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1. Introduction

This paper considers a numerical scheme that incorporates continuous data assimilation (CDA) in order to obtain long
time stable and accurate approximations to the Cahn-Hilliard (CH) equation, which is given by Cahn [10], Cahn and Hilliard
[11], Miranville [37]

dp— A(9* — @) +£2 A% =0, (11a)

©(0) = @o, (1.1b)

where @ represents the order parameter which takes on values between —1 and 1 and is often interpreted as a concentra-
tion of one component in a two component system. The states ¢ = +1 indicate phases of pure concentration and £ > 0 can
be interpreted as an interfacial width between the two phases. The CH equation arises in many applications across science
and engineering, including the modeling of two phase fluid flow, Hele-Shaw flows, copolymer fluids, and crystal growth
as just a few examples (cf. [12,14,15,23,32,43] and the references therein.) Solving (1.1) analytically in dimensions 2 or 3
is generally very challenging and practitioners typically obtain solutions with numerical simulation methods. Most numer-
ical methods are developed to acquire approximations to solutions of a mixed weak formulation of problem (1.1), see for
example [37,42] and references therein. Additionally, a few papers have developed numerical methods for the fourth-order
formulation shown above, [4,5,13]. The method proposed herein is novel in that it is the first to incorporate CDA and, as
such, is the first to admit provable long-time accuracy.

* Corresponding author.
E-mail addresses: adiegel@math.msstate.edu (A.E. Diegel), rebholz@clemson.edu (L.G. Rebholz).

https://doi.org/10.1016/j.amc.2022.127042
0096-3003/© 2022 Elsevier Inc. All rights reserved.

https://reader.elsevier.com/reader/sd/pii/S009630032200128X ?token=E4510FCABCEOE9S8EBBED851780EA83FD26AD993A2966C90BA259CEE27DCO1FECC3... 1/22



A.E. Diegel and L.G. Rebholz Applied Mathematics and Computation 424 (2022) 127042

In certain problem settings, partial observable or measurement values of the solution may be available. In such circum-
stances, using data assimilation to incorporate known solution values into numerical simulations often allows for more sta-
ble or accurate solutions. This has been studied for many different evolutionary physical partial differential equation (PDE)
systems in recent years [6,16,29-31]. A new type of data assimilation known as CDA was developed in 2014 [6], which
adapted classical nudging methods of the 1970’s (see, e.g., [3,26]) to use a spatial interpolation operator in the feedback
control. This seemingly small change has led to a profound impact in accuracy and theory of data assimilation methods, as
CDA provides mathematically rigorous justification of data assimilated solutions converging to true solutions exponentially
fast in time (for arbitrarily inaccurate initial conditions), as well as long time accuracy and stability; these properties are
unique among existing data assimilation techniques. CDA has so far been used to improve solutions in Navier-Stokes equa-
tions [8,21,33-35], with noisy data [7,24], and with temporal and spatial discretizations [25,27,30,39], for NS-& and Leray-«
models [1,20], for Benard convection [2,19,22], for the Brinkman Forchheimer-extended Darcy [36] equation, for the surface
quasi-geostrophic equation in [28], and for weather prediction [17], among others. Convergence of discretizations of CDA
models has been studied in [25,27,30,39,44] for fluid related models, and it was found that if there is enough measurement
data, then computed solutions will converge to the true solution exponentially fast in time, up to (optimal) discretization
eITor.

We propose and analyze herein a particular discretization for the Cahn-Hilliard (CH) equation together with CDA, in an
effort to obtain long time accuracy and stability of computed solutions to CH equations. To our knowledge, there is no
literature for CDA applied to the CH equation. Perhaps the main reason for this is that the typical CDA application and
analysis does not seem possible (at least not to the authors of this paper) for the second order mixed CH equation, which
is a more commonly used formulation than the fourth order formulation above. The reason is likely due to the fact that
the optimal test function for a typical CDA method is the variable of interest itself. However, the comparable optimal test
function in the typical mixed formulation of the CH equation is the time derivative of the variable of interest as this allows
an energy law to be established. Yet, if the CH equation is kept as a fourth-order parabolic equation, much can be established
by simply choosing a test function as the variable of interest. Therefore, at the PDE level, the CDA system we consider takes
the form

U~ AP - ¢) + £’ A% + wlu($ — ) = 0, (12a)

@(0) = ¢, (1.2b)

where ¢ is the approximate concentration and & is the same as above. The initial condition can be arbitrarily inaccurate,
and a common choice is ¢y = 0 in cases when there is no a priori knowledge of the initial state. The scalar @ > 0 is known
as the nudging parameter, and Iy is the interpolation operator, where H is the resolution of the coarse spatial mesh which
represents the locations where measurements are taken (so that Iy(¢) is known). The added data assimilation term forces
(or nudges) the coarse spatial scales of the approximating solution ¢ toward the coarse spatial scales of the true solution ¢.

The discretization method we choose is a C? interior penalty method for the spatial discretization, and first order semi-
implicit in time. The first order temporal discretization is chosen for simplicity, and extension to BDF2 can be done in the
usual way, following e.g. [30]. This spatial discretization is chosen so that CO finite elements (FEs) can be used, since they
are widely available in FE software but C! FEs are not, and we note that extension of this work to a C! FE discretization
is possible and in fact the analysis would be simpler. We prove that for sufficiently small H, solutions to our proposed
discretization of (1.2) will converge (up to discretization error) to the solution of (1.1), exponentially fast in time and for any
initial condition in I?(2). This in turn provides for long time accuracy and long time stability. Essentially, we are able to
show that as long as a large enough nudging parameter value is chosen along with enough locations on the mesh where
true measurement values are known, then the solution to the CDA C? interior penalty finite element method presented in
Section 2 will converge to the true solution of the CH equation exponentially fast in time regardless of the initial conditions
chosen for the computational simulation. This result is given in Theorem 4.3.

The remainder of the paper proceeds as follows. In Section 2, we introduce the necessary notation and preliminary
results needed in the proceeding sections. Section 3 introduces a fully discrete finite element method (FEM) for the data
assimilation model above. We then prove that the FEM is uniquely solvable and demonstrate the long time stability of the
scheme. In Section 4, we include a convergence analysis and we conclude with a few numerical experiments supporting our
analyses in Section 5.

