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Free energy evaluation in molecular simulations of both classical
and quantum systems is computationally intensive and requires so-
phisticated algorithms. This is because free energy depends on the
volume of accessible phase space, a quantity that is inextricably
linked to the integration measure in a coordinate representation of
a many-body problem. In contrast, the same problem expressed as
a field theory (auxiliary field or coherent states) isolates the particle
number as a simple parameter in the Hamiltonian or action functional
and enables the identification of a chemical potential field operator.
We show that this feature leads a new “direct” method of free energy
evaluation in which a particle model is converted to a field theory
and appropriate field operators averaged using a field-theoretic sim-
ulation conducted with complex Langevin sampling. These averages
provide an immediate estimate of the Helmholtz free energy in the
canonical ensemble and the entropy in the microcanonical ensemble.
The method is illustrated for a classical polymer solution, a block
copolymer melt exhibiting liquid crystalline and solid mesophases,
and a quantum fluid of interacting bosons.

molecular simulation | free energy | field theory | field-theoretic simula-

tion | polymers | quantum fluids | complex Langevin

F ree energy evaluation is notoriously difficult in molecular
simulations, involving laborious procedures such as ther-
modynamic integration, particle insertion, histogram reweight-
ing, and acceptance ratios (1-4). Because free energy reflects
the volume of accessible phase space in the ensemble of inter-
est, there is no simple operator in coordinate representations
of classical and quantum many-body systems that can be
averaged to obtain a free energy. The closest such operator
is the object averaged during Widom test particle insertion
to estimate the chemical potential of a fluid (5). However,
extensions of the Widom method to polymeric fluids show re-
duced efficiency with increasing density and chain length (6-9),
melts of high molecular weight polymers being a particularly
challenging case. The celebrated Wang-Landau algorithm
has significantly simplified free energy calculations based on
Monte Carlo sampling for both classical (10, 11) and quantum
systems (12). Nonetheless, free energy estimation by such flat
histogram methods remains a multi-step procedure that relies
on sophisticated algorithms and, in the quantum Monte Carlo
case, high temperature or other perturbation expansions.

Classical fluids. It is not broadly appreciated that the par-
tition function for a classical fluid or polymer model with
soft-core pair interactions can be exactly converted into a
statistical field theory. This proceeds by separating attractive
and repulsive non-bonded interactions and applying Hubbard-
Stratonovich transforms (13, 14). Such field theories contain

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

one or more auziliary fields (AF) that serve to decouple the
non-bonded interactions in the system, facilitating a reduction
to a single-molecule statistical mechanics problem. As a simple
example, a monatomic fluid with interactions described by a
pair potential u(r) has a canonical partition function given
by (15)

Z(n,V,T) =

Tl R ) o)

j<k

where n is the number of atoms, g = 1/(kgT) the inverse of
the thermal energy, kg the Boltzmann constant, and Ar the
thermal de Broglie wavelength. The sum in this expression is
over all pairs of atoms j, k, and 75 = |r; — rg| is the distance
between the pair. The integral extends over all 3n coordinates
of the particles within the system volume V. For potentials
u(r) that are finite on contact and positive definite (purely
repulsive), Eq. 1 can be equivalently expressed as an AF-type
field theory of the form (14)

Z(n,V,T) = Zo/Dw exp (—H[w]) 2]

where Zy contains the ideal-gas partition function and an
n-independent normalizing factor (see the Supplementary In-
formation Appendix, SI). The functional integral in this ex-
pression extends over all realizations of the real auxiliary field
w(r) with points r spanning the system volume. H[w] is a
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Hamiltonian functional given by

_ 1 3 Sr' w(r)u " (|r — ' Nw(r’) — nln Qliw
H[wpw/Vd /Vd (o) (- o/ (e 1@[[}
3

with uil(r) the functional inverse of the pair potential and
Qliw] = (1/V) fv d*r exp[—iw(r)] the partition function of a
single atom experiencing a purely imaginary potential iw(r),
with i = v/—1.

