approxima-
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tions to the limiting distributions of the Lasso and adaptive Lasso estimators.

For statistical inference after model selection, Berk et al. (2013) developed
a post-selection inference procedure by reducing the problem to one of simulta-
neous inference. Lockhart et al. (2014) constructed a statistic from the Lasso
solution path, and showed that it converges to a standard exponential distribu-
tion. To account for the selection effects, Lee et al. (2016) developed an exact
post-selection inference procedure by characterizing the distribution of a post-
selection estimator conditioned on the selection event. By leveraging the same
core statistical framework, Tibshirani et al. (2016) proposed a general scheme to
derive post-selection hypothesis tests at any step of forward-stepwise and least-
angle regressions as well as any step along the Lasso regularization path. Barber
and Candes (2015) proposed an inferential procedure by adding knockoff variables
to create certain symmetry among the original variables and their knockoff copies.
By exploring this symmetry, they showed that the method provides finite-sample
false discovery rate control. The knockoff procedure is extended to the high-
dimensional linear model in Barber and Candes (2019), and to settings in which
the conditional distribution of the response is completely unknown in Candeés et
al. (2018).

More closely related to the current work, Zhang and Zhang (2014) introduced
the idea of regularized projection, which is further explored and extended in van
de Geer et al. (2014) and Javanmard and Montanari (2014). The common idea
is to find a projection direction designed to remove the bias term in the Lasso
estimator. The resulting debiased Lasso estimator, which is no longer sparse,
is shown to admit an asymptotic normal limit. To find the projection direc-
tion, the nodewise Lasso regression of Meinshausen and Bithlmann (2006) was
adopted in both Zhang and Zhang (2014) and van de Geer et al. (2014), whereas
Javanmard and Montanari (2014) considered a convex optimization problem to
approximate the precision matrix of the design. Zhang and Cheng (2017) and
Dezeure, Bithlmann and Zhang (2017) proposed boostrap-assisted procedures for
simultaneous inferences based on the debiased Lasso estimators. Belloni, Cher-
nozhukov and Hansen (2014) developed a two-stage procedure with the so-called
post-double-selection as the first stage and a least squares estimation as the sec-
ond stage. Ning and Liu (2017) proposed a decorrelated score test in a likelihood
based framework. Zhu and Bradic (2018a,b) developed projection-based meth-
ods that are robust to the lack of sparsity in the model parameter. More recent
advances along this line include Neykov et al. (2018) and Chang et al. (2020).
Focusing on the theoretical aspects of the debiased Lasso, Javanmard and Monta-
nari (2018) studied its optimal sample size and Cai and Guo (2017) showed that
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the debiased estimator achieves the minimax rate. Although the methodology
and theory for the debiased Lasso estimator are elegant, its empirical performance
could be undesirable. For instance, the average coverage rate for active variables
could be far lower than the nominal levels in a finite sample (see, e.g., van de
Geer et al. (2014)).

A natural question to ask is whether there exist alternative projection di-
rections that can improve the finite-sample performance in the original debiased
Lasso estimator. In this paper, we propose a new method for estimating the
projection direction and construct a novel bias-reducing projection (BRP) esti-
mator that is designed to further reduce the bias of the original debiased Lasso
estimator. In contrast to the nodewise Lasso adopted in both Zhang and Zhang
(2014) and van de Geer et al. (2014), we propose a direct approach to estimate
the projection direction. Our method is related to the procedure in Javanmard
and Montanari (2014), but differs in the following respects. (i) We formulate a
different objective function that appropriately balances the squared bias and the
variance of the BRP estimator. (ii) We decompose the bias term into two parts
based on a preliminary estimate of the signal strength: one associated with the
strong signals, and the other related to the weak signals and noise. (iii) We de-
velop new methods to estimate the set of strong signals and to select the tuning
parameters involved in the objective function.

Our approach relies crucially on the following observation in a finite sample:
the bias term associated with the strong signals contributes more to the overall
bias. Motivated by this fact, we estimate the projection direction by minimizing
an objective function that assigns different weights to the squared bias terms as-
sociated with the strong and weak signals. The set of strong signals is unknown,
but can be estimated consistently based on a preliminary debiased Lasso estima-
tor. The resulting optimization problem can be cast as a quadratic programming
problem that can be solved efficiently using a standard quadratic programming
solver. We use a residual bootstrap to estimate the coverage probabilities asso-
ciated with different choices of weights. Then, we select the one that delivers
the shortest interval width, while ensuring that the bootstrap estimate of the
coverage probability is close to the nominal level.

We show theoretically that the unknown set of strong signals can be esti-
mated consistently using a surrogate set based on a preliminary projection-based
Lasso estimator, where the projection direction is obtained using a novel formula-
tion. The BRP estimator is shown to enjoy asymptotic normality under suitable
assumptions. As one of the main contributions, we prove that a slight modi-
fication of our BRP estimator leads to an estimator with a potentially smaller
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order of bias than that of the original debiased Lasso. We further generalize our
BRP estimator to conduct a statistical inference for a sparse linear combination
of the regression coefficients, under suitable assumptions on a loading vector.
We demonstrate the usefulness of the proposed approach by comparing it with
several current approaches using simulations.

