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ABSTRACT
Conventional multiple testing procedures often assume hypotheses for different features are exchange-
able. However, in many scientific applications, additional covariate information regarding the patterns
of signals and nulls are available. In this article, we introduce an FDR control procedure in large-scale
inference problem that can incorporate covariate information. We develop a fast algorithm to implement
the proposed procedure and prove its asymptotic validity even when the underlying likelihood ratio model
is misspecified and the p-values are weakly dependent (e.g., strong mixing). Extensive simulations are
conducted to study the finite sample performance of the proposed method and we demonstrate that
the new approach improves over the state-of-the-art approaches by being flexible, robust, powerful, and
computationally efficient. We finally apply the method to several omics datasets arising from genomics
studies with the aim to identify omics features associated with some clinical and biological phenotypes. We
show that the method is overall the most powerful among competing methods, especially when the signal
is sparse. The proposed covariate adaptive multiple testing procedure is implemented in the R package
CAMT. Supplementary materials for this article are available online.
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1. Introduction
Multiple testing refers to simultaneous testing of more than one
hypothesis. Given a set of hypotheses, multiple testing deals
with deciding which hypotheses to reject while guaranteeing
some notion of control on the number of false rejections. A
traditional measure is the family-wise error rate (FWER), which
is the probability of committing at least one Type I error. As the
number of trials increases, FWER still measures the probability
of at least one false discovery, which is overly stringent in many
applications. This absolute control is in contrast to the propor-
tionate control afforded by the false discovery rate (FDR).

Consider the problem of testing m distinct hypotheses. Sup-
pose a multiple testing procedure rejects R hypotheses among
which V hypotheses are null, that is, it commits V Type I errors.
In the seminal paper by Benjamini and Hochberg, the authors
introduced the concept of FDR defined as

FDR = E
[

V
R ∨ 1

]
,

where a ∨ b = max{a, b} for a, b ∈ R, and the expectation
is with respect to the random quantities V and R. FDR has
many advantageous features comparing to other existing error
measures. Control of FDR is less stringent than the control
of FWER especially when a large number of hypothesis tests
are performed. FDR is also adaptive to the underlying signal
structure in the data. The widespread use of FDR is believed
to stem from and motivated by the modern technologies which
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produce big datasets, with huge numbers of measurements on
a comparatively small number of experimental units. Another
reason for the popularity of FDR is the existence of a simple and
easy-to-use procedure proposed in Benjamini and Hochberg
(1995) (the BH procedure, hereafter) to control the FDR at a
prespecified level.

Although the BH procedure is more powerful than pro-
cedures aiming to control the FWER, it assumes hypotheses
for different features are exchangeable which could result in
suboptimal power as demonstrated in recent literature when
individual tests differ in their true effect size, signal-to-noise
ratio or prior probability of being false. In many scientific
applications, particularly those from genomics studies, there
are rich covariates that are informative of either the statisti-
cal power or the prior null probability. These covariates can
be roughly derived into two classes: statistical covariates and
external covariates (Ignatiadis et al. 2016). Statistical covari-
ates are derived from the data itself and could reflect the
power or null probability. Generic statistical covariates include
the sample variance, total sample size and sample size ratio
(for two-group comparison), and the direction of the effects.
There are also specific statistical covariates for particular appli-
cations. For example, in transcriptomics studies using RNA-
Seq, the sum of read counts per gene across all samples is a
statistical covariate informative of power since the low-count
genes are subject to more sampling variability. Similarly, the
minor allele frequency and the prevalence of the bacterial

© 2020 American Statistical Association
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species can be taken as statistical covariates for genome-wide
association studies (GWAS) and microbiome-wide association
studies (MWAS), respectively. Moreover, the average methyla-
tion level of a CpG site in epigenome-wide association stud-
ies (EWAS) can be a statistical covariate informative of the
prior null probability due to the fact that differential methy-
lation frequently occurs in highly or lowly methylated region
depending on the biological context. Besides these statistical
covariates, there are a plethora of covariates that are derived
from external sources and are usually informative of the prior
null probability. These external covariates include the dele-
teriousness of the genetic variants for GWAS, the location
(island and shore) of CpG methylation variants for EWAS,
and pathogenicity of the bacterial species for MWAS. Use-
ful external covariates also include p-values from previous or
related studies which suggest that some hypotheses are more
likely to be nonnull than others. Exploiting such external
covariates in multiple testing could lead to improved statis-
tical power as well as enhanced interpretability of research
results.

Accommodating covariates in multiple testing has recently
been a very active research area. We briefly review some con-
tributions that are most relevant to the current work. The basic
idea of many existing works is to relax the p-value thresholds
for hypotheses that are more likely to be nonnull and tighten
the thresholds for the other hypotheses so that the overall FDR
level can be controlled. For example, Genovese, Roeder, and
Wasserman (2006) proposed to weight the p-values with differ-
ent weights, and then apply the BH procedure to the weighted
p-values. Hu, Zhao, and Zhou (2010) developed a group BH
procedure by estimating the proportions of null hypotheses
for each group separately, which extends the method in Storey
(2002). Li and Barber (2019) generalized this idea by using the
censored p-values (i.e., p-values that are greater than a prespec-
ified threshold) to adaptively estimate the weights that can be
designed to reflect any structure believed to be present. Igna-
tiadis et al. (2016) proposed the independent hypothesis weight-
ing (IHW) for multiple testing with covariate information. Their
idea is to bin the covariates into several groups and then apply
the weighted BH procedure with piecewise constant weights.
Boca and Leek (2018) extended the idea by using a regression
approach to estimate weights. Another related method (named
AdaPT) was proposed in Lei and Fithian (2018), which itera-
tively estimates the p-value thresholds using partially censored
p-values. The above procedures can be viewed to some extent as
different variants of the weighted BH procedure. Along a sepa-
rate line, local FDR (LFDR) based approaches have been devel-
oped to accommodate various forms of auxiliary information.

For example, Cai and Sun (2009) considered multiple testing
of grouped hypotheses using the pooled LFDR statistic. Sun
et al. (2015) developed a LFDR-based procedure to incorpo-
rate spatial information. Scott et al. (2015) and Tansey et al.
(2017) proposed EM-type algorithms to estimate the LFDR by
taking into account covariate and spatial information, respec-
tively. Other relevant methods include Ferkingstad et al. (2008),
Dobriban (2017), Zablocki et al. (2014) and Zablocki et al.
(2017).

Although the approaches mentioned above excel in certain
aspects, a method that is flexible, robust, powerful, and compu-
tationally efficient is still lacking. For example, IHW developed
in Ignatiadis et al. (2016) cannot handle multiple covariates.
AdaPT in Lei and Fithian (2018) is computationally intensive
and may suffer from significant power loss when the signal is
sparse, and covariate is not very informative. Li and Barber’s
(2019) procedure is not Bayes optimal as shown in Lei and
Fithian (2018) and thus could lead to suboptimal power as
observed in our numerical studies. The FDR regression method
proposed in Scott et al. (2015) lacks a rigorous FDR control
theory. Table 1 provides a detailed comparison of these methods.

