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Abstract

A wide range of field update algorithms for polymer self-consistent field theory

(SCFT) and field theoretic simulations (FTS) are analyzed. We provide the first direct

comparison between Anderson mixing (AM) and fictitious relaxational dynamics for

SCFT and find nearly equivalent performance when both schemes are properly tuned.

We also show that predictor-corrector algorithms are the most efficient among ficti-

tious dynamics approaches despite increased costs per step. For FTS adaptive time

stepping is found to dramatically improve algorithm stability for inhomogeneous sys-

tems and enable simulation at much lower chain length and density than was previously

achievable.

Introduction

Field theory has been a prominent tool in polymer physics for the last fifty years. Pioneering

work by Edwards, de Gennes, Leibler and many others used analytical approximations to
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understand critical phenomena,1 phase separation,2 and more.3,4 In the last thirty years

numerical treatment of field theories has become possible, which has allowed the relaxation

of approximations such as strong or weak segregation used in earlier work. Numerical solu-

tions of self-consistent field theory (SCFT), which is a mean-field approximation to the full

field theory, are now routine and have enabled simulation of full phase diagrams for broad

classes of block copolymers and polymer blends.5–8 It is also possible to conduct simulations

of the exact field theory without the mean-field approximation in so-called "Field Theoretic

Simulations" (FTS).7,9,10 FTS has enabled study of phenomena not accessible to SCFT, such

as fluctuation-corrected phase diagrams in neat and salt-doped diblock melts, 11–13 polyelec-

trolyte complexation,14–16 nematic ordering,17 ternary microemulsions,18–20 and novel "bricks

& mortar" emulsion phases.21

There are multiple equivalent formalisms that can be used to construct a field theory

for an assembly of polymers, but the most mature and numerically tractable is the so-called

Auxiliary Field (AF) framework, which decouples pairwise non-bonded interactions between

chain segments via a set of fields. There are then two primary tasks in evaluating an AF the-

ory: 1) computing the single-molecule partition functions with fixed field configurations; and

2) generating new realizations of the fields. For polymer models the first task is non-trivial

due to the correlations between different segments on the backbone. Previous authors have

written about how to evaluate single-polymer partition functions accurately and efficiently,

and we refer readers to those works.22–26 In this work we focus on the task of generating new

iterations of a field. In SCFT the goal is to identify saddle-point field configurations that

represent the most-probable state at equilibrium. Mathematically, the saddle-point nature

of this configuration can be stated as:

δH[w]

δw(r)

∣∣∣∣
w=w∗

= 0 (1)

Here H is the effective Hamiltonian of the field theory, w is an auxiliary field, and w∗ is the
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saddle-point configuration. The task of generating new fields then reduces to searching for

the saddle-point most quickly from a given initial guess. There are multiple approaches to

solving the SCFT saddle-point equations (eq 1). The first treats the task as a non-linear root-

finding problem and historically used quasi-Newton approaches to find the saddle-point. 27

More recently the task has been posed as a fixed-point problem, which has led to Anderson

mixing (AM) and other "Jacobian-free" approaches that require significantly less memory

than quasi-Newton type methods.28–31

An alternative approach involves a fictitious dynamics with the saddle-point configuration

as a fixed point. The dynamical system is then evolved in fictitious time until the fixed point

is reached. Mathematically this can be expressed as

∂w(r, t)

∂t
= −δH[w]

δw(r)
(2)

where H and w(r) are generally complex, corresponding to a gradient descent towards saddle

points in the complex plane. This approach allows the use of a wide variety of algorithms

developed for solving differential equations, a number of which are described in the Methods

section. Our first goal in this paper is to compare the various algorithms available for SCFT

to determine which algorithms perform best and under what conditions.

There is a significant amount of work in the literature comparing numerical methods for

SCFT, but these largely focus on algorithms for computing single-chain partition functions

and chain propagators. In particular, many debate the relative merits of spectral and pseu-

dospectral approximations.25,26,29,30,32 With few exceptions,33 the polymer SCFT community

has largely settled on using pseudospectral methods, which we adopt in this work. There are

few direct comparisons of different field-update methods, and those that do only consider

a small subset of algorithms.28,34 In this work we consider seven different algorithms for

conducting SCFT field updates and provide the first direct comparison of the AM algorithm

with fictitious dynamics algorithms. Additionally, we demonstrate how to calibrate each
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algorithm to obtain optimal performance and provide some heuristics for choosing numerical

parameters.

For a fully fluctuating FTS, the goal of generating new field iterations is quite different.

Instead of searching for saddle-point field configurations, the goal is to generate a sequence of

decorrelated field configurations that allow for importance sampling of average field operators

that describe physical properties of the system. Examples of important operators are the

chemical potential and pressure. Because field theories are usually complex-valued, the

averaging process can suffer from a "sign-problem" where a phase present in the complex

statistical weight that is extensive with system size produces wild oscillations and leads

to difficult averaging when attempting to use conventional methods such as Monte Carlo

sampling.

One approach to overcome the sign-problem is a partial-saddle-point approximation that

renders the Hamiltonian purely real, enabling traditional Monte Carlo and real Langevin sim-

ulations.18,35–38 This approach has been successful for studying fluctuations in AB-type poly-

mer systems, including microemulsions of diblock-homopolymer ternary blends and shifts in

the order-disorder transition.13,18–20 It is not clear how to extend the approach to multicom-

ponent and multispecies systems, however.

