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ABSTRACT
Seismic phase identi�cation classi�es the type of seismic wave re-
ceived at a station based on the waveform (i.e., time series) recorded
by a seismometer. Automated phase identi�cation is an integrated
component of large scale seismic monitoring applications, including
earthquake warning systems and underground explosion monitor-
ing. Accurate, fast, and� ne-grained phase identi�cation is instru-
mental for earthquake location estimation, understanding Earth’s
crustal and mantle structure for predictive modeling, etc. However,
existing operational systems utilize multiple nearby stations for
precise identi�cation, which delays response time with added com-
plexity and manual interventions. Moreover, single-station systems
mostly perform coarse phase identi�cation.

In this paper, we revisit the seismic phase classi�cation as an inte-
grated part of a seismic processing pipeline. We develop a machine-
learned model FASER, that takes input from a signal detector and
produces phase types as output for a signal associator. The model
is a combination of convolutional and long short-term memory
(LSTM) networks. Our method identi�es� ner wave types, including
crustal and mantle phases. We conduct comprehensive experiments
on real datasets to show that FASER outperforms existing baselines.
We evaluate FASER holding out sources and stations across the
world to demonstrate consistent performance for novel sources and
stations.

CCS CONCEPTS
• Applied computing ! Earth and atmospheric sciences; •
Information systems ! Data mining; • Computing method-
ologies! Neural networks.
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1 INTRODUCTION
Real-time seismic signal processing is a key element of the geophys-
ical monitoring required for early warning systems for earthquakes,
underground mineral exploration and mining, and nuclear explo-
sion monitoring. Seismic signal processing pipelines involve several
sequential steps that start with signal (e.g., from an earthquake)
detection from raw seismic signals recorded at a seismic station,
and in the end, produce a formalized event bulletin for real-time
alarm generation as well as future analysis. Figure 1 shows a typical
pipeline. Phase identi�cation is a key step in this pipeline sub-
sequent to the signal detection step, which can be framed as a
classi�cation problem that takes a detected seismic signal as in-
put, and outputs the phase label. Phase identi�cation is required
for proper utilization of the downstream steps of the pipeline, for
example, earthquake location estimation, tomographic studies, and
understanding of the Earth’s crustal and upper mantle structure
[9]. A successful phase classi�er must classify a detected seismic
waveform into shear or transverse waves (ending with S in Figure
1.right) and compressional or longitudinal waves (ending with P in
Figure 1.right), and all their subtypes.
Single Station vs. Array. At present, in operational systems, seis-
mic phase identi�cation is heavily dependent on the use of multiple
close-by seismic monitoring stations, forming an array of stations
[22]. High-quality arrays enable better detection and improved
signal-to-noise-ratio, and estimation of phase velocity and direc-
tion of arrival; which greatly bene�t both phase identi�cation and
association. Relative arrival times of seismic phases at di�erent
arrays and of di�erent detections at the same array, together with
their directions of arrival, are used to accurately classify and as-
sociate phases [32]. Unfortunately, most new stations added in
dynamic response to changing monitoring needs, such as in oil
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�elds or novel seismic sources, will be individual stations rather
than arrays. This reduces the processing pipeline’s performance
because phase identi�cation is less accurate for single stations than
it is for arrays. In this work, we consider automated phase classi�ca-
tion on data collected at a single station to enable rapid deployment
addressing dynamic needs.
Fine vs. Coarse Classi�cation. In addition, most existing re-
search work on automated seismic phase classi�cation considers
only the two high-level categories, while most monitoring appli-
cations require� ner classi�cation [7, 30]. For global monitoring,
seismic signals are initially classi�ed as teleseismic P (including
more complex phases such as PkP and PkikP) or regional P or S (i.e.,
Pn or Sn). Re�nements to the phase identi�cation to add teleseismic
S and crustal P and S phases (i.e., S, Pg, and Lg) are made much later
in the processing pipeline. In this work, we consider classifying
into� ner phases at the initial identi�cation step. In addition, phase
detection and phase classi�cation are usually sequential steps. Seis-
mic signal detection algorithms are very well developed [25, 26, 33],
and signal detection is a key module in the processing pipeline.
In this work, we consider phase classi�cation only after detection,
unlike some recent works that address detection and classi�cation
jointly [29, 30].
Global vs. Regional: Lastly, most existing research work focuses
on local and near regional methods that only observe two major
phases (local P and S, or occasionally regional P and S), and uses
these phases to determine source location and origin times, mostly
due to constrained focus. However, in a global monitoring appli-
cation, all kinds of teleseismic (>1000km), regional (>200km), and
local waves can arrive at various degrees of temporal overlap with
arbitrary arrival order. Figure 1 (right) illustrates some of the com-
plexity of global seismic arrivals. Identifying the correct phase from
a complex waveform containing multiple arrivals is di�cult for
global monitoring applications. We use data from the International
Monitoring System (IMS) network, a global network operated by
the Preparatory Commission of the Comprehensive Nuclear-Test-
Ban Treaty Organization (CTBTO). IMS data are processed in near
real-time at the International Data Centre (IDC) in Vienna, with
initial detection, phase identi�cation, and association performed
automatically and then curated by human analysts. Our method can
achieve signi�cant classi�cation accuracy even in such a complex
application as presented by a global seismic network data.
Challenges to this research. First, there is no publicly available
dataset of seismic signals categorized into six-phase classes. The
main hindrance of curating such a dataset is the relative rarity of
some phases compared to others. For example, in a continuous one-
year time frame of the IMS catalog, 128K seismic waveforms are
classi�ed as P, and only 1300 are classi�ed as S. Also, the manual
labeling of these distinct phase-types requires a depth of knowl-
edge and rigorous training [3]. Second, the phases within broader
hierarchical categories share highly similar spectral and amplitude
properties. Also, seismic signals originating at di�erent geoloca-
tions exhibit di�erent propagation e�ects, resulting in dissimilar
signal properties for the same phase-type. There are also di�er-
ences among waveforms of a single type at di�erent distances. The