The rest of the paper is organized as follows. We introduce the projection-
based estimator and develop a new formulation to find the projection direction
in Section 2. We propose a method to estimate the set of strong signals and show
its consistency in Section 3.1. We establish the asymptotic normality of the BRP
estimator in Section 3.2. In Section 3.3, we propose a modified BRP estimator
that could result in a potentially smaller order of bias than that of the original
debiased Lasso. Section 4 generalizes the method to conduct an inference for a
linear combination of the regression coefficients. We develop a bootstrap-assisted
procedure for choosing the tuning parameters in Section 5. Section 6 presents
some numerical results. Section 7 concludes the paper. All technical details and
additional numerical results are gathered in Supplementary Material.

Throughout this paper, we use the following notation. For a matrix A € R%x¢
and two sets I,J C [d] := {1,2,...,d}, denote by A ; (A_;_) the submatrix
of A with (without) the rows in I and columns in J. Write Ay _; = A_J.
Similarly, for a vector a € R?, write ar (a—1) as the subvector of a with (without)
the components in I. Let |lallq, with 0 < ¢ < oo, be the [;-norm of a, and
write ||a|| = ||a||2. For two sets Si,Sa, let S; \ S2 be the set of elements in Sy,
but not in Sz. Denote |S1| as the cardinality of S;. For a square matrix A, let
Amax(A) and Apin (A) be its largest and smallest eigenvalues, respectively. Define
|A| = [|Allop = Supgegi—: |[Aal| as the operator norm of A, where S4! is the
unit sphere in R%. The sub-gaussian norm of a random variable X, which we
denote by [|.X||y,, is defined as || X ||y, = supy>; ¢ Y2(E|X|9)Y4. For a random
vector X € R?, its sub-gaussian norm is defined as || X ||y, = supgega-1 [|[a’ X|ly,-
The sub-exponential norm of a random variable X, which we denote by [|X||y,,
is defined as || X[y, = sup,>; ¢ Y(E|X|7)Y4. For a random vector X € R?, its
sub-exponential norm is defined as || X||y, = supyega-1 [[a’ X||y,- Let (M, p) be
a metric space, and let ¢ > 0. A subset N. of M is called an e-net of M if
every point x € M can be approximated within € by some point y € N, that
is, p(z,y) < e. The minimal cardinality of an e-net of M is called the covering
number of M.
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2. Projection-Based Estimator

To illustrate the idea, we focus on the high-dimensional linear model such
that

Y =XfB+e, (2.1)
where Y = (y1,...,y.)" € R™*!is the response vector, X = (X1, ..., X,) € R™P
is the design matrix, 8 = (B, ..., Bp)T € RP*1 is the vector of unknown regression
coefficients with ||8]|o = so, and € = (e1,...,€,) " is a vector of independent errors

with common variance o2.

2.1. Motivation

Suppose we are interested in conducting an inference for a single regression
coefficient 3;, for 1 < j < p. We first rewrite model (2.1) as

nj =Y =X ;B =X;Bj +e (2.2)

If the value of n; is known, the problem reduces to an inference about 3; in a
simple linear regression model. Because 7); is not directly observable, a natural
idea is to replace 7; with a suitable estimator, defined as

ﬁj :Y—X,]’B,j :X]’Bj—FG—Fij(ﬁ*j _ij)a (23)

where 3 is a preliminary estimator for 5. Here, (2.3) approximates (2.2), with

the extra term X_;(8_; — f—;) due to the estimation effect, by replacing 5_;
with B_;. In this paper, we focus on the Lasso estimator given by

f = anganin { 1Y X317 + Al |
BERP

the properties of which are now well understood (see, e.g., Bithlmann and van
de Geer (2011); Hastie, Tibshirani and Wainwright (2015)). We also try the
alternative Lasso formulation without penalizing £; in our numerical studies,
and find that it does not improve the finite-sample performance. Now, given a
projection vector v; = (vj1,.. .,Uj,n)T e R™"*! such that vaXj = n, we define
the projection-based estimator for 3; as

1 +. 1
Bj(vj) = E’U;—nj = 5]' + EU]—‘Fﬁ + R(ijﬁ—j)> (24)

where R(vj;,—;) = n_lv]—-rX,j (B—j — _;) is the bias term caused by the estima-
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tion effect. Here, (2.4) implies that

Vn(B;(vj) - B) = \/15@;6 + VnR(vj, B—;).

