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Abstract

A wide range of field update algorithms for polymer self-consistent field theory
(SCFT) and field theoretic simulations (FTS) are analyzed. We provide the first direct
comparison between Anderson mixing (AM) and fictitious relaxational dynamics for
SCFT and find nearly equivalent performance when both schemes are properly tuned.
We also show that predictor-corrector algorithms are the most efficient among ficti-
tious dynamics approaches despite increased costs per step. For FTS adaptive time
stepping is found to dramatically improve algorithm stability for inhomogeneous sys-
tems and enable simulation at much lower chain length and density than was previously

achievable.

Introduction

Field theory has been a prominent tool in polymer physics for the last fifty years. Pioneering

work by Edwards, de Gennes, Leibler and many others used analytical approximations to



understand critical phenomena,! phase separation,? and more.3* In the last thirty years
numerical treatment of field theories has become possible, which has allowed the relaxation
of approximations such as strong or weak segregation used in earlier work. Numerical solu-
tions of self-consistent field theory (SCFT), which is a mean-field approximation to the full
field theory, are now routine and have enabled simulation of full phase diagrams for broad
classes of block copolymers and polymer blends.® It is also possible to conduct simulations
of the exact field theory without the mean-field approximation in so-called "Field Theoretic
Simulations" (FTS).7"%19 FTS has enabled study of phenomena not accessible to SCFT, such
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as fluctuation-corrected phase diagrams in neat and salt-doped diblock melts, polyelec-
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trolyte complexation, nematic ordering, }” ternary microemulsions, and novel "bricks

& mortar" emulsion phases.?!

There are multiple equivalent formalisms that can be used to construct a field theory
for an assembly of polymers, but the most mature and numerically tractable is the so-called
Auxiliary Field (AF) framework, which decouples pairwise non-bonded interactions between
chain segments via a set of fields. There are then two primary tasks in evaluating an AF the-
ory: 1) computing the single-molecule partition functions with fixed field configurations; and
2) generating new realizations of the fields. For polymer models the first task is non-trivial
due to the correlations between different segments on the backbone. Previous authors have
written about how to evaluate single-polymer partition functions accurately and efficiently,
and we refer readers to those works.?? 726 In this work we focus on the task of generating new
iterations of a field. In SCFT the goal is to identify saddle-point field configurations that

represent the most-probable state at equilibrium. Mathematically, the saddle-point nature

of this configuration can be stated as:

—0 (1)

Here H is the effective Hamiltonian of the field theory, w is an auxiliary field, and w* is the



saddle-point configuration. The task of generating new fields then reduces to searching for
the saddle-point most quickly from a given initial guess. There are multiple approaches to
solving the SCFT saddle-point equations (eq 1). The first treats the task as a non-linear root-
finding problem and historically used quasi-Newton approaches to find the saddle-point. 2"
More recently the task has been posed as a fixed-point problem, which has led to Anderson
mixing (AM) and other "Jacobian-free" approaches that require significantly less memory
than quasi-Newton type methods. 23!

An alternative approach involves a fictitious dynamics with the saddle-point configuration
as a fixed point. The dynamical system is then evolved in fictitious time until the fixed point
is reached. Mathematically this can be expressed as

ow(r,t)  dH[w]
o swr) 2)

where H and w(r) are generally complex, corresponding to a gradient descent towards saddle
points in the complex plane. This approach allows the use of a wide variety of algorithms
developed for solving differential equations, a number of which are described in the Methods
section. Our first goal in this paper is to compare the various algorithms available for SCFT
to determine which algorithms perform best and under what conditions.

There is a significant amount of work in the literature comparing numerical methods for
SCF'T, but these largely focus on algorithms for computing single-chain partition functions
and chain propagators. In particular, many debate the relative merits of spectral and pseu-

25,26,29,30,32 \With few exceptions,? the polymer SCFT community

dospectral approximations.
has largely settled on using pseudospectral methods, which we adopt in this work. There are
few direct comparisons of different field-update methods, and those that do only consider

28,34 Tn this work we consider seven different algorithms for

a small subset of algorithms.
conducting SCFT field updates and provide the first direct comparison of the AM algorithm

with fictitious dynamics algorithms. Additionally, we demonstrate how to calibrate each



algorithm to obtain optimal performance and provide some heuristics for choosing numerical
parameters.

For a fully fluctuating FTS, the goal of generating new field iterations is quite different.
Instead of searching for saddle-point field configurations, the goal is to generate a sequence of
decorrelated field configurations that allow for importance sampling of average field operators
that describe physical properties of the system. Examples of important operators are the
chemical potential and pressure. Because field theories are usually complex-valued, the
averaging process can suffer from a "sign-problem" where a phase present in the complex
statistical weight that is extensive with system size produces wild oscillations and leads
to difficult averaging when attempting to use conventional methods such as Monte Carlo
sampling.

One approach to overcome the sign-problem is a partial-saddle-point approximation that
renders the Hamiltonian purely real, enabling traditional Monte Carlo and real Langevin sim-
ulations. 835738 This approach has been successful for studying fluctuations in AB-type poly-
mer systems, including microemulsions of diblock-homopolymer ternary blends and shifts in
the order-disorder transition. 1820 It is not clear how to extend the approach to multicom-
ponent and multispecies systems, however.