A more general approach to overcome the sign-problem is the complex Langevin (CL)

method, which has been used in single-component systems, binary, ternary and quarternary

mixtures.17,39 Because of its broader applicability, we focus solely on the CL method in this

work. For CL simulations, the sampling scheme follows the dynamical equation

∂w(r, t)

∂t
= −δH[w]

δw(r)
+ η(r, t) (3)

where η(r, t) is a real-valued Brownian random force. This equation is nearly identical to

eq 2, only differing by the addition of Brownian noise. However, eq 3 is not a conventional

"real" Langevin dynamics since H[w] is complex, leading to field trajectories w(r, t) that
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are not restricted to real values. Nonetheless, the similarities between eqns 2 and 3 imply

that SCFT algorithms relying on fictitious-time relaxation can be readily adapted to CL.

The complex Langevin approach also permits use of various algorithms from the stochastic

differential equation literature. Our second goal in this paper is to compare algorithms for

CL simulations and determine which perform best in terms of stability and efficiency.

There are multiple previous works that compared different algorithms for CL simula-

tions.26,39–41 Unfortunately, these works were limited to either a subset of algorithms, 26,40

models with no microphase self-assembly,41 or small parameter ranges.39 In this work we

consider eight different algorithms for CL simulations, including adaptive time steppers that

have not been used previously in polymer systems. We show that these adaptive time

steppers significantly improve stability in inhomogeneous systems, especially at strong seg-

regation and low polymer densities. These advances allow CL simulations at conditions that

were intractable with previous algorithms. Finally, we explain the mechanism by which

algorithms become unstable in CL and how adaptive time stepping avoids failure.

Theory

We use an AB diblock copolymer melt in the canonical ensemble as a test system for this

study. We treat the diblocks as continuous Gaussian chains with segment mass distributed

over a Gaussian packet42 to regularize the field theory, and include both A-B segmental

interactions and a Helfand compressibility penalty in the model. The model equations for
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this system are11

Z(n, V, T ) = Z0

∫
Dw+

∫
Dw− exp(−H[w+, w−]) (4)

H[w+, w−] =
C

χN

∫
dr (w−(r))2 +

C

χN + 2ζN

∫
dr (w+(r))2

− 2iCζN

χN + 2ζN

∫
drw+(r)− CV̄ ln(Q[w+, w−])

(5)

Q[w+, w−] =
1

V̄

∫
dr q(r, 1) (6)

q(r, 0) = 1 (7)

∂sq(r, s) = ∇2q(r, s)− w(r, s)q(r, s) (8)

w(r, s) =


Γ ∗ (iw+(r)− w−(r)) s ∈ (0, f ]

Γ ∗ (iw+(r) + w−(r)) s ∈ (f, 1]

(9)

Γ ∗ w(r) =
1

(2πa2)3/2

∫
dr′ exp

(
− 1

2a2
|r − r′|2

)
w(r′) (10)

Here χ is the Flory interaction parameter, ζ is the Helfand compressibility parameter, N

is the polymer contour length, f is the volume fraction of species A, C = nR3
g/V is the

dimensionless chain density, with n the number of polymers and V the volume of the box,

and Z0 is a reference partition function containing ideal-gas contributions and normalizing

denominators. Q[w+, w−] represents the partition function for a single polymer chain in-

teracting with the fields w+ and w− and is computed from the propagator q(r, s), which

represents the field-based random walk statistics of the polymer starting from a free end.

For all calculations we set f = 0.34 unless otherwise specified. In this model, the monomer

density has been smeared with a Gaussian kernel, Γ, with a range a. All lengths have been

non-dimensionalized in units of the unperturbed polymer radius of gyration Rg = b(N/6)1/2

and the contour variable s ∈ [0, 1] has been scaled by 1/N . All spatial integrals are over the

scaled volume V̄ = V/R3
g.

For SCFT calculations we assume that the melt is incompressible, ζN →∞, and that the
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density is unsmeared a = 0. The incompressible, unsmeared version of the model displays

pathological ultraviolet divergences that make the model undefined when conducting fully

fluctuating CL simulations.41,43 These pathologies can be removed by using finite values

for both ζN and a in CL simulations. Unless otherwise specified, we set ζN = 100 and

a = 0.2Rg for CL calculations. All calculations are conducted in a fixed-size cubic box with

periodic boundary conditions.

For SCFT calculations, the free energy is equal to the effective Hamiltonian, H, and must

be purely real valued. This implies that w+(r) must be purely imaginary at the saddle-point,

despite the fact that the functional integral is over real-valued functions. The argument of

the functional integral is analytic, which allows the path of integration to be deformed off

the real axis to include the purely imaginary saddle-point. 7 For fluctuating CL simulations

this is accomplished automatically via the complexification of the fields. Nevertheless, for

SCFT calculations it is convenient to absorb a factor of i into w+(r) and constrain the search

path to purely imaginary fields to render the effective Hamiltonian purely real throughout

the search space. Such a change of variables constitutes a so-called "Wick rotation".