To ensure that Bj(vj) has an asymptotically tractable limiting distribution, we re-
quire the bias term /nR(vj, f_;) to be dominated by the leading term n_l/QvJTe
which converges to a normal limit under suitable assumptions. In other words,
the bias term v/nR(v;, 5_;) controls the normality of ;(v;). A practical challenge
here is that the bias \/nR(v;, —;) cannot be estimated directly from the data.
Thus, it is common in the literature to replace |v/nR(v;, B—;)| with a conservative
estimator using the Iy — [, bound, that is,

IVn(B—j = Bl lln™ o) X—jloc, (2.5)

as in Zhang and Zhang (2014), van de Geer et al. (2014), and Javanmard and
Montanari (2014). Note that the variance of n~'/2y Te is equal to o?n=1||v;|?.
To achieve efficiency, we also try to minimize o n‘1\|v]\|2 given that the bias
VnR(vj, f—;) is properly controlled. Because the first term in (2.5) is independent
of vj, we can seek a projection direction to minimize a linear combination of
||n_1vJTX,jH§O and the variance o?n~!||v;||2. However, the l; — I, bound on the
whole bias term could be conservative, because it does not take into account the
specific form of the bias term. Note that the bias term can be written as

VnR(vj, B ZU X5 (Br — Br)

k#J
1 A 1 R
= > o] Xe(Br— Br) + 7 > v Xe(Br — Br)
keS (v) keSS (v)

- fR(l (Uja ) + fR ('UJ’ )
(2.6)

where Sj(l)(y) = S) \ {j} and S]@)(V) = Sw)C \ {j} denote the index sets
(except j) associated with the strong and weak signals, respectively, for S(v) :=
{k :[Bk] = v}, and Ry(vj, ;) and Rg)(v;, B—;) are defined accordingly. Here,
v is a threshold that separates the coefficients into two-groups, namely, the group
with strong signals, and the group with weak signals or zero signal. For example,
one can set v = cgy/log(p)/n for some large enough constant ¢y, which is the
minimax rate for support recovery.

The formulation (2.6), using the decomposition associated with the signal
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strengths, can be motivated empirically. Specifically, it generally provides a
smaller bias than the one without such a decomposition using the simulated
data. Figure 4 illustrates one such case, where we compare the biases for pro-
jection vectors calculated based on two different methods: one solves (2.8) using
the estimated set of strong signals, as in Section 3.1 (denoted by “With Decom-
position”); the other solves the same problem, but with A§1) = () (denoted by
“Without Decomposition”). It can be seen that “With Decomposition” shows
a smaller bias than “Without Decomposition.” Similar results were observed in
various simulation settings.

2.2. A new projection direction

In this subsection, we propose a novel formulation to find the projection
direction. When |SJ(1)(V)| < n, we have the freedom to choose v; to make the
term Hn_lv;rX S§1)(V)||OO arbitrarily small. In fact, we can always choose v; such
that it is orthogonal to all Xy, with k € SJ(-l)(l/). The basic idea here is to find
a projection direction v; such that it is “more orthogonal” to the space spanned
by {Xk}kESJ(-U(V) as compared to the space spanned by {Xk}kesf)(u)' With this
intuition in mind, and the goal of balancing the squared bias with the variance,
we formulate the following optimization problem:

min | v max |n~ ’UTXk\Q—i—’yQ max |n~ vTXk\z—i—an oil? |,
Y5 kesst (v) keSS (v)

s.t. ’U]TX]‘ =n, (2.7)
where 71,72 > 0 are tuning parameters that control the trade-off between

wes [T X2 (2

MaX; g (,) ]n—lu]—.erP) corresponds to the l; — I bound for R?l) (R(z)) By

the squared bias and the variance. The term ~; max

introducing two ancillary variables wuji,uj2, problem (2.7) can be cast as the
following quadratic programming problem:

min (mujl —I-’yguﬂ +a’n 1”1} H )
Uj1,U;52,V;
s.t. v; Xj =n
— Uj1 < TL_IU]TXk < Uj1, ke S](I)(l/)
—ujp < n_lvj—-er <wuj, ke 8(2)(1/)
which can be solved efficiently using existing quadratic programming solvers.
In general, the set S ](-1) (v) is unknown, and needs to be replaced by a surrogate
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set A;l) , with |A§-1)| < n. In Section 3.1, we describe a method for selecting Ag-l)

based on preliminary projection-based estimators. We show that Ag-l) converges
asymptotically to a nonrandom limit, that is,

P (A = B0) 1,

for a nonrandom subset B](-l) of [p]. Note that B§l) does not need to agree with
Sj(l)(V) for our procedure to be valid. To ensure that the remainder term is
negligible, the theoretical analysis in Section 3.2 suggests that +; and o should
both be of order O (02 logp/ n) Combining the above discussions, we now state
the optimization problem for obtaining the optimal projection direction:

Uj1,U;52,V5

: no 9 noo9 -1 2
min (Cllogpujl + CQilogpujQ +n7 |l ) ,
T
s.t. vy Xj=mn, (2.8)

_ 1
— Uj1 <n 1’UJTXk < Uj1, ke .Ag ),

— 2
—ujo <n 1U;|—Xk < u;2, k‘EAg),

where AE»Q) = (Agl))c \ {7}, and C},C2 > 0 are tuning parameters, the choice of
which is discussed in Section 5.

Remark 1. A related method is the refitted Lasso by Liu and Yu (2013). The
idea is to refit the model selected by the Lasso, and to conduct an inference based
on the refitted least squares estimator. Such an estimator fits into the framework
of projection-based estimators. To see this, let S be the set of active variables
selected by the Lasso, and note that Bk =0, for k ¢ S. For each j € S, let w; be
the projection of X; onto the orthogonal space of X ALY Then, the refitted least
squares estimator is given by w] (Y — X_jB_j)/(ﬁ)]TXj). It is easy to see that
the bias for this estimator is proportional to Zkg g ﬁ)jTXkﬂk, which disappears
when the selected model contains all significant variables. However, when the
model selection consistency fails, this procedure is no longer valid owing to the
nonnegligible bias.