In this article, in addition to a thorough evaluation of these
methods using comprehensive simulations covering different
signal structures, we propose a new procedure to incorporate
covariate information with generic applicability. The covariates
can be any continuous or categorical variables that are thought
to be informative of the statistical properties of the hypothesis
tests. The main contributions of our article are 2-fold:

1. Given a sequence of p-values {p1, . . . , pm}, we introduce a
general decision rule of the form

(1 − ki)p−ki
i ≥ (1 − t)πi

t(1 − πi)
, 0 < ki < 1, 1 ≤ i ≤ m, (1)

which serves as a surrogate for the optimal decision rule
derived under the two-component mixture model with vary-
ing mixing probabilities and alternative densities. Here πi and
ki are parameters that can be estimated from the covariates
and p-values, and t is a cutoff value to be determined by our
FDR control method. We develop a new procedure to esti-
mate (ki, πi) and find the optimal threshold value for t in (1).
We show that (i) when πi and ki are chosen independently of
the p-values, the proposed procedure provides finite sample
FDR control; (ii) our procedure provides asymptotic FDR
control when πi and ki are chosen to maximize a potentially
misspecified likelihood based on the covariates and p-values;
(iii) Similar to some recent works (e.g., Ignatiadis et al. 2016;
Lei and Fithian 2018; Li and Barber 2019), our method allows

Table 1. Comparison of several covariate adaptive FDR control procedures in recent literature.

Procedure π0 f1 FDR control Dependent p-values Misspec. robust Multiple covariates Computation

Ignatiadis et al. (2016) Varying Partially used Asymptotic control Unknown Yes No ++++
Li and Barber (2019) Varying Not used Finite sample upper bound Gaussian copula Yes Noa ++++
Lei and Fithian (2018) Varying Varying Finite sample control Unknown Yes Yes +
Scott et al. (2015) Varying Fixed No guarantee Unknown Unknown Yes +++
Boca and Leek (2018) Varying Not used Unknown Unknown Yes Yes +++
The proposed method Varying Varying Asymptotic control Asymptotic Yes Yes +++

NOTE: The number of “+” represents the speed.
aThe framework of Li and Barber (2019) allows accommodating multiple covariates, but the provided software did not implement.
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the underlying likelihood ratio model to be misspecified. A
distinctive feature is that our asymptotic analysis does not
require the p-values to be marginally independent or condi-
tionally independent given the covariates. More specifically,
we allow the pairs of p-value and covariate across different
hypotheses to be strongly mixing as specified in Assump-
tion 3.3.

2. We develop an efficient algorithm to estimate πi and ki.
The developed algorithm is scalable to problems with mil-
lions of tests. Through extensive numerical studies, we show
that our procedure is highly competitive to several existing
approaches in the recent literature in terms of finite sample
performance. The proposed procedure is implemented in the
R package CAMT.

Our method is related to Lei and Fithian (2018), and it is
worth highlighting the differences from their work. (i) Lei and
Fithian (2018) used partially censored p-values to determine the
threshold, which can discard useful information concerning the
alternative distribution of p-values (i.e., f1,i in (3)) since small
p-values that are likely to be generated from the alternative
are censored. In contrast, we use all the p-values to determine
the threshold. Our method is seen to exhibit more power as
compared to Lei and Fithian (2018) when signal is (moderately)
sparse. Although our method no longer offers theoretical finite
sample FDR control, we show empirically that the power gain is
not at the cost of FDR control. (ii) Different from Lei and Fithian
(2018) which requires multiple stages for practitioners to make
their final decision, our method is a single-stage procedure that
only needs to be run one time; thus, the implementation of our
method is faster and scalable to modern big datasets. (iii) Our
theoretical analysis is entirely different from those in Lei and
Fithian (2018). In particular, we show that our method achieves
asymptotic FDR control even when the p-values are dependent.

2. Methodology

2.1. Rejection Rule

We consider simultaneous testing of m hypotheses Hi for i =
1, 2, . . . , m. Let pi be the p-value associated with the ith hypoth-
esis, and with some abuse of notation, let Hi indicate the under-
lying truth of the ith hypothesis. In other words, Hi = 0 if the ith
hypothesis is true and Hi = 1 otherwise. For each hypothesis,
we observe a covariate xi lying in some space X ⊆ R

q with
q ≥ 1. From a Bayesian viewpoint, we can model Hi given xi
as a Bernoulli random variable with success probability 1 − π0i,
where π0i denotes the prior probability that the ith hypothesis is
under the null when conditioning on xi. One approach to model
the p-value distribution is via a two-component mixture model,

Hi|xi ∼ Bernoulli(1 − π0i), (2)
pi|xi, Hi ∼ (1 − Hi)f0 + Hif1,i, (3)

where f0 and f1,i are the density functions corresponding to the
null and alternative hypotheses, respectively. In the following
discussions, we shall assume that f0 satisfies the following con-
dition: for any a ∈ [0, 1]∫ a

0
f0(x)dx ≤

∫ 1

1−a
f0(x)dx. (4)

This condition relaxes the assumption of uniform distribution
on the unit interval. It is fulfilled when f0 is nondecreasing or f0 is
symmetric about 0.5 (in which case the equality holds in (4)). We
demonstrate that this relaxation is capable of describing plau-
sible data generating processes that would create a nonuniform
null distribution. Let T be a test statistic such that under the null
its z-score Z = (T − μ0)/σ0 is standard normal. In practice,
one uses μ̂ and σ̂ to estimate μ0 and σ0, respectively. Let �

be the standard normal CDF. The corresponding one-sided p-
value is given by �((T − μ̂)/σ̂ ) whose distribution function is
P(�((T − μ̂)/σ̂ ) ≤ x) = �((�−1(x)σ̂ + μ̂ − μ0)/σ0). When
μ0 ≥ μ̂ (i.e., we underestimate the mean), one can verify that
f0 is a non-decreasing. In the case of μ0 = μ̂ and σ0 �= σ̂ , f0 is
non-uniformly symmetric about 0.5.

Compared to the classical two-component mixture model,
the varying null probability reflects the relative importance of
each hypothesis given the external covariate information xi and
the varying alternative density f1,i emphasizes the heterogeneity
among signals. In the context without covariate information, it
is well known that the optimal rejection is based on the LFDR
(see, e.g., Efron 2004; Sun and Cai 2007). The result has been
generalized to the setups with group or covariate information
(see, e.g., Cai and Sun 2009; Lei and Fithian 2018). Based on
these insights, one can indeed show that the optimal rejection
rule that controls the expected number of false positives while
maximizes the expected number of true positives takes the
form of

f1,i(pi)

f0(pi)
≥ (1 − t)π0i

t(1 − π0i)
, (5)

where t ∈ (0, 1) is a cutoff value. This decision rule is gen-
erally unobtainable because f1,i is unidentifiable without extra
assumptions on its form. Moreover, consistent estimation of the
decision rule (5) is difficult, and even with the use of additional
approximations, such as splines or piecewise constant functions.
In this work, we do not aim to estimate the optimal rejection
rule directly. Instead, we try to find a rejection rule that can
mimic some useful operational characteristics of the optimal
rule. Our idea is to first replace f1,i/f0 by a surrogate function
hi. We emphasize that hi needs not agree with the likelihood
ratio f1,i/f0 for our method to be valid. In fact, the validity of
our method does not rely on the correct specification of models
(2) and (3). We require hi to satisfy (i) hi(p) ≥ 0 for p ∈ [0, 1];
(ii)