A more general approach to overcome the sign-problem is the complex Langevin (CL)
method, which has been used in single-component systems, binary, ternary and quarternary
mixtures. "3 Because of its broader applicability, we focus solely on the CL method in this

work. For CL simulations, the sampling scheme follows the dynamical equation

ow(r,t) dH [w]

ot _§w(r) +(r,?) (3)

where n(r,t) is a real-valued Brownian random force. This equation is nearly identical to
eq 2, only differing by the addition of Brownian noise. However, eq 3 is not a conventional

"real" Langevin dynamics since H[w] is complex, leading to field trajectories w(r,t) that



are not restricted to real values. Nonetheless, the similarities between eqns 2 and 3 imply
that SCFT algorithms relying on fictitious-time relaxation can be readily adapted to CL.
The complex Langevin approach also permits use of various algorithms from the stochastic
differential equation literature. Our second goal in this paper is to compare algorithms for
CL simulations and determine which perform best in terms of stability and efficiency.
There are multiple previous works that compared different algorithms for CL simula-

tions. 263941 Unfortunately, these works were limited to either a subset of algorithms, 2640

4 or small parameter ranges.®® In this work we

models with no microphase self-assembly,
consider eight different algorithms for CL simulations, including adaptive time steppers that
have not been used previously in polymer systems. We show that these adaptive time
steppers significantly improve stability in inhomogeneous systems, especially at strong seg-
regation and low polymer densities. These advances allow CL simulations at conditions that

were intractable with previous algorithms. Finally, we explain the mechanism by which

algorithms become unstable in CL and how adaptive time stepping avoids failure.

Theory

We use an AB diblock copolymer melt in the canonical ensemble as a test system for this
study. We treat the diblocks as continuous Gaussian chains with segment mass distributed
over a Gaussian packet?? to regularize the field theory, and include both A-B segmental

interactions and a Helfand compressibility penalty in the model. The model equations for



this system are!!

Z(n,V,T) = Zo/Dw+/Dw_ exp(—H [w,,w_]) (4)
¢ 2 ¢ 2
Hwy,w_] = N /d’r (w_(r))” + N TN dr (w(r))
- X]%fZiCQJZN drwy(r) — CVIn(Q[w,,w_])
Qo) = [ dra(r.1 ©)
q(r,0) =1 (7)
Osq(r,s) = Vq(r,s) —w(r,s)q(r, s) (8)
I (iwy(r) —w_(r)) se€(0,f]
w(r,s) = ’ g
s (iwy(r) +w_(r)) se(f1]

[xw(r)= —<27m12)3/2 /dr’ exp (—2%12]7" — r’]2> w(r') (10)
Here y is the Flory interaction parameter, ¢ is the Helfand compressibility parameter, N
is the polymer contour length, f is the volume fraction of species A, C' = nRS /V is the
dimensionless chain density, with n the number of polymers and V' the volume of the box,
and Z; is a reference partition function containing ideal-gas contributions and normalizing
denominators. Q[w,,w_] represents the partition function for a single polymer chain in-
teracting with the fields w, and w_ and is computed from the propagator ¢(r,s), which
represents the field-based random walk statistics of the polymer starting from a free end.
For all calculations we set f = 0.34 unless otherwise specified. In this model, the monomer
density has been smeared with a Gaussian kernel, I', with a range a. All lengths have been
non-dimensionalized in units of the unperturbed polymer radius of gyration R, = b(N/6)'/2
and the contour variable s € [0, 1] has been scaled by 1/N. All spatial integrals are over the
scaled volume V = V/R3.

For SCFT calculations we assume that the melt is incompressible, (N — oo, and that the



density is unsmeared a = 0. The incompressible, unsmeared version of the model displays
pathological ultraviolet divergences that make the model undefined when conducting fully
fluctuating CL simulations.*!*® These pathologies can be removed by using finite values
for both (N and a in CL simulations. Unless otherwise specified, we set (N = 100 and
a = 0.2 R, for CL calculations. All calculations are conducted in a fixed-size cubic box with
periodic boundary conditions.

For SCFT calculations, the free energy is equal to the effective Hamiltonian, H, and must
be purely real valued. This implies that w, () must be purely imaginary at the saddle-point,
despite the fact that the functional integral is over real-valued functions. The argument of
the functional integral is analytic, which allows the path of integration to be deformed off
the real axis to include the purely imaginary saddle-point.” For fluctuating CL simulations
this is accomplished automatically via the complexification of the fields. Nevertheless, for
SCFT calculations it is convenient to absorb a factor of 7 into w. (r) and constrain the search
path to purely imaginary fields to render the effective Hamiltonian purely real throughout

the search space. Such a change of variables constitutes a so-called "Wick rotation".