Numerical methods

Pseudospectral numerical methods for computing the propagator, q(r, s), have been explored

elsewhere.22–26 Based on these results, for SCFT calculations we use the RQM4 algorithm

with a contour step of ∆s = 0.01.24 For CL calculations we use the RK2 algorithm with ∆s =

0.01.22,23 The overall evaluation of the force G(r; [w]) = −δH/δw(r) requires evaluating

both the forward and reverse propagators, and evaluating such objects has a computational

cost that scales like O(NsM ln(M)), where Ns = 1/∆s is the number of contour samples

along the polymer backbone, and M is the number of sample points in space. A single

field has M elements and typically requires O(M) operations to update, so for each field

configuration generated during the simulation, evaluating the force is significantly more
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expensive than updating the fields and usually represents the majority of computation time

in SCFT and FTS. Minimizing the number of field updates and force evaluations is thus

critical to reducing computation time. All SCFT calculations were conducted in a box of

size Lx = Ly = Lz = 9Rg with M = 643 sample points, while CL calculations used the same

size box with M = 483, unless otherwise specified.

For field-update schemes, we first briefly review the Anderson mixing algorithm. Ander-

son mixing is typically used for fixed-point-iteration type problems of the form w(r) = E(w(r)),

where E is a nonlinear function. The deviation of a particular value of w(r) is defined

by d(r) = E(w(r))− w(r). If one has already iterated through a number, nh, of fields

wi(r), wi−1(r), . . . , wi−nh
(r) then one can compute an optimized guess for the next iteration,

wi+1(r), by finding coefficients αi, . . . , αi−nh
that minimize

∫
dr
(∑i

j=i−nh
αjdj(r)

)2

sub-

ject to the constraint
∑i

j=i−nh
αj = 1. Determining these coefficients is a linear optimization

problem that requires at least O(n2
hM) operations. Details on efficient implementation of

the AM algorithm and initialization strategies can be found elsewhere. 28,29

The fictitious dynamics algorithms attempt to solve the partial differential equation

∂tw(r, t) = − δH

δw(r)
+ η(r, t) = G(r; [w]) + η(r, t) (11)

where for SCFT η = 0, and for CL η is the Brownian force. From here on we refer to

the deterministic term G(r; [w]) = −δH/δw(r) as the "force" on a field, w. The simplest

approximation to solve eq 11 is the Euler-Maruyama (EM1) approximation

wj+1(r)− wj(r) = ∆tG(r; [wj]) + Rj(r) (12)

Here the superscript j represents a discrete-time index and Rj is a random variable with zero

mean and variance 〈Rj(r)Rk(r′)〉 = 2∆t δjkδ(r − r′). We continue to use this definition for

Rj(r) when describing other algorithms, unless otherwise specified. Any noise distribution

with these first two moments can be used, however we exclusively use normally distributed
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noise in this work. Although simple to implement, the EM1 algorithm has poor stability

and accuracy compared to other algorithms.

Another class of algorithms splits the force into a linear and a non-linear contribution

− δH

δw(r)
= G(r; [w]) = −c ∗ w(r) + F (r; [w]) (13)

where c ∗ w is a convolution that represents the linear contribution to δH/δw(r) and F

represents all non-linear contributions. For polymer models it is typically most convenient

to express the kernel function c in Fourier space where it is diagonal and positive definite 34

and the linearized force convolution c ∗ w can be computed via simple multiplication. The

linearized force c ∗ w typically is derived from a linear response analysis about the transla-

tionally invariant disordered phase of the system and thus constitutes an approximation to

the true linear force that is only accurate for weak perturbations about the disordered state.

The explicit kernel functions for the diblock model considered in this work are given in the

Supporting Information.

After splitting the force into linear and non-linear parts, semi-implicit algorithms can be

devised in order to stabilize the algorithm. One such algorithm is a first order semi-implicit

scheme (SI1), which is defined by

wj+1(r)− wj(r) = ∆t
(
−c ∗ wj+1(r) + F (r; [wj])

)
+Rj(r) (14)

Another similar algorithm that uses linearized force information is the first-order exponential

time differencing ETD1 method,44,45 which is derived by using c as an integrating factor over

the time interval t→ t+ ∆t.

ŵj+1(k)− ŵj(k) =
1− e−ĉ(k)∆t

ĉ(k)
Ĝ(k; [wj]) +

(
1− e−2ĉ(k)∆t

2ĉ(k)∆t

)1/2

R̂j(k) (15)

here the equation has been transformed from real space, r, to Fourier space, k, with hats over

9



symbols indicating Fourier transforms ŵ(k) = Fr→k(w(r)). Note that the linear response

kernel ĉ(k) is a function of the magnitude of the Fourier mode k = |k|.

All of the fictitious dynamics algorithms discussed so far have first-order accuracy with

respect to time step. In the stochastic case with R 6= 0, this is first-order accuracy in the

weak sense. To achieve higher-order accuracy we employ predictor-corrector algorithms.