2. Notation and preliminaries

We consider a bounded open domain © c R2. While the method can be used in 3D, the analysis with C° interior penalty
methods is currently limited to 2D. The L2 inner product is denoted (., -). Additionally, we denote the natural function space
for the concentration ¢ by Hﬁ,(Q) := {v e H3(R)|3nv = 0}, where d,v represents the outward unit normal derivative of v.
Furthermore, we denote a bilinear form a(--) : H3(2) x H3() — R, which is defined for all v, w € H3(R) by

a(wv) ::fﬂvzw : V2udx, (2.1)
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and which represents the inner product of the Hessian matrices of w and v. With this notation, we are able to define a
weak formulation of (1.1) as follows: Find ¢ € L**(0, T; H‘%(Q)) such that, for almost all t € (0, c0),

@p. ) +(V(9* — ). V¥) + &%) =0, Yy € H(Q). (22)

2.1, Discretization preliminaries

Let 7, be a simplicial triangulation of 2. We will use the following notation throughout the paper:

¢ hy = diameter of triangle K (h = maxg.r, hg),

e Vg = restriction of the function v to the triangle K,
e |K| = area of the triangle K,

» &, = the set of the edges of the triangles in 7,

e ¢ = the edge of a triangle.

Additionally, we let Z, := {v € C(Q)|vk = vk € P,(RQ)VK e T;} represent a standard Lagrange FE space associated with 7},
and assume that the mesh is sufficiently regular for the inverse inequality to hold. Specifically, we assume that there exists
a constant C such that for all v € Z,

VYl < Cht vl e

Furthermore, we consider Iy to be an interpolation operator that satisfies: For a given mesh 75 with H < 1 and associated
FE space Zy,

1ls (W) —wll < GH[[ VW], (23)

I W) Iz < Gllwll2, (24)

for any w € H'(2). Examples of such Iy are the L? projection onto Z; where Zy consists of piecewise constants over 7y, the
algebraic nudging technique from Rebholz and Zerfas [39], and the Scott-Zhang interpolant [40].
Let w € H2(K), v € H'(K), then we have the following integration by parts formula:

[(Aw)vdx:f a—wvdS—wa.Vvdx, (2.5)
K ak On K
If instead, w € H4(K), v € H2(K), then we have:
AW 3w\ [ dv 2w \ [ v
2 _ oAawl (oW ([ o0v) [ o'W ) [ oV
frawwac= L[ (%)~ (3 ) (3) - (i) (50 s
+ [ (V2w Vv)ax, (26)
K

where 3/an (resp. 3/at) denote the exterior normal derivative (resp. the counterclockwise tangential derivative). The in-
tegration by parts formula (2.6) leads to the definition of the bilinear form a{f (-,-) on the piecewise Sobolev space

H3(R, ) := {v e [2(Q)|vg € H}(K)VK € T;} such that

AP w) = T f (P V) dx+ S, £ { S} [0 a5
+ Tece L [ { Bt} [ a5 0 Soce, 1y £ [32] [52] 05 27)

with o > 1 known as a penalty parameter. The jumps and averages that appear in () are defined as follows. For an interior
edge e shared by two triangles K, where n, points from K_ to K, we define on the edge e

v %y 1/0%v. 9%,
a— | =ne- (Vv — Vv), — ===+ 238
ﬂaneﬂ e (Vs ) [{8113]] Z(Bn%_ * on? (28)

2
where % = - (Vzu)ne and v, = v|g, . For a boundary edge e, we take n. to be the unit normal pointing towards the
outside ofeQ and define on the edge e
v v 5
|[a—ne]l = —n, - Vg, {[Bng}] =n, - (V2v)n,. (2.9)
3
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Remark 2.1. Note that the definitions (2.8) and (2.9) are independent of the choice of K., or equivalently, independent of
the choice of n,.

Let ||-]|,, be defined by

2
IlU”Zh = Z IleZ(K) + Z Tel (2.10)

KeTy ee&y

ﬂaneﬂ

L2 (e)
The following theorem guarantees the boundedness of aﬁf G, ).

Lemma 2.2 (Boundedness of. a{f (-, -)) There exists positive constants Ceonr and Ceoer Such that for choices of the penalty param-
eter o large enough we have

ay W, v) < Ceone [Wlo pllVllp YW ¥ €2 (211)
Cooer [ WII3 5, < al (W, w) VweZy, (2.12)
where the constants Ceone and Ceoer depend only on the shape regularity of Ty
Proof. The proof of the Lemma may be found in [9]. O

We remark that for all v € Z,, we have the following Poincaré type inequalities: There exists a constant Cp depending
only on 2 such that,

Ivlle =ClVYll and  [|VV]lz < Col[v]lzp-

Additionally, the first of these inequalities holds for all v e HJ%(Q). Finally, the following two lemmas are critical to the
remainder of the paper.

Lemma 2.3. Suppose Q is a bounded polygonal domain. For all w € Z,, v € H'(Q), and o large enough,

[(VW, V) < V2[[wlip V] - (2.13)

Proof. We begin by rewriting the integration by part formula (2.5):

[Vw-Vvdx:f 3—Wvd5—wavdx
k ak 0

Summing over all triangles in 7,, we have

Z[Vw Vvdx—Zf —vdS—Z[vadx

KeTy KeTy KeTy

Now, we can write the first sum on the right-hand side of the equation above as a sum over the edges in &;:

wa Vvdx = Z[[{awﬂvds— wavdx
KeTy KeTy

ecEy

Using the Cauchy-Schwarz inequality and a standard trace inequality, we have

Haneﬂ

2

wa vude) <2( 3 |l

2

2
Z le| ||V||L2(e)

KEE ec&y 2(e) ey
2
+2 Z |W|§2(K) Z Il ) dx
KeTy KeTy
awT |
-1
<2( Sl | [ 5] Y Il
eedy el ll2¢e) KeTy
+2(Z |W|ﬁ2(K) Z V1l 2y
KeThy KeTh
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2 2
= 2{|wll3 41Vl

for o large enough. O
Lemma 2.4. Suppose the constants r and B satisfy r > 1 and B > 0. Then if the sequence of real numbers {an)} satisfies
TGmy1 < am + B, (2.14)

we have that

1 m+1 B
Am+1 Sao(;) T

Proof. See [30]. O
3. Fully discrete C° interior penalty FEM with data assimilation

Let M be a positive integer and 0 =ty <t; <--- < tyy =T be a uniform partition of [0, T]. A fully discrete C° interior
penalty method for (1.2) is: Given ¢f’f‘*1 € Zy and true solution ¢ € L*(0, T; H,%(Q)), find @] € Zy, such that

3
(e, ¥) + (v((¢;,") - ,’,’H), w) + 620 (¢, W) + o(In (41" — o™). ¥) =0, 31)
for all ¥ € Z, with initial data taken to be qﬁg = Py¢pg where B, : HI%(Q) — Z is a Ritz projection operator such that
af(Pp—-¢,6)=0 VEcZ, (Rop-¢,1)=0, (3.2)
¢m _ ¢m—1
and where 8.} := Ih _Th  with At =T/M as the size for the time step. We will refer to the method (3.1) as the

At
CDA-FEM.
We will begin by showing that solutions to (3.1) exist followed by a stability result and then conclude with a proof for
the uniqueness of the solution.