∫ 1
0 hi(p)dp = 1; (iii) h is decreasing. Requirement (iii) is

imposed to mimic the common likelihood ratio assumption in
the literature (see, e.g., Sun and Cai 2007). In this article, we
suggest to use the beta density,

hi(p) = (1 − ki)p−ki , 0 < ki < 1, (6)

where ki is a parameter that depends on xi. Suppose that under
the null hypothesis, pi is uniformly distributed, whereas under
the alternative, it follows a beta distribution with parameters
(1 − ki, 1), then the true likelihood ratio would take exactly
the form given in (6). To demonstrate the approximation of
the proposed surrogate likelihood ratio to the actual likelihood
ratio for realistic problems, we simulated two binary variables
and generated four alternative distributions f1,i depending on
the four levels of the two variables (details in the legend of
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Figure 1. Illustration of the approximation to the true likelihood ratio by the surrogate likelihood ratio based on a beta distribution. Two binary covariates x1 and x2 were
simulated. The z-score under the alternative was drawn from N(0, 1.5 + 0.5x1 + x2). Three levels of null proportions (A: 99%, B: 95%, and C: 80%) were simulated, where
the null z-score was drawn from N(0, 1). Two-sided p-values were calculated based on the z-score and the parameter ki of the beta distribution was estimated by CAMT.
The CDF of the empirical distribution of the p-value under the alternative (black) was compared to CDF of the fitted beta-distribution (red).

Figure 1). We used the proposed procedure to find the best ki
and compared the CDF of the empirical distribution (reflecting
the actual likelihood ratio) to that of the fitted beta distribution
(reflecting the surrogate likelihood ratio). We can see from Fig-
ure 1 the approximation was reasonably well and the accuracy
increases with the signal density.

Based on the surrogate likelihood ratio, the corresponding
rejection rule is given by

hi(pi) ≥ wi(t) := (1 − t)πi
t(1 − πi)

, (7)

for some weights πi to be determined later. See Section 2.3 for
more details about the estimation of ki and πi.

2.2. Adaptive Procedure

We first note that the false discovery proportion (FDP) associ-
ated with the rejection rule (7) is equal to

FDP(t) :=
∑m

i=1(1 − Hi)1{hi(pi) ≥ wi(t)}
1 ∨ ∑m

i=1 1{hi(pi) ≥ wi(t)} .

Then for a cutoff value t, we have

FDP(t) =
∑m

i=1(1 − Hi)1{pi ≤ h−1
i (wi(t))}

1 ∨ ∑m
i=1 1{hi(pi) ≥ wi(t)}

≈
∑m

i=1(1 − Hi)P(pi ≤ h−1
i (wi(t)))

1 ∨ ∑m
i=1 1{hi(pi) ≥ wi(t)}

≤
∑m

i=1(1 − Hi)P(1 − pi ≤ h−1
i (wi(t)))

1 ∨ ∑m
i=1 1{hi(pi) ≥ wi(t)}

≈1 + ∑m
i=1(1 − Hi)1{hi(1 − pi) ≥ wi(t)}
1 ∨ ∑m

i=1 1{hi(pi) ≥ wi(t)}
≤1 + ∑m

i=1 1{hi(1 − pi) ≥ wi(t)}
1 ∨ ∑m

i=1 1{hi(pi) ≥ wi(t)} := FDPup(t),

where the approximations are due to the law of large numbers
and the inequality follows from Condition (4).1 This strategy
is partly motivated by the recent distribution-free method pro-
posed in Barber and Candès (2015). We refer any FDR estimator
constructed using this strategy as the BC-type estimator. Both

1Rigorous theoretical justifications are provided in Theorems 2.1 and 3.1.
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the adaptive procedure in Lei and Fithian (2018) and the pro-
posed method fall into this category. A natural idea is to select
the largest threshold such that FDPup(t) is less or equal to a
prespecified FDR level α. Specifically, we define

t∗ = max
{

t ∈ [0, tup] : FDPup(t)

= 1 + ∑m
i=1 1{hi(1 − pi) ≥ wi(t)}

1 ∨ ∑m
i=1 1{hi(pi) ≥ wi(t)} ≤ α

}
,

where tup satisfies that wi(tup) ≥ hi(0.5) for all i, and we reject
all hypotheses such that hi(pi) ≥ wi(t∗). The following theorem
establishes the finite sample control of the above procedure
when πi and hi are prespecified and thus independent of the p-
values. For example, πi and hi are estimated based on data from
an independent but related study.

Theorem 2.1. Suppose hi is strictly decreasing for each i and
f0 satisfies Condition (4). If the p-values are independent and
the choice of hi and πi is independent of the p-values, then
the adaptive procedure provides finite sample FDR control at
level α.

2.3. An Algorithm

The optimal choices of πi and ki are rarely known in practice,
and a generally applicable data-driven method is desirable. In
this subsection, we propose an EM-type algorithm to estimate
πi and ki. In particular, we model both πi and ki as functions
of the covariate xi. As an illustration, we provide the following
example.

Example 2.1. Suppose

pi|xi, Hi ∼ (1 − Hi)f0 + Hif1,i,
xi|Hi ∼ (1 − Hi)g0 + Hig1,

where Hi
iid∼ Bernoulli(1 − π0). Using the Bayes rule, we have

f (pi|xi) = f (pi, xi|Hi = 0)π0 + f (pi, xi|Hi = 1)(1 − π0)

f (xi|Hi = 0)π0 + f (xi|Hi = 1)(1 − π0)

=
f (pi|xi, Hi = 0)f (xi|Hi = 0)π0 + f (pi|xi, Hi = 1)

f (xi|Hi = 1)(1 − π0)

f (xi|Hi = 0)π0 + f (xi|Hi = 1)(1 − π0)

=π(xi)f0(pi) + (1 − π(xi))f1,i(pi),

where π(x) = g0(x)π0/{g0(x)π0 + g1(x)(1 − π0)} = f (Hi =
0|xi = x). Therefore, πi is the conditional probability that the
ith hypothesis is under the null given the covariate xi.

To motivate our estimation procedure for πi and ki, let us
define πθ (x) = 1/(1 + e−θ0−θ ′

1x) and kβ(x) = 1/(1 + e−β0−β ′
1x)

for x ∈ R
q, where θ = (θ0, θ1) and β = (β0, β1). Suppose that

conditional on xi and marginalizing over Hi,

f (pi|xi) = πθ (xi)f0(pi) + (1 − πθ (xi))f1,i(pi)

= f0(pi)

{
πθ (xi) + (1 − πθ (xi))

f1,i(pi)

f0(pi)

}
.

Replacing f1,i/f0 by the surrogate likelihood ratio whose param-
eters ki depend on xi, we obtain

f̃ (pi|xi) = f0(pi)
{
πθ (xi) + (1 − πθ (xi))(1 − kβ(xi))p−kβ(xi)

i

}
.