current bottleneck in processing is the association of seismic phases
with their most likely sources, which could be improved by more
accurate initial phase classi�cation.
This work. To tackle these challenges, we focus on a few di�erent
aspects. First, we have curated a small-scale yet balanced seismic
phase dataset collected from IMS network data. From an imbalanced
collection of more than 200K seismic events, we have narrowed
down to 16K events with� ner and balanced phase labeling. We use
Continuous Wavelet Transforms (CWT) to obtain a time-frequency
representation from raw seismic time-series to utilize both temporal
and spectral information. The CWT representation has been shown
to be resilient to dynamic noise in waveforms [24]. We design an
end-to-end deep neural network to perform phase identi�cation
using these CWT representations. We leverage the power of Convo-
lutional Neural Network (CNN) to capture low-level features from
the CWT representations that are invariant to frequency, scale, and
position [31]. However, due to locally constrained receptive�elds,
CNNs are inadequate in modeling long-term temporal dependency,
where else seismic signals contain distinctive temporal patterns
across di�erent phase-types [29]. To mitigate this limitation, we
incorporate LSTM on top of the CNN as LSTM can e�ectively model
long term temporal patterns and dependencies.

Our proposed method FASER can perform� ne-grained phase
identi�cation using single-station data from the global seismic
network. Due to minimal preprocessing requirements and instan-
taneous output generation, it can be readily integrated into the
existing real-time seismic signal monitoring pipeline. We show
a comprehensive experimental evaluation of FASER using a real
dataset in comparison with existing methods to validate improved
performance. We justify the generalizability of FASER by demon-
strating case studies for applications in novel operating conditions.
To the best of our knowledge, this is the �rst attempt to perform
�ne-grained phase identi�cation using single-station seismic signal
data.

The rest of the paper is organized as follows. In Section 2, we
give a brief overview of related work. In Section 3, we present our
proposed phase identi�cation method. We show our experimental
results in Section 4. In section 5, we demonstrate two case studies
of our method in real-world applications. Finally, we conclude in
section 6.