Numerical methods

Pseudospectral numerical methods for computing the propagator, ¢(r, s), have been explored
elsewhere.?? 26 Based on these results, for SCFT calculations we use the RQM4 algorithm
with a contour step of As = 0.01.2* For CL calculations we use the RK2 algorithm with As =
0.01.222 The overall evaluation of the force G(r;[w]) = —dH/dw(r) requires evaluating
both the forward and reverse propagators, and evaluating such objects has a computational
cost that scales like O(N;M In(M)), where Ny = 1/As is the number of contour samples
along the polymer backbone, and M is the number of sample points in space. A single
field has M elements and typically requires O(M) operations to update, so for each field

configuration generated during the simulation, evaluating the force is significantly more



expensive than updating the fields and usually represents the majority of computation time
in SCFT and FTS. Minimizing the number of field updates and force evaluations is thus
critical to reducing computation time. All SCFT calculations were conducted in a box of
size L, = L, = L, = 9 R, with M = 64® sample points, while CL calculations used the same
size box with M = 483, unless otherwise specified.

For field-update schemes, we first briefly review the Anderson mixing algorithm. Ander-
son mixing is typically used for fixed-point-iteration type problems of the form w(r) = E(w(r)),
where E is a nonlinear function. The deviation of a particular value of w(r) is defined
by d(r) = E(w(r)) —w(r). If one has already iterated through a number, n;, of fields
w;(r), w;—1(r), ..., wi—p, (r) then one can compute an optimized guess for the next iteration,

, 2
w;y1(r), by finding coefficients «;, ..., ®;_p,, that minimize [dr (Z;:i_nh a;d; (r)) sub-
i
Jj=i—np

ject to the constraint » a; = 1. Determining these coefficients is a linear optimization

problem that requires at least O(n?M) operations. Details on efficient implementation of
28,29

the AM algorithm and initialization strategies can be found elsewhere.

The fictitious dynamics algorithms attempt to solve the partial differential equation

Oyw(r,t) = —

Sty 1) = Gl ul) () (1)

where for SCFT n = 0, and for CL 7 is the Brownian force. From here on we refer to
the deterministic term G(7;[w]) = —dH/ow(r) as the "force" on a field, w. The simplest

approximation to solve eq 11 is the Euler-Maruyama (EM1) approximation

Wt (r) = wl(r) = ALG(r: [w]) + R (r) (12)

Here the superscript j represents a discrete-time index and R’ is a random variable with zero
mean and variance (R’ (r)RF(r')) = 2At §;0(r — 7'). We continue to use this definition for
RI(r) when describing other algorithms, unless otherwise specified. Any noise distribution

with these first two moments can be used, however we exclusively use normally distributed



noise in this work. Although simple to implement, the EM1 algorithm has poor stability
and accuracy compared to other algorithms.

Another class of algorithms splits the force into a linear and a non-linear contribution

0H
~Swy ~ O [w) = —exw(r) + F(rsu) (13)

where ¢ % w is a convolution that represents the linear contribution to dH/dw(r) and F
represents all non-linear contributions. For polymer models it is typically most convenient
to express the kernel function ¢ in Fourier space where it is diagonal and positive definite3
and the linearized force convolution ¢ * w can be computed via simple multiplication. The
linearized force ¢ * w typically is derived from a linear response analysis about the transla-
tionally invariant disordered phase of the system and thus constitutes an approximation to
the true linear force that is only accurate for weak perturbations about the disordered state.
The explicit kernel functions for the diblock model considered in this work are given in the
Supporting Information.

After splitting the force into linear and non-linear parts, semi-implicit algorithms can be
devised in order to stabilize the algorithm. One such algorithm is a first order semi-implicit

scheme (SI1), which is defined by
Wt (r) —w(r) = At (—cx w’ ™ (r) + F(r; [w’])) + R (r) (14)

Another similar algorithm that uses linearized force information is the first-order exponential
time differencing ETD1 method, ***® which is derived by using c as an integrating factor over
the time interval t — ¢ + At.

1— e—é(kz)At R

W (k) — 0 (k) = —————G(k; [w]) + (

1 — e—2ek)aey 12
c(k) )

wmar ) T (15)

here the equation has been transformed from real space, 7, to Fourier space, k, with hats over



symbols indicating Fourier transforms w(k) = F,_k(w(r)). Note that the linear response
kernel ¢(k) is a function of the magnitude of the Fourier mode k = |k|.

All of the fictitious dynamics algorithms discussed so far have first-order accuracy with
respect to time step. In the stochastic case with R # 0, this is first-order accuracy in the
weak sense. To achieve higher-order accuracy we employ predictor-corrector algorithms.
These algorithms perform an initial "predictor" time step, then use this predicted field to
more accurately evaluate the force over the time step interval for a subsequent improved
corrector step. These algorithms must evaluate the force two times per iteration, but have
second-order accuracy (in the weak sense) in fictitious time. The simplest of these is the

Euler-Maruyama predictor corrector (EMPEC2) method

w(r) —w (r) = At G(r; [w’]) + R () (16)
wt(r) —w!(r) = %(G(T; [w]) + G(r; [w])) + R (r) (17)

It is important to use the same noise realization RB’(r) in both the predictor and corrector
steps in order to fully cancel the leading-order weak error of the algorithm. The noise
statistics here are the same as for the EM1 method.