3. Methodology
3.1. Surrogate set

We describe a procedure to estimate the set of strong signals based on a
preliminary projection-based estimator. Note that the estimator here is different
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from the original debiased Lasso because it is based on the novel formulation
(2.8). Specifically, for some 7 > 0, we define our estimate for the set of strong
signals as

A(r) == {l T > \/Tlogp} where T; = M, (3.1)

Gn 12| [y]]

where 6 is an estimator of the noise level o, and 31(171) is a projection-based
estimator, with ¢; being the solution to the following optimization problem:

<Coul +n 1||’U1H2>
ogp

st. v X;=n,
—u < nilvlTXk <wu, k#I

UhUz

(3.2)

In practice, both Cy and 7 need to be chosen appropriately. The details for the
selection are discussed in Section S1. Note that (3.2) is a special case of (2.8)
when we have no knowledge about the set of strong signals, that is, Agl) = (. We
define the surrogate sets as

AP () = AN\ AP(r) = A 5} (3.3)

Throughout the paper, we consider the variance estimator
a1 A2
62 = || - X, (3.4)

which appears to outperform the estimator ||Y —X3||2/(n—||3||0) studied in Reid,
Tibshirani and Friedman (2016); see Figure 22 in Supplementary Material for a
comparison. Before presenting the main result of this subsection, we introduce
some assumptions.

Assumption 1. There exist a set B C [p] = {1,2,...,p} and 0 < dy < dy such

that
’fﬁl‘ < +/dplogp,

leBU o
|fﬂl‘ > +/d; logp.
o

Assumption 2. The error € is a mean-zero sub-gaussian random vector with the

lEB

sub-gaussian norm Ke.
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Assumption 3. The preliminary estimator satisfies
VallB = Bl = 0y (s01/log) ).

Assumption 4. The variance estimator 62 is consistent in the sense that & /o it
1.

Assumption 5. Suppose the design matriz X € R™*P has independent and iden-
tically distributed (i.i.d.) rows with a zero population mean and covariance matriz
2= (Ziy);

i1 Assume that

1. max; X;; < 0o;

2. Anin(X) > Apin > 0;

3. The rows of X are sub-gaussian with the sub-gaussian norm Kk < c0.
Assumption 6. n,p, and sg satisfy the rate condition sologp/\/n = o(1).

Assumption 1 allows the strengths of strong and weak signals to be the same
order, and thus is much weaker than the “beta-min” condition, which requires
the weak signals to be of smaller order. Assumptions 3 and 4 are satisfied for the
Lasso estimator and the variance estimator ¢ in (3.4) under suitable regularity
conditions [Bithlmann and van de Geer (2011)]. Assumptions 2 and 5 require
the error and design to be sub-gaussian. Similar assumptions have been made in
van de Geer et al. (2014). Like Javanmard and Montanari (2014), the validity
of our method does not rely on the sparsity of the precision matrix of the de-
sign, which is required in the nodewise Lasso regression for the original debiased
Lasso. In view of Cai and Guo (2017), the rate condition in Assumption 6 can-
not be relaxed without extra information. Zhu and Bradic (2018a,b) proposed
testing procedures in high-dimensional linear models that impose much weaker
restrictions on model sparsity or the loading vector representing the hypothesis.
However, their methods require certain auxiliary sparse models, which are not

needed for our procedure.

Define Ej\—j = Ej,j — Ej}—jz:]l‘,sz—j,j and Koj = 2(1 + \/Ar:lilnzj,j)&Qa for
1 < j < p. The following proposition shows that the surrogate set ./4§-1)(7') with
a properly chosen 7 converges to B\ {j}.

Proposition 1. Define Ag-l)(r) and A§2) (1) asin (3.3), and let 0; be the solution
to (3.2) forl # j. Suppose do,d1, and T satisfy

52
32er?

2
(ﬁ— domlale,l> > 1,
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and \/dy/M — \/T > 0, where

2 -1
: .11
= (o) (200 (o, o) )

Then under Assumptions 1-6, we have

P (ma(x) 17| < x/Tlogp> =1,
1eB?®

J

P (mi(n) |7 > \/T]ng> — 1,
leBy!

where Bj(l) =B\ {j} and Bj(z) = (B§1))G \ {j}. As a consequence, P(Ag-l)(T) =

B](-I)) — 1.
Remark 2. As shown in Proposition 1, the surrogate set in (3.3) has an asymp-
totic (nonrandom) limit, which implies that the projection direction obtained in
(2.8) is asymptotically independent of the random error e. This fact is useful
in the proof of Theorem 1 later. To ensure the independence between the pro-
jection direction and the random error, we can also employ a sample splitting
strategy. That is, we split the samples into two subsamples, estimate the set of
strong signals based on the first subsample, and construct the projection-based
estimator based on another subsample. Because we use all samples in building
the projection-based estimator, our method is more efficient than the sample

splitting strategy.