Equations 1 and 2 are mathematically equivalent represen-
tations of the same molecular model, but have dramatically
different forms. The conventional coordinate representation
of Eq. 1 has the particle number n intractably embedded in
the integration measure, while n enters the field-theoretic rep-
resentation Eq. 2 through the ideal gas term Z; and as an
explicit factor in the final contribution to H[w]. In the coordi-
nate representation, it is not possible to evaluate the chemical
potential by the thermodynamic expression pu = (0A/0n)v,r
with A = —kgT In Z the Helmholtz free energy, so there is no
simple chemical potential operator. In contrast, within the
AF representation the same derivative yields

wa In Q[iw] exp(—H[w])
| Dw exp(—H[w])

B = Buo — = Buo — (In Qiw])

i
where o is the ideal gas chemical potential and (- - -) denotes
an ensemble average in the field theory. A “field operator”
for the excess chemical potential pex is thus identified as
fiex[w] = —kBT In Q[iw], a functional whose ensemble average
iS ftex. A similar field operator for the pressure, P[w], is
provided in Eq. S15 of the SI. It is derived by scaling the
coordinate system to unit volume, forming the derivative
P = —(0A/0V)n,r, and then restoring the original volume
scaling (16, 17).

This difference in analytic structure between coordinate
and field representations of molecular models greatly simpli-
fies free energy estimation in the latter. For example, in a
fluid phase within the canonical ensemble, the excess Gibbs
free energy can be calculated from Gex = n{fiex[w]), with
the ensemble average approximated by a time average using
field configurations sampled in a field-theoretic simulation.
Similarly, the excess Helmholtz free energy is obtained from
Aex = n{fiex[w]) — (Pex[w])V, involving both excess chemical
potential and pressure field operators. Remarkably, these are
direct operator averages that can be evaluated from data accu-
mulated in a single simulation. Such operators have been used
to conduct field-theoretic simulations of phase coexistence by
matching pressures and chemical potentials (18) and via the
Gibbs ensemble (19-21), but their utility in direct free energy
evaluation has not been appreciated in the literature.

The restriction to purely repulsive interactions in the
monatomic fluid example is readily overcome since any pair
potential u(r) that is finite at contact can be accurately de-
composed into a sum of purely repulsive and purely attractive
interactions using a basis set such as zero-centered Gaus-
sians. Each successive term requires an additional auxiliary
field to decouple the corresponding interaction (a real field
for an attractive interaction and an imaginary field for a re-
pulsion), but the structure of the field theory is otherwise
unchanged. Long-ranged Coulomb interactions are similarly
treated by introducing an auxiliary field we;(r) that can be
interpreted as a fluctuating electrostatic potential (14, 18).

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

The inverse Coulomb operator, corresponding to the first term
in Eq. 3, results in a quasi-local square-gradient contribution
to the Hamiltonian ~ |Vwe;|?. Thus, the problematic long-
range character of electrostatic interactions familiar in particle
simulations (1) is avoided in a field-theoretic representation.
While three-body (or higher-order) non-bonded potentials are
not easily accommodated in the AF framework, they can in
principle be included using a different coherent states (CS)
representation discussed below (22).

Beyond atomic fluids, particle-based models of classical
polymers are readily converted from coordinate to AF repre-
sentations. For a one-component melt with polymer segments
interacting via a purely repulsive non-bonded potential u(r),
the field-theoretic representation remains the same as Eqgs. 2
and 3, but the functional Q[iw] is now the partition function
of a single polymer in the purely imaginary field iw(r). Since a
polymer is a one-dimensional chain of bonded segments, Q[iw]
can be efficiently computed for a prescribed field w(r) by a
transfer matrix approach (14).

Quantum fluids. Quantum many-body systems can also be
given either a coordinate or field-theoretic representation. For
a collection of n bosons in the canonical ensemble, the partition
function can be expressed in a coordinate basis as (23)

