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Free energy evaluation in molecular simulations of both classical
and quantum systems is computationally intensive and requires so-
phisticated algorithms. This is because free energy depends on the
volume of accessible phase space, a quantity that is inextricably
linked to the integration measure in a coordinate representation of
a many-body problem. In contrast, the same problem expressed as
a field theory (auxiliary field or coherent states) isolates the particle
number as a simple parameter in the Hamiltonian or action functional
and enables the identification of a chemical potential field operator.
We show that this feature leads a new “direct” method of free energy
evaluation in which a particle model is converted to a field theory
and appropriate field operators averaged using a field-theoretic sim-
ulation conducted with complex Langevin sampling. These averages
provide an immediate estimate of the Helmholtz free energy in the
canonical ensemble and the entropy in the microcanonical ensemble.
The method is illustrated for a classical polymer solution, a block
copolymer melt exhibiting liquid crystalline and solid mesophases,
and a quantum fluid of interacting bosons.
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Free energy evaluation is notoriously difficult in molecular1

simulations, involving laborious procedures such as ther-2

modynamic integration, particle insertion, histogram reweight-3

ing, and acceptance ratios (1–4). Because free energy reflects4

the volume of accessible phase space in the ensemble of inter-5

est, there is no simple operator in coordinate representations6

of classical and quantum many-body systems that can be7

averaged to obtain a free energy. The closest such operator8

is the object averaged during Widom test particle insertion9

to estimate the chemical potential of a fluid (5). However,10

extensions of the Widom method to polymeric fluids show re-11

duced efficiency with increasing density and chain length (6–9),12

melts of high molecular weight polymers being a particularly13

challenging case. The celebrated Wang-Landau algorithm14

has significantly simplified free energy calculations based on15

Monte Carlo sampling for both classical (10, 11) and quantum16

systems (12). Nonetheless, free energy estimation by such flat17

histogram methods remains a multi-step procedure that relies18

on sophisticated algorithms and, in the quantum Monte Carlo19

case, high temperature or other perturbation expansions.20

Classical fluids. It is not broadly appreciated that the par-21

tition function for a classical fluid or polymer model with22

soft-core pair interactions can be exactly converted into a23

statistical field theory. This proceeds by separating attractive24

and repulsive non-bonded interactions and applying Hubbard-25

Stratonovich transforms (13, 14). Such field theories contain26

one or more auxiliary fields (AF) that serve to decouple the 27

non-bonded interactions in the system, facilitating a reduction 28

to a single-molecule statistical mechanics problem. As a simple 29

example, a monatomic fluid with interactions described by a 30

pair potential u(r) has a canonical partition function given 31

by (15) 32

33

34

Z(n, V, T ) = 1
n!λ3n

T

∫
d3nr exp

(
−β
∑
j<k

u(rjk)

)
[1] 35

where n is the number of atoms, β ≡ 1/(kBT ) the inverse of 36

the thermal energy, kB the Boltzmann constant, and λT the 37

thermal de Broglie wavelength. The sum in this expression is 38

over all pairs of atoms j, k, and rjk ≡ |rj − rk| is the distance 39

between the pair. The integral extends over all 3n coordinates 40

of the particles within the system volume V . For potentials 41

u(r) that are finite on contact and positive definite (purely 42

repulsive), Eq. 1 can be equivalently expressed as an AF-type 43

field theory of the form (14) 44

Z(n, V, T ) = Z0

∫
Dw exp (−H[w]) [2] 45

where Z0 contains the ideal-gas partition function and an 46

n-independent normalizing factor (see the Supplementary In- 47

formation Appendix, SI). The functional integral in this ex- 48

pression extends over all realizations of the real auxiliary field 49

w(r) with points r spanning the system volume. H[w] is a 50
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Hamiltonian functional given by51

H[w] = 1
2β

∫
V

d3r

∫
V

d3r′ w(r)u−1(|r− r′|)w(r′)− n lnQ[iw]

[3]52

with u−1(r) the functional inverse of the pair potential and53

Q[iw] ≡ (1/V )
∫
V
d3r exp[−iw(r)] the partition function of a54

single atom experiencing a purely imaginary potential iw(r),55

with i ≡
√
−1.56

Equations 1 and 2 are mathematically equivalent represen-57

tations of the same molecular model, but have dramatically58

different forms. The conventional coordinate representation59

of Eq. 1 has the particle number n intractably embedded in60

the integration measure, while n enters the field-theoretic rep-61

resentation Eq. 2 through the ideal gas term Z0 and as an62

explicit factor in the final contribution to H[w]. In the coordi-63

nate representation, it is not possible to evaluate the chemical64

potential by the thermodynamic expression µ = (∂A/∂n)V,T65

with A ≡ −kBT lnZ the Helmholtz free energy, so there is no66

simple chemical potential operator. In contrast, within the67

AF representation the same derivative yields68

βµ = βµ0 −
∫
Dw lnQ[iw] exp(−H[w])∫
Dw exp(−H[w])