There are also variants of this algorithm that use linearized force information, such as
an algorithm due to Petersen and Ottinger (PO2).40%6 We also introduce here an ETD type
algorithm that is similar to the predictor corrector algorithms, but is instead based on a

Runge-Kutta approach.** This ETDRK?2 algorithm is defined by

R ‘ 1 — e—k)At 1 — e—2ek)aey /2
(k) — (k) = L é )

G+ (i) PR as)

é o—tAt _ 1, ) |
(k)Aéé?k)PAt : (ks i) — (ks [w])) (19)

W (k) — (k) =

The predictor step is an ETD1 step as described above, while the corrector step is based

on a trapezoidal Runge-Kutta approximation. Note that this algorithm is slightly different

10



than a predictor corrector ETD method described elsewhere. 4

The final type of algorithm we consider is an adaptive time-stepping (ADT) method for
CL simulations. This approach was introduced by Aarts and coworkers in the context of CL
sampling of quantum chromodynamics models.*” The first adaptive time-stepping algorithm
that we consider, EM1ADT, uses a simple Euler-Maruyama update scheme with a time step

that is updated between iterations according to

K —
2 (@ D 2
W) = wi(r) + Aty Gl ) + R o)

where At is the nominal time step and K is an adjustable parameter. Typically K is set to
be close to the average modulus of the force so that if a large force value is encountered, the
time step is reduced to allow for more accurate time integration. In contrast, if the forces
are small, then At is increased to allow for sampling more states. In all ADT calculations in
this work, the parameter K was computed by averaging the modulus of the force over the
first 1000 iterations, unless otherwise specified. No adaptive time-stepping is performed over
these initial calibration steps and the iteration proceeds with the nominal time step. One
can determine if the ADT method is well calibrated by plotting the time step to ensure it
fluctuates around the nominal value At. Operator values must also be weighted by the adap-
tive time step when computing averages and other statistics. The adaptive time-stepping
approach can easily be generalized to any other algorithm. A second ADT scheme that we

consider here is the EMPEC2ADT method, which layers adaptive time-stepping on top of

11



EMPEC2 updates:

K —

B = (Gl D) (22)
5(r) = w(r) + Aty G(r; [w)) + Ri(r) (23)
%

w () = w! (r) + —*(G(rs [@]) + G(r; [w'])) + R (r) (24)

2

It is important for both the EMIADT and EMPEC2ADT schemes that the variance of the
noise is adjusted with the time step: (R’(r)R*(r')) = 2At; 6,16(r — 1').

As a final note, there are other small changes to each algorithm that can be made. For
both SCFT and CL fictitious dynamics simulations, we include a positive, constant mobility
A as a coefficient to the force for each field and in the noise variance. These mobilities
affect the relative speed at which each field is updated. Additionally, when performing
SCFT calculations with first-order fictitious dynamics algorithms (EM1, SI1, ETD1), the
fields are not updated simultaneously but rather follow a staggered scheme where only one
field is updated per iteration and the stiffer w, pressure mode is updated first.?* For the
AB diblock model considered here, the staggered updates with the EM1 algorithm can be

described mathematically as,

W (1) = @l (1) + AL AL G (s [, w ]) (25)

w ™ (r) = w (7) + A\_AtG_(r; [l Wl ]) (26)

For CL calculations, all fields are always updated simultaneously, i.e.

Wi (r) = wl(r) + A\ At Gy (7, [0, w']) + R (v) (27)

w N (r) = w’ (r) + A\_AtG_ (v, [wl,w’]) + R (r) (28)

Including a mobility M. changes the variance of the noise to (R (1) R (1)) = 2L At 6,0 (r —

12



r’).

Software

All calculations involving Anderson mixing were computed using the publicly available PSCF
code developed at the University of Minnesota. ' Both the FORTRAN90 and C++ versions
of the code were tested, with quantitative agreement between the two. All data presented
in this work used the C++ version of the code. The FORTRANO90 version of the code was
pulled on February 2, 2020 (SHA1 67d107f3a6) and the C++ version was pulled on July 1,
2020 (SHA1 3ed5f6caac). All calculations involving fictitious dynamics or CL sampling were
performed using a UCSB-developed custom C-++ code.

All SCFT calculations were computed using a single thread on an Intel Xeon E5-2630
CPU. All CL simulations were executed on NVIDIA V100 GPUs. 8

Results

Self-Consistent Field Theory

We first evaluate the various algorithms in the context of SCFT. For each algorithm we
examine the stability properties and the ways its performance can be adjusted via numerical
parameters.