2 RELATEDWORK
The existing literature on In general, the methods for seismic phase
identi�cation can be broadly categorized into two types, (1) heuris-
tic template matching and statistical analysis based methods, and
(2) deep learning based methods.
Statistical and Heuristic Methods. Since the early inception and
development of seismic signal monitoring, several rule-based and
physics-driven methods have been proposed for seismic phase iden-
ti�cation. In [28], data-adaptive polarization� ltering method have
used for phase detection task. In [2], the di�erence between the
short-term average (STA) and the long-term average (LTA) of the
seismic signal has been used for automated detection. Several meth-
ods have used higher-order statistics like kurtosis and skewness
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Figure (1) (left) Typical seismic data processing pipeline. Our objective is to develop a Machine Learning model for phase
identi�cation. (right) Travel times with respect to distance for various seismic phases. Phases ending with P can commonly
be categorized as P, and phases ending with S can commonly be categorized as S.
[19, 20]. Also, few methods have used frequency domain infor-
mation [24, 37]. However, these methods perform poorly in the
presence of noise and when the seismic events are of low magni-
tude. A few other works have proposed a similarity search based
template matching method [10, 27]. But, such methods are heavily
dependent on a prior collection of sample signal templates and often
fail to generalize when used for phase detection at novel stations.
Also, the pairwise similarity search with each sample template ren-
ders these methods computationally intensive and ine�cient for
real-time monitoring.
Deep Learning based Methods. Recently, multiple deep learn-
ing methods have been proposed to address the aforementioned
shortcomings in the context of phase detection and identi�cation
[6, 22, 25, 26]. A deep learning based grid-free phase association
method for phase identi�cation has been proposed in [30]. In [29], a
CNN based architecture has been used for phase identi�cation from
one-dimensional seismic signals. More recently in [7], the use of
time-frequency representation and CNN has been explored. These
methods have shown promising results compared to previously
used statistical and heuristic-based methods as CNNs can e�ec-
tively model low-level structured patterns into high-dimensional
embedding. However, due to locally constrained receptive�elds,
CNN cannot capture the long-term temporal patterns. Thus, these
models cannot fully exploit the higher-order temporal structures in
seismic signals, distinctive across di�erent phase-types. Moreover,
none of these methods perform� ne-grained phase identi�cation.

3 METHODS
In practice, the seismic phases are manually labeled by experienced
analysts using multi-modal information, i.e., signal amplitude, fre-
quency components in the signal, the distance between event origin
and monitoring station, depth of the event origin, etc. However, for
generalized and real-time phase classi�cation, there exist a few chal-
lenges to producing such information a priori. Depth and source
location estimation are intricate regression problems requiring
complex analysis. Previously, the e�ectiveness of time-frequency
representations has been demonstrated in a multitude of seismic sig-
nal processing tasks [24, 34]. Therefore, we use the CWT to obtain
spectral-temporal features, as it produces higher spectral-resolution
and more precise temporal-localization than other time-frequency

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

0 500 1000 1500 2000 2500
-1000

-800

-600

-400

-200

0

200

0 500 1000 1500 2000 2500
-2000

-1500

-1000

-500

0

BHZ

BHE

BHN

0 500 1000 1500 2000 2500
-500

0

500

1000

0 500 1000 1500 2000 2500
-400

-200

0

200

400

0 500 1000 1500 2000 2500
-600

-400

-200

0

200

400

600

0.4 – 10Hz

Phase: Pn
Station: AAK
Magnitude: 5.2
Distance: 3.43 degree

AAK

Event

Red

Green

Blue

0 2400
(60 Sec)

10 Hz

0.4 Hz

0 2400
(60 Sec)

10 Hz

0.4 Hz

0 2400
(60 Sec)

10 Hz

0.4 Hz

0

64

240

Figure (2) Input images ofwaveforms are created by taking
CWT of individual channels (i.e. BHZ, BHN, BHE).

transformations (e.g., Short-Fourier Transformation) [24]. We use
a composite CWT image, where the vertical component CWT coef-
�cients are represented by red brightness, and the two horizontal
components are represented by the brightness of green and blue
(See Figure 2).

The time-frequency representation of seismic events contains
distinct structured features based on their phase-type. However,
at a low-level, these features are highly overlapping. CNN have
been widely used in the domain of Computer Vision [13, 18], Natu-
ral Language Processing [8, 15], Speech recognition [1] and other
related domains to learn high-level features from raw structured
input for better contrastive representation learning. As CNN’s can
model the local correlation of spatial and temporal patterns, it is
highly suitable for our two-dimensional CWT feature maps, which
contain incremental time information on one axis and frequency
information on the other.