≡ βµ0 − 〈lnQ[iw]〉

[4]69

where µ0 is the ideal gas chemical potential and 〈· · · 〉 denotes70

an ensemble average in the field theory. A “field operator”71

for the excess chemical potential µex is thus identified as72

µ̃ex[w] ≡ −kBT lnQ[iw], a functional whose ensemble average73

is µex. A similar field operator for the pressure, P̃ [w], is74

provided in Eq. S15 of the SI. It is derived by scaling the75

coordinate system to unit volume, forming the derivative76

P = −(∂A/∂V )n,T , and then restoring the original volume77

scaling (16, 17).78

This difference in analytic structure between coordinate79

and field representations of molecular models greatly simpli-80

fies free energy estimation in the latter. For example, in a81

fluid phase within the canonical ensemble, the excess Gibbs82

free energy can be calculated from Gex = n〈µ̃ex[w]〉, with83

the ensemble average approximated by a time average using84

field configurations sampled in a field-theoretic simulation.85

Similarly, the excess Helmholtz free energy is obtained from86

Aex = n〈µ̃ex[w]〉 − 〈P̃ex[w]〉V , involving both excess chemical87

potential and pressure field operators. Remarkably, these are88

direct operator averages that can be evaluated from data accu-89

mulated in a single simulation. Such operators have been used90

to conduct field-theoretic simulations of phase coexistence by91

matching pressures and chemical potentials (18) and via the92

Gibbs ensemble (19–21), but their utility in direct free energy93

evaluation has not been appreciated in the literature.94

The restriction to purely repulsive interactions in the95

monatomic fluid example is readily overcome since any pair96

potential u(r) that is finite at contact can be accurately de-97

composed into a sum of purely repulsive and purely attractive98

interactions using a basis set such as zero-centered Gaus-99

sians. Each successive term requires an additional auxiliary100

field to decouple the corresponding interaction (a real field101

for an attractive interaction and an imaginary field for a re-102

pulsion), but the structure of the field theory is otherwise103

unchanged. Long-ranged Coulomb interactions are similarly104

treated by introducing an auxiliary field wel(r) that can be105

interpreted as a fluctuating electrostatic potential (14, 18).106

The inverse Coulomb operator, corresponding to the first term 107

in Eq. 3, results in a quasi-local square-gradient contribution 108

to the Hamiltonian ∼ |∇wel|2. Thus, the problematic long- 109

range character of electrostatic interactions familiar in particle 110

simulations (1) is avoided in a field-theoretic representation. 111

While three-body (or higher-order) non-bonded potentials are 112

not easily accommodated in the AF framework, they can in 113

principle be included using a different coherent states (CS) 114

representation discussed below (22). 115

Beyond atomic fluids, particle-based models of classical 116

polymers are readily converted from coordinate to AF repre- 117

sentations. For a one-component melt with polymer segments 118

interacting via a purely repulsive non-bonded potential u(r), 119

the field-theoretic representation remains the same as Eqs. 2 120

and 3, but the functional Q[iw] is now the partition function 121

of a single polymer in the purely imaginary field iw(r). Since a 122

polymer is a one-dimensional chain of bonded segments, Q[iw] 123

can be efficiently computed for a prescribed field w(r) by a 124

transfer matrix approach (14). 125

Quantum fluids. Quantum many-body systems can also be 126

given either a coordinate or field-theoretic representation. For 127

a collection of n bosons in the canonical ensemble, the partition 128

function can be expressed in a coordinate basis as (23) 129

Z(n, V, T ) = 1
n!
∑
P

∫
dR

〈
R
∣∣exp(−βĤ)

∣∣PR〉 [5] 130

where R is a shorthand for the 3n particle coordinates in a 131

three-dimensional volume V , Ĥ is the Hamiltonian operator, 132

and the average over all n! permutations P of particle labels 133

with corresponding permutation operator P enforces Bose 134

statistics. In Feynman’s path integral framework (24), the 135

object exp(−τĤ) is viewed as a many-body evolution operator 136

in an “imaginary time” τ that is periodic with interval [0, β]. 137

The imaginary-time particle trajectories included in Eq. 5 138

are closed cycles, analogous to classical ring polymers, and 139

the terms in the permutation sum include primary cycles 140

formed by individual particles and larger linked cycles formed 141

by exchanging paths of two or more particles. The latter 142

contribute exchange interactions. By performing a Trotter- 143

Suzuki decomposition of the evolution operator (25), dividing 144

the imaginary time interval [0, β] into small increments, and 145

inserting complete sets of intermediate coordinate states, a 146

quantum theory is obtained that resembles a reactive ensemble 147

of classical ring polymers. This is the basis for a particle-based 148

simulation framework known as path integral Monte Carlo 149

(PIMC) (26, 27). As in the classical partition function of Eq. 1, 150

the n dependence in Eq. 5 cannot be isolated, so there is no 151

simple chemical potential operator. 152

There is also a well established route to expressing an equi- 153

librium quantum many-body system as a field theory. The 154

method involves re-framing the problem in second quantization 155

using a complete basis of abstract, single-particle occupation 156

number states in which Bose or Fermi statistics are embed- 157

ded (28). A subsequent Trotter-Suzuki decomposition of the 158

density matrix using linear combinations of the occupation 159

number states known as “coherent states” (CS) leads to an 160

imaginary time, path integral representation of the partition 161

function in field-theoretic form (29). For a fluid of particles 162

satisfying Bose statistics, the canonical partition function can 163
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S(ψ; [φ∗, φ]) = iψ n+
∫ β

0
dτ

∫
V

d3r φ∗(r, τ+) ∂
∂τ
φ(r, τ)

+
∫ β

0
dτ

∫
V

d3r φ∗(r, τ+)
[
−~2∇2

2m − iψ kBT
]
φ(r, τ)