Remark 3. When dy = 0, B coincides with the support of 3. Proposition 1
suggests that one can consistently recover the support of 5 by thresholding the
projection-based estimator.

3.2. BRP estimator

In this subsection, we introduce the BRP estimator and study its asymptotic
behavior. Let ¥; be the solution to (2.8) based the surrogate sets in (3.3). Then,
the BRP estimator (3;(7;) is defined as

In the following, we introduce two asymptotic results, depending on whether
the surrogate set is estimated from the same data set used to find the projection
direction. We first state the following theorem on the asymptotic normality when
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the surrogate set is estimated using (3.3).

Theorem 1. Denote by 0 the solution to (2.8), with A§1)(7') and ./452)(7) in
(3.3). Suppose the assumptions in Proposition 1 hold, and further assume that,
for some § > 0,

19ll246 = 0a.s.(19;1])- (3.5)
Then, we have
Vi (Bi() - 85)

on=172|v;]

4 N(0,1). (3.6)
Thus, an asymptotic 100(1 — «)% confidence interval for B; is given by

Vn(B;(5;) — b)

on=1/2||;]]

CI(l—a):{beR:

< Zla/?} ) (37)
where z1_q /5 is the 1 — /2 quantile of N(0,1).

(3.5) is a Lyapunov-type condition, which implies the central limit theorem.
This type of assumption on the projection direction is also imposed in Dezeure,
Bithlmann and Zhang (2017). It can be dropped under the Gaussian assumption
on the errors. If the surrogate set is chosen based on prior knowledge or estimated
from an independent data set (e.g., based on sample splitting), then Assumptions
1-2 can be relaxed and we have the following result.

Corollary 1. Suppose the surrogate set A;l) is independent of the data. Un-

der Assumptions 3-6 and assuming that for some § > 0, E[|e;|**°] < oo and

10j]l246 = 0a.s.(|05]]), then (3.6) still holds.
3.3. Modified BRP estimator

We introduce a modified bias-reducing projection (MBRP) estimator that
is motivated by Proposition 1 and the refitted Lasso. This new estimator leads
to a potentially smaller order of bias compared to that of the original debiased
Lasso estimator under suitable assumptions, as shown in Proposition 2. Thus, it
is expected to provide better empirical coverage probability; see Section 6. To
motivate the MBRP estimator, we note that the bias associated with the BRP
estimator based on some estimator 3 for 8 can be written as

VnR(vj, B_;) = \/15 Z v) Xi(Br — Br)
k#j
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:\/lﬁ > v;Xk(ﬁk—Bk)Jr\/lﬁ > of Xi(Br = Br),

keB{t keB?

where B(l) 8(2) are as in Proposition 1. When ]B(l)\ < n, we can always require
vj to be exactly orthogonal to XB“) Therefore, the bias associated with the set of
strong signals becomes zero. Thus it suffices to control the bias term associated
with B](- ) by properly choosing v; and B, as clarified below.

To find the projection direction for the MBRP estimator, we consider the
optimization problem:

n 1 9
min Cg—u +n" v )
( gp 72 || ]H

Uj2,Vj

st w; Xj =n (3.8)

nilv]-TXk =0, ke .A;l),

1T 2
—UJQSTL ’U]-nguj'g, k?G.Ag)

In contrast to (2.8), we require the projection direction to be orthogonal to the
column space of X ;) in (3.8). Instead of using the Lasso estimator A3, we adopt
J

the refitted least squares estimator 8 as our preliminary estimator; that is,

) 1 . )
Baw = argmin o |[¥" — X BI?, Bye =0 (3.9)
J ﬁ J J

The MBRP estimator is then defined as
~ 1 B .
Bi(v;) = EUI(Y —X_jB-j) =B+ *U Je+ R(v;, B-5), (3.10)

where R(v;,5-;) = n‘lfDJTX_j(ﬂ_j — B_j), and v; is the solution to problem
(3.8). The MBRP estimator can be viewed as an intermediate estimator between
the refitted Lasso and the BRP estimator based on (2.8). Here, (3.8) is a variant
of (2.8) seeking a projection direction that is exactly orthogonal to the column
space of X AD- In contrast, the modified procedure uses the refitted estimator
for 3, as the “refitted Lasso does, as noted in Remark 1.

We argue that the bias term \/nR(7;, 5—;) that controls normality could have
a potentially smaller order than that of the original debiased Lasso estimator.

Proposition 2. Denote by v; the solution to (3.8), with .Ag-l)(T) and A§~2)(7—)
defined in (3.3). Let [ be the refitted least squares estimator in (3.9). Conditional
on the event {.A§2) = BJ(-Q)}, we have
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VAR, 8-)] < O, <¢%||53§2>||0bj§> , (3.11)

under Assumptions 1 and 5. If we further assume that

\/%Hﬁg_;w lo = o(s0), (3.12)

the bias /nR(vj, ;) is asymptotically negligible with smaller order than that of
the original debiased Lasso, given by Op(sologp/v/n).