However, CNN’s are inadequate in learning long-range temporal
dependencies due to their locally constrained receptive� elds [31].
Nevertheless, the long-term temporal patterns in the seismic signals,
which are well preserved in CWTs, are vital distinctive features
across di�erent phase types as showcased in Figure 3. To circum-
vent this limitation, Recurrent Neural Networks (RNN) have been
instrumental in modeling the temporal dependencies by using the
cyclic feedback mechanism from previous time-step inputs. LSTM,
an improved variant of vanilla RNNs, are capable of learning and
modeling long-term temporal patterns and dependencies [16, 23].
However, It has been shown that higher-level features can be help-
ful in learning the underlying factors of variations within the input,
which should make it easier to learn temporal structures between
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 Figure (3) CWT of pairs of examples from all phase types. Compressional or longitudinal waves (P, Pn, Pg) are dominantly
red due to high vertical component amplitudes. Transverse waves (S, Sn, Lg) are dominantly green/blue due to high horizontal
component amplitudes.
successive time-steps [36]. Thus, oftentimes CNNs have been suc-
cessfully used as preceding layers before more complex sequential
models to reduce the local temporal and frequency variations [31].

Motivated by these aforementioned successful use-cases, we use
a combination of CNN and LSTM in an end-to-end network. First,
we utilize CNN to identify low-level spectral-temporal features
that are invariant to frequency, scale, and position. Afterward, we
organize the output features obtained from CNN into sequential
features preserving the temporal ordering. We feed these higher-
level sequential representations of low-level structured patterns as
input into the LSTM. By utilizing the cyclic feedback mechanism
in-between consecutive time steps, LSTM can better model the
long-term temporal correlation in the seismic signal. Finally, we
feed the output from each time-step into dense layers to make the
�nal output prediction.

3.1 Convolutional Neural Network
CNN [18] perform convolution operations on the input feature map
using� xed-size kernels (learned during the training step) to pro-
duce higher-order representations. Convolution operations are usu-
ally followed by a non-linear activation function and max-pooling
layers. The use of an activation function introduces non-linearity,
and the max-pooling reduces sensitivity to temporal or spatial vari-
ation. CNN’s are adept at learning local structural relationships and
are invariant to feature scaling, which reduces the dependency on
heavy data preprocessing and feature engineering [38].

3.2 Long Short-Term Memory Network.
LSTM networks are an improved variant of traditional RNN [14].
RNNs can model temporal dependencies in the data by utilizing
feedback connection by considering both input at the current time
step as well as output of the last time step’s hidden state. However,
vanilla RNNs su�er from the vanishing gradient problem, which
prevents the model from learning long range dependencies. LSTM
tackles this problem by introducing three gating mechanisms to
update the memory cell 2C and hidden state ⌘C at each step C based
on the current time step input GC and the previous time step’s hidden
state output ⌘C�1. Each LSTM unit is composed of a memory cell
and three main gates: input, output and forget. The input gate 8C ,
forget gate 5C , output gate >C , memory cell 2C and hidden state ⌘C
at step C are computed as follows:

3×3 conv, 8 filters, 1×1 stride

BN + ReLU

2×2 maxpool, 2×2 stride

3×3 conv, 16 filters, 1×1 stride

BN + ReLU

2×2 maxpool, 2×2 stride

3×3 conv, 32 filters, 1×1 stride

BN + ReLU

2×2 maxpool, 2×2 stride

3×3 conv, 64 filters, 1×1 stride

BN + ReLU

1×2 maxpool, 1×2 stride

Input

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

L
S
T
M

Fully Connected, 64 units

Fully Connected, 32 units

Output, 6 Classes

Figure (4) Proposed model architecture.

8C = f (,8 · [⌘C�1, GC ] + 18 (1)
5C = f (,5 · [⌘C�1, GC ] + 1 5 (2)
>C = f (,> · [⌘C�1, GC ] + 1> (3)
2C = 5C � 2C�1 + 8C � C0=⌘(,2 · [⌘C�1, GC ] + 12 ) (4)
⌘C = >C � C0=⌘(2C ) (5)