These algorithms perform an initial "predictor" time step, then use this predicted field to

more accurately evaluate the force over the time step interval for a subsequent improved

corrector step. These algorithms must evaluate the force two times per iteration, but have

second-order accuracy (in the weak sense) in fictitious time. The simplest of these is the

Euler-Maruyama predictor corrector (EMPEC2) method

w̄(r)− wj(r) = ∆tG(r; [wj]) + Rj(r) (16)

wj+1(r)− wj(r) =
∆t

2
(G(r; [wj]) +G(r; [w̄])) + Rj(r) (17)

It is important to use the same noise realization Rj(r) in both the predictor and corrector

steps in order to fully cancel the leading-order weak error of the algorithm. The noise

statistics here are the same as for the EM1 method.

There are also variants of this algorithm that use linearized force information, such as

an algorithm due to Petersen and Öttinger (PO2). 40,46 We also introduce here an ETD type

algorithm that is similar to the predictor corrector algorithms, but is instead based on a

Runge-Kutta approach.44 This ETDRK2 algorithm is defined by

ˆ̄w(k)− ŵj(k) =
1− e−ĉ(k)∆t

ĉ(k)
Ĝ(k; [wj]) +

(
1− e−2ĉ(k)∆t

2ĉ(k)∆t

)1/2

R̂j(k) (18)

ŵj+1(k)− ˆ̄w(k) =
ĉ(k)∆t+ e−ĉ(k)∆t − 1

(ĉ(k))2∆t

(
F̂ (k; [w̄])− F̂ (k; [wj])

)
(19)

The predictor step is an ETD1 step as described above, while the corrector step is based

on a trapezoidal Runge-Kutta approximation. Note that this algorithm is slightly different
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than a predictor corrector ETD method described elsewhere. 45

The final type of algorithm we consider is an adaptive time-stepping (ADT) method for

CL simulations. This approach was introduced by Aarts and coworkers in the context of CL

sampling of quantum chromodynamics models. 47 The first adaptive time-stepping algorithm

that we consider, EM1ADT, uses a simple Euler-Maruyama update scheme with a time step

that is updated between iterations according to

∆tj =
K

max(|G(r; [wj])|)
∆t (20)

wj+1(r) = wj(r) + ∆tj G(r; [wj]) + Rj(r) (21)

where ∆t is the nominal time step and K is an adjustable parameter. Typically K is set to

be close to the average modulus of the force so that if a large force value is encountered, the

time step is reduced to allow for more accurate time integration. In contrast, if the forces

are small, then ∆t is increased to allow for sampling more states. In all ADT calculations in

this work, the parameter K was computed by averaging the modulus of the force over the

first 1000 iterations, unless otherwise specified. No adaptive time-stepping is performed over

these initial calibration steps and the iteration proceeds with the nominal time step. One

can determine if the ADT method is well calibrated by plotting the time step to ensure it

fluctuates around the nominal value ∆t. Operator values must also be weighted by the adap-

tive time step when computing averages and other statistics. The adaptive time-stepping

approach can easily be generalized to any other algorithm. A second ADT scheme that we

consider here is the EMPEC2ADT method, which layers adaptive time-stepping on top of
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EMPEC2 updates:

∆tj =
K

max(|G(r; [wj])|)
∆t (22)

w̄(r) = wj(r) + ∆tj G(r; [wj]) + Rj(r) (23)

wj+1(r) = wj(r) +
∆tj
2

(G(r; [w̄]) +G(r; [wj])) + Rj(r) (24)

It is important for both the EM1ADT and EMPEC2ADT schemes that the variance of the

noise is adjusted with the time step: 〈Rj(r)Rk(r′)〉 = 2∆tj δjkδ(r − r′).

As a final note, there are other small changes to each algorithm that can be made. For

both SCFT and CL fictitious dynamics simulations, we include a positive, constant mobility

λ as a coefficient to the force for each field and in the noise variance. These mobilities

affect the relative speed at which each field is updated. Additionally, when performing

SCFT calculations with first-order fictitious dynamics algorithms (EM1, SI1, ETD1), the

fields are not updated simultaneously but rather follow a staggered scheme where only one

field is updated per iteration and the stiffer w+ pressure mode is updated first.34 For the

AB diblock model considered here, the staggered updates with the EM1 algorithm can be

described mathematically as,

wj+1
+ (r) = wj

+(r) + λ+∆tG+(r; [wj
+, w

j
−]) (25)

wj+1
− (r) = wj

−(r) + λ−∆tG−(r; [wj+1
+ , wj

−]) (26)

For CL calculations, all fields are always updated simultaneously, i.e.

wj+1
+ (r) = wj

+(r) + λ+∆tG+(r, [wj
+, w

j
−]) + Rj

+(r) (27)

wj+1
− (r) = wj

−(r) + λ−∆tG−(r, [wj
+, w

j
−]) + Rj

−(r) (28)

Including a mobility λ± changes the variance of the noise to 〈Rj
±(r)Rk

±(r′)〉 = 2λ±∆t δjkδ(r−
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r′).

Software

All calculations involving Anderson mixing were computed using the publicly available PSCF

code developed at the University of Minnesota.31 Both the FORTRAN90 and C++ versions

of the code were tested, with quantitative agreement between the two. All data presented

in this work used the C++ version of the code. The FORTRAN90 version of the code was

pulled on February 2, 2020 (SHA1 67d107f3a6) and the C++ version was pulled on July 1,

2020 (SHA1 3ed5f6caac). All calculations involving fictitious dynamics or CL sampling were

performed using a UCSB-developed custom C++ code.