In particular, (3.12) holds if dy = o(1) and d; = O(1); that is, the strength
of the weak signals is of smaller order than that of the strong signals. It is
more stringent than Assumption 1, where the magnitudes of the set of strong
signals and weak signals are allowed to be of the same order. However, note that
Proposition 2 is not necessary for the asymptotic normality in Corollary 2 to be
achieved. The following result shows the asymptotic normality of (3.10), which
can be proved using similar arguments to those for Theorem 1.

Corollary 2. Under the assumptions in Theorem 1, we have

Vit (Bi@) - 5)

on=172|vj]

4 N(0,1),

where B;(7;) is defined in (3.10) and @; is the solution to (3.8).

4. Inference on a Sparse Linear Combination of Parameters

In some applications, one may be interested in conducting an inference on
a' B for a (sparse) loading vector a = (a1,...,a,)" € RP, with |afo = s < n.
Denote by S = S(a) = {1 < j < p : a; # 0} the support set of a. Our
method can be generalized to construct an estimator and conduct an inference
for a' g = agﬂs. Recall that § is the preliminary estimator of 5. Define

ns =Y —X_gfB_5=XgBs + €

and
s =Y —X_ g8 5=Xgsfs+e+X_g5(B_5— f_5).

We construct an estimator for a'f in the form of n_lv;rﬁg, where v, =

Val,---Van) 1s a projection direction such that n~'v!#g has a tractable
; ; J PR

asymptotic limit. Note that

nilvgﬁs = nilv;—Xsﬁs + nflv;re + nileX,S(ﬁ,S — BA,S)
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T 1T T 1T 1T 5
=agfs+ (n v, Xg—ag)fs+n v,e+n v, X_g(B_g— P-3).

Under the equality constraint that n™ v, Xg — a:gr = 0, and by rearranging the

above terms, we have
V] is — afBs) = n"V20] e + /nR(va, B_5), (4.1)

where R(vg, 8_g) = n~'v] X_g(B_s—f_g). Similarly to (2.6), the bias term can
be decomposed into two parts, corresponding to different strengths of the signals.
Let Ag) be the surrogate set for the set of strong signals (excluding the elements
in S), which can be obtained in a similar way to that described in Section 3.1.
Following the derivations in Section 2, we formulate the following optimization
problem to find v:

. n o n o -1 2
o a0 (Cl logpu“1 +C Iogpu“2 vl ) ’
sit. v, Xg =nag, (4.2)

— Ul < ’I’L_IU;—Xk <uq, k€ -/4,(5’1)7
—Ugz <0y Xi Sug2, k€ A§)>
where Ag) = (Afgl) U S)C. Denote by (a1, @2, 9a) the solution to (4.2). Our

estimator for ' 3 is thus given by n~'9/ fj5, the asymptotic normality of which
is established in the following theorem.

Theorem 2. With ||allp = s < n, suppose the assumptions in Proposition 1 hold
and ||9g)|246 = 0a.5.(||0all), for some § > 0. Then, we have

V(s = alB) a4y, (4.3)

Gn=1/2||0||

Thus, an asymptotic 100(1 — a)% confidence interval for a' B is given by

—1~T 4 b
\/ﬁ(n Vq 1S )<21—a/2};

/2|3
We mention some existing works for inferences on linear combinations of 3.

CI(l—a):{beR:

where 2 _q /o is the 1 — a /2 quantile of N(0,1).

When the sparsity level s is known, Cai and Guo (2017) obtained the mini-
max expected length of the confidence intervals for a8 in both the sparse and
dense loading regions. They further showed that without knowledge of sg, a
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rate-optimal adaptation in the sparse loading regime is only possible under As-
sumption 6, and in the dense loading regime, an adaptation to sy is impossible.
In Zhu and Bradic (2018b), the authors propose a test for a linear hypothesis that
does not impose a restriction on the model sparsity or the loading vector repre-
senting the hypothesis. Nevertheless, compared with our method, the method of
Zhu and Bradic (2018b) requires an additional sparse model to account for the
dependence between the so-called synthesized feature and the stabilized feature.

Parallel to Corollary 1, if the surrogate set is estimated based on prior infor-
mation or an independent data set, Assumptions 1-2 can be dropped, and the
asymptotic normality can be established as follows.

Corollary 3. Suppose the surrogate set .,45-1) is independent of the data. Under
Assumptions 3-6 and further assuming that for some § > 0, E[|e;]*19] < oo and
10all246 = 0a.s.(|Tall), (4.3) still holds.

5. Selecting the Tuning Parameters

The bootstrap for the debiased Lasso is studied in Zhang and Cheng (2017)
and Dezeure, Bithlmann and Zhang (2017) to approximate the sampling distri-
bution of the debiased Lasso estimator. Here, we propose a bootstrap-assisted
approach for choosing the tuning parameters in (2.8), (3.2), and (3.8). Specifi-
cally, the residual bootstrap is used to obtain the empirical coverage rate and its
standard error for selecting the optimal tuning parameters. We focus our discus-
sion on (2.8), and remark that the procedure is applicable to (3.2) and (3.8) as
well. Let

e=(e1,...,en) =Y — X3,

and let & = ¢ — n~ ! Z;’L:1 €;j be the centered residual, where B denotes
the cross-validated Lasso estimator. Given a sequence of tuning parameters
{(cu’(k),c2’j’(k))}£(:1, we first calculate o, (Clyjy(k),CZJ"(k)), which is the solu-
tion to (2.8) given (Cl7j7(k)7627j7(k)). Note that the projection direction 9,
only needs to be calculated once for each pair of tuning parameters. Given
{17j (ch’(k), 02’j’(k))}kK:1, we do the following.