Here,,8 ,,5 ,,> are the weight matrix and 18 , 1 5 , 1> are the bias
of input, forget and output gate, respectively, and f is the logistic
sigmoid function, tanh is the hyperbolic tangent function, and �
denotes the element wise multiplication. By this architecture, the
LSTM manages to create a controlled information� ow by deciding
which information it must forget and which information to remem-
ber. To understand the mechanism behind the architecture, we can
view 5C as the function that controls to what extent the information
from the old memory cell is going to be thrown away, 8C controls
how much new information is going to be stored in the current
memory cell, and >C controls what to output based on the memory
cell 2C .
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3.3 Proposed Architecture
Our proposed architecture is comprised of four convolutional layers,
followed by two LSTM layers and three fully connected dense layers.
In Figure 4, we present our proposed architecture. The input to the
networks is the CWT representations obtained from the bandpass
�ltered seismic signal waveforms. A detailed description of data
preprocessing is presented in the following section. In each of the
four convolutional layers, we use kernels of size 3⇥3 with a stride
of 1⇥1 and zero paddings. Each convolution layer is followed by
a Batchnormalization layer, a Recti�ed Linear Unit (ReLU), and a
two-dimensional max-pool layer. In the� rst two max-pool layers,
we use a kernel size of 2⇥2 with a stride of 2⇥2. However, in the
last convolution layer, we perform max-pooling only along the
temporal dimension with a kernel of size 1⇥2 and stride of 1⇥2.
The� rst convolutional layer has eight� lters, and we double the
�lter number on each subsequent convolutional layer to keep the
number of parameters in each convolutional layer the same as we
reduce the input image size by half after each convolution layer
due to max-pooling.

The output from the� nal convolution layer is then passed into
the LSTM layers preserving the temporal order. The� rst LSTM
layer consists of 32 hidden units and the second LSTM layer consists
of 16 hidden units. We use sigmoid and tanh as the recurrent and
output activation function of the LSTM correspondingly. We use a
50% recurrent dropout in the LSTM layers. Both LSTM layers are
unrolled for 15 steps as the input feature map to the LSTM has a
temporal dimension of� fteen. Both LSTM layers return sequences
in each unrolling step. These sequences are� attened before feeding
into the dense layers. We stack three dense layers, each with 64,
32, and 6 hidden units consecutively. Each of the dense layers are
preceded by Batchnormalization and ReLU activation functions
with a 20% dropout rate. We use the softmax activation function in
the� nal dense layer to obtain output probabilities for each phase-
type.

4 EXPERIMENTS AND RESULTS
In this section, we perform experimental analysis on real seismic
data to show the e�ectiveness of our proposed method in compari-
son with existing baseline methods.

4.1 Dataset Description
The dataset is curated from 10 years of continuous seismic data
collected at the 155 stations of the IMS. These consist of 46 primary
stations, 24 of them were arrays, and 105 auxiliary stations, 98
of which are 3-component stations. The dataset includes 80TB
uncompressed of seismic waveforms and the comprehensive IMS
catalog, with arrival times and phase labels curated by human
analysts for over 8 million seismic event detections. This dataset
includes the comprehensive IMS catalog, with arrival times and
phase labels curated by human analysts for over 8 million seismic
event detections. From these 8M seismic events, we� ltered out
175K� ne-grained seismic phase labeled data. However, among
these, the P-phase was predominant, with 128,120 occurrences,
while the S-phase had only 1,306 occurrences. To ensure a balanced

dataset between crustal, regional, and teleseismic compressional
and transverse phase (i.e., Pg, Lg, Pn, Sn, P, and S), we used all
labeled S-phases and randomly sampled around 2,500 waveforms
from each of the other phases, for a total of 16,304 phases. As the
spectro-temporal features of all the phases are highly nuanced,
no data augmentation was performed to maintain integrity for
practical application scenarios.

4.2 Data Prepossessing.
Our raw input data are 60 seconds long three-channel time-series,
sampled at 40Hz. Following conventional seismic signal pre-processing
techniques, we� lter the waveform from each channel (0.4Hz to
10Hz). As these seismic signals were generated by events of dif-
ferent magnitude and recorded at stations spread across the globe,
the amplitude is not relevant to phase identi�cation in this�rst
step. We� rst detrend each sample and remove the mean. We then
max-normalize the data across each-channel, thus retaining the
relative amplitudes among components of a station. Afterward, use
the CWT to obtain spectral-temporal features representation.

4.2.1 Baseline Methods. In order to validate the performance of
our method we have compared our method with the following
baseline methods.

• XGBoost (XGB) [4]: XGBoost is an optimized ensemble
based model that has produced state-of-the-art methods for
many classi�cation tasks. We convert the multi-dimensional
CWT representations into one-dimensional features as input
for XGB. Afterward, we perform standardization across each
feature dimension.

• MLP [12]: Multi Layer Perception (MLP) is a feed-forward
neural network. We use a two-layer MLP with the same
input feature as XGB.