Moving to a log scale and summing up the individual log-
likelihoods, we see that the null density is a nuisance parameter
that does not depend on θ and β :

m∑
i=1

log f̃ (pi|xi)

=
m∑

i=1
log

{
πθ (xi) + (1 − πθ (xi))(1 − kβ(xi))p−kβ(xi)

i

}
+ C0,

where C0 = ∑m
i=1 log f0(pi). The above discussions thus moti-

vate the following optimization problem for estimating the
unknown parameters:

max
θ=(θ0,θ1)′∈�,β=(β0,β1)′∈B

m∑
i=1

log{πi + (1 − πi)(1 − ki)p−ki},

(8)

where

log
(

πi
1 − πi

)
= θ0 + θ ′

1xi, log
(

ki
1 − ki

)
= β0 + β ′

1xi,

(9)

and �,B ⊆ R
q+1 are some compact parameter spaces. This

problem can be solved using the EM-algorithm together with
the Newton’s method in its M-step. Let θ̂ and β̂ be the maximizer
from (8). Define

π̂i = W(1/(1 + e−x̃′
i θ̂ ), ε1, ε2)

:=

⎧⎪⎨
⎪⎩

ε1, if 1/(1 + e−x̃′
i θ̂ ) ≤ ε1,

1/(1 + e−x̃′
i θ̂ ), if ε1 < 1/(1 + e−x̃′

i θ̂ ) < 1 − ε2,
1 − ε2, otherwise,

and k̂i = 1/(1 + e−x̃′
iβ̂ ) with x̃i = (1, x′

i)
′, and

ŵi(t) = (1 − t)π̂i
t(1 − π̂i)

.

We use winsorization to prevent π̂i from being too close to zero.
In numerical studies, we found the choices of ε1 = 0.1 and ε2 =
10−5 perform reasonably well. Further denote

t̂ = max

⎧⎨
⎩t ∈ [0, 1] :

1 + ∑m
i=1 1{(1 − k̂i)(1 − pi)−k̂i > ŵi(t)}

1 ∨ ∑m
i=1 1{(1 − k̂i)p−k̂i

i ≥ ŵi(t)}
≤ α

⎫⎬
⎭ .

Then we reject the ith hypothesis if

(1 − k̂i)p−k̂i
i ≥ ŵi(t̂).

Remark 2.1. We can replace xi ∈ R
q by (g1(xi), . . . , gq0(xi)) ∈

R
q0 for some transformations (g1, . . . , gq0) to allow nonlinearity

in the logistic regressions. In numerical studies, we shall con-
sider the spline transformation.
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3. Asymptotic Results

3.1. FDR Control

In this subsection, we provide asymptotic justification for the
proposed procedure. Note that

1{(1 − k̂i)p−k̂i ≥ ŵi(t)} = 1{p ≤ c(t, π̂i, k̂i)} for c(t, π̂i, k̂i)

= 1 ∧
{

t(1 − k̂i)(1 − π̂i)

(1 − t)π̂i

}1/k̂i

.

Define

FDR(t, 
, K) = E
[∑m

i=1(1 − Hi)1{pi ≤ c(t, πi, ki)}∑m
i=1 1{pi ≤ c(t, πi, ki)}

]

with 
 = (π1, . . . , πm) and K = (k1, . . . , km). We make the
following assumptions to facilitate our theoretical derivations.

Assumption 3.1. Suppose the parameter spaces � andB are both
compact.

Assumption 3.2. Suppose

lim
m

1
m

m∑
i=1

E log{πθ(xi) + (1 − πθ (xi))(1 − kβ(xi))p−kβ(xi)
i }

converges uniformly over θ ∈ � and β ∈ B to R(θ , β), which
has a unique maximum at (θ∗, β∗) in � × B.

Let Fb
a = σ((xi, pi), a ≤ i ≤ b) be the Borel σ -algebra

generated by the random variables (xi, pi) for a ≤ i ≤ b. Define
the α-mixing and φ-mixing coefficients, respectively, as

α(v) = sup
b

sup
A∈Fb−∞,B∈F+∞

b+v

|P(AB) − P(A)P(B)|,

φ(v) = sup
b

sup
A∈Fb−∞,B∈F+∞

b+v ,P(B)>0
|P(A|B) − P(A)|.

Assumption 3.3. Suppose (xi, pi) is α-mixing with α(v) =
O(v−ξ ) for ξ > r/(r − 1) and r > 1 (or φ-mixing with
φ(v) = O(v−ξ ) for ξ > r/(2r − 1) and r ≥ 1). Further assume
supi E| log(pi)|r+δ < ∞ and maxi ‖xi‖∞ < C, where ‖ · ‖∞
denotes the l∞ norm of a vector and C, δ > 0.

Assumption 3.1 is standard. Assumption 3.2 is a typical
condition in the literature of maximum likelihood estimation
for misspecified models (see, e.g., White 1982). Assumption 3.3
relaxes the usual independence assumption by allowing (xi, pi)
to be weakly dependent. It is needed to establish the uniform
strong law of large numbers for the process Rm(θ , β) defined in
the proof of Lemma 3.1 which establishes the uniform strong
consistency for π̂i and k̂i. The boundedness assumption on xi
could be relaxed with a more delicate analysis to control its tail
behavior and study the convergence rate of θ̂ and β̂ . Denote by
‖ · ‖ the l2 norm of a vector. An essential condition required in
our proof of Lemma 3.1 is ‖θ̂ − θ∗‖ max1≤i≤n ‖xi‖ = oa.s.(1).
If ‖θ̂ − θ∗‖ = Oa.s.(n−a) for some a > 0, then by the
Borel–Cantelli lemma, we require max1≤i≤n E‖xi‖k < ∞ for
some k with ak > 2, that is, xi should have a sufficiently
light polynomial tail. We remark that Assumption 3.3 can be

replaced by more primitive conditions which allow other weak
dependence conditions (see, e.g., Pötscher and Prucha 1989).
Let π∗

i = W(1/(1 + e−x̃′
iθ

∗
), ε1, ε2) and k∗

i = 1/(1 + e−x̃′
iβ

∗
).

Lemma 3.1. Under Assumptions 3.1–3.3, we have

max
1≤i≤m

|π̂i − π∗
i | a.s.→ 0, max

1≤i≤m
|k̂i − k∗

i | a.s.→ 0.

We impose some additional assumptions to study the asymp-
totic FDR control.

Assumption 3.4. For two sequences ai, bi ∈ [ε, 1] with small
enough ε and large enough m,∣∣∣∣∣ 1

m

m∑
i=1

{
P(pi ≤ ai|xi) − P(pi ≤ bi|xi)

}∣∣∣∣∣ ≤ c0 max
1≤i≤m

|ai − bi|,

where c0 depends on ε but is independent of m, xi, ai, and bi.

Assumption 3.5. Assume that

1
m

m∑
i=1

P(pi ≤ c(t, π∗
i , k∗

i )) → G0(t), (10)

1
m

m∑
i=1

P(1 − pi < c(t, π∗
i , k∗

i )) → G1(t), (11)

1
m

∑
Hi=0

P(pi ≤ c(t, π∗
i , k∗

i )) → G̃1(t), (12)

for any t ≥ t0 with t0 > 0, where G0(t), G1(t), and G̃1(t) are all
continuous functions of t. Note that the probability here is taken
with respect to the joint distribution of (pi, xi).

Let U(t) = G1(t)/G0(t), where G1 and G0 are defined in
Assumption 3.5.

Assumption 3.6. There exists a t′ > t0 > 0 such that U(t′) < α.