+ 1
2

∫ β

0
dτ

∫
V

d3r

∫
V

d3r′ φ∗(r, τ+)φ∗(r′, τ+)u(|r− r′|)φ(r′, τ)φ(r, τ) [7]

be expressed as164

Z(n, V, T ) =
∫ ∞
−∞

dψ

∫
D(φ∗, φ) exp [−S(ψ; [φ∗, φ])] [6]165

where S is an action functional given by Eq. 7. In this ex-166

pression, φ and φ∗ are complex-valued CS fields in the four-167

dimensional space of position r and imaginary time τ and are168

complex conjugates. They satisfy periodic boundary condi-169

tions in τ with period β; periodic conditions on r are also used170

in the bulk simulations reported here. The measure D(φ∗, φ)171

implies a functional integration over the real and imaginary172

parts of these two fields. The real variable ψ is a Lagrange mul-173

tiplier to enforce a particle number of n, while m is the mass of174

a boson and u(r) is the pair interaction potential. Finally, the175

notation τ+ is a symbolic reminder that this expression relies176

on Itô stochastic calculus, so the φ∗ field must be advanced in177

τ relative to φ when discretizing the τ variable (29).178

As in the classical fluid case, the field-theoretic represen-179

tation of the quantum fluid model isolates the number of180

particles n as a simple multiplicative factor in the action func-181

tional of Eq. 7. Application of the thermodynamic formula182

µ = (∂A/∂n)V,T thus leads to βµ = 〈iψ〉, where the angle183

brackets represent an ensemble average over the ψ, φ, and184

φ∗ variables with the complex statistical weight exp(−S). It185

follows that a chemical potential field operator for the theory186

is µ̃(ψ; [φ∗, φ]) = kBT iψ, and the average of ψ must be a pure187

imaginary number. An expression for the pressure operator,188

P̃ (ψ; [φ∗, φ]), is derived by a procedure similar to the classical189

fluid case and is given in Eq. S30 of the SI.190

The classical and quantum field theory representations of191

Eqs. 2 and 6 provide immediate access to field operators that192

can be averaged to obtain Gibbs and Helmholtz free energies193

in the canonical ensemble, and by straightforward extension,194

the entropy in the microcanonical ensemble. Nonetheless,195

these representations come at a price: the Hamiltonian and196

action are complex-valued on the functional integration path.197

As a result, the field theories have a sign problem associated198

with non-positive-definite weights exp(−H) or exp(−S) that199

must be overcome when conducting numerical simulations. A200

versatile technique for circumventing this problem invokes a201

complex Langevin (CL) dynamics (30–32) that is the subject202

of the next section.203

Models and Methods204

Complex Langevin simulations. The CL method aims to de-205

velop a Markov chain of statistically important field config-206

urations by integrating stochastic differential equations in a207

fictitious time θ. For a classical AF-type field theory, a suitable208

CL scheme is given by 209

∂

∂θ
w(r, θ) = − δH[w]

δw(r, θ) + η(r, θ) [8] 210

where η(r, θ) is a real Gaussian white noise whose statisti- 211

cal properties are defined by the moments 〈η(r, θ)〉 = 0 and 212

〈η(r, θ)η(r′, θ′)〉 = 2δ(r − r′)δ(θ − θ′). Although the origi- 213

nal integration path in Eq. 2 is restricted to the real axis, 214

the Langevin dynamics of Eq. 8 explore complex-valued w 215

configurations near constant-phase paths that pass through 216

saddle points ws(r) of the model. These saddle points satisfy 217

δH/δw(r)|ws
= 0 and correspond to mean-field configurations. 218

Indeed, with η = 0, Eq. 8 is a gradient-descent scheme for find- 219

ing mean-field solutions (14). Access to mean-field solutions is 220

an important advantage of the field-theoretic representation 221

that we shall see also aids in free energy estimation. 222

If the stochastic dynamics of Eq. 8 produces a stationary 223

distribution of complex states in the basin of a physically 224

relevant saddle point, it can be proven that ensemble averages 225

of the field theory can be computed as fictitious time averages 226

along the stationary CL trajectory (33, 34). Thus, in a field- 227

theoretic simulation conducted with CL sampling (FTS-CL), 228

the average of a field operator G̃[w] is obtained from the 229

formula 〈G̃[w]〉 = (1/Nc)
∑Nc

l=1 G̃[wl]+O(N−1/2
c ), where wl(r) 230

are decorrelated states sampled at Nc discrete time points θl 231

along the trajectory. Individual G̃[wl] values are complex, 232

but the imaginary part of any physical field operator will 233

vanish upon sufficient averaging. Although convergence to a 234

steady state cannot be proved, we have found the FTS-CL 235

method to be robust for the classes of models considered here. 236

Nonetheless, failures of CL sampling have been documented 237

in the literature (35–38). In some cases, “failure” can be 238

attributed to the use of stochastic integration algorithms with 239

poor stability characteristics. A more legitimate failure mode 240

corresponds to a situation where a simulation remains stable, 241

yet either the imaginary parts of physical operators do not 242

average to zero or the highest Fourier modes of the fields fail to 243

converge to a stationary distribution irrespective of the length 244

of a simulation. Both are useful diagnostics of failure. We 245

have observed such behavior in a few cases of fluid or polymer 246

models with strong core repulsions. 247

A CL dynamics suitable for simulating the Bose fluid model 248

of Eq. 6 evolves the scalar ψ variable by a dynamics similar 249

to Eq. 8 and the φ and φ∗ fields by an off-diagonal stochastic 250

descent scheme (22, 39, 40), 251

∂

∂θ
ψ(θ) = −λ∂S(ψ; [φ∗, φ])