2
Lemma 3.1. Let q){{” € Zy, and ™ ¢ H,%,(Q) be given. Then, if w < Cm’i there exists a solution ¢™ € Z,, to (3.1).
2C2CH? h

Proof. Let ¢,’1"*1 €Z, and ¢™ € H3(S) be given and Gy, : Z, — Z, be the continuous map defined by
3
(6@ 1) 1= 7 07" x) + eV (07 - #7) V)

+e2Atal (of, x) + wAt(la (P — ¢™), X)- (3.3)
It is a well-known consequence of Brouwer’s fixed-point theorem [41] that G, (#;") = 0 has a solution @[ € By :={X € 2 :

4A
d ) lor| 5 + oG Atlle™ 1%

Croer&?
Using Young's inequality, (2.3), (2.4), and Lemmas 2.2 and 2.3, we have

(Gh(X), %) = A+ @AD [ x |17 + 3AL[ X VX |72 + Cooere AL X |15 1

— (&1 x) — At(VP T Vi) — wAt(x — Inx. x) — @At (g™, x)

> (1+ @A X [17 +3At [ x VX I + Coorr® Atl x 135 — 5| N X 122
~V2AE| P L g — @At X~ Bx 211X 12 — @At @™ (a1l .2

> (1+0AD | x 1% +3At| XV 17 + Ceoer ALl x 155 — |61 2l N2
—V2At|| ¢ LN Xl — @GHAL [V X |2 11X [ 2 — @G AL @™ 21 X Il 2

> (1+ @AD || x |17 + 3At [ x Vx| + Cooere? Al x 1535 — 6| 2 X I22
= V2At|| ¢ L I X s — @G GHAL] X (15,411 X Iz — @GAE[ @™ [l ]2

1 a2 1
= (1+@AD||X 172 + 3A| XV Iz +Ceoer At x I3~ 5 [ 67" [ 2 = 5 X172

XNz < g} if (Gu(x), x) > O for || x]l;2 = q. where we define ¢* = (1 +

2At 12 Ceoer82At 5 CoerE2At 5
—m“%ﬂ ”LZ_THX”z,h_T”X”zm
w?C3C*H2 AL wC? At 2 WAt
- xlE - —S— el — ——llx -
Ceoer€ 2 2
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Combining like terms and multiplying by 2 now provides the bound

2wC3C*H?
2600, %) 2 [1 +wm(l - ﬁ)} X1 + 6ALX VX I + Coor? At X134

4A
o P —

>0,

o A I}, - ot Atlig™ |

4At
Ceoere?

: Ceoer€?

_192
)||«>;;f '+ oAt
Lemma 3.2. Let ¢ < L*(0, oo;HI%(.Q)) represent the true solution and H and « be chosen so that
. WCoer&2 — 2w2q2C,%H2 -4
Ao = Come? T AAL > 0, (3.4)
i.e. H sufficiently smail and w sufficiently large. Then, for any m, h, At > 0, solutions to the CDA-FEM (3.1) satisfy
1 m w e2C}
I8l = 19205 (1 xae) + ww —sencicanr =4

2
”(p”[‘oc (0,00;L2 Q)

¢ = Cdam s

where © :=
Proof. Setting 1 = ¢ in (3.1) we have
(3aed o1) + 3| Var |, — (VoI Vor) + eaf (617 ¢7") + (I (@ff — 9™, 41") =

Now, adding and subtracting appropriate terms and using Lemma 2.3 along with properties (2.3), (2.4), and (2.12), Young's
inequality, and the polarization identity, we have

o (19715 = e 12+ o - & [1) + ol o 5 + 3167 Vo [ + Cors? |7 2,
< o(¢ - Iugyr, o) + o (lng™, 8Y) + (Vér=", Vorr)
<o|lgf gy | 0], + ltae™ e |67 + V2] 67 97
<wCH| Ve 0], + o Cllem e [ ] + V2] e[ il
= wCGH| [, , |01 . + @ Cille™ e ’”I}Lz +2[ e . ||¢£‘1|“

C2C2H? C
B R U R T Rl ey el 8
Combining like terms, multlplymg by 2At, and dropping positive terms on the left hand 51de of the equation above, we get
that
2 2
1rwar- 2CGGEA 2 Cort®  AA ot 2,2 aggm .,
CCOG Ccoere

Multiplying by % we obtain

oer62(1 + WAL — 20°C2CH2 AL . ® C2Croere? At
e el = o+ R o

which leads to

WCorn 82 — 2002C2C2H2 — aJCC g2AL
[ 1 e =R o < o I + Ly

@Ceoere? — 20>CCEH? —
Ceoer€2 + 4At

4
Requiring Aqg = > 0 and applying Lemma 2.4 yields the desired result: for any m, h, At >0

1 m WC?Cpper&?
) 1= P = Cdatu-

2 o2
“gbf’i“ "L2 = ”¢h ”Ll (1 + AoAt + WCroer€? — ZwZCJ.ZC‘%HZ —4
O

Remark 3.3. Lemma 3.2 is satisfied if the nudging parameter w is @(¢~2) which would then require H to be @(g2). How-
ever, the numerical experiments provided in Section 5 suggests that H can be taken much larger than that.

6

https://reader.elsevier.com/reader/sd/pii/S009630032200128X ?token=E4510FCABCEOE9S8EBBED851780EA83FD26AD993A2966C90BA259CEE27DCO1FECCS3...

6/22



A.E. Diegel and L.G. Rebholz Applied Mathematics and Computation 424 (2022) 127042

Define Cij5 1= SUPgom<co |@f <. Then under the conditions from Lemma 3.2, we have Gpy < oo on any regular mesh
since by the inverse inequality and the 2D Agmon inequality,

Ciny = SUP ¢ ll= < sup Ch7Ighllz < CCugeah ™"

<Mm<oo 0<m<oo

While this is the best long-time L** bound we were able to prove, we expect Gy = 0(1) and not O(h~1), since computing
CH in practice yields |@}"(x)| < 1.1 or 1.2, and never as high as 2. Furthermore, if we assume a finite end time T, then
it is likely that we can prove this with the usual techniques [18] that maXg.m<r/ar |9f 1 < Ce’, with C depending on
data and independent of h and At. Since CH solutions generally converge quickly to a steady state solution, we expect
maxgm<1/Ac |PF l12 = SUPg<m<oc |9F 1, from which we again infer that Gy, will be independent of h.