There is one adjustable parameter for the AM method: the history length, n,. Although
keeping a longer history length typically leads to faster convergence of field updates, it
also increases the computational cost of the calculation. This is both due to increased
memory requirements of storing the field history as well as the arithmetic operations required
to update the fields, which scale like O(n?M). Recall that to evaluate the force requires
O(NyM In(M)) operations, so if n? ~ N, In(M) then field updates can have comparable cost
to that of evaluating the force. For typical parameter values of Ny = 100 and M = 643

this crossover occurs at n, = 35. To combat this problem it is common practice when

13



performing field updates to map the fields from the original grid in real space with M
samples to a symmetry reduced space with M, samples, where M, < M.?%30 This leads to
a field update cost of n? M,. After conducting the field update, the fields are then mapped
back to the original grid to perform pseudospectral evaluations of the force. In the case of
the highly symmetric double gyroid phase, which has the space group Ia3d, a full grid of size
M = 643 is reduced to M, = 2761, corresponding to a factor of 95 reduction. In addition
to reducing the computational cost of a given field update step, using symmetry reduction
also decreases the dimension of the space that must be searched for the saddle-point, which
typically leads to faster convergence. A disadvantage to using symmetry reduction is that it
limits the overall set of structures that are possible to explore. Performing large-cell quenches

49-52

to discover phases, and to study defects, thin films, and other asymmetric structures is

not possible using techniques that impose the symmetry elements of a space group on the
fields.

We compare the number of iterations and the time it takes to converge a calculation to
a force tolerance of 1078 using the AM algorithm for a unit cell of the double gyroid phase
with and without symmetry reduction at f = 0.34 and x N = 30 in Figure 1. All calculations
were initialized from a converged SCFT calculation at y /N = 20 and f = 0.37 and were run
until a prescribed force cutoff of 1078 was achieved. When constructing a phase diagram, it
is common to use one point in phase space with a converged structure to initialize a nearby
point in phase space to accelerate the saddle-point search. As such, the change in both
xN and f between the seed fields and the converged fields is a representative test for the
algorithms.

The top panel of Figure 1 illustrates that increasing history length reduces the iterations
required to converge, nearly monotonically. This is expected because a longer history length
leads to a more efficient search towards the saddle-point. Additionally, the symmetrized cal-
culations (Ia3d) converge with fewer iterations than the calculations without symmetrization

(P1). In the bottom panel, the CPU time required to complete the calculation is plotted.

14



P -
250 4 [ ] la3d
® Pl
225
)
» 200 -
C
S
© 175 1
E150 ¢
e oo
125 - ° ®e0ee00000q0
100 o ®%¢00c0q00000000
1 1 1 1 1
0 20 40 60 80 100
Np
700 { ©® °
[ ] ...
°®
6001 @ o®
) °
°
c LA
5
€ 4004 o
°
300
©%00c000o%00g000°
1 1 1 1 1
0 20 40 60 80 100

Np

Figure 1: Convergence rate for AM method with and without symmetrization at xyN = 30.
P1 indicates that no symmetry reduction is used, whereas Ia3d uses the symmetry of the
double gyroid phase. The spatial discretization with no symmetry reduction was M = 643.
All calculations were performed using a single thread on an Intel Xeon E5-2630 CPU.
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For the symmetrized case, the run time nearly perfectly mirrors the iterations in the top
panel. This indicates that the increased computational cost of larger n;, is negligible in the
total cost of an iteration. For the P1 calculations, the conclusion is quite different. The
CPU time required decreases as ny, is increased from 5 to 20, but for n, > 25 the CPU time
increases with increasing n; despite the fact that the total number of field update iterations
is decreasing. This clearly indicates that the cost of a field update is no longer negligible
and is affecting the overall run time. The transition occurs close to the prior scaling-based
estimate of ny, = 35. This procedure was repeated at YN = 40 and yN = 60 with qualita-
tively the same conclusions. The only major difference occurred at y N = 60, where the P1
calculations would not converge for any value of n; attempted.

For the fictitious dynamics algorithms, the adjustable parameters are the time step At and
mobilities, A, and A_, used to update each field. Each field mobility can be set independently,
but only two out of the three time step and mobility parameters are independent because
they appear in the combinations A, At and A_At in all algorithms. For the SCFT studies
we therefore arbitrarily set At = 1 and vary the two mobilities. Because fictitious dynamics
algorithms have one more parameter compared to AM, the parameter space for fictitious
dynamics is larger and requires more work to optimize the performance. Some heuristics can
be constructed to help reduce the burden of this search, however. 3"

In analogy to the AM method, we evaluated the various time steppers over a range of
field mobility values. These data are presented in Figure 2. In all cases the calculations were
initialized from the same fields used in the AM studies and were run until the /; norm of the
forces on w, and w_ were both less than 1075.

Unlike the AM method, changing the parameters does not affect the arithmetic cost of
a field update step, so we only consider the number of iterations required to reach the force
cutoff. Figure 2 shows that the EM1 method is by far the least stable and only converges for
AL = A_ =1 out of the values attempted. The mobility values attempted here are relatively

aggressive and most algorithms will have larger stability windows at smaller mobility values.
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Figure 2: Iterations to convergence for time steppers at YN = 30. A\, is the time step for the
wy field and A_ is the time step for the w_ field. The number inside each square indicates
iterations to convergence. Black squares indicate that the calculation did not converge.
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The semi-implicit, first-order algorithms (SI1 and ETD1) perform much better than EM1 and
converge for nearly any A\, > A_. The fastest convergence from the values considered occurs
for A\, =50 and A_ = 20. Although not shown, increasing either mobility above these values
starts to destabilize the algorithm and leads to slower convergence. Finally, the second
order algorithms show an intermediate level of stability, but converge quite quickly with
optimal parameter selection. The EMPEC2 and PO2 algorithms perform best for A\, = A_,
while the ETDRK2 algorithm performs best with A, > A_. These three algorithms require
approximately half as many iterations as the SI1 and ETD1 algorithms, but each iteration
requires twice as many force evaluations, so it is unclear which is faster from these data
alone.