Assumption 3.4 is fulfilled if the conditional density of pi
given xi is bounded uniformly across i on [ε, 1]. This assumption
is not very strong as we still allow the density to be unbounded
around zero. Assumptions 3.5 and 3.6 are similar to those in
Theorem 4 of Storey, Taylor, and Siegmund (2004). In particular,
Assumption 3.6 ensures the existence of a cutoff to control the
FDR at level α.

We are now in position to state the main result of this section
which shows that the proposed procedure provides asymptotic
FDR control. The proof is deferred to the supplementary mate-
rials.

Theorem 3.1. Suppose Assumptions 3.1–3.6 hold and f0 satisfies
Condition (4). Then we have

lim sup
m

FDR(t̂, 
̂, K̂) ≤ α,

where 
̂ = (π̂1, . . . , π̂m) and K̂ = (k̂1, . . . , k̂m).

It is worth mentioning that the validity of our method does
not rely on the mixture model assumptions (2) and (3). In this
sense, our method is misspecification robust as the classical BH
procedure does.
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3.2. Power Analysis

We study the asymptotic power of the oracle procedure. Suppose
the mixture models (2) and (3) hold with π0i = π0(xi) and
f1,i(·) = f1(·; xi), where f1(·; x) is a density function for any
fixed x ∈ X . Denote by F1(·; x) and F̄1(·; x) the distribution and
survival functions associated with f1(·; x), respectively. Suppose
the empirical distribution of xi’s converges to the probability
law P . Consider the oracle procedure with πi = π0(xi) and
ki = k0(xi). Here k0(·) minimizes the integrated Kullback–
Leibler divergence, that is,

k0 = argmin
k∈K

∫
DKL(f (·; x)||g(; k(x)))P(dx),

DKL(f (·; x)||g(·; k(x))) =
∫ 1

0
f (p; x) log

f (p; x)

g(p; k(x))
dp,

with f (p; x) = π0(x)f0(p) + (1 − π0(x))f1(p; x) and
g(p; k(x)) = π0(x) + (1 − π0(x))(1 − k(x))p−k(x), and K ={

k(x) : log
(

k(x)
1−k(x)

)
= β0 + β ′

1x, (β0, β1) ∈ B
}

. Write c(t, x) =
c(t, π0(x), k0(x)). By the law of large numbers, the realized
power of the oracle procedure has the approximation

Power =
∑m

i=1 1{i : Hi = 1, p ≤ c(t, xi)}∑m
i=1 1{i : Hi = 1}

≈
∫
(1 − π(x))F1(c(topt, x); x)P(dx)∫

(1 − π(x))P(dx)
,

where topt is the largest positive number such that∫ {π0(x)F0(c(t, x)) + (1 − π0(x))F̄1(1 − c(t, x); x)}P(dx)∫ {π0(x)F0(c(t, x)) + (1 − π0(x))F1(c(t, x); x)}P(dx)
≤α.

(13)

We remark that when∫
(1 − π0(x))F̄1(1 − c(topt, x); x)P(dx)∫ {π0(x)F0(c(topt, x)) + (1 − π0(x))F1(c(topt, x); x)}P(dx)

≈0,

(14)

the asymptotic power of the proposed procedure is closed to the
oracle procedure based on the LFDR given by

LFDRi(pi) = π0if0(pi)

π0if0(pi) + (1 − π0i)f1,i(pi)
. (15)

4. Simulation Studies

We conduct comprehensive simulations to evaluate the finite-
sample performance of the proposed method and compare it
to competing methods. For genome-scale multiple testing, the
numbers of hypotheses could range from thousands to mil-
lions. For demonstration purpose, we start with m = 10,000
hypotheses. To study the impact of signal density and strength,
we simulate three levels of signal density (sparse, medium,
and dense signals) and six levels of signal strength (from very
weak to very strong). To demonstrate the power improvement
by using external covariates, we simulate covariates of varying
informativeness (non-informative, moderately informative, and

strongly informative). For simplicity, we simulate one covariate
xi ∼ N(0, 1) for i = 1, . . . , m. Given xi, we let

π0i = exp(ηi)

1 + exp(ηi)
, ηi = η0 + kdxi,

where η0 and kd determine the baseline signal density and the
informativeness of the covariate, respectively. For each simu-
lated dataset, we fix the value of η0 and kd. We set η0 ∈
{3.5, 2.5, 1.5}, which achieves a signal density around 3%, 8%,
and 18%, respectively, at the baseline (i.e., no covariate effect),
representing sparse, medium and dense signals. We set kd ∈
{0, 1, 1.5}, representing a noninformative, moderately informa-
tive and strongly informative covariate, respectively. Thus, we
have a total of 3 × 3 = 9 parameter settings. Based on π0i, the
underlying truth Hi is simulated from

Hi ∼ Bernoulli(1 − π0i).

Finally, we simulate independent z-scores using

zi ∼ N(ksHi, 1),

where ks controls the signal strength (effect size) and we use
values equally spaced on [2, 2.8]. Z-scores are converted into p-
values using the one-sided formula 1 −�(zi). p-values together
with xi are used as the input for the proposed method.

In addition to the basic setting (denoted as Setup S0), we
investigate other settings to study the robustness of the proposed
method. Specifically, we study

Setup S1. Additional f1 distribution. Instead of simulating nor-
mal z-scores under f1, we simulate z-scores from
a noncentral gamma distribution with the shape
parameter k= 2. The scale/noncentrality parameters
of the noncentral gamma distribution are chosen to
match the variance and mean of the normal distribu-
tion under S0.

Setup S2. Covariate-dependent π0i and f1,i. On top of the basic
setup S0, we simulate another covariate x′

i ∼ N(0, 1)

and let x′
i affect f1,i. Specifically, we scale ks by

2 exp(kf x′
i)

1 + exp(kf x′
i)

, where we set kf ∈ {0, 0.25, 0.5} for

noninformative, moderately informative and strongly
informative covariate scenarios, respectively.

Setup S3. Dependent hypotheses. We further investigate the
effect of dependency among hypotheses by simulat-
ing correlated multivariate normal z-scores. Four cor-
relation structures, including two block correlation
structures and two AR(1) correlation structures, are
investigated. For the block correlation structure, we
divide the 10,000 hypotheses into 500 equal-sized
blocks. Within each block, we simulate equal posi-
tive correlations (ρ = 0.5) (S3.1). We also further
divide the block into 2 by 2 sub-blocks, and simulate
negative correlations (ρ = −0.5) between the two
sub-blocks (S3.2). For AR(1) structure, we investigate
both ρ = 0.75|i−j| (S3.3) and ρ = (−0.75)|i−j| (S3.4).

Setup S4. Heavy-tail covariate. In this variant, we generate xi
from the t distribution with 5 degrees of freedom.
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Setup S5. Nontheoretical null distribution. We simulate both
increasing and decreasing f0. For an increasing f0
(S5.1), we generate null z-score zi|H0 ∼ N(−0.15, 1).
For a decreasing f0 (S5.2), we generate null z-score
zi|H0 ∼ N(0.15, 1).

We present the simulation results for the Setup S0–S2 in the
main text and the results for the Setup S3–S5 in the supplemen-
tary materials. To allow users to conveniently implement our
method and reproduce the numerical results reported here, we
make our code and data publicly available at https://github.com/
jchen1981/CAMT.