Z(n,V,T) = %Z/dR (R|exp(—BH)|PR) ]3]

where R is a shorthand for the 3n particle coordinates in a
three-dimensional volume V, H is the Hamiltonian operator,
and the average over all n! permutations P of particle labels
with corresponding permutation operator P enforces Bose
statistics. In Feynman’s path integral framework (24), the
object exp(—Tﬁ) is viewed as a many-body evolution operator
in an “imaginary time” 7 that is periodic with interval [0, 3].
The imaginary-time particle trajectories included in Eq. 5
are closed cycles, analogous to classical ring polymers, and
the terms in the permutation sum include primary cycles
formed by individual particles and larger linked cycles formed
by exchanging paths of two or more particles. The latter
contribute exchange interactions. By performing a Trotter-
Suzuki decomposition of the evolution operator (25), dividing
the imaginary time interval [0, 8] into small increments, and
inserting complete sets of intermediate coordinate states, a
quantum theory is obtained that resembles a reactive ensemble
of classical ring polymers. This is the basis for a particle-based
simulation framework known as path integral Monte Carlo
(PIMC) (26, 27). As in the classical partition function of Eq. 1,
the n dependence in Eq. 5 cannot be isolated, so there is no
simple chemical potential operator.

There is also a well established route to expressing an equi-
librium quantum many-body system as a field theory. The
method involves re-framing the problem in second quantization
using a complete basis of abstract, single-particle occupation
number states in which Bose or Fermi statistics are embed-
ded (28). A subsequent Trotter-Suzuki decomposition of the
density matrix using linear combinations of the occupation
number states known as “coherent states” (CS) leads to an
imaginary time, path integral representation of the partition
function in field-theoretic form (29). For a fluid of particles
satisfying Bose statistics, the canonical partition function can
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be expressed as
20,01 = [ av [ D670 el 0

where S is an action functional given by Eq. 7. In this ex-
pression, ¢ and ¢ are complex-valued CS fields in the four-
dimensional space of position r and imaginary time 7 and are
complex conjugates. They satisfy periodic boundary condi-
tions in 7 with period B; periodic conditions on r are also used
in the bulk simulations reported here. The measure D(¢*, ¢)
implies a functional integration over the real and imaginary
parts of these two fields. The real variable ¢ is a Lagrange mul-
tiplier to enforce a particle number of n, while m is the mass of
a boson and u(r) is the pair interaction potential. Finally, the
notation 74+ is a symbolic reminder that this expression relies
on Itd stochastic calculus, so the ¢* field must be advanced in
7 relative to ¢ when discretizing the 7 variable (29).

As in the classical fluid case, the field-theoretic represen-
tation of the quantum fluid model isolates the number of
particles n as a simple multiplicative factor in the action func-
tional of Eq. 7. Application of the thermodynamic formula
w = (0A/On)v,r thus leads to Su = (i), where the angle
brackets represent an ensemble average over the v, ¢, and
¢* variables with the complex statistical weight exp(—S). It
follows that a chemical potential field operator for the theory
is a(; [¢%, @]) = kBT i, and the average of 1) must be a pure
imaginary number. An expression for the pressure operator,
P(a;[¢*, ¢]), is derived by a procedure similar to the classical
fluid case and is given in Eq. S30 of the SI.

The classical and quantum field theory representations of
Egs. 2 and 6 provide immediate access to field operators that
can be averaged to obtain Gibbs and Helmholtz free energies
in the canonical ensemble, and by straightforward extension,
the entropy in the microcanonical ensemble. Nonetheless,
these representations come at a price: the Hamiltonian and
action are complex-valued on the functional integration path.
As a result, the field theories have a sign problem associated
with non-positive-definite weights exp(—H) or exp(—S) that
must be overcome when conducting numerical simulations. A
versatile technique for circumventing this problem invokes a
complex Langevin (CL) dynamics (30-32) that is the subject
of the next section.

Models and Methods

Complex Langevin simulations. The CL method aims to de-
velop a Markov chain of statistically important field config-
urations by integrating stochastic differential equations in a
fictitious time 6. For a classical AF-type field theory, a suitable
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CL scheme is given by

S.0) = 5o (e, 0) )

where 7(r,0) is a real Gaussian white noise whose statisti-
cal properties are defined by the moments (n(r,6)) = 0 and
{n(r,0)n(r’,0") = 26(r — r")6(0 — 0'). Although the origi-
nal integration path in Eq. 2 is restricted to the real axis,
the Langevin dynamics of Eq. 8 explore complex-valued w
configurations near constant-phase paths that pass through
saddle points ws(r) of the model. These saddle points satisfy
dH/éw(r)|,,. = 0and correspond to mean-field configurations.
Indeed, with n = 0, Eq. 8 is a gradient-descent scheme for find-
ing mean-field solutions (14). Access to mean-field solutions is
an important advantage of the field-theoretic representation
that we shall see also aids in free energy estimation.