To further probe the question of which algorithm converges fastest, we examine the
absolute value of the error in the intensive Hamiltonian as a function of the number of force
evaluations. Comparing the different algorithms based on iterations to convergence can be
misleading because the second order algorithms require twice as many force evaluations per
iteration. It is also not reliable to compare run times from different software implementations
that were used for different algorithms. Many software design decisions such as single vs.
double precision arithmetic, numerical library selection, and hardware availability (CPU vs.
GPU) can outweigh the effect of algorithm choice. As such we use number of force evaluations
as the computational effort metric because, apart from the previously mentioned edge case
of non-symmetrized AM with long history length, evaluating the forces should typically be
the dominant computational burden and the number of times that this is required therefore
determines the overall run time.

Figure 3 shows the error in the intensive Hamiltonian versus the number of force eval-
uations conducted for the various algorithms at YN = 30. All calculations were run until
the change in the Hamiltonian between iterations was less than 1071°. The error was then
referenced to this final value of the Hamiltonian. For all algorithms we used the parameter

values that led to the lowest CPU time to convergence. For most applications an error of
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10~* to 107% in the Hamiltonian is sufficient to accurately compute phase boundaries. At
xN = 30, the EMPEC2 time stepper and both AM algorithms are all nearly equivalent. The
ETDRK2 algorithm is slightly slower, and is then followed by PO2, ETD1, and SI1. Finally
EMT1 is much slower to converge than any other algorithm. Increasing x /N to 40 or 60 leads
to some slight variations in the relative performance of the algorithms shown in Figure 4 and
Figure 5. For very high accuracy (tighter than 10~7) and strong segregation strengths, the
AM algorithm with symmetrization shows faster convergence than any of the time steppers
(Figure 5). The time steppers demonstrate a long tail of slow convergence at very high
accuracy for strong segregation. AM without symmetrization is not stable at YN = 60,

re-emphasizing the importance of symmetrization to the efficacy of the AM algorithm.
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Figure 3: Error in the per-chain intensive Hamiltonian in units of kg7 after a given number
of force evaluations. All calculations were conducted at yN = 30.

For all conditions tested, the EMPEC2 algorithm was fastest of all the time steppers,
despite being one of the most simple. All of the semi-implicit algorithms rely on a linear
response derived in the disordered phase. This linear response information is not a good
match for the true linear force in the ordered double gyroid phase being tested here, which
may limit or eliminate the benefit from the implicit part. The EMPEC2 algorithm on the
other hand obtains all information about force variation over a time interval numerically from

the predictor-corrector scheme and does not rely on approximate linear response information.
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Figure 4: Same as Figure 3 but at xN = 40.
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Figure 5: Same as Figure 3 but at YN = 60.
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Additionally, the second-order schemes nearly universally converge faster than the first-order
algorithms, despite having smaller stability windows. This may be attributed to the lower
time accuracy of the first-order schemes. Although in SCF'T we are concerned only with the
effort to find the saddle point and not with accurately reproducing a dynamical trajectory,
the time-step errors in the first-order methods can make the trajectory divert from the fastest
path to convergence. This can be seen in the oscillatory change in the Hamiltonian in Figures

3-5.

Field Theoretic Simulations

We now consider full FTS that are not limited by the mean field approximation of SCFT. As
previously stated, the most efficient way to conduct such simulations without approximation
is with the complex Langevin method. Unfortunately, there is no easy way to convert the
AM algorithm into one that can correctly sample fluctuations in an FTS, so we do not
consider it for the remainder of this work. The time steppers on the other hand can trivially
be extended to include fluctuations by including an additional noise term in the update. We
begin by evaluating the performance of the different algorithms in the disordered phase at
f =0.34, YN = 10 and C = 20 in a cubic box of size V = 93 Rg with M = 483. The
melt is also compressible with (/N = 100 and the polymer density has been smeared with a
range of a = 0.2 R;,. The mobilities are fixed at A = 2 and A\_ = 1. In FTS, the effective
Hamiltonian is not a physically relevant operator, so we instead consider the excess chemical
potential relative to the ideal gas of copolymer chains, the average of which is plotted in
Figure 6 for a range of time step sizes. The excess chemical potential operator is defined
as flex = —InQwy, w_] where [iex is in units of the thermal energy kgT. The physical

observable, jiey, is then computed according to

. [Dws [ Dw_jie exp(—Hlw,w_))
Hex = <MGX> - fDUH_ wa_ eXp(—H[w—f—a UJ_])

(29)
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where (...) indicates a thermodynamic ensemble average. Under the ergodic principle with

CL importance sampling, the ensemble average can be replaced with a CL time average.
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Figure 6: Average value of the chemical potential for the disordered phase at yN = 10,
f=0.34, and C = 20.