All SCFT calculations were computed using a single thread on an Intel Xeon E5-2630

CPU. All CL simulations were executed on NVIDIA V100 GPUs. 48

Results

Self-Consistent Field Theory

We first evaluate the various algorithms in the context of SCFT. For each algorithm we

examine the stability properties and the ways its performance can be adjusted via numerical

parameters.

There is one adjustable parameter for the AM method: the history length, nh. Although

keeping a longer history length typically leads to faster convergence of field updates, it

also increases the computational cost of the calculation. This is both due to increased

memory requirements of storing the field history as well as the arithmetic operations required

to update the fields, which scale like O(n2
hM). Recall that to evaluate the force requires

O(NsM ln(M)) operations, so if n2
h ∼ Ns ln(M) then field updates can have comparable cost

to that of evaluating the force. For typical parameter values of Ns = 100 and M = 643

this crossover occurs at nh = 35. To combat this problem it is common practice when
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performing field updates to map the fields from the original grid in real space with M

samples to a symmetry reduced space with Mr samples, where Mr � M .29,30 This leads to

a field update cost of n2
hMr. After conducting the field update, the fields are then mapped

back to the original grid to perform pseudospectral evaluations of the force. In the case of

the highly symmetric double gyroid phase, which has the space group Ia3̄d, a full grid of size

M = 643 is reduced to Mr = 2761, corresponding to a factor of 95 reduction. In addition

to reducing the computational cost of a given field update step, using symmetry reduction

also decreases the dimension of the space that must be searched for the saddle-point, which

typically leads to faster convergence. A disadvantage to using symmetry reduction is that it

limits the overall set of structures that are possible to explore. Performing large-cell quenches

to discover phases,49–52 and to study defects, thin films, and other asymmetric structures is

not possible using techniques that impose the symmetry elements of a space group on the

fields.

We compare the number of iterations and the time it takes to converge a calculation to

a force tolerance of 10−8 using the AM algorithm for a unit cell of the double gyroid phase

with and without symmetry reduction at f = 0.34 and χN = 30 in Figure 1. All calculations

were initialized from a converged SCFT calculation at χN = 20 and f = 0.37 and were run

until a prescribed force cutoff of 10−8 was achieved. When constructing a phase diagram, it

is common to use one point in phase space with a converged structure to initialize a nearby

point in phase space to accelerate the saddle-point search. As such, the change in both

χN and f between the seed fields and the converged fields is a representative test for the

algorithms.

The top panel of Figure 1 illustrates that increasing history length reduces the iterations

required to converge, nearly monotonically. This is expected because a longer history length

leads to a more efficient search towards the saddle-point. Additionally, the symmetrized cal-

culations (Ia3̄d) converge with fewer iterations than the calculations without symmetrization

(P1). In the bottom panel, the CPU time required to complete the calculation is plotted.
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Figure 1: Convergence rate for AM method with and without symmetrization at χN = 30.
P1 indicates that no symmetry reduction is used, whereas Ia3̄d uses the symmetry of the
double gyroid phase. The spatial discretization with no symmetry reduction was M = 643.
All calculations were performed using a single thread on an Intel Xeon E5-2630 CPU.
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For the symmetrized case, the run time nearly perfectly mirrors the iterations in the top

panel. This indicates that the increased computational cost of larger nh is negligible in the

total cost of an iteration. For the P1 calculations, the conclusion is quite different. The

CPU time required decreases as nh is increased from 5 to 20, but for nh ≥ 25 the CPU time

increases with increasing nh despite the fact that the total number of field update iterations

is decreasing. This clearly indicates that the cost of a field update is no longer negligible

and is affecting the overall run time. The transition occurs close to the prior scaling-based

estimate of nh = 35. This procedure was repeated at χN = 40 and χN = 60 with qualita-

tively the same conclusions. The only major difference occurred at χN = 60, where the P1

calculations would not converge for any value of nh attempted.

For the fictitious dynamics algorithms, the adjustable parameters are the time step ∆t and

mobilities, λ+ and λ−, used to update each field. Each field mobility can be set independently,

but only two out of the three time step and mobility parameters are independent because

they appear in the combinations λ+∆t and λ−∆t in all algorithms. For the SCFT studies

we therefore arbitrarily set ∆t = 1 and vary the two mobilities. Because fictitious dynamics

algorithms have one more parameter compared to AM, the parameter space for fictitious

dynamics is larger and requires more work to optimize the performance. Some heuristics can

be constructed to help reduce the burden of this search, however. 39

In analogy to the AM method, we evaluated the various time steppers over a range of

field mobility values. These data are presented in Figure 2. In all cases the calculations were

initialized from the same fields used in the AM studies and were run until the l2 norm of the

forces on w+ and w− were both less than 10−8.