If the stochastic dynamics of Eq. 8 produces a stationary
distribution of complex states in the basin of a physically
relevant saddle point, it can be proven that ensemble averages
of the field theory can be computed as fictitious time averages
along the stationary CL trajectory (33, 34). Thus, in a field-
theoretic simulation conducted with CL sampling (FTS-CL),
the average of a field operator G[w] is obtained from the
formula (Gw]) = (1/N.) IN:CI G~[wl]+O(Ngl/2), where w!(r)
are decorrelated states sampled at N, discrete time points 6"
along the trajectory. Individual G[wl] values are complex,
but the imaginary part of any physical field operator will
vanish upon sufficient averaging. Although convergence to a
steady state cannot be proved, we have found the FTS-CL
method to be robust for the classes of models considered here.
Nonetheless, failures of CL. sampling have been documented
in the literature (35-38). In some cases, “failure” can be
attributed to the use of stochastic integration algorithms with
poor stability characteristics. A more legitimate failure mode
corresponds to a situation where a simulation remains stable,
yet either the imaginary parts of physical operators do not
average to zero or the highest Fourier modes of the fields fail to
converge to a stationary distribution irrespective of the length
of a simulation. Both are useful diagnostics of failure. We
have observed such behavior in a few cases of fluid or polymer
models with strong core repulsions.

A CL dynamics suitable for simulating the Bose fluid model
of Eq. 6 evolves the scalar ¢ variable by a dynamics similar
to Eq. 8 and the ¢ and ¢ fields by an off-diagonal stochastic
descent scheme (22, 39, 40),

O o — 0S8, 9)
55(0) = AT s (6) o
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Here, A > 0 is a real relaxation coefficient and 7y is a
real Gaussian noise with vanishing mean and second mo-
ment (1, (0)ny(0")) = 21 §(0 — 0'). The noise sources in
Eq. 10 are complexr conjugates that can be expressed as
n=m +in2 and ¥ = n — ina, with m1 and 72 real, indepen-
dent Gaussian noises. These have zero mean and covariance
(e, 7,0 (x’,7',0")) = 8 k6(r —1")5(7 —7')5(0 —0"). While
¢ and ¢* are complex conjugates on the integration path of
Eq. 6, this conjugacy is broken in the complex CL trajectories
generated by Eq. 10 and both fields become independently
complex. Similarly, the integration path of v is real in Eq. 6,
but Eq. 9 explores complex 1 values.

Models. We illustrate the direct approach to free energy evalu-
ation in the context of three models: a classical homopolymer
solution, a melt of diblock copolymers, and the quantum Bose
fluid model described by Eq. 6.

The homopolymer solution model is an implicit solvent
model used by Edwards in analytical studies of excluded vol-
ume screening in polymer solutions (41, 42). We choose a non-
bonded pair potential acting between polymer segments of the
form u(r) = uop(r), where o(r) = 1/(87%/2a®) exp[—r?/(4a?)]
is a repulsive Gaussian of range a normalized to have unit vol-
ume integral. The excluded volume parameter ug > 0 reflects
the integrated potential strength and is the pseudo-potential
coefficient in the contact interaction limit, u(r) — wod(r)
for a — 0. The field-theoretic representation of Egs. 2 and
3 is applicable to the present model, but the single-chain
partition function Q[iw] remains to be specified. This func-
tional is normalized by the partition function of a free (ideal)
chain, so Q[0] = 1. Here we adopt the continuous Gaus-
sian chain model (14, 43), corresponding to the continuum
limit of a harmonic bead-spring chain. The partition func-
tion can be computed for a prescribed potential w(r) as
Qiw] = (1/V) fv d®r q(r, N;[iw]), where N is the contour
length of the polymer, ¢(r, s; [iw]) is a chain propagator satis-
fying the modified diffusion equation

aa(r,sifiw]) = {"Gv - mm] ale,siliv]) 1]

and b is the statistical segment length. The propagator
q(r, s; [iw]) represents the statistical weight for the end of
a polymer chain of contour length s to be positioned at
r. Equation 11 is solved subject to the “initial” condition
q(r,0; [tw]) = 1; i.e., a polymer of zero length is not influ-
enced by the field iw(r). Similar schemes have been devised
for computing Q[iw] for discrete bead-spring chain models
with arbitrary bonded potentials (14). Finally, with lengths
non-dimensionalized by the ideal chain radius-of-gyration
R, = b(N/6)*/2, all intensive thermodynamic properties of the
homopolymer solution model are a function of three dimen-
sionless parameters: a chain concentration C' = nRg /V, an
excluded volume strength B = fugN?/ R;, and a non-bonded
interaction range a = a/Ry.