An ideal algorithm will be able to produce accurate values at large time steps in order
to reduce simulation times. At small At all algorithms show good agreement, but as At
is increased various algorithms start to show time-integration errors. For CL simulations
it is important to accurately reproduce the trajectory of the fictitious dynamics in order to
properly importance sample the system. The first-order methods (EM1, SI1, and ETD1)
have the worst accuracy scaling with At and show the strongest divergence from the true
value of pe as At increases. In particular the EM1 and SI1 algorithms perform worst,
while the ETD1 algorithm is nearly as accurate as the second order methods, which weakly
diverge from the true value of ue, with increasing At over the range of time steps tested.
In the Supporting Information we replot the data in Figure 6 as an error relative to a high
accuracy result and show that the expected first order scaling is obtained for the EM1, SI1
and ETD1 methods. Although perhaps less limiting than accuracy requirements for FTS,
another important aspect for an algorithm is its stability. The most stable algorithm will
be able to run at large At, which enables sampling more CL time for a given amount of

CPU time. This leads to tighter confidence intervals for estimates (via reduced statistical
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sampling error) for a given amount of resources.

In the disordered phase there is a clear maximum time step for each algorithm, above
which the simulation diverges in fewer than 100 iterations; these conditions are found where
the lines of Figure 6 terminate for large At. The most stable algorithms, i.e. the ones with
largest maximum At, are the semi-implicit algorithms SI1, ETD1, and ETDRK2 which have
Atpax = 0.5. The PO2 algorithm uses semi-implicit information in the corrector step but
relies on a fully explicit Euler step in the predictor, which confers it with worse stability
(Atmax = 0.1) compared to the other semi-implicit methods. Finally, the EM1 and EM-
PEC2 algorithms show the worst stability of the tested algorithms (Aty.x = 0.05), which
is unsurprising as they make no attempt to use semi-implicit information. Notably in this
disordered system, the linear response functions used to construct the semi-implicit algo-
rithms are accurate for weak fluctuations about the homogeneous state, which likely leads
to the much better performance of these algorithms compared to SCF'T of the double gyroid
phase. When considering both stability and accuracy, the ETD1 and ETDRK2 algorithms
perform best and produce comparable levels of error. The ETD1 algorithm requires half
as many force evaluations as the ETDRK2 algorithm, however, making it the most cost
efficient algorithm. The high accuracy and stability found for the ETD1 algorithm are in
agreement with similar studies of the Edwards homopolymer solution model*! and three and
four-species block polymer melts.

Repeating the same CL calculations at YN = 30 for the double gyroid phase yields
qualitatively similarly results, though the trends are not quite as clear. These data are
presented in Figure 7. At small At all algorithms converge to the same value. As At is
increased, the algorithms with first-order accuracy start to show significant errors while
second-order accurate algorithms remain close to the true value. Unlike in the disordered
phase, there is no clear maximum time step for each algorithm, however. Instead, as At
is increased, the algorithms become statistically more likely to follow divergent trajectories.

This can be quantified via a mean time to divergence, defined as the harmonic mean of the
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CL simulation time before a calculation diverges. Mathematically,

-1
_ 1 1
Taiv = (n—s Z waj) (30)
J=1 ’

where 74, ; is the divergence time for an individual trajectory and j indexes statistically

independent simulations of which there are ng. A simulation is terminated as divergent when
any individual field value is IEEE 754-defined +INF, -INF or NAN. The mean divergence

times were computed from ten independent trajectories and are plotted in Figure 8.
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Figure 7: Average value of the chemical potential for the double gyroid phase at yN = 30,
f=0.34, and C = 20.

All calculations were run for a maximum of two million iterations. The solid black line in
Figure 8 indicates the maximum CL time that could be achieved with two million iterations
at a given time step. For At < 0.005 all algorithms have a divergence time that lies on top
of the 7. curve, indicating that no calculations diverged for the entire CL time window.
At larger At various algorithms have 74, < Thax indicating that divergence became limiting
rather than the specified iteration cap. For At = 0.05 all algorithms except EM1ADT
have 74, < Tmee- In contrast to the simulations for the disordered phase, simulations of
a microphase separated system show no overall performance benefit from algorithms using

semi-implicit information over the Euler-based methods, which is similar to the behavior

24



10° 4

.....
ot
‘y,

10* - > s o

| ¥o-em1 -@-EmMPEC2 @ EMIADT
10°9 .@-si1 -m-PO2 @ EMPEC2ADT
.-¢--ETD1- 4 ETDRK2

1073 1072
At

Divergence time, Tgiy

Figure 8: Harmonic mean divergence time for the double gyroid phase at /N = 30, f = 0.34,
and C = 20.

for SCF'T of the double gyroid phase. Again this is presumably due to the fact that the
linear response functions used in the semi-implicit algorithms are not appropriate for the
double gyroid phase. The algorithms that perform best are the ones that use adaptive time
stepping. The EM1ADT algorithm never diverged over the range of time steps used in this
study, while the EMPEC2ADT algorithm only diverged for At = 0.05.