Unlike the AM method, changing the parameters does not affect the arithmetic cost of

a field update step, so we only consider the number of iterations required to reach the force

cutoff. Figure 2 shows that the EM1 method is by far the least stable and only converges for

λ+ = λ− = 1 out of the values attempted. The mobility values attempted here are relatively

aggressive and most algorithms will have larger stability windows at smaller mobility values.
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Figure 2: Iterations to convergence for time steppers at χN = 30. λ+ is the time step for the
w+ field and λ− is the time step for the w− field. The number inside each square indicates
iterations to convergence. Black squares indicate that the calculation did not converge.
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The semi-implicit, first-order algorithms (SI1 and ETD1) perform much better than EM1 and

converge for nearly any λ+ > λ−. The fastest convergence from the values considered occurs

for λ+ = 50 and λ− = 20. Although not shown, increasing either mobility above these values

starts to destabilize the algorithm and leads to slower convergence. Finally, the second

order algorithms show an intermediate level of stability, but converge quite quickly with

optimal parameter selection. The EMPEC2 and PO2 algorithms perform best for λ+ = λ−,

while the ETDRK2 algorithm performs best with λ+ > λ−. These three algorithms require

approximately half as many iterations as the SI1 and ETD1 algorithms, but each iteration

requires twice as many force evaluations, so it is unclear which is faster from these data

alone.

To further probe the question of which algorithm converges fastest, we examine the

absolute value of the error in the intensive Hamiltonian as a function of the number of force

evaluations. Comparing the different algorithms based on iterations to convergence can be

misleading because the second order algorithms require twice as many force evaluations per

iteration. It is also not reliable to compare run times from different software implementations

that were used for different algorithms. Many software design decisions such as single vs.

double precision arithmetic, numerical library selection, and hardware availability (CPU vs.

GPU) can outweigh the effect of algorithm choice. As such we use number of force evaluations

as the computational effort metric because, apart from the previously mentioned edge case

of non-symmetrized AM with long history length, evaluating the forces should typically be

the dominant computational burden and the number of times that this is required therefore

determines the overall run time.

Figure 3 shows the error in the intensive Hamiltonian versus the number of force eval-

uations conducted for the various algorithms at χN = 30. All calculations were run until

the change in the Hamiltonian between iterations was less than 10−10. The error was then

referenced to this final value of the Hamiltonian. For all algorithms we used the parameter

values that led to the lowest CPU time to convergence. For most applications an error of
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10−4 to 10−6 in the Hamiltonian is sufficient to accurately compute phase boundaries. At

χN = 30, the EMPEC2 time stepper and both AM algorithms are all nearly equivalent. The

ETDRK2 algorithm is slightly slower, and is then followed by PO2, ETD1, and SI1. Finally

EM1 is much slower to converge than any other algorithm. Increasing χN to 40 or 60 leads

to some slight variations in the relative performance of the algorithms shown in Figure 4 and

Figure 5. For very high accuracy (tighter than 10−7) and strong segregation strengths, the

AM algorithm with symmetrization shows faster convergence than any of the time steppers

(Figure 5). The time steppers demonstrate a long tail of slow convergence at very high

accuracy for strong segregation. AM without symmetrization is not stable at χN = 60,

re-emphasizing the importance of symmetrization to the efficacy of the AM algorithm.
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Figure 3: Error in the per-chain intensive Hamiltonian in units of kBT after a given number
of force evaluations. All calculations were conducted at χN = 30.

For all conditions tested, the EMPEC2 algorithm was fastest of all the time steppers,

despite being one of the most simple. All of the semi-implicit algorithms rely on a linear

response derived in the disordered phase. This linear response information is not a good

match for the true linear force in the ordered double gyroid phase being tested here, which

may limit or eliminate the benefit from the implicit part. The EMPEC2 algorithm on the

other hand obtains all information about force variation over a time interval numerically from

the predictor-corrector scheme and does not rely on approximate linear response information.
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Figure 4: Same as Figure 3 but at χN = 40.
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Figure 5: Same as Figure 3 but at χN = 60.
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Additionally, the second-order schemes nearly universally converge faster than the first-order

algorithms, despite having smaller stability windows. This may be attributed to the lower

time accuracy of the first-order schemes. Although in SCFT we are concerned only with the

effort to find the saddle point and not with accurately reproducing a dynamical trajectory,

the time-step errors in the first-order methods can make the trajectory divert from the fastest

path to convergence. This can be seen in the oscillatory change in the Hamiltonian in Figures

3–5.

Field Theoretic Simulations

We now consider full FTS that are not limited by the mean field approximation of SCFT. As

previously stated, the most efficient way to conduct such simulations without approximation

is with the complex Langevin method. Unfortunately, there is no easy way to convert the

AM algorithm into one that can correctly sample fluctuations in an FTS, so we do not

consider it for the remainder of this work. The time steppers on the other hand can trivially

be extended to include fluctuations by including an additional noise term in the update. We

begin by evaluating the performance of the different algorithms in the disordered phase at

f = 0.34, χN = 10 and C = 20 in a cubic box of size V = 93 R3
g with M = 483. The

melt is also compressible with ζN = 100 and the polymer density has been smeared with a

range of a = 0.2Rg. The mobilities are fixed at λ+ = 2 and λ− = 1. In FTS, the effective

Hamiltonian is not a physically relevant operator, so we instead consider the excess chemical

potential relative to the ideal gas of copolymer chains, the average of which is plotted in

Figure 6 for a range of time step sizes. The excess chemical potential operator is defined

as µ̃ex = − lnQ[w+, w−] where µ̃ex is in units of the thermal energy kBT . The physical

observable, µex, is then computed according to

µex = 〈µ̃ex〉 =

∫
Dw+

∫
Dw− µ̃ex exp(−H[w+, w−])∫

Dw+

∫
Dw− exp(−H[w+, w−])

(29)
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where 〈. . .〉 indicates a thermodynamic ensemble average. Under the ergodic principle with

CL importance sampling, the ensemble average can be replaced with a CL time average.
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Figure 6: Average value of the chemical potential for the disordered phase at χN = 10,
f = 0.34, and C = 20.