∂ψ(θ) + ηψ(θ) [9] 252
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253

∂

∂θ
φ(r, τ, θ) = −δS(ψ; [φ∗, φ])

δφ∗(r, τ, θ) + η(r, τ, θ)254

∂

∂θ
φ∗(r, τ, θ) = −δS(ψ; [φ∗, φ])

δφ(r, τ, θ) + η∗(r, τ, θ) [10]255

Here, λ > 0 is a real relaxation coefficient and ηψ is a256

real Gaussian noise with vanishing mean and second mo-257

ment 〈ηψ(θ)ηψ(θ′)〉 = 2λ δ(θ − θ′). The noise sources in258

Eq. 10 are complex conjugates that can be expressed as259

η = η1 + iη2 and η∗ = η1 − iη2, with η1 and η2 real, indepen-260

dent Gaussian noises. These have zero mean and covariance261

〈ηj(r, τ, θ)ηk(r′, τ ′, θ′)〉 = δj,kδ(r−r′)δ(τ−τ ′)δ(θ−θ′). While262

φ and φ∗ are complex conjugates on the integration path of263

Eq. 6, this conjugacy is broken in the complex CL trajectories264

generated by Eq. 10 and both fields become independently265

complex. Similarly, the integration path of ψ is real in Eq. 6,266

but Eq. 9 explores complex ψ values.267

Models. We illustrate the direct approach to free energy evalu-268

ation in the context of three models: a classical homopolymer269

solution, a melt of diblock copolymers, and the quantum Bose270

fluid model described by Eq. 6.271

The homopolymer solution model is an implicit solvent272

model used by Edwards in analytical studies of excluded vol-273

ume screening in polymer solutions (41, 42). We choose a non-274

bonded pair potential acting between polymer segments of the275

form u(r) = u0ϕ(r), where ϕ(r) = 1/(8π3/2a3) exp[−r2/(4a2)]276

is a repulsive Gaussian of range a normalized to have unit vol-277

ume integral. The excluded volume parameter u0 > 0 reflects278

the integrated potential strength and is the pseudo-potential279

coefficient in the contact interaction limit, u(r) → u0δ(r)280

for a → 0. The field-theoretic representation of Eqs. 2 and281

3 is applicable to the present model, but the single-chain282

partition function Q[iw] remains to be specified. This func-283

tional is normalized by the partition function of a free (ideal)284

chain, so Q[0] = 1. Here we adopt the continuous Gaus-285

sian chain model (14, 43), corresponding to the continuum286

limit of a harmonic bead-spring chain. The partition func-287

tion can be computed for a prescribed potential w(r) as288

Q[iw] = (1/V )
∫
V
d3r q(r, N ; [iw]), where N is the contour289

length of the polymer, q(r, s; [iw]) is a chain propagator satis-290

fying the modified diffusion equation291

∂

∂s
q(r, s; [iw]) =

[
b2

6 ∇
2 − iw(r)