• CNN [7]: CNN based methods have been previously used in
related seismic signal classi�cation tasks. In [7], a CNN based
method has been used for two-class phase classi�cation. We
use the same CNN architecture used in this paper to compare
against our method.

• LSTM [14]: LSTM methods are highly suitable for temporal
data modeling and have produced state of the art accuracy
in many time series classi�cation tasks. We use the most
popular stacked LSTM architecture for comparison. The�nal
output is fed into a fully connected layer to generate output
label.

• CRED [25]: In [25], a ResNet-BiLSTM architecture has been
proposed for seismic event detection where it achieved state-
of-the-art performance. We use the same architecture for
our phase identi�cation task.

4.3 Experimental Settings.
The hyper-parameters of the model were selected empirically by
grid-search on the validation set. We use the Adam optimizer [17]
with an initial learning rate of 0.01 and with parameters V1 = 0.9,
V2 = 0.999, and n = 10�8. We apply !2 regularization with _ =
0.001, and we use categorical cross-entropy [11] as the loss function

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2718



Table (1) Performance metric comparison of FASER
against baseline methods. FASER outperforms existing
baseline methods in all four metrics: Precision(PR), Recall
(RL), F1-Score(F1) and Accuracy (ACC). The best algorithm
for each metric is colored in cyan.

Method PR RL F1 ACC

XGB 68.4 67.2 67.2 67.2
MLP 76.2 75.6 75.3 75.6
CNN 75.2 75.2 75.2 75.2
LSTM 75.7 74.3 75.0 75.3
CRED 81.3 80.2 80.7 81.5
FASER 84.6 81.6 83.1 82.8

with a training batch size of 256. The XGBoost model was trained
until convergence. The neural network models were trained for a
maximum of 200 epochs with early stopping on the validation set.

We use 10-fold cross validation to measure the performance
of our method, and report the average. In each fold, we use 80%
of the data for training, 10% for validation and 10% for testing.
We perform random strati�cation to ensure class balance in the
training-validation-test split. All the experiments were performed
on a core i5 2.70 GHz desktop computer with 8GB NVIDIA GeForce
GTX-1070 GPU.

4.3.1 Evaluation Metrics. In our experiments, following conven-
tional practices for classi�cation tasks, we use accuracy as the
primary performance metric. However, as there are minor class
imbalances in the dataset, we also calculate macro (calculated indi-
vidually for each class and averaged afterward) precision, recall, and
F1-score [5]. Precision, recall, and f1-score are calculated based on
true-positive(TP), false-positive(FP), and false-negative(FN) values
using the following formulas.

?A428B8>= =
)%

)% + �%
, A420;; =

)%

)% + �#

� � B2>A4 = 2 · ?A428B8>= · A420;;
?A428B8>= + A420;;

4.4 Results.
In Table 1, we report the performance of our method in comparison
with the baseline methods, where the highest performance for
each metric is cyan colored. We observe that FASER consistently
outperforms all the baselinemethods across all performancemetrics.
To closely probe the performance of FASER across each class, in
Figure 5(left), we show the confusion matrix for the test cases
of a randomly split 80-10-10 train-validation-test scenario. It is
noticeable that the majority of classi�cation error is within the
sub-classes of compressional (P, Pg, Pn) and transverse (S, Sn, Sg)
waves. This performance is in coherence with the intuitive notion
of similar spectral-temporal features within both broader classes.

In Figure 5(right), we plot the t-SNE visualization [21] of the
same 10% test cases considering the activation values of the last
layer before the prediction layer as deep embedding [35]. The com-
pressional and transverse wave signal samples are well separated
in the deep embedding space with high-margin with only a few

Figure (5) (Top) Confusion matrix for the test cases of a
randomly split 80-10-10 train-validation test scenario. (Bot-
tom) t-SNE visualization of the same 10% test cases consider-
ing the activation values of the last layer before the predic-
tion layer as deep embedding [35]. The compressional and
transverse wave signal samples are well separated.

mispositioned overlaps. However, as the spectral-temporal features
within the sub-classes of transverse and compressional waves are
often overlapping, we notice soft-boundaries among the intra-sub-
classes along with higher overlaps among the samples. Although
the separation among� ner-phase types is not well-established, it is
evident from this embedding projection that our proposed method
is adept at learning higher-order separable representations.