An ideal algorithm will be able to produce accurate values at large time steps in order

to reduce simulation times. At small ∆t all algorithms show good agreement, but as ∆t

is increased various algorithms start to show time-integration errors. For CL simulations

it is important to accurately reproduce the trajectory of the fictitious dynamics in order to

properly importance sample the system. The first-order methods (EM1, SI1, and ETD1)

have the worst accuracy scaling with ∆t and show the strongest divergence from the true

value of µex as ∆t increases. In particular the EM1 and SI1 algorithms perform worst,

while the ETD1 algorithm is nearly as accurate as the second order methods, which weakly

diverge from the true value of µex with increasing ∆t over the range of time steps tested.

In the Supporting Information we replot the data in Figure 6 as an error relative to a high

accuracy result and show that the expected first order scaling is obtained for the EM1, SI1

and ETD1 methods. Although perhaps less limiting than accuracy requirements for FTS,

another important aspect for an algorithm is its stability. The most stable algorithm will

be able to run at large ∆t, which enables sampling more CL time for a given amount of

CPU time. This leads to tighter confidence intervals for estimates (via reduced statistical
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sampling error) for a given amount of resources.

In the disordered phase there is a clear maximum time step for each algorithm, above

which the simulation diverges in fewer than 100 iterations; these conditions are found where

the lines of Figure 6 terminate for large ∆t. The most stable algorithms, i.e. the ones with

largest maximum ∆t, are the semi-implicit algorithms SI1, ETD1, and ETDRK2 which have

∆tmax = 0.5. The PO2 algorithm uses semi-implicit information in the corrector step but

relies on a fully explicit Euler step in the predictor, which confers it with worse stability

(∆tmax = 0.1) compared to the other semi-implicit methods. Finally, the EM1 and EM-

PEC2 algorithms show the worst stability of the tested algorithms (∆tmax = 0.05), which

is unsurprising as they make no attempt to use semi-implicit information. Notably in this

disordered system, the linear response functions used to construct the semi-implicit algo-

rithms are accurate for weak fluctuations about the homogeneous state, which likely leads

to the much better performance of these algorithms compared to SCFT of the double gyroid

phase. When considering both stability and accuracy, the ETD1 and ETDRK2 algorithms

perform best and produce comparable levels of error. The ETD1 algorithm requires half

as many force evaluations as the ETDRK2 algorithm, however, making it the most cost

efficient algorithm. The high accuracy and stability found for the ETD1 algorithm are in

agreement with similar studies of the Edwards homopolymer solution model 41 and three and

four-species block polymer melts.39

Repeating the same CL calculations at χN = 30 for the double gyroid phase yields

qualitatively similarly results, though the trends are not quite as clear. These data are

presented in Figure 7. At small ∆t all algorithms converge to the same value. As ∆t is

increased, the algorithms with first-order accuracy start to show significant errors while

second-order accurate algorithms remain close to the true value. Unlike in the disordered

phase, there is no clear maximum time step for each algorithm, however. Instead, as ∆t

is increased, the algorithms become statistically more likely to follow divergent trajectories.

This can be quantified via a mean time to divergence, defined as the harmonic mean of the
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CL simulation time before a calculation diverges. Mathematically,

τ̄div =

(
1

ns

ns∑
j=1

1

τdiv,j

)−1

(30)

where τdiv,j is the divergence time for an individual trajectory and j indexes statistically

independent simulations of which there are ns. A simulation is terminated as divergent when

any individual field value is IEEE 754-defined +INF, -INF or NAN. The mean divergence

times were computed from ten independent trajectories and are plotted in Figure 8.
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Figure 7: Average value of the chemical potential for the double gyroid phase at χN = 30,
f = 0.34, and C = 20.

All calculations were run for a maximum of two million iterations. The solid black line in

Figure 8 indicates the maximum CL time that could be achieved with two million iterations

at a given time step. For ∆t ≤ 0.005 all algorithms have a divergence time that lies on top

of the τmax curve, indicating that no calculations diverged for the entire CL time window.

At larger ∆t various algorithms have τdiv < τmax indicating that divergence became limiting

rather than the specified iteration cap. For ∆t = 0.05 all algorithms except EM1ADT

have τdiv � τmax. In contrast to the simulations for the disordered phase, simulations of

a microphase separated system show no overall performance benefit from algorithms using

semi-implicit information over the Euler-based methods, which is similar to the behavior
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Figure 8: Harmonic mean divergence time for the double gyroid phase at χN = 30, f = 0.34,
and C = 20.

for SCFT of the double gyroid phase. Again this is presumably due to the fact that the

linear response functions used in the semi-implicit algorithms are not appropriate for the

double gyroid phase. The algorithms that perform best are the ones that use adaptive time

stepping. The EM1ADT algorithm never diverged over the range of time steps used in this

study, while the EMPEC2ADT algorithm only diverged for ∆t = 0.05.