Lemma 3.4. Let ¢ < L*(0, oo;HI%(.Q)) represent the true solution and suppose that

(cfchZwZ + 18(cmf)4)

3.5
CCDETSZ ( )

At
Then solutions to the CDA-FEM (3.1) are unique.

Remark 3.5. The condition (3.5) is satisfied with a sufficiently small At, or by w being sufficiently large while H is suffi-
ciently small. We note that this is a sufficient condition.

Proof. Let (,z&,fi"*‘ eZyand ™ € Hﬁ(ﬁ) be given. Let U and V represent two solutions to (3.1). Then,

ﬁ(u V. 9) + (VWP =V3), V) + 2af (U -V, ¥) + oy (U - V), ) = 0.

Setting ¥ = U —V and invoking Lemma 2.3, we have

1
(E +a)) U - V||fz + Ceoer &2 U - v”%,h

=—(VU* -V?), VU -V)) + (U -V) - IyU -V),U -V)

< V2| -V3 LIV =Vpp + 0llU = V) = Iy (U = V)| 2]IU = V|2

< V2| U2+ UV + V2| LU = V]| [IU =Vl p +CGHO[V U = V)| ][U = V|2
< 3V2(Cup)?IU = V|2 lIU = V| + GCH@ U =V |4 IU = V|2

18(Cins)? Croer&2 C2C2H2?
< BG )y vz 4 Sty v, GOy
Cmerg 2 CmerS

Combining like terms leads to

1 CfC}%Hza)z + 18(Cinf)4 2 Ccoerg2 2
((E +o) - ( Comré? U=Vl + === V24 =0.

Therefore, the solution to (3.1) is unique under the condition that (3.5) holds. O
4. Error estimates

We are now in a position to prove that the global in time error estimates may be established in the [? norm. We provide
a rigorous convergence analysis for the semi-discrete method in the appropriate energy norms. Note that the CDA-FEM
(3.1) is not well-defined for solutions to (1.2) since Z, ¢ HE,(Q). Therefore, we define W, C H!%i(Q) to be the Hsieh-Clough-
Tocher micro finite element space associated with 7; as in [9]. We furthermore define the linear map E; : Z, -» W, n HI%(Q)
as in [9] which allows us to consider the following problem: Find ¢ € Hﬁ(Q) such that

@ ¥) + (V(¢’ —9), V¥) + %0 (0. ¥)
= (39, ¥ —En¥) + (V(¢® - 9), V(¥ — E4¥)) + €20 (0, ¥ — Extr), YV € Z,. (4.1)

Solutions of (4.1) are consistent with solutions of (2.2) since all (¢, Eyyr) = a(@E,yr) for all ¢ € Z,.
We introduce the following notation:

e"=ep +ey, ef =" —Ro" e} i=Ro" - ¢,

where ¢™ := @ (t;). Using this notation and subtracting (3.1) from (4.1), we have for all ¥ € Z,

(Bace™ ¥) + &2af (€™, ¥) + w(lwe™, ¥) + (V (@™ - (9f)?). V)

7
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= Bacp™ — 3™, Y) + (Ve™ 1, Vi) + (V9" — ™), VY)
+ (3™ ¥ — En¥) + (V((@™ — ™), V(¥ — Eyy)) + &2l (9™, ¥ — Eyip).

Invoking the properties of the Ritz projection operator, we have for all ¥ € Z,

(Bace], ¥) +&%afl (e, ) + w(lyef, ) + (V((@™ - (¢)°). VY) = —(Bace]. ¥)
— (el ¥) + Barg™ — ™ Y1) + (V(el ! + el ), Vi) + (V(p™ — o™ 1), V)
+ @™ ¥ — Ep) + (V((@™) — @™), V¥ — Ex)) + e2afl (@™, ¢ — Exy)). (4.2)

Adding and subtracting appropriate terms and setting ¢ =e}’, we arrive at the key error equation

(8are. ef') + e2ay (ef, eff) + (]l ef)
—(6A[ep , eh) cu(IHeP , eh) + w(eh —Iyey, e} ) (Smtpm — ™, ehm)
= (V((@™? = (¢f3), Vei) + (V(ef" +ef="), Ve') + (Vg™ — g™ "), Ve

+ (Hrwm, el — Epely ) + (V((go"‘)3 - ga"‘), Vel - Eheh'")) + sza{f(w e — Eheh’"). (4.3)
The following lemma will bound many of the terms on the right hand side of (4.3) by oscillations in the time derivative
of the concentration d;¢. The procedure, known as a medius analysis, has been utilized in much of the literature found on

the CO-IP method and details can be found in [9]. It relies on an equivalent formulation of the bilinear form a{lp (-,-) for
functions satisfying w € H*(2, 7;,) NH'(R) and v € H2(R, T;) N H'(2):
ﬂ ow
on

al (w,v) —Z/ (A*w vdx+2[{{
ELET Gl Ll )
S,

O Tl f ﬂaneﬂ Haneﬂd

ecsy

where H° (2, T) := {v € 12(R)|vg € HS(K)VK € T}

(4.4)

Lemma 4.1. Suppose ¢™ is a weak solution to (2.2). Then for any m,h,t > 0,

(Bep™, e —Epely) + (V(((p’")3 — ™), V(e]l - Exe)) +&%af (9™, et — Eyell)

C C
= Cooart? ([oscj(a“‘”m)]2 +le™ - Phqo"‘llé,h) mers e ”2 h

for t* € (tm_1,tm) where Osc;(v) is referred to as the oscillation of v (of order j) defined by

Osc;(v) = (Z R lv — ﬁ||fz(m) (4.5)

KeTy

and where i is the L? orthogonal projection of v on P;(S2, Ty,), the space of piecewise polynomial functions of degree less than or
equal to j, ie.,

f (W—P)Ydx=0 Y eP(QT).
Q
Proof. Properties of the Ritz projection operator (3.2) lead to,

(@™ e — Epefy) + (V((go"‘)3—gom),V(eg'—Eheg"))+£za{f(qo cef — Epept)
= (Bee™. € — Enel") + (V((Pe™)’ = Pug™). V(e — Ene[l))+£%alf (Pug™, € — Ene]l)