]
q(r, s; [iw]) [11]292

and b is the statistical segment length. The propagator293

q(r, s; [iw]) represents the statistical weight for the end of294

a polymer chain of contour length s to be positioned at295

r. Equation 11 is solved subject to the “initial” condition296

q(r, 0; [iw]) = 1; i.e., a polymer of zero length is not influ-297

enced by the field iw(r). Similar schemes have been devised298

for computing Q[iw] for discrete bead-spring chain models299

with arbitrary bonded potentials (14). Finally, with lengths300

non-dimensionalized by the ideal chain radius-of-gyration301

Rg ≡ b(N/6)1/2, all intensive thermodynamic properties of the302

homopolymer solution model are a function of three dimen-303

sionless parameters: a chain concentration C ≡ nR3
g/V , an304

excluded volume strength B ≡ βu0N
2/R3

g, and a non-bonded305

interaction range α ≡ a/Rg.306

The diblock copolymer melt model also employs continuous 307

Gaussian chains, each chain consisting of an A block of Nf 308

segments and a B block of N(1− f) segments, f representing 309

the mole/volume fraction of type A segments. We adopt equal 310

statistical segment lengths bA = bB = b for the two blocks and 311

a non-bonded interaction of the form βu(r) = ζv0ϕ(r) between 312

all pairs of segments, where v0 is a reference segment volume, ζ 313

is a dimensionless parameter that controls the compressibility 314

of the melt, and ϕ(r) is the same normalized Gaussian of range 315

a used in the homopolymer model. Dissimilar pairs of A and 316

B segments are subject to an additional interaction of the form 317

βuAB(r) = χv0ϕ(r), where χ is the dimensionless Flory inter- 318

action parameter (44). The limiting case of ζ →∞, a→ 0 is 319

the standard incompressible block copolymer model with con- 320

tact interactions used in mean-field (self-consistent field theory, 321

SCFT) calculations of copolymer phase behavior (45). Beyond 322

SCFT, it is necessary to work with finite compressibility and 323

interaction range to avoid ultraviolet divergences (16, 17). 324

The canonical partition function of the diblock model can 325

be written in an AF form analogous to Eq. 2, but two fields 326

are required to decouple the non-bonded interactions: w+(r) 327

conjugate to the total segment density and w−(r) conjugate 328

to the difference of A and B segment densities. Both fields are 329

integrated along the real axis. The Hamiltonian functional is 330

given by 331

H[w±] = ρ0

2ζ + χ

∫
V

d3r

∫
V

d3r′ w+(r)ϕ−1(|r− r′|)w+(r′) 332

+ ρ0

χ

∫
V

d3r

∫
V

d3r′ w−(r)ϕ−1(|r− r′|)w−(r′) 333

− n lnQ[wA, wB ] [12] 334

where ρ0 = 1/v0 is a reference segment density. The single 335

copolymer partition function Q[wA, wB ] is again computed by 336

solving Eq. 11, but with iw replaced by wA ≡ iw+−w− for 0 ≤ 337

s < Nf and by wB ≡ iw+ +w− for Nf < s ≤ N (13, 14). The 338

parameter v0 should be viewed as a constant for the purpose 339

of taking n or V derivatives to obtain chemical potential or 340

pressure operators. However, a convenient value is the average 341

volume per segment v0 = V/(nN). With this choice, the 342

intensive thermodynamic properties of the diblock copolymer 343

model are dictated by five dimensionless parameters: the block 344

segregation strength χN , the A block fraction f , the chain 345

concentration C, the melt compressibility parameter ζN , and 346

the interaction range parameter α. 347

The Bose fluid model considered is described by Eqs. 6 348

and 7 with a pseudo-potential approximation for the pair 349

potential, u(r) = g δ(r). The contact interaction volume g is 350

related to the s-wave scattering length as by the expression 351

g = 4π~2as/m and can be tuned in cold atom experiments 352

by accessing Feshbach resonances (46). Convenient choices 353

of length and energy scales for the model are given by λr = 354

2mg/~2 and λE = (~2/2m)3/g2, respectively. All intensive 355

thermodynamic properties can thus be expressed in terms 356

of the dimensionless temperature and density variables T̄ ≡ 357

kBT/λE , ρ̄ ≡ nλ3
r/V . 358

Numerical methods. Field operations are conducted by spec- 359

tral collocation with a uniform grid and plane wave ba- 360

sis (14, 47), including the imaginary time τ coordinate of 361

the quantum theory. Periodic boundary conditions are im- 362

posed on the 3d simulation cell in space for the polymer models 363
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and on the 4d cell in space and imaginary time for the Bose364