5 CASE STUDY: NOVEL OPERATING
CONDITIONS

In this section, we demonstrate practical use cases for our developed
method in real-world applications when various novel scenarios
emerge. In particular, we consider the following two novel scenarios:
(1) If a monitoring agency adds a new station at a new location,
will our method work without any calibration? (2) If new seismic
sources occur in historically aseismic regions, will our method
identify novel arrivals from a new source?
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Figure (6) Performance comparison of FASER with naive
nearest neighbor classi�er for application in novel stations.
The plot shows cumulative distribution function (CDF) for
percentage of stations having smaller than a given accuracy.
FASER achieves an approximately 72% accuracy for the ma-
jority of the stations in contrast to 17% for nearest neighbor
classi�er.

5.1 Performance at Novel Station
In our dataset, we have phase arrival signals recorded at 125 dif-
ferent stations across the world. To test how our method would
perform at a novel station, we hold out signals at one station while
training on signals at all other stations. We show empirical Cumu-
lative distribution function (CDF) of stations for various accuracy
levels in Figure 6. We compare two classi�ers in this experiment.
The nearest neighbor classi�er that compares a test image with all
training images to� nd the best match under the Euclidean norm,
and labels the test image with the phase of the best match. The
classi�er achieves approximately default classi�cation accuracy of
17% for the majority of the stations. This suggests that the nearest
neighbor classi�er cannot classify signals at a new station based
on historical data at other stations. In contrast, FASER achieves
an approximately 72% accuracy for the majority of the stations,
suggesting single station analyses of seismic data may be useful
in response to dynamically changing monitoring needs. The con-
volutional layers in our architecture extract local features from
the images, unlike relying on a global one-to-one alignment of the
images in the Euclidean space, as in the case of the nearest neighbor
classi�er.

The achieved accuracy of 72% for the majority of the station is
signi�cant for the IMS processing pipeline, as IDC analysts relabel
62% of the initial phases detected by the current automated algo-
rithm. Moreover, only 38% of the initial phases remain the same,
indicating that the initial phases are correct with 38% accuracy.
FASER almost doubles the accuracy for a novel station of the cur-
rent system’s phase identi�cation accuracy for an existing station.
We show the held-out performance at each station in Figure 7(left).
Most stations achieve higher accuracy (>0.7) when there are several
closer stations. In contrast, isolated stations such as the one in the
South Paci�c su�er from a poorer performance.

5.2 Performance on Novel Sources
Most earthquakes originate along fault lines, while the rest of the
earth is quieter. Novel seismicity in previously undocumented areas
is intriguing. Hence, we evaluate our model by holding out regions
of the earth for testing. For each held-out region, we train our model
with data from the rest of the world and test the performance of
our model on seismic events in that region. For this experiment,
we divide the earth into 12⇥ 12-degree grids. If a grid cell is not
seismically active (i.e., not enough data), we exclude the region from
testing. In Figure 7(right), we show the world map where the shaded
grid cells are held out, one at a time. The average hold-out accuracy
is 77.27%, with a standard deviation of 4.13%. More importantly, this
suggests that our model is well suited for novel seismicity with little
or no prior recorded events. We test on 46 cells of the 12⇥12 degree
grids, which cover most of the known seismic events recorded at
the NEIC (National Earthquake Information Center) for a three year
period.

6 CONCLUSION
In this paper, we present a method to perform� ne-grained seis-
mic phase identi�cation, which can be readily integrated into ex-
isting seismic signal processing pipelines. As seismology evolves
into a big-data-driven science, deep learning methods are becom-
ing an indispensable part of next-generation seismic monitoring
systems. This work shows a practical example of integrating deep-
learningmethods in an existing semi-autonomous system to achieve
complete autonomy. We demonstrate empirical evaluation of our
method with a real-world dataset where it outperforms existing
methods. Our method reduces the dependency on using array-
based methods, which inhibits precise monitoring for regions with
limited monitoring stations. It also reduces the dependency on
large-collections of manually curated template sets and presents
the opportunity of using transfer-learning for stations with limited
labeled data. Due to the minimal preprocessing requirements and
faster prediction generation, it is highly suitable for a real-time
monitoring pipeline. In the future, with the use of larger datasets,
more complex models would produce higher accuracy as well as
better generalizability. Moreover, the introduction of interpretable
models would be highly suitable for downstream analysis.
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