8
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+(V((e™’ - (Pﬁrpf"f) V(ep - Exef)) — (V@™ - Pip™), V(e}! - Ere}l))

+ Sza’P(go —Pp™, el — Eyell)

= (%™, et — Evel) + (V((Pre™’ — Pug™), V(e — Enel))+e%ay (g™, eff — Enely)
+(V (" ) - (Be™’). V(e —Ere)) — (V9™ = Bip™). V(e]l - Exe}))

+ sza“’(go”’ — Byp™, Enep)

= (0™, e — Enell) + (V((Re™’ — Pup™), V(€] — Ere))+£2af (Puig™, e! — Enell)
+(V (((pm) — (Bip™?), V(eI — Exe) — (V@™ - Pip™). V(]! - Eel"))

82
+ &2 Z./VZ(PHW @™) : V2(Epel)dx + &2 Z[{{ Eh;e )H [[ag"f ﬂd (4.6)

KeTy, ec &)

Furthermore, the alternative definition (4.4) yields the following

ai (g™ €' ~ Enef)) E f A?Pug™) (e} — Eyely) dx
+E§!£{{82( B;EEheh)H[[agﬁ ﬂds+e€§fﬂ P9") e — Evep)as
£ ([P {{Penre s 5 | [aer) 2 e
o 3 Lo ||

Combining equations (4.6)-(4.7), we have

(3™ eff —Enep) + (V((@™’ = ¢™). Vief — Ene]) + %) (¢™. ]} — Exe}y)
= 3 [ (A% — A(Be™’ ~ Bo™) + dg™) (¢ ~ Exe]) dx

KeTy
Q" m 92em™ | | rape™
+SZZfV2(P“(P )+ VA (Erey )d"+€22[{{ finc‘%:I }}ﬂ ah ﬂds
KeTh ecEy
BAP;.(p aZPh(pm _ E,:,e’")
+82§fﬂ ane " ~ Enef)ds - Szzg;[ﬂ an2
ecé&y e
92P, @ Ehem) 1 P @M a(e _Eh@m
2 h 3
F ee%fﬂaneateﬂ ate ds +&’c — m[eﬂ an, ]] . das

+H(V (@™ — (Pu™)). V(e[ — Eyel")) — (V(w"‘ — Pyp™), V(eI — Epel)).

Following the medius analysis presented in [9] (see pages 96-100), we proceed by bounding each of the terms on the
right-hand side:

> f (2A2Rp™ — A((Pug™)” — Pug™) + 3i™) (€ — Ene") dx

KeTy

12
< (Z h4”£2A2Phg0'" _ A((Ph¢m)3 _Pmp’") + O™ ”52(1()) “e,’? ”“,

KeTy

=5 f VE(Bg™ — @™) 1 V2(Epell)dx

KeT,

1
< (g2 (Z lp™ Phﬁﬂm|H2(K)) e ||2h

KeTy

9
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2 [ ] ]

12
1| ra@em—em1|*
< (g2 = ﬂhi]] m ,
=te (ezg; le] an. Lz(e)) ler ..,
&2 j ﬂaAaPT"“"m (el — Eqeln)ds
ec&y U € e
anpem1 >\
<c?( 1P| 252 ) lepl
ecé, e 12(e) '

2 a2pem] | | (R — Enef)
3 Z jell on2 {{ an, as
1/2
32pom ] | m
<C82(Z le| |[ 3?12 ﬂ ) "eh ||2,h’
e 12(e)

g2 Z [ IPZPW"‘ a(e? *Ehehm) ds
2 Y2
) leF ],
L2(e)

an.ot, ot.
o — 1 [8@em - o™
e (£ ] (22527
2 1 oP,p™ a(etT_Eh‘eﬂ")
SUZME.HBHEH[ ane ds
2 Y2
) et
L2(e)

Additionally, the remaining two terms can be bounded as follows:

ﬂﬂ(Phsaa’"n: @m)ﬂ

<C82(Z %

ec&y

’ef‘"‘ - Ehe‘,f""

(@ = @emy,ef ™~ Eref ™) | < [ @™ - @™

’ef‘m - Eheﬁ‘m

12

=C[[ (@™ +¢"Pp™ + Pug™)?| s 9™ = Pug™ I

2.h

<C( @™, + | ™| ) lle™ - Pup™ s

ef”" - Ehef’"‘ ||
2h

<C(le™ 15 + IP@™ I5:) 0™ — Pugp™ I

ef‘m - Ehe:,’:‘m ”
2h

2 2
< C(lle™ i + 1P™ Iz ) l9™ — Pog™ 1

st

|ef’"‘ - Ehef’"’ H
2.h

2
< C(lle™ 1z ) 1™ = Puge™ [l

2,h

2,h

1/2
< C(Z lo™ — ﬂ@mhz-;za()) || e}f‘m

KeTh
12
(-9 (et i) <c(S 0 -netin) 7],
KeTy, ’

where we have assumed that the Ritz projection (3.2) is stable with respect to the H' norm and that ¢ € L0, T; H3(R2))
giving that ||¢™||;n <C for any 0 <m <M and where we have used the Cauchy-Schwarz and Hélder’s inequalities.
Thus, we have

10
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(8[:;0”“, em— Eheg") + (V((qo"')3 - go”‘), Vel - Eheh”‘)) + ezaf(tpm, [ Eheh’")

< Ce? ( Y le™ =P o + % Y 1|2 A2Bgm — A((Bg™’ ~ P™) + 8™

KeTy KeTh
2 2
1 ([ [o(P™ — @™ JdAP,™
+ZH (hqﬂan @)]l JrZ:|e|3 H a]:@ﬂ
ec &y - € [2(e) ec&y € 12(e)
. 2 2
2Py 1 | [0(Pp™ — ™)
+2 el ;Zﬂ |
ee&y | On 12(e) ee&y € 12(e)
2
1 '3(an0”—90’")]] )
+ _ 2 eI’.Fl
ol [ ),,) e

1 2

1 2
< ng(s‘;[OSCj(at(Pm)] + ) 10" =Py + D el
KeTh ecéy

ﬂB(in'”—qo’")N

dne

)1l

L2(e)
1
< C««sz(g—2 [0s¢; (3™ ]+ ll¢™ — Pug™ ||2,h) e, ,

where we have followed the medius analysis presented in [9] (see pages 101-106) and where Osc;(v) is referred to as the
oscillation of v (of order j) defined by