In the supporting information we explore in further detail what actually causes a CL

simulation to diverge. We conclude that even though the saddle-point is a local fixed point

of the CL dynamics, it is possible to fluctuate to a nearby trajectory that is analytically

divergent (non-bound). These divergent trajectories are not attractive, but cause the force

to grow exponentially, which can lead to poor time-integration accuracy and the emergence

of extremely large field values. It is also possible for trajectories to leave the basin of

attraction for the desired microphase and enter an attractive basin for another microphase

(i.e. free-energy barrier crossing) or an unphysical state. This topic is explored further in

the supporting information. If a very small time step is used on the periphery of the basin

near a divergent trajectory, then the algorithm can be significantly stabilized. The adaptive

time stepping algorithms do exactly this: when the force is large the time step is small.

The EMPEC2ADT algorithm is slightly less stable than the EM1ADT algorithm because
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EMPEC2ADT chooses the time step based on the current value of the force, but updates

the fields based on the current and future forces. When near a divergent trajectory this can

lead to reduced suppression of instabilities. Nevertheless the EMPEC2ADT algorithm has

much better accuracy compared to EM1ADT (see Figure 7), and may be a better choice

if stability is not limiting. As noted previously, it is possible to construct adaptive time-

stepped versions of the other algorithms, but the fixed-time-step semi-implicit algorithms do

not perform better than the Euler-based algorithms in the double gyroid phase, so we do

not expect the ADT versions to perform better either.

As a final study, we examine how the adaptive time stepping algorithms can be used to

run simulations in regions of parameter space that were previously inaccessible. We consider

the same diblock copolymer system, but now at χN = 80 and ζN = 200 and in a cubic box

size V = 12R3
g withM = 643. The time step is fixed at ∆t = 0.01 and we examine algorithm

performance as the chain number density, C, is varied. As C decreases the relative strength

of fluctuations increases, leading to increased probability for divergence. The divergence

time is plotted in Figure 9. All calculations were initialized from the SCFT saddle-point

fields of the same double gyroid phase. This initialization choice causes a warm up period

for every trajectory, during which the fluctuations are slowly incorporated as the simulation

evolves. The warm up time for each algorithm is presented in Figure 10.

Figure 9 again shows that adaptive time-stepping is much more stable than fixed-time-

step approaches. Over all values of C considered, the EM1ADT algorithm never diverged.

Although not shown, the algorithm is also stable below C = 1, however the double gyroid

phase starts to become unstable relative to the disordered phase because of strong fluctua-

tions at small C. In contrast, the fixed-time-step algorithms (EM1 and EMPEC2) have a

decreasing divergence time with decreasing C. As fluctuations become stronger at small C,

the fixed-time-step algorithms become susceptible to an instantaneous perturbation to the

fields which pushes the fields far away from the saddle-point, and can lead to a divergent

trajectory. The adaptive time steppers on the other hand can accurately integrate forward
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Figure 9: Harmonic mean divergence time for the double gyroid phase at χN = 80 and
f = 0.34.
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Figure 10: Mean warm up time for the double gyroid phase at χN = 80 and f = 0.34.
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in time and prevent escape from the stable basin.

The problem of simulating small C with fixed-time-step algorithms is further accentu-

ated by examining the warm up time in Figure 10. For all algorithms the warm up time

increases as C decreases, indicating that fluctuations away from the saddle-point become

more important as C is decreased. For C < 2 the warm up time for the EM1 and EMPEC2

algorithms is approaching the divergence time for each algorithm. This makes it difficult

to collect any data because the simulation is likely to diverge by the time the system has

become thermalized. Such stability problems are not present with adaptive time stepping,

but the averaging time for the K parameter had to be increased to 50,000 iterations for

C ≤ 2.

Conclusion

We examined a wide array of field update algorithms to perform polymer SCFT calculations

and field theoretic simulations (FTS). These algorithms fall into two groups: Anderson-

mixing (AM) and fictitious dynamics. We show that AM and fictitious dynamics algorithms

perform similarly under physically relevant conditions for SCFT, as long as the numerical

parameters have been tuned appropriately. The AM approach is advantaged in that it has

fewer numerical parameters compared to the fictitious dynamics algorithms, but the latter

methods are more robust when simulating systems with low spatial symmetry. We also

find that fictitious dynamics algorithms with second-order time accuracy can outperform

first-order methods despite doubled cost per time step.

For complex Langevin field theoretic simulations we observed that the exponential time-

differencing type algorithms outperform all others in disordered phases because of the avail-

ability of useful linear response information and their sophisticated use of this information.

In ordered mesophases, adaptive time stepping (ADT) is found to dramatically stabilizes

algorithms and is much more important than individual algorithm choice. The ADT algo-
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rithms also allow access to parameter spaces characteristic of strong fluctuations (e.g. low C)

that were previously intractable. These insights should aid future field theoretic simulations

of a wide variety of polymer models.
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