model. Spatial derivatives and convolutions are evaluated365

spectrally using discrete Fourier transforms. The imaginary366

time derivative in Eq. 7 is approximated by a first-order finite367

difference formula consistent with the causal properties of the368

theory (29, 40). Equation 11 is solved by a second-order Strang369

operator splitting algorithm (48, 49), stepping forward in s370

from the initial condition at s = 0 to the chain end at s = N .371

The functional derivatives in the CL equations 8 and 10 are372

formed analytically and the resulting force operators evaluated373

numerically on the computational grid. Equation 8 is stepped374

in fictitious time using a exponential time-differencing algo-375

rithm with weak first-order accuracy and excellent stability376

(ETD1) (16, 17). The CL equations 10 for the CS fields are377

time-stepped using a similar ETD1 algorithm (40). Equa-378

tion 9 is integrated using an explicit Euler-Maruyama method379

of weak first-order accuracy (50).380

All FTS-CL simulations were conducted using a custom381

C++ code base optimized for GPU parallelism on NVIDIA382

hardware.383

Solid and liquid crystal mesophases. The direct method of384

free energy evaluation described in the introduction requires385

additional steps to relieve internal stress when simulating liq-386

uid crystalline or solid phases. Field-theoretic simulations are387

not applicable to atomistic models of molecular or polymer388

crystals because the harshly repulsive potentials in such models389

demand prohibitive levels of spatial resolution and CL sam-390

pling becomes difficult. However, surfactant molecules, liquid391

crystals, and block copolymers can form larger-scale periodic392

mesophases and be described by soft-core models for which393

field-theoretic simulation (FTS) is ideally suited (14). The394

diblock copolymer melt model considered here has six known395

ordered mesophases at the mean-field (SCFT) level: body-396

centered cubic spheres (BCC), face-centered cubic spheres397

(FCC), hexagonally-packed cylinders (HEX), lamellae (LAM),398

bicontinuous cubic double gyroid (GYR), and bicontinuous399

orthorhombic (O70) (51, 52). LAM and HEX are liquid-400

crystalline phases with at least one homogeneous direction in401

the unit cell; the remaining mesophases listed are solids.402

In the case of a liquid-crystalline mesophase, a prerequi-403

site to free energy evaluation is to relax the shape of the404

cell at fixed n and V until the average internal stress σ is405

isotropic and equal to −P I with I the unit tensor. This can406

be done manually (53), or automatically by an extension of407

the Parrinello-Ray-Rahman (PRR) framework (54, 55) to vari-408

able cell FTS (56). The necessary stress operator σ̃[w±] is409

derived by a procedure analogous to that for the pressure410

operator and is provided in Eq. S28 of the SI. The final cell411

shape dictates the equilibrium domain spacing of a LAM or412

HEX phase (53, 57). Not recognized in prior work, however,413

is that the Helmholtz free energy can be directly computed414

as an operator average in the equilibrium cell by the formula415

A = n〈µ̃[w±]〉 − 〈P̃ [w±]〉V .416

The case of a solid mesophase is more challenging. Relax-417

ation of cell shape at fixed n and V will yield a cell with a418

residual isotropic stress because n and/or V are incompati-419

ble with an integer number of equilibrium unit cells of the420

mesophase. Instead, we consider cell shape and size varia-421

tions of the intensive Helmholtz free energy at fixed chain422

concentration c = n/V . Specifically, we seek the equilibrium423

condition 424

∂[βA(n,h, T )/V ]
∂h

∣∣∣∣
c,T

= ∂[βAex(n,h, T )/V ]
∂h

∣∣∣∣
c,T

= 0 [13] 425

where h is the cell tensor defining the shape and volume, 426

V = det h, of a parallelepiped cell within the PRR frame- 427

work (54–56). The first equality follows because the ideal gas 428

contribution to βA/V is constant at fixed c. It is shown in 429

the SI that the requisite cell derivative can be written as 430

∂(βAex/V )
∂h

∣∣∣∣
c,T

hT = cβ〈µ̃ex(h; [w±])〉 I− (βAex/V ) I 431

+ β〈σ̃ex(h; [w±])〉 [14] 432

For a fluid or liquid crystal whose cell has been relaxed at fixed 433

volume to a state of isotropic stress, 〈σ̃ex(h; [w±])〉 = −PexI, 434

the right hand side of Eq. 14 vanishes if the excess free energy 435

is computed according to Aex = n〈µ̃ex[w±]〉 − 〈P̃ex[w±]〉V . 436

This validates our method of equilibrium domain spacing and 437

free energy determination in the two cases. 438

For a solid mesophase, a multistep procedure is required. 439

The first step is to find a cell configuration for which the 440

average internal stress 〈σ̃ex〉 is isotropic by relaxing in shape 441

at constant volume (56). The resulting “reference” shape hr is 442

unlikely to satisfy the equilibrium condition (Eq. 13) because 443

it will be improperly sized. We thus consider variations in cell 444

volume at fixed shape and chain concentration via h(s) = shr, 445

where s is a cell dilation/contraction parameter. Equation 14 446

then reduces to the linear differential equation 447

d

d ln sA(s) = F(s)−A(s) [15] 448

where A(s) ≡ βAex(s)/V is the free energy density in ex- 449

cess of the ideal gas and F(s) ≡ cβ〈µ̃ex(h(s); [w±])〉 − 450

β〈P̃ex(h(s); [w±])〉 is the linear combination of operator aver- 451

ages that coincides with the free energy density at the equi- 452

librium cell size s0, A(s0) = F(s0). Importantly, F(s) can 453

be computed at any s by an FTS-CL simulation. We thus 454

require a reference value of A in an isotropically-stressed cell 455

to integrate Eq. 15 and establish where A(s) crosses F(s). In 456

many cases the equilibrium cell size is well-approximated by 457

its mean-field (SCFT) value s0,SCFT , obtained as described in 458

Ref. (56). This enables a direct estimate of the equilibrium free 459

energy by means of A(s0) ≈ F(s0,SCFT ), the latter quantity 460

evaluated by a single FTS-CL simulation in the mean-field 461

cell. Alternatively, thermodynamic integration (17, 58) can be 462

used to obtain a reference value of A, e.g. A(s0,SCFT ), from 463

which Eq. 15 can be integrated to obtain a refined estimate of 464

s0 and A(s0). 465

Results 466

Our first example of direct free energy evaluation is for the 467

homopolymer solution model, which exhibits only a single 468

homogeneous fluid phase. Figure 1 reports the intensive free 469

energy in excess of the mean-field (SCFT) value, i.e. the fluc- 470

tuation contribution, across five decades of dimensionless chain 471

concentration C. A cubic cell of side length L = 6.4 Rg was 472

employed and the non-bonded interaction strength and range 473

were B = 2 and α = 0.2, respectively. The filled circles are the 474

result of the direct method, obtained by averaging chemical 475

potential and pressure operators at the indicated value of C. 476
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At one concentration we report the free energy obtained by477

thermodynamic integration (TI) from an Einstein crystal refer-478

ence, a method developed in the context of particle simulations479

of solids (59, 60) and subsequently extended to field-theoretic480

simulations (17, 58). In a third approach, we applied TI481

from an ideal gas reference, integrating the average chemi-482

cal potential according to Aex/n = C−1 ∫ C
0 dC′ 〈µ̃ex[w]〉C′,T .483

Gauss-Legendre quadrature was applied with 10 points across484

the [0, C] interval. It is seen that all three methods based on485

FTS-CL yield consistent values, although the direct method486

provides the highest accuracy at an order-of-magnitude lower487

computational cost. The solid curve in the figure is an ana-488

lytical reference obtained by expanding the Hamiltonian to489

quadratic order about the homogeneous saddle point and per-490

forming the resulting Gaussian functional integral (17). This491

“Gaussian approximation” is asymptotically exact for C →∞.492
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Fig. 1. Fluctuation contribution to the Helmholtz free energy per chain for the
homopolymer solution model as a function of dimensionless chain concentration
C = nR3

g/V . Three free energy estimation methods were employed based on
FTS-CL simulations: the direct method described here, thermodynamic integration of
the chemical potential from the ideal gas reference, and thermodynamic integration
from an Einstein crystal reference. The solid curve is a Gaussian approximation to
the partition function integral that is asymptotic at large C.