4.1. Competing Methods

We label our method as covariate adaptive multiple testing
(CAMT) and compare it to the following competing methods:

• Oracle: Oracle procedure based on LFDR (see, e.g., (15)) with
simulated π0i and f1,i, which theoretically has the optimal
performance;

• BH: Benjamini–Hochberg procedure (Benjamini et al. 1995,
p.adjust in R 3.4.2);

• ST: Storey’s BH procedure (Storey 2002, qvalue package,
v2.10.0);

• BL: Boca and Leek procedure (Boca and Leek 2018, swfdr
package, v1.4.0);

• IHW: Independent hypothesis weighting (Ignatiadis et al.
2016, IHW package, v1.6.0);

• FDRreg: False discovery rate regression (Scott et al. 2015,
FDRreg package, v0.2, https://github.com/jgscott/FDRreg),
FDRreg(T) and FDRreg(E) represent FDRreg with the the-
oretical null and empirical null, respectively;

• SABHA: Structure adaptive BH procedure (Li and Barber
2019, τ = 0.5, ε = 0.1 and stepwise constant weights, https://
www.stat.uchicago.edu/~rina/sabha/All_q_est_functions.R);

• AdaPT: Adaptive p-value thresholding procedure (Lei and
Fithian 2018, adaptMT package, v1.0.0).

We evaluate the performance based on FDR control (false
discovery proportion) and power (true positive rate) with a
target FDR level of 5%. Results are averaged over 100 simulation
runs.

4.2. Simulation Results

We first study the performance of the proposed method under
the basic setup (S0, Figure 2). All compared methods generally
controlled the FDR around/under the nominal level of 0.05 and
no serious FDR inflation was observed at any of the parame-
ter setting (Figure 2(A)). However, FDRreg exhibited a slight
FDR inflation under some parameter settings and the inflation
seemed to increase with the informativeness of the covariate
and signal density. Conservativeness was also observed for some
methods in some cases. As expected, the BH procedure, which
did not take into account π0, was conservative when the signal
was dense. IHW procedure was generally more conservative
than BH and the conservativeness increased with the informa-
tiveness of the covariate. CAMT, the proposed method, was

conservative when the signal was sparse and the covariate was
less informative. The conservativeness was more evident when
the effect size was small but decreased as the effect size became
larger. AdaPT was more conservative than CAMT under sparse
signal/weak covariate. In terms of power (Figure 2(B)), there
were several interesting observations. First, as the covariate
became more informative, all the covariate adaptive methods
became more powerful than ST and BH. The power differences
between these methods also increased. Second, FDRreg was
the most powerful across settings. Under a highly informa-
tive covariate, it was even slightly above the oracle procedure,
which theoretically had an optimal power. The superior power
of FDRreg could be partly explained by a less well controlled
FDR. The IHW was more powerful than BL/SABHA when the
signal was sparse; but the trend reversed when the signal was
dense. Third, AdaPT was very powerful when the signal was
dense and the covariate was highly informative. However, the
power decreased as the signal became more sparse and the
covariate became less informative. In fact, when the signal was
sparse and the covariate was not informative or moderately
informative, AdaPT had the lowest power. In contrast, the pro-
posed method CAMT was close to the oracle procedure. It was
comparable to AdaPT when AdaPT was the most powerful, but
was significantly more powerful than AdaPT in its unfavorable
scenarios. CAMT had a clear edge when the covariate was
informative and signal was sparse. Similar to AdaPT, CAMT
had some power loss under sparse signal and non-informative
covariate, probably due to the discretization effect from the BC-
type estimator.

We conducted more evaluations on Type I error control
under S0. We investigated the FDR control across different
target levels. Figure 3 showed excellent FDR control across target
levels for all methods except FDRreg. The actual FDR level of
BH and IHW was usually below the target level. CAMT was
slightly conservative at a small target level under the scenario
of sparse signal and less informative covariate, but it became
less conservative at larger target levels. We also simulated a
complete null, where no signal was included (Figure 4). In such
case, FDR was reduced to FWER. Interestingly, FDRreg was as
conservative as CAMT and AdaPT under the complete null.

It is interesting to study the performance of the compet-
ing methods under a much larger feature size, less signal
density, and weaker signal strength, representing the most
challenging scenario in real problems. To achieve this end,
we simulated m = 100,000 features with a signal den-
sity of 0.5% at the baseline (no covariate effect). Under a
moderately informative covariate, we observed a substantial
power improvement of CAMT over all other methods includ-
ing FDRreg while controlling the FDR adequately at differ-
ent target levels (Figure 5). We further reduced the feature
size to 1000 (Figure A1 in the supplementary materials) to
study the robustness of the methods to a much smaller fea-
ture size. Although CAMT and AdaPT were still more pow-
erful than the competing methods when the signal was dense
and the covariate was informative, a significant power loss
was observed in other parameter settings, particularly under
sparse signal and a less informative covariate. As we further
decreased the feature size to 200, CAMT and AdaPT became
universally less powerful than ST across parameter settings

https://github.com/jchen1981/CAMT
https://github.com/jchen1981/CAMT
https://github.com/jgscott/FDRreg
https://www.stat.uchicago.edu/~rina/sabha/All_q_est_functions.R
https://www.stat.uchicago.edu/~rina/sabha/All_q_est_functions.R
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Figure 2. Performance comparison under the basic setting (S0). False discovery proportions (A) and true positive rates (B) were averaged over 100 simulation runs. Error
bars (A) represent the 95% CIs and the dashed horizontal line indicates the target FDR level of 0.05.

(data not shown). Therefore, application of CAMT or AdaPT
to datasets with small numbers of features was not recom-
mended unless the signal was dense and the covariate was highly
informative.

We also simulated datasets, where the z-scores under the
alternative were drawn from a noncentral gamma distribution
(Setup S1). Under such setting, the trend remained almost the
same as the basic setup (Figure 6), but FDRreg had a more
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Figure 3. FDR control at various target levels (0.01–0.20) under the basic setting (S0) and a medium signal strength. False discovery proportions were averaged over 100
simulation runs and the deviation from the target level (y-axis) was plotted.

Figure 4. FDR control at various target levels (0.01–0.20) under the complete null
(no signal was simulated). False discovery proportions were averaged over 1000
simulation runs and the deviation from the target level (y-axis) was plotted.

marked FDR inflation. When both π0i and f1,i depended on
the covariate (Setup S2), CAMT became slightly more pow-
erful without affecting the FDR control, especially when the
covariate was highly informative (Figure 7). Meanwhile, the
performance of FDRreg was also remarkable with a very small
FDR inflation. However, if we increased the effect on f1,i by

reducing the standard deviation of the z-score under the alter-
native, FDRreg was no longer robust and the observed FDP was
substantially above the target level when the signal strength was
weak, indicating the benefit of modeling covariate-dependent
f1 (Figure A2 in the supplementary materials). CAMT was also
robust to different correlation structures (Setup S3.1, S3.2, S3.3,
S3.4) and we observed similar performance under these correla-
tion structures (Figures A3–A6 in the supplementary materials).
The performance of CAMT was also robust to a heavy-tail
covariate (Setup S4, Figure A7 in the supplementary materials).
In an unreported numerical study, we added different levels
of perturbation to the covariate by multiplying random small
values drawn from Unif(0.95, 1.05), Unif(0.9, 1.1), and Unif(0.8,
1.2), respectively. We observed that the π0 estimates under
perturbation are highly correlated with the π0 estimates without
perturbation, which showed the stability of our method against
data perturbations.