Osc;(v) == (Z h*||lv — 17||fZ(K)) (4.8)

KeTh

and where 7 is the L? orthogonal projection of v on the space of piecewise polynomial functions of degree less than or
equal to j, i.e,

[g(v—ﬁ)xbdx:o Ve PR T,

Thus,
(8[90'", el — Epel) + (V(((p'")3 - (p”‘), V(e — Epel ) + eza‘;f(qa'", er — Eheg‘)
c Ceoer8?
< e (zlosci@em ] + g™ - homIE,) + <2 e, (49)
O

Lemma 4.2. Let u; € L®(0, oo; H (), u € L*(0, 00; H*(2)) and [qu;dx =0, then the Ritz projection operator (3.2) satisfies
the following bound:

llu =Pyl < Caggh™" 12 (4.10)
where k > 2 is the order of the Lagrange finite element space Zj,.
Proof. According to Brenner [9] and considering the model problem

A2u=f in &

Ju 0Au
an= gn —0 °on 9%
where
ffﬁ:&
Q

it can be shown that
“H _ Phullz‘h < Chmin(s,k+l)—2

as long as f e H*(Q2) and u € H*(Q2) for s € (2, £ + 4], where k > 2 is the order of the Lagrange finite element space Z;, and
where C depends on the data.

11
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In the case of a parabolic model problem
A?u=u in S,
u(0)=uy in £,
ou _ dAu
an  an
with the condition that [, u, dx = 0, we simply replace f with u; in the analysis of [9] in order to achieve (4.10). O

=0 on 0%,

We are now in position to prove the main theorem in this section. We shall assume that the weak solutions have the
additional regularities.

@ € L%(0, oo; H3(R)),
B € L*(0, o0; H*(R)),

O e L® (0, oo; LZ(Q))‘ (411)
With these regularities, we set £ =2, s = 3, and k = 2 in order to obtain
e —Pugllon < Caeh- (412)

Theorem 4.3. Let ¢™ represent the solution to (3.1) and suppose that ¢ satisfies the regularities (4.11) and that H and @ are
chosen so that

Cooer&2 — ACRCEH2@2 — T2((Cing)? + (Cly)2)” — 16

M= Ceoer€2 + 16AL >0, (4.13)

i.e. H sufficiently small and w sufficiently large. Then we have

m_gml? <l _ g0l (L ;
le™ - ¢ “.[_2 < [l¢° - ot ”LZ 1+ M At
Ceoere®(R? + B + (AL)?) .
+ 2 data
a)CcoErSZ — 4CJZC,I%H20)2 - 72((Cinf)2 + (qium)z) - 16

for any m, h, At > 0.

Remark 4.4. The sufficient condition (4.13) is a similar sufficient condition to what is found in the long term error bound
CDA applied to Navier-Stokes equations [30,39], where H must be small enough so that the nudging parameter can be taken
large enough to allow a long term error bound to hold. In our numerical tests, just as in the numerical tests for CDA applied
to Navier-Stokes in [30,39], the sufficient condition appears far from a necessary condition.

Proof. We proceed by bounding the first seven terms on the right hand side of equation (4.3). The first bound follows from
an application of Young’s Inequality, Taylor's theorem, and standard finite element theory. We have

—(8acef ) < l3ace}ll | €f']

A

2
< = loacefl + G e

A

2
< 2 lg:(e) - B @)+ o[

zc4 c” 2
< T Ciad pa , @, (414)

where t* € [t;,_1, tm] and where Cgam corresponds to the assumption that ¢, € L™ (0, oc; H3 (Q)) from (4.11). The next two es-

timates rely on properties of the projection operator Iy, (2.3) and (2.4). Thus, with the assumption that ¢ € L(0, oo; H3(R)),
we have

—o(lhef, ef") < olefll: lef ],
< 20lefI% + % e |2
<2Gollef I’ + 2 |ef|
< 2¢Gwlef I, + o [eF|

12
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< 2C2CA(C),)2wh? + %”q I% (4.15)
and
(e — Inef. ef!) < ol el —Inefl |, [ef] .
< GHo|| Vel , e,
< S 7, + 2T e, (416)
For the next term, an application of Taylor's theorem lead to
(Bace™ — o™, €f) < 18ac9™ — Be90™ 112 | €| .
< 2 1ong™ — ™I+ 2 e
< 2807 )+ 2 e
- M 2 ler . (417)

where t* € [ty,_1, tm] and Cj/  corresponds to the assumption that @ € L (0, oc; L2(2)) from (4.11). For the nonlinear term,

we use Holder and Young's inequalities to obtain,

=(V(@™? - @), Vei) = v2[ @™ = @0 | 7],
= V2| @™+ 9"y + @ | e + <] |
3‘\/_((Cmf)2 +( dﬂm) )

(el + llef ) ler .,

Cnf)? + (Clye)? Coer?
- ( fC +82dﬂm ) (I|®Pm||Lz+||ehm||L2)2+ CO;’E |®E’!“§’h

2
36((Cnp)? + (Cra)?)
= C 82 ” €p ”LZ

((Cfﬂf) + (G data ) Caere 2
el + =5 — el

COETS2

2
36 ((Cing)? + (Clga)?)
= 3 llep ”2h
CCOEFS

((Cmf) +( duta) )2 m
Ccoer&‘2 || " ”LZ
35C4(C;;m ((Cmf)z +(C dam)z)2 h2
Ceoere?

((Cmf) +( dﬂm) )2

m
el
Ceoer€? | hllee

Ccoerg 2

2
m
"eh ”Z,h’

CCOEI'SZ

Ca e (418)

where Cc’mm corresponds to the assumption that ¢ € L%(0, oc; H3(R)). Again, relying on Lemma 2.3, we have

(Vier " +ep . Vep) = valep " +ep |, fefl,

C 82
= aler 1!ILz ealen e+ =5 ler s,
8C4(C!H 2 8 C S
<~ 4 e+ = R (419)
13
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Taylor's Theorem leads to the bounds on the next term:

~(V(g™ - ™), Vep) = (Ag™ - 9™ "), eft)
<A@ =" D[]

< 2Jagm—em L+ 2ep]
2 A
( t) ”A‘Ps(t )”.L2 +3 8 H hm“.r,z’
A
< datuc(‘) t) 8 ” el ”LZ’ (4.20)

where * € [ty_1,tm] and we have used the assumption that ¢ e L®(0, co; H3(2)) from assumption (4.11). Finally,
Lemma 4.1 allows us to bound the remaining terms by