As a second example, we illustrate the cell optimization493

used to determine the equilibrium domain spacing D0 and494

free energy of a diblock copolymer melt in the lamellar (LAM)495

mesophase, an example of a liquid crystalline phase. If the496

phase is oriented with layer normals along the x axis, one can497

fix the lateral cell dimensions to a value L = hyy = hzz much498

greater than the correlation length and then sweep Lx = hxx at499

fixed chain concentration C until the averages of the diagonal500

stress elements all agree. This procedure is demonstrated in501

Fig. 2 for the AB diblock copolymer model with parameters502

χN = 20, f = 0.5, α = 0.2, and ζN = 100. Two periods of503

the stable lamellar phase were captured, oriented as described504

above. In panel (a), we see for the case of C = 10 that the505

three diagonal components of the average excess stress can506

be brought into agreement by adjusting Lx to approximately507

8.69 Rg. Panel (b) shows how the optimal (single period)508

domain spacing D0 obtained from this protocol using FTS-CL509

simulations varies with the dimensionless chain concentration510

C. As expected, D0 approaches the value predicted from 511

SCFT for C → ∞, a limit in which mean-field theory is 512

asymptotically exact (61). Nonetheless, for C > 4 we see that 513

D0 in a fluctuating system differs from the SCFT value by 514

less than 0.4%. Remarkably, once the cell tensor h has been 515

found that renders the stress isotropic, the free energy of the 516

mesophase can be obtained by a simple averaging of chemical 517

potential and pressure operators. 518
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Fig. 2. Panel (a): Example of varying the cell dimension along the interface normal,
Lx = hxx, of two periods of the lamellar phase of a symmetric diblock copolymer
while maintaining the chain concentration and cell dimensions hyy = hzz in the
transverse homogeneous directions constant. Under FTS-CL sampling, the average
of the three principal stress components can be brought into agreement, determining
the equilibrium cell size. Panel (b): The equilibrium FTS-CL domain spacing, D0,
approaches the SCFT prediction at large dimensionless chain concentrations C. The
solid curve is a fit of the form D0 − D0,SCFT ∼ C−1 to the simulation data. The
lateral cell size is Ly = Lz = 6.0Rg for all simulations.

Our third example of direct free energy evaluation is for 519

a solid diblock copolymer mesophase, the bicontinuous dou- 520

ble gyroid phase (GYR). At the value of dimensionless chain 521

concentration chosen, C = 7, the cubic equilibrium cell con- 522

figuration is well-approximated by the SCFT cell to better 523

than 0.1%, so we make the approximation s0 ≈ s0,SCFT and 524
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pre-compute the SCFT cell prior to estimating the free energy525

via the formula A(s0) ≈ F(s0,SCFT ) by an FTS-CL simula-526

tion. Results from this procedure are shown in Fig. 3, where527

the excess Helmholtz free energy per chain is reported for528

the GYR phase of the diblock copolymer melt model across529

a range of A-block fraction f . The model parameters are530

α = 0.25, χN = 16, ζN = 100, and C = 7. We observe531

quantitative agreement between free energy predictions from532

the direct method and a method based on thermodynamic533

integration from an Einstein crystal reference (17, 58), also534

using the SCFT cubic cell. A significant fluctuation correction535

to the SCFT free energy is found in this case. The direct536

method yields results that are not only more accurate than537

those obtained by TI, but each data point requires only a sin-538

gle FTS-CL simulation and operator average, whereas greater539

than ten of those operations were needed to obtain each TI540

data point.541
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Fig. 3. (Top) Free energy comparison between the direct method (blue circles) and
thermodynamic integration from an Einstein crystal reference (red triangles) in the
equilibrium SCFT cell for a melt of diblock copolymers in the cubic double gyroid
mesophase for various A-block fractions, f . The two methods are in quantitative
agreement on the magnitude of fluctuation corrections from the SCFT free energy
(green curve). (Bottom) 3D volumetric render of the A domain of the SCFT density for
a single conventional cubic cell of the GYR phase at f = 0.36.

As a final example of direct free energy evaluation, we542

consider the Bose fluid model of Eqs. 6 and 7. For an ideal543

gas (Fig. 4, top panel), the Helmholtz free energy per particle544

is computed by the direct method of CL-averaging chemical545

potential and pressure operators given in the SI. The results546
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Fig. 4. (Top) Helmholtz free energy per particle of an ideal gas of bosons as a function
of reduced temperature. Direct free energy calculations (blue circles) from complex
Langevin simulations match the exact ideal gas result of Eq. 16 (black line). The
CL simulations used 64 imaginary time samples and 16 spatial samples in each
direction, the particle density was fixed at n/V = 2.61 in units of λ−3

c , where λc

is the thermal de Broglie wavelength at Tc, and the simulation cell size was set to
2.7λc. (Bottom) For bosons with repulsive contact interactions, g > 0, the Helmholtz
free energy per particle computed with the direct method is compared to the internal
energy integrated over temperature using Eq. 17. The direct free energy estimate
at the lowest temperature is used as a reference to align the integrated energy. The
dimensionless particle density is ρ̄ = 4.5 × 10−4 and the simulation cell size is
fixed at 2.65λr . The action (Eq. 7) is discretized with 32 collocation mesh points in
each spatial direction and 64 imaginary time slices.
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are compared to an exact reference (28),547