We also examined the robustness of CAMT to the deviation
from the theoretical null (Setup S5). Specifically, we simulated
both decreasing and increasing f0. The new results were pre-
sented in Figures A8 and A9 in the supplementary materials.
We observed that, for an increasing f0, all the methods other
than FDRreg were conservative and had substantial less power
than the oracle procedure. FDRreg using a theoretical null was
conservative when the covariate was less informative but was
anti-conservative under a highly informative covariate. On the
other hand, FDRreg using an empirical null had an improved
power and controlled the FDR closer to the target level for most
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Figure 5. Performance comparison with m = 100,000 under the basic setting (S0).
Extremely low signal density (>99%), moderate covariate strength and low signal
strength were simulated. False discovery proportions (A) and number of rejections
(B) were averaged over 100 simulation runs and were plotted against various FDR
target levels (0.01–0.20).

settings. However, it did not control the FDR well when the
signal was dense and the prior information was strong. When
f0 was decreasing, all the methods without using the empirical
null failed to control the FDR. FDRreg with an empirical null
improved the FDR control substantially for most settings but
still could not control the FDR well under the dense-signal and
strong-prior setting. Therefore, there is still room for improve-
ment to address the empirical null problem.

Finally, we compared the computational efficiency of these
competing methods (Figure 8). SABHA (step function) and
IHW were computationally the most efficient and they com-
pleted the analysis for one million p-values in less than two
minutes. CAMT and the new version of FDRreg (v0.2) were
also computationally efficient, followed by BL, and they all could
complete the computation in minutes for one million p-values
under S0. AdaPT was computationally the most intensive and
completed the analysis in hours for one million p-values. We
note that all the methods including AdaPT are computationally
feasible for a typical omics dataset.

In summary, CAMT improves over existing covariate adap-
tive multiple testing procedures, and is a powerful, robust and
computationally efficient tool for large-scale multiple testing.

5. Application to Omics-Wide Multiple Testing

To demonstrate the use of the proposed method for real-world
applications, we applied CAMT to several omics datasets from
transcriptomics, proteomics, epigenomics, and metagenomics
studies with the aim to identify omics features associated with
the phenotype of interest. Since AdaPT is the most start-of-the-
art method, we focused our comparison to it. To make a fair
comparison, we first run the analyses on the four omics datasets,
which were also evaluated by AdaPT (Lei and Fithian 2018),
including Bottomly (Bottomly et al. 2011), Pasilla (Brooks et al.
2011), Airway (Himes et al. 2014), and Yeast Protein dataset
(Dephoure et al. 2012). The Bottomly, Pasilla, and Airway were
three transcriptomics datasets from RNA-seq experiments with
a feature size of 13,932, 11,836, and 33,469, respectively. The
yeast protein dataset was a proteomics dataset from with a
feature size of 2666. We used the same methods to calculate
the p-values for these datasets as described in Lei and Fithian
(2018). The distributions of the p-values for these four datasets
all exhibited a spike in the low p-value region, indicating that the
signal was dense. The logarithm of normalized count (averaged
across all samples) was used as the univariate covariate for
the three RNA-seq data (Bottomly, Pasilla and Airway). The
logarithm of the total number of peptides across all samples
was used as the univariate covariate for the yeast protein data.
Following AdaPT, we used a spline basis with six equiquantile
knots for π0i, f1,i (CAMT and AdaPT) and for π0i (FDRreg,
BL) to account for potential complex nonlinear effects. Since
IHW and SABHA could only take univariate covariate, we used
the univariate covariate directly. We summarized the results in
Figure 9. We were able to reproduce the results in Lei and Fithian
(2018). Indeed, AdaPT was more powerful than SABHA, IHW,
ST, and BH on the four datasets. FDRreg and BL, which were not
compared in Lei and Fithian (2018), also performed well and
made more rejections than other methods on the Yeast dataset
and the Bottomly dataset, respectively. The performance of the
proposed method, CAMT, was almost identical to AdaPT, which
was consistent with the simulation results in the scenario of
dense signal and informative covariate (Figure 2).

We next applied to two additional omics datasets from an
EWAS of congenital heart disease (CHD) (Wijnands et al. 2017)
and a microbiome-wide association study (MWAS) of sex effect
(McDonald et al. 2018).

• EWAS data. The aim of the EWAS of CHD was to identify
the CpG loci in the human genome that were differentially
methylated between healthy (n = 196) and CHD (n =
84) children. The methylation levels of 455,741 CpGs were
measured by the Illumina 450K methylation beadchip and
was normalized properly before analysis. The p-values were
produced by running a linear regression to the methylation
outcome for each CpG, adjusting for potential confounders
such as age, sex, and blood cell mixtures as described in
Wijnands et al. (2017). Since widespread hyper-methylation
(increased methylation in low-methylation regions) or hypo-
methylation (decreased methylation in high-methylation
regions) are common in many diseases (Robertson 2005), we
use the mean methylation across samples as the univariate
covariate.
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Figure 6. Performance comparison under S1 (f1,i : noncentral gamma distribution). False discovery proportions (A) and true positive rates (B) were averaged over 100
simulation runs. Error bars (A) represent the 95% CIs and the dashed horizontal line indicates the target FDR level of 0.05.

• MWAS data. The aim of the MWAS of sex was to iden-
tify differentially abundant bacteria in the gut microbiome
between males and females, where the abundances of the gut
bacteria were determined by sequencing a fingerprint gene

in the bacteria 16S rRNA gene. We used the publicly avail-
able data from the AmericanGut project (McDonald et al.
2018), where more than the gut microbiome from more than
10,000 subjects were sequenced. We focused our analysis on
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Figure 7. Performance comparison under S2 (covariate-dependent π0,i and f1,i). False discovery proportions (A) and true positive rates (B) were averaged over 100
simulation runs. Error bars (A) represent the 95% CIs and the dashed horizontal line indicates the target FDR level of 0.05.

a relatively homogenous subset consisting of 481 males and
335 males (age between 13 and 70, normal BMI, from United
States). We removed OTUs (clustered sequencing units rep-
resenting bacteria species) observed in less than 5 subjects,

and a total of 2492 OTUs were tested using Wilcoxon rank
sum test on the normalized abundances. We use the percent-
age of zeros across samples as the univariate covariate since
we expect a much lower power for OTUs with excessive zeros.
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Figure 8. Comparison of runtime under the basic setting (S0). Medium signal
density and strength, and a moderately informative covariate was simulated. The
number of features varied from 103 to 45 × 103. The average runtime over three
replications was plotted against the feature size on a log scale. The computation
was performed on an AMD Opteron CPU with 256GB RAM and 16 MB available
cache.