In the supporting information we explore in further detail what actually causes a CL
simulation to diverge. We conclude that even though the saddle-point is a local fixed point
of the CL dynamics, it is possible to fluctuate to a nearby trajectory that is analytically
divergent (non-bound). These divergent trajectories are not attractive, but cause the force
to grow exponentially, which can lead to poor time-integration accuracy and the emergence
of extremely large field values. It is also possible for trajectories to leave the basin of
attraction for the desired microphase and enter an attractive basin for another microphase
(i.e. free-energy barrier crossing) or an unphysical state. This topic is explored further in
the supporting information. If a very small time step is used on the periphery of the basin
near a divergent trajectory, then the algorithm can be significantly stabilized. The adaptive
time stepping algorithms do exactly this: when the force is large the time step is small.

The EMPEC2ADT algorithm is slightly less stable than the EM1ADT algorithm because
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EMPEC2ADT chooses the time step based on the current value of the force, but updates
the fields based on the current and future forces. When near a divergent trajectory this can
lead to reduced suppression of instabilities. Nevertheless the EMPEC2ADT algorithm has
much better accuracy compared to EM1IADT (see Figure 7), and may be a better choice
if stability is not limiting. As noted previously, it is possible to construct adaptive time-
stepped versions of the other algorithms, but the fixed-time-step semi-implicit algorithms do
not perform better than the Euler-based algorithms in the double gyroid phase, so we do
not expect the ADT versions to perform better either.

As a final study, we examine how the adaptive time stepping algorithms can be used to
run simulations in regions of parameter space that were previously inaccessible. We consider
the same diblock copolymer system, but now at y/N = 80 and (N = 200 and in a cubic box
size V = 12 R} with M = 64°. The time step is fixed at At = 0.01 and we examine algorithm
performance as the chain number density, C', is varied. As C decreases the relative strength
of fluctuations increases, leading to increased probability for divergence. The divergence
time is plotted in Figure 9. All calculations were initialized from the SCFT saddle-point
fields of the same double gyroid phase. This initialization choice causes a warm up period
for every trajectory, during which the fluctuations are slowly incorporated as the simulation
evolves. The warm up time for each algorithm is presented in Figure 10.

Figure 9 again shows that adaptive time-stepping is much more stable than fixed-time-
step approaches. Over all values of C' considered, the EM1ADT algorithm never diverged.
Although not shown, the algorithm is also stable below C' = 1, however the double gyroid
phase starts to become unstable relative to the disordered phase because of strong fluctua-
tions at small C. In contrast, the fixed-time-step algorithms (EM1 and EMPEC2) have a
decreasing divergence time with decreasing C'. As fluctuations become stronger at small C,
the fixed-time-step algorithms become susceptible to an instantaneous perturbation to the
fields which pushes the fields far away from the saddle-point, and can lead to a divergent

trajectory. The adaptive time steppers on the other hand can accurately integrate forward
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Figure 9: Harmonic mean divergence time for the double gyroid phase at y/N = 80 and
f=0.34.
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Figure 10: Mean warm up time for the double gyroid phase at y/N = 80 and f = 0.34.
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in time and prevent escape from the stable basin.

The problem of simulating small C' with fixed-time-step algorithms is further accentu-
ated by examining the warm up time in Figure 10. For all algorithms the warm up time
increases as C' decreases, indicating that fluctuations away from the saddle-point become
more important as C' is decreased. For C' < 2 the warm up time for the EM1 and EMPEC2
algorithms is approaching the divergence time for each algorithm. This makes it difficult
to collect any data because the simulation is likely to diverge by the time the system has
become thermalized. Such stability problems are not present with adaptive time stepping,
but the averaging time for the K parameter had to be increased to 50,000 iterations for

C <2

Conclusion

We examined a wide array of field update algorithms to perform polymer SCF'T calculations
and field theoretic simulations (FTS). These algorithms fall into two groups: Anderson-
mixing (AM) and fictitious dynamics. We show that AM and fictitious dynamics algorithms
perform similarly under physically relevant conditions for SCF'T, as long as the numerical
parameters have been tuned appropriately. The AM approach is advantaged in that it has
fewer numerical parameters compared to the fictitious dynamics algorithms, but the latter
methods are more robust when simulating systems with low spatial symmetry. We also
find that fictitious dynamics algorithms with second-order time accuracy can outperform
first-order methods despite doubled cost per time step.

For complex Langevin field theoretic simulations we observed that the exponential time-
differencing type algorithms outperform all others in disordered phases because of the avail-
ability of useful linear response information and their sophisticated use of this information.
In ordered mesophases, adaptive time stepping (ADT) is found to dramatically stabilizes

algorithms and is much more important than individual algorithm choice. The ADT algo-
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rithms also allow access to parameter spaces characteristic of strong fluctuations (e.g. low C')
that were previously intractable. These insights should aid future field theoretic simulations

of a wide variety of polymer models.
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