βA

n
=

{
−
(
T
Tc

)3/2 ζ(5/2)
ζ(3/2) T < Tc BEC

−
(

Li5/2(z)
Li3/2(z) + ln z

)
T > Tc normal fluid

[16]548

where Lis(z) the polylogarithm function of order s, ζ(x) is549

the Riemann zeta function, z is the activity in the normal550

fluid equation of state Li3/2(z) = nλ3
T /V , and Tc is the critical551

temperature where a Bose-Einstein condensate (BEC) appears.552

For bosons with repulsive pair interactions, g > 0, an exact553

analytic reference is not available for the Helmholtz free energy.554

In this case, we use standard thermodynamic relations to555

compute a reference by integrating the temperature-dependent556

average internal energy,557

βA (T ) = βA (T0)− 1
kB

∫ T

T0

dT ′ (T ′)−2〈Ũ(T ′)〉 [17]558

where Ũ is an internal energy field operator whose form is559

given in Eq. S32 of the SI. In the bottom panel of Fig. 4,560

we use the lowest temperature as the reference T0, integrate561

the internal energy by first fitting a cubic spline between CL562

estimates of β〈Ũ〉/T , and use the direct method to determine563

βA (T0) for alignment of the integrated result to the same564

absolute reference. Again, excellent agreement is seen between565

free energies obtained by the direct method with reference566

values.567

Discussion568

We have presented a new “direct” approach to free energy eval-569

uation that relies on the existence of a chemical potential field570

operator for many-body problems expressed in the canonical or571

microcanonical ensemble and framed in a field-theoretic repre-572

sentation. The method represents the most efficient technique573

for free energy evaluation within field-theoretic simulations,574

and for soft-core models normally studied in a coordinate rep-575

resentation, provides a new venue for free energy estimation576

by analytical conversion of the model to a field theory.577

Beyond the ease and efficiency of free energy evaluation,578

field-theoretic simulations of classical systems have a number579

of advantages over traditional particle-based Monte Carlo and580

MD methods (1–3), including a computational cost that is581

nearly independent of density or polymer chain length (62),582

more straightforward and efficient treatment of long-range elec-583

trostatic interactions (18, 21, 63), and direct access to mean-584

field solutions for homogeneous and inhomogeneous systems585

that become increasingly accurate at high concentration (14).586

In spite of these advantages, there are a number of barriers587

preventing the wide scale adoption of field-theoretic represen-588

tations and simulation methods. An important limitation is589

that the techniques are relatively new and little open source590

software exists. The approach is also not suitable for atomic591

scale models with hard-core potentials. This restriction is not592

fatal, as methods such as variational coarse-graining (64) and593

relative entropy minimization (65) exist for mapping classical594

all-atom models to softer, coarse-grained models that are faith-595

ful to mesoscopic structure and thermodynamics. Moreover,596

soft-core models are a common starting point in soft matter597

simulations using tools such as dissipative particle dynamics598

(DPD) (66–68). Such models can be analytically converted to599

a field theory, allowing for efficient phase diagram construc- 600

tion via SCFT or FTS-CL (69), the latter utilizing the free 601

energy method presented here. Nonetheless, the extra step 602

of coarse-graining represents a barrier if the starting model is 603

atomistic. 604

For quantum many-body systems, the most significant lim- 605

itation is that the approach advocated here is inapplicable to 606

particles with Fermi statistics. The CS representation in this 607

case involves integrals over fields satisfying Grassmann algebra, 608

rather than conventional Riemann integrals in the Bose CS 609

case. While an AF representation is possible, the action is 610

plagued with branch point singularities associated with zeros 611

of the fermion determinant (29, 70), which defy CL sampling. 612

Fortunately, there are many interesting continuum and lattice 613

problems involving Bose statistics that can be tackled with 614

FTS-CL and the present free energy method, including some 615

with sign problems that do not succumb to existing quantum 616

Monte Carlo algorithms. 617

An important advantage of the present method is that it 618

enables a “pointwise” estimate of the free energy at specified 619

model parameters by averaging operators within a single sim- 620

ulation. Flat histogram approaches such as the Wang-Landau 621

method (10), its extension to quantum Monte Carlo (12), and 622

the closely related metadynamics (71) must perform a random 623

walk in some collective coordinate (e.g. energy) to converge 624

and gain statistics. The diffusive timescale (and hence com- 625

putational effort) of the latter methods grows approximately 626

as the square of both the coordinate range and the number 627

of particles (72). Conversely, the timescale to equilibrate a 628

field-theoretic simulation and obtain a pointwise free energy 629

estimate is independent of the particle number n (at constant 630

V ). Flat histogram algorithms are also complicated to im- 631

plement and to prove convergence, especially in the quantum 632

case. They have found limited utility in mapping liquid- 633

solid and solid-solid phase boundaries, notably surfactant and 634

polymer systems with multiple liquid crystalline and/or solid 635

mesophases. 636

The most compelling case for the field-theoretic approach 637

currently involves dense assemblies of long polymers, partic- 638

ularly charged polymers and self-assembling systems such as 639

block copolymers, but we expect similar examples to be found 640

in Bose quantum systems at high density and low temperature. 641
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