The results for these two datasets were summarized in Fig-
ure 10. For the EWAS data, the signal density was very sparse
(π̂0 = 0.99, qvalue package). CAMT identified far more loci
than the other methods at various FDR levels. The performance
was consistent with the simulation results in the scenario of
extremely sparse signal and informative covariate, where CAMT
was substantially more powerful than the competing methods
(Figure 5). At an FDR of 20%, we identified 55 differentially
methylated CpGs, compared to 19 for AdaPT. These 55 CpG
loci were mainly located in CpG islands and the gene pro-
motor regions, which were known for their important role in
gene expression regulation (Robertson 2005). Interestingly, all
but one CpG loci had low levels of methylation, indicating
the methylation level was indeed informative to help identify
differential CpGs. We also did gene set enrichment analysis
for the genes where the identified CpGs were located (https://
david.ncifcrf.gov/). Based on the GO terms annotated to bio-
logical processes (BP_DIRECT), three GO terms were found to
be significant (unadjusted p-value <0.05) including one term
“embryonic heart tube development,” which was very relevant
to the CHD under study (Wijnands et al. 2017). As a sanity
check, we randomized the covariate and reanalyzed the data

Figure 9. The number of rejections at different target FDR levels on four real datasets used to demonstrate the performance of AdaPT. The Bottomly (A), Pasilla (B), and
Airway (C) datasets were three transcriptomics datasets from RAN-seq experiments with a feature size of 13,932, 11,836, and 33,469, respectively. The yeast protein dataset
(D) was a proteomics dataset with a feature size of 2666.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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Figure 10. The number of rejections at different target FDR levels on two real datasets: EWAS of congenital heart disease (A) and MWAS of sex effect (B). The EWAS dataset
was produced by the Illumina 450K methylation beadchip (m = 455,741) and the MWAS dataset was produced by the 16S rRNA gene amplicon sequencing (m = 2492).

Figure 11. Performance on the MWAS dataset. (A) The fitted π0i (logit scale) versus the covariate (number of nonzeros). (B) p-value (log scale) versus the covariate (number
of nonzeros). Rejected hypotheses at FDR 10% were in red.

using CAMT. As expected, CAMT became similar to BH/ST and
identified the same eight CpGs at 20% FDR level.

For the MWAS data, although the difference was not as strik-
ing as the EWAS data, CAMT was still overall more powerful
than other competing methods except FDRreg. However, given
the fact that FDRreg was not robust under certain scenarios, the
interpretation of the increased power should be cautious. The
relationship between the fitted π0i and the covariate (number
of nonzeros) was very interesting: π̂0i first decreased, reached a
minimum at around 70 and then increased (Figure 11). When
the OTU was rare (e.g., a small number of nonzeros, only a
few subjects had it), it was either very individualized or we had
limited power to reject it, leading to a large π0i. In the other
extreme where the OTU was very prevalent (e.g., a large number
of nonzeros, most of the subjects had it), it was probability not
sex-specific either. Therefore, taking into account the sparsity
level could increase the power of MWAS. It is also informative to
compare CAMT to the traditional filtering-based procedure for
MWAS. In practice, we usually apply a prevalence-based filter
before performing multiple testing correction, based on the idea

that rare OTUs are less likely to be significant and including
them will increase the multiple testing burden. A subjective
filtering criterion has to be determined beforehand. For this
MWAS dataset, if we removed OTUs present in less than 10%
of the subjects, ST and BH recovered 116 and 85 significant
OTUs at an FDR of 10%, compared to 69 and 65 on the original
dataset, indicating that filtering did improve the statistical power
of traditional FDR control procedures. However, if we removed
OTUs present in less than 20% of the subjects, the numbers of
significant OTUs by ST and BH reduced to 71 and 50, respec-
tively. Therefore, filtering could potentially leave out biologically
important OTUs. In contrast, CAMT did not require an explicit
filtering criterion, and was much more powerful (141 significant
OTUs at 10% FDR) than the filtering-based method.

6. Discussions

There are generally two strategies for estimating the number
of false rejections

∑m
i=1(1 − Hi)1{hi(pi) ≥ wi(t)} given the

form of the rejection rule hi(pi) ≥ wi(t). The first approach
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(called BH-type estimator) is to replace the number of false
rejections by its expectation assuming that pi follows the uni-
form distribution on [0, 1] under the null, which leads to the
quantity

∑m
i=1 π0ic(t, π0i, ki) for c(·) defined in Section 3. The

second approach (called BC-type estimator) estimates the false
rejection conservatively by ξ + ∑m

i=1 1{hi(1 − pi) ≥ wi(t)} for
a nonnegative constant ξ under the assumption that the null
distribution of p-values is symmetric about 0.5. Both procedures
enjoy optimality in some asymptotic sense (see, e.g., Arias-
Castro and Chen 2017). The advantage of the BC-type proce-
dure lies on that its estimation of the number of false rejections
is asymptotically conservative when the rejection rule converges
to a nonrandom limit (which holds even under a misspecified
model, see, e.g., White 1982) and f0 is mirror conservative (see
Lei and Fithian 2018, eq. (3)). This fact allows us to estimate
the rejection rule by maximizing a potentially misspecified like-
lihood as the resulting rejection rule has a nonrandom limit
under suitable conditions. This is not necessarily the case for
the BH-type estimator without imposing additional constraint
when estimating π0i and ki. Specific restriction on the estimators
of π0i is required for the BH-type estimator to achieve FDR
control (see, e.g., Li and Barber 2019, eq. (3)).

On the other hand, as the BC-type estimator uses a counting
approach to estimate the number of false rejections, it suffers
from the discretization issue (i.e., the BC-type estimator is a
step function of t while the BH-type estimator is continuous),
which may result in a large variance for the FDR estimate. This
is especially the case when the FDR level is small. For small FDR
level, the number of rejections is usually small, and thus both the
denominator and numerator of the FDR estimate become small
and more variable. Another issue with the BC-type estimator is
the selection of ξ . We follow the idea of knockoff+ in Barber
and Candès (2015) by setting ξ = 1. This choice could make
the procedure rather conservative when the signal is very sparse,
and the target FDR level is small. A choice of smaller ξ (e.g.,
ξ = 0) often leads to inflated FDR in our unreported simulation
studies. To alleviate this issue, one may consider a mixed strategy
by using

max

{ m∑
i=1

π0ic(t, π0i, ki),
m∑

i=1
1{hi(1 − pi) ≥ wi(t)}

}

as a conservative estimate for the number of false rejections
when t is relatively small. Our numerical results in Figure A10
in the supplementary materials show that the resulting method
can successfully reduce the power loss in the case of sparse
signals (or small FDR levels) and less informative covariates
while maintaining the good power performance in other cases.
A serious investigation of this mixed procedure and the BH-type
estimator is left for future research.

Since our method is not robust to a decreasing f0, some diag-
nostics are needed before running CAMT. To detect a decreas-
ing f0, the genomic inflation factor (GIF) can be employed
(Devlin and Roeder 1999). GIF is defined as the ratio of the
median of the observed test statistic to the expected median
based on the theoretical null distribution. GIF has been widely
used in GWAS to assess the deviation of the empirical distri-
bution of the null p-values from the theoretical uniform dis-
tribution. To accommodate potential dense signals for some

genomics studies, we recommend to confine the GIF calculation
to p-values between 0.5 and 1. If the GIF is larger, using CAMT
may result in excess false positives. In such case, the user should
not trust the results and may consider recalculating the p-
values by adjusting potential confounding factors, either known
or estimated based on some latent variable approach such as
surrogate variable analysis (Leek and Storey 2007), or using the
simple genomic control approach based on p-values (Devlin and
Roeder 1999).

Supplementary Materials

The supplementary materials provide proofs of the results in Section 3 and
additional numerical results.
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