1. To generate the bth bootstrap sample, we sample n residuals with re-
placement from {&;}",, and denote the corresponding samples by e; =
(651> ,Ezn)T. Then, generate Y;* such that Y;* = X3+ £}

2. With (X,Y}), calculate the cross-validated Lasso estimator Bl’)‘ and the
projection-based estimator
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Tj(er. (ks C2.) | Yy = X—jB5 ;)

Bj(ﬁj(cl,j,(k)v o4 (k) = - ;

where Bg;_ j denotes B;‘ without the jth component. We then calculate the
100(1 — )% confidence interval CIy .y using (3.7). For each j, calculate

I(Bj € CIZj (k)), which is one if Bj is covered by CIZJ. (k) and zero otherwise.
In addition, calculate the length of CI; i (k) and denote it as Len;'; i (k)"

3. Repeat the above steps for B bootstrap samples. We choose the tuning
parameters for 3; as

(013.7(,6), c;’j’(k)) = arglgnin Angenj7(k)
s.t. Cover; () + SE(Cover; i) > 1 -,

where AvgLen; ;) = B gy Leng ; (1) and

Cover Yiea 103y € Ol )
J,(k) = B )
_— Cover. (1 — Cover.
SE(Coverjj(k)) = \/ Over]7(k)( i Over]7(,€)).

In other words, the optimal pair of tuning parameters is selected, where the
minimum average interval length among all pairs with an empirical coverage
rate that increased by one standard error is at least the nominal level 1 — a.

6. Numerical Results
6.1. Confidence interval for a single regression coefficient

We conduct simulations to evaluate the finite-sample performance of the pro-
posed BRP and MBRP estimators. We use the R package quadprog to solve the
quadratic programming problems in our methods, and the R package doMC with
five cores for parallel computation. All remaining implementation details are as
described in Section S1. For comparison, we implement the debiased Lasso of
van de Geer et al. (2014) (denoted by DB), using the R package hdi, and the
method of Javanmard and Montanari (2014) (denoted by JM), using the code
posted on the authors’ website. We encounter some numerical issues when im-
plementing JM’s code for the equicorrelation covariance structure of X in (ii).
Therefore, we report only the results of JM for Toeplitz covariance structure
of X. In addition, we present the results of the double selection approach of
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Belloni, Chernozhukov and Hansen (2014) (denoted by BCH), using the R pack-
age hdm. Owing to the high computational cost of BCH in the case of the equicor-
relation covariance, we report only the result for the active set. We also implement
the method of Zhu and Bradic (2018b) (denoted by “ZB” and “ZB2”). The only
difference between ZB and ZB2 is in the choice of the constant ¢ in the tuning pa-
rameter 7 = \/c(logp)/n in (12) of their paper. In ZB, we set ¢ = 2, as suggested
by the authors, while in ZB2, we let ¢ = 1073,

In (2.1), the rows of X are considered to be i.i.d. realizations from N (0,3)
with ¥;; = 1 under two scenarios: (i) ¥; = 0.997F (denoted as Tp); (ii)
Yir = 08, for all j # k (denoted as Eq). To generate 3, we consider the
following two cases:

Case 1: B; "% U(0,4) with so = 3,5, 10, 15.
Case 2: Half of the nonzero ; are independently generated from U(0,0.5),
and the rest are generated from U(2.5,3), with sy = 4, 8,12, 16.

The errors are independently generated from (a) the standard normal distri-
bution, (b) the Studentized ¢(4) distribution, that is, ¢(4)/v/2, and (c) the cen-
tralized and Studentized Gamma(4,1) distribution, that is, (Gamma(4,1) —4)/2.
The simulation results for (b) and (c) are summarized in Supplementary Mate-
rial. To save space, we include only the results for BCH, ZB, and ZB2 for case
(a). Throughout the simulations, we set n = 100, p = 500, and the nominal level
1 — a = 0.95. All simulation results are based on 100 independent simulation
runs.

We summarize the empirical coverage probabilities, corresponding confidence
interval lengths, and the absolute value of the overall normalized, bias defined as

_ [VnR(v;, 8-5)|
Vorn ;]2

for both the active set and the inactive set in Figures 5-8. The R code of Javan-

Bias (6.1)

mard and Montanari (2014) makes a finite-sample adjustment. To avoid an unfair
comparison, we do not include their method in the bias comparison. Because in-
verting the test statistic in Zhu and Bradic (2018b) does not provide a closed
form of confidence interval, the interval lengths of ZB and ZB2 are calculated
numerically by using the bisection-type method. To avoid the computational
burden therein, we calculate only the lengths of five confidence intervals of ZB
and ZB2 for the inactive set in each simulation run.