(B[go'", ey — Eheh'") + (V(((p’")3 - rp”“*l), V(ey —Epey )) + &%a IP(q":’" ey — Ehe;[”)

c /1 Ceoer€?
< E(E[Oscj(amm)] + |l™ —thpm“gn) + mgg ||ef ”;h
c /1 C
- - (E[OSCj(a:me)]z T (C;;m)zhz) + merS ”e ”zh (4.21)

Combining inequalities (4.14)-(4.21) with Lemma 2.2, leads to

Ccoers

o (LI = e 2 e — el 2) + o e 2, + 2 e

“ 1“ w” m” ((C’"f) +(C data) ) ||<Em ||2
Cmersz € et Ceoer€2 Chll Tt Ceoer€2 h |l

2
+ w;ﬁ +2CI2C§(C[1 )2 h2 ZCQZW(A{)Z 35C4(C;Zm 2((Cmf)2+( dam)z) h2
CCDETE

ata

SC“(Cé’ém P, C

1 ) m 2 2)
+ mh + @(E[OSCJ(BLQ )] +( dﬁta) h

2c c2 H w? 36((Cmf)2 data) 2
S 2 el + e

coergz “ h 1“’“2 ||L2
+ Ciaa(R* + (AD?) + % ([Oscj(atqom)] ) (4.22)

where C7_ depends on &, w, etc. but does not depend on the time step size At or the mesh size h. Multiplying by 2At,
combining like terms and dropping a few of the positive terms on the left hand side, we arrive at

20212,,2 2
[1 +Comzm(zc CZH20? + 36((Cn)? + (Chep)?) )]“em”z

Ceoere? hllie

CA; ([0scj(at<p'")]2). (423)

- Cooer€2 + 16 AL ” h,,, 1"0

2
- Ccoer€2 dumAr(h + (Af) )

CUE

Ceoer&?

Ceoer€? + 16At

L A(‘”C GG T2((Gup) + C) - 16)] Jeg

Multiplying by leads to

Ceoere? + 16AL

CooerE2 AL

= ||<eh"H ”Ll + m(hl +h°+ (Ar)z) . (4.24)
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Fig. 1. The L2 error between the true solution and the solution to the data assimilation finite element method for various data assimilation grid sizes
is shown on the left and energy dissipation with respect to the CH energy is shown on the right. The mesh size is 1 = v2/64 and the time step size is
At = 0.002. All other parameters are defined in the text.

where we have used the bound Osc;(d;¢™) < Ch*+mintek+1} such that k = 2 is the polynomial degree of the finite element
space Z, and 8;¢ € L(0, oo; H3(R)) (£ = 3) by the higher regularity (4.11) assumption to obtain a bound on the oscillations
of 9. (See [9] for details.)

Lemma 2.4 now guarantees the required results provided the choice of H and w allow for

 Conrt?0 — AGCH 0 = 72((Cng)? + Ch)?)” — 16

0.
Coorr€2 + 16AL =

}\.1:

to hold. O

5. Numerical experiments

In this section, we present results of several numerical experiments which demonstrate the effectiveness of the proposed
data assimilation finite element method. The Firedrake Project [38] was used to perform all numerical experiments. We use
a square domain © = (0, 1)2 and take 7, to be a regular triangulation of © consisting of right isosceles triangles which is
a quasi-uniform family. (We use a family of meshes 7, such that no triangle in the mesh has more than one edge on the
boundary.) Additionally, in each experiment, we set the interfacial width parameter & = 0.05.

The data assimilation term w(IH(fﬁ,T — M), 1/1) was computed as follows. A true solution ¢ was obtained at all times by
selecting a cross shaped region as initial conditions as shown in the top right image of Fig. 6, setting the nudging parameter
w =0, and solving the CH equation using the C° interior penalty FEM (3.1). A data assimilation grid size H was chosen and
grid points were identified and located on the finite element mesh. A vector was then created such that the value of 1 was
assigned for all nodes corresponding to these grid points and a value of 0 was assigned for all other nodes. Let us name this
vector v. Then the data assimilation term w(IH (qﬁ{{" —-@™M), 1,&) was computed by

a)(IH (@ — ™), Iﬁ) = w(v(b{," — Vo™, mjf),

where we note that v € Z, and that this is equivalent to the interpolation method onto a coarse mesh of piecewise constants
Zy, as described in [39]. Finally, in each of the experiments, the initial conditions for the numerical solution ¢, was set to
random initial conditions as shown in Fig. 6.

5.1. Grid test for shape relaxation from a cross-shaped region

The first numerical experiment demonstrates the effectiveness of the CDA-FEM for various grid sizes H. For this exper-
iment, we set the nudging parameter w = 1/s2 = 400 as indicated by the theory above. We then chose five different grid
sizes H = 0.011049, 0.015625, 0.03125, 0.0625, and 0.125, which correspond respectively to 8,100, 4,096, 1,024, 256 and 64
grid points, while the fine mesh uses piecewise quadratics and has 33,025 grid points. Theorem 4.3 provides a sufficient
condition that the grid size should be chosen as H = ©(g2) but our experiments suggest that a grid size much coarser than
that will produce good results.

Figure 1 shows a semi-log plot of the error between the true solution and the solution to the CDA-FEM (3.1) measured
in the L2 norm for the five different grid sizes on the left. All but the coarsest grid size of H = 0.125 converge exponentially

15
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Fig. 2. The L? error between the true solution and the solution to the data assimilation finite element method with a data assimilation grid size of
H =0.0625 on the left and H = 0.125 on the right. The mesh size is h = v2/64 and the time step size is At = 0.002. All other parameters are defined in the
text.
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Fig. 3. The I2 error between the true solution and the solution to the CDA-FEM for various values of the nudging parameter on the left and energy
dissipation with respect to the CH energy is shown on the right. The mesh size is h = v2/s4 and the time step size is At = 0.002. All other parameters are
defined in the text.

with respect to time to the true solution. To verify that a grid size of H = 0.0625 converges as expected but a grid size of
H = 0.125 does not, we additionally show re-scaled semi-log plots of the error for these two grid sizes in Fig. 2. However,
it is interesting to note that the grid size of H = 0.125 does look like it may eventually converge to the true solution.
Additionally, if solutions to the CDA-FEM are converging to the true solution, one would expect that the CH energy of
solutions to the CDA-FEM would converge to the CH energy of the true solution. We illustrate that this is the case for the
grid sizes H = 0.011049, 0.015625, and 0.03125 in the image on the right of Fig. 1.