We observe that (i) BRP and MBRP provide more accurate coverage, in
general, for the active set in comparison to DB and JM. The coverage probability



PROJECTION-BASED INFERENCE FOR HDLM 933

for the active set based on DB can be significantly lower than the nominal level.
While BCH shows a similar or slightly higher coverage rate than BRP for the
Toeplitz covariance structure, its coverage rate is lower than the nominal level in
the equicorrelation case. (ii) The interval length of BCH is, in general, similar
or wider than the lengths of BRP and MBRP, which are wider than that of
DB for the active set. ZB and ZB2 tend to provide wider confidence intervals
than the other methods do. (iii) For the equicorrelation covariance structure
and sg > 10, ZB2 delivers the most accurate coverage rate, followed by MBRP.
In contrast, the other methods significantly undercover in these cases. (iv) The
better coverage of the active set for our method is closely related to the smaller
bias. Interestingly, the coverage rate for the inactive set seems not to be sensitive
to the bias. (v) The computation time of our method is between those of DB
and ZB, as shown in Table 1. (vi) The bias associated with the active set tends
to be larger than that with the inactive set, especially in the case of the Toeplitz
covariance. Overall, BRP seems to reduce the bias associated with the active and
inactive sets in this case. (vii) The coverage rate for the inactive set is usually close
to or above the nominal level for all methods, except for ZB. According to our
extensive simulations, the over-coverage is partly caused by the overestimation
of the noise level, as illustrated in Figure 22 in Supplementary Material. Overall,
our proposed method appears to outperform DB, JM, BCH, and ZB in terms of
coverage accuracy.

Figures 9-10 plot the bias and length of BRP and MBRP against C selected
using the procedure in Section 5. Note that for BRP, the interval width increases,
in general, while the bias decreases with Cs. The pattern is less obvious for
MBRP, with most of the values of Cs concentrated around the lower end of the
grid points in (S1.1).

6.2. Confidence interval for a sparse linear combination of regression
coefficients

In this subsection, we investigate the finite-sample performance of the method
in Section 4. We consider the case where a linear contrast for two coefficients is of
interest. We set the true regression coefficient § = (b1, by, b2, b3,0,. . ., O)T, where
b1, b2, bs are drawn independently from U(0,4). Depending on a, we consider the
following two cases:

1. Contrast 1: a = (1,-1,0,...,0)" and a8 = by — by = 0;
2. Contrast 2: a = (0,0,1,—1,,0,...,0)" and a3 = by — b # 0.

We adopt the same procedures as before for choosing the surrogate set and the
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tuning parameters, but the results are based on 300 independent simulation runs.
The configuration for € is the same as in the previous subsection. The results for
the t-distributed and gamma errors are presented in Supplementary Material.

Figure 11 shows the empirical coverage rates, corresponding confidence in-
terval widths, and bias for each contrast. For the Toeplitz covariance structure,
BRP and MBRP provide closer coverage rates to the nominal level, but with
wider interval lengths than those of DB. In particular, MBRP delivers the small-
est bias. Thus, the better coverage for our method is again closely related to the
smaller bias in the finite sample. For the equicorrelation covariance structure,
the coverage rates of all the methods are close to the nominal level. We also
note that ZB2 provides satisfactory coverage probabilities, while ZB significantly
undercovers in the case of the Toeplitz covariance structure. Similarly to the case
for a single regression coefficient, the lengths of ZB and ZB2 are, in general, wider
than those of the other methods.

6.3. Real-data analysis

As a real data-application, we consider a data set of riboflavin (vitamin
Bs) production by Bacillus subtilis. The data set is available in the R package
hdi, and has also been analyzed in van de Geer et al. (2014) and Javanmard and
Montanari (2014). It contains n = 71 observations of p = 4,088 covariates of gene
expressions and a response of riboflavin production. We model the data using
(2.1), and consider the following multiple hypothesis tests for the significance of
each gene:

Hj70 : ,Bj =0 for j: 1,...,4,088.

We use Theorem 1 and Corollary 2 to calculate the p-values based on BRP and
MBRP, respectively. The Holm procedure is adopted for the multiplicity adjust-
ment with a 5% significance level. Neither of our methods finds any significant
predictors, which is also the case for DB; JM identifies two significant genes,
YXLD-at and YXLE-at.

7. Conclusion

We have proposed a new method for finding the projection direction in the
debiased Lasso estimator, and demonstrated its advantage over the original debi-
ased Lasso estimator of van de Geer et al. (2014) and the method of Javanmard
and Montanari (2014). The main contributions of this study are summarized
below:

e We propose a new formulation to estimate the projection direction by prop-
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erly balancing the biases associated with the strong and weak signals.

o We show that the set of strong signals can be estimated consistently, and
establish the asymptotic normality of the proposed estimator.

e We propose a modified estimator that can lead to a smaller order of bias
than that of the original debiased Lasso, both theoretically and empirically.

e We generalize our idea to conduct an inference for a sparse linear combina-
tion of the regression coefficients.

We expect that our method can be extended to other settings, such as the
generalized linear models, Cox proportional hazards model, and nonparametric
additive models.

Supplementary Material

The online Supplementary Material provides the appendix for the main pa-
per, technical details, and additional numerical results.
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