5.2. Nudging parameter test for shape relaxation from a cross-shaped region

The second numerical experiment demonstrates the effectiveness of the CDA-FEM for various values of the nudging
parameter w. For this experiment, we set the data assimilation grid to be H =0.03125, and chose five different values
for the nudging parameter @ = 1, 20, 400, 1000, and 5000. Theorem 4.3 admits a sufficient condition that the appropriate
value for the nudging parameter w is at least 1/s2 = 400, but if w is too large then H needs to be very small. However, our
experiments show that good results can also be obtained for much larger values of w. Figure 3 shows a semi-log plot of the
error between the true solution and the solution to the CDA-FEM (3.1) measured in the L2 norm for the five different values
of the nudging parameter. Only values of w > 1/e2 = 400 converge exponentially with respect to time as expected. To verify
that values of the nudging parameter w = 1 and w = 1/e = 20 do not converge as expected, we additionally show re-scaled
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Fig. 4. The L? error between the true solution and the solution to the CDA-FEM with a nudging parameter of w = 1 on the left and w = 20 on the right.
The mesh size is h = ¥2/64 and the time step size is At = 0.002. All other parameters are defined in the text.
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Fig. 5. The L2 error between the true solution and the solution to the data assimilation finite element method for various data assimilation grid sizes. The
mesh size is h = vZ/g4 and the time step size is At = 0.002. All other parameters are defined in the text.

semi-log plots of the error for these values of the nudging parameter in Fig. 4. One might also expect that increasing the
nudging parameter above @ = 5000 will only improve the results. However, we note that in this case, the linear solver may
break down. Convergence of energy for the simulations is also shown in Fig. 3, and we observe that the simulations that
converged to the true solution in L2 norm also found the correct energy, while those that did not converge (w = 20, 1) did
not find the correct energy.

In viewing the results of the first two experiments above, the performance of the CDA-FEM (3.1) appears to be more
sensitive to the value of the nudging parameter w than the data assimilation grid size H. To determine if setting a higher
value for the nudging parameter can overcome the deficiencies seen by taking coarse grid sizes, we repeated the first exper-
iment with a nudging parameter set equal to @ = 1000. Figure 5 illustrates that increasing the nudging parameter does help
improve the results if a coarse grid size H is chosen. This is best illustrated by comparing the convergence of H = 0.0625
shown in Fig. 5 to that shown in Fig. 1, although all but the grid size H = 0.125 show dramatic improvement.
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Fig. 6. Comparison of the true solution (left), the data assimilation finite element method with random initial conditions and w =&~% (middle),
and the data assimilation finite element method with random initial conditions and @ = 0 (right). The times on each line from top to bottom are
t =0.0,0.002, 0.01,0.05, 1.0. The other parameters are as follows: At = 0.002, h = vZ/64, H = 0.03125.

Finally, in Fig. 6, we present images of the true solution with initial conditions set as a cross shaped region, the solution
to the CDA-FEM (3.1) with random initial conditions and a nudging parameter of @ = 400 with a data assimilation grid size
of H =0.03125, and solutions to the finite element method (3.1) with random initial conditions and a nudging parameter
of w = 0 side by side at times t = 0.0, 0.002, 0.01, 0.05, 1.0. A mesh size of h = ¥2/64 and an interfacial width parameter of
& = 0.05 was chosen for each. Convergence of the CDA-FEM to the true solution is observed in the sequence of plots, while
the solution without data assimilation finds a different long time steady state.
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Fig. 7. The L2 error between the true solution and the solution to the data assimilation finite element method for various data assimilation grid sizes is
shown on the left and energy dissipation with respect to the CH energy is shown on the right, The mesh size is h = vZ/64, the time step size is At = 0.002/32,
and the nudging parameter is w = e% = 2500. All other parameters are defined in the text.

5.3. Grid tests for a dumbbell-shaped region

As a last numerical experiment, we consider a dumbbell shape for initial conditions on the true solution ¢ and determine
whether the CDA-FEM method can capture the action of pinchoff under two different initial conditions, i.e. two different
choices for ¢,?. In order to capture pinchoff, &€ must be taken sufficiently small. We therefore set & = 0.02 and have adjusted
the value of the nudging parameter @ accordingly. Additionally, the theory above would then suggest that a much finer
grid from which we have data of the true solution should be chosen. However, in the following numerical experiments,
we consider the same grid sizes as in the first experiment. To begin, random initial conditions are chosen as the first
set of chosen initial conditions. As Fig. 7 demonstrates, we see long-time convergence to the true solution for grid sizes
H = 0.011049, 0.015625, 0.03125. The results suggest that grid sizes H = 0.0625 and H = 0.125 may eventually converge.
However, with the chosen dumbbell shape, pinch-off occurs at an early time step and it is unclear as to whether the CDA-
FEM converges fast enough to the true solution to capture pinch-off accurately.

Considering the results of the dumbbell test with random initial conditions, we also ran tests in which the chosen CDA-
FEM initial conditions were a rectangular shape as demonstrated in Fig. 8. We see convergence for the same three grid sizes
as before. We also note two interesting results of this test. First, it appears that the action of pinch-off can be captured at
a delayed time step. Second, once the true solution reaches a steady state, the grid size H = 0.0625 starts to converge as
well. We also see evidence of this statement when viewing the energy charts as demonstrated in Fig. 9. These results also
suggest that the CDA-FEM scheme will converge to the true solution faster with better initial conditions.

6. Conclusions and future directions

We proposed, analyzed and tested a CDA-FEM method for the Cahn-Hilliard equations. A fourth order formulation of
Cahn-Hilliard was used, and so that common FE software packages could be used, the spatial discretization used was C?
interior penalty. We proved long time stability and accuracy of the method, provided enough measurement points and a
large enough nudging parameter. Numerical tests revealed the method is very effective,

For future work, there are several important questions that remain unresolved. First, making a CDA method work for the
more commonly used second order mixed formulation is an important next step. Second, the analytical results herein give
sufficient conditions on H and @ for the results to hold, but our numerical tests suggest these conditions are not sharp.
Hence an improved analysis that sharpens these bounds may be possible. Finally, extending these results to two-phase flow
is an important future direction.
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Fig. 8. Comparison of the true solution (left), the data assimilation finite element method with random initial conditions and w = £~ (middle), and the
data assimilation finite element method with random initial conditions and @ = 0 (right). The other parameters are as follows: At = 000233 h = vZ/6a, H =
0.015625.
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and the nudging parameter is @ = 2_2 = 2500. All other parameters are defined in the text.
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