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

The diblock copolymer melt model also employs continuous
Gaussian chains, each chain consisting of an A block of N f
segments and a B block of N(1 — f) segments, f representing
the mole/volume fraction of type A segments. We adopt equal
statistical segment lengths by = bp = b for the two blocks and
a non-bonded interaction of the form Su(r) = (vop(r) between
all pairs of segments, where vy is a reference segment volume, ¢
is a dimensionless parameter that controls the compressibility
of the melt, and ¢(r) is the same normalized Gaussian of range
a used in the homopolymer model. Dissimilar pairs of A and
B segments are subject to an additional interaction of the form
Buap(r) = xvop(r), where x is the dimensionless Flory inter-
action parameter (44). The limiting case of { — 00, a — 0 is
the standard incompressible block copolymer model with con-
tact interactions used in mean-field (self-consistent field theory,
SCFT) calculations of copolymer phase behavior (45). Beyond
SCFT, it is necessary to work with finite compressibility and
interaction range to avoid ultraviolet divergences (16, 17).

The canonical partition function of the diblock model can
be written in an AF form analogous to Eq. 2, but two fields
are required to decouple the non-bonded interactions: w (r)
conjugate to the total segment density and w—_(r) conjugate
to the difference of A and B segment densities. Both fields are
integrated along the real axis. The Hamiltonian functional is
given by

iiws] = o [t [ e et

/V i /V d*r w(r)e (e — P ()

nln Qwa,ws]

[12]

where po = 1/vg is a reference segment density. The single
copolymer partition function Q[wa,wg] is again computed by
solving Eq. 11, but with 4w replaced by wa = w4 —w_ for 0 <
s < Nfand by wp = iwy+w— for Nf < s < N (13, 14). The
parameter vo should be viewed as a constant for the purpose
of taking n or V derivatives to obtain chemical potential or
pressure operators. However, a convenient value is the average
volume per segment vo = V/(nN). With this choice, the
intensive thermodynamic properties of the diblock copolymer
model are dictated by five dimensionless parameters: the block
segregation strength yN, the A block fraction f, the chain
concentration C|, the melt compressibility parameter (N, and
the interaction range parameter a.

The Bose fluid model considered is described by Eqgs. 6
and 7 with a pseudo-potential approximation for the pair
potential, u(r) = g (r). The contact interaction volume g is
related to the s-wave scattering length as by the expression
g = 4rnli*as/m and can be tuned in cold atom experiments
by accessing Feshbach resonances (46). Convenient choices
of length and energy scales for the model are given by A, =
2mg/h? and A\g = (h*/2m)?/g?, respectively. All intensive
thermodynamic properties can thus be expressed in terms
of the dimensionless temperature and density variables T =
ksT/Ag, p=n)\2/V.

Numerical methods. Field operations are conducted by spec-
tral collocation with a uniform grid and plane wave ba-
sis (14, 47), including the imaginary time 7 coordinate of
the quantum theory. Periodic boundary conditions are im-
posed on the 3d simulation cell in space for the polymer models
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and on the 4d cell in space and imaginary time for the Bose
model. Spatial derivatives and convolutions are evaluated
spectrally using discrete Fourier transforms. The imaginary
time derivative in Eq. 7 is approximated by a first-order finite
difference formula consistent with the causal properties of the
theory (29, 40). Equation 11 is solved by a second-order Strang
operator splitting algorithm (48, 49), stepping forward in s
from the initial condition at s = 0 to the chain end at s = V.
The functional derivatives in the CL equations 8 and 10 are
formed analytically and the resulting force operators evaluated
numerically on the computational grid. Equation 8 is stepped
in fictitious time using a exponential time-differencing algo-
rithm with weak first-order accuracy and excellent stability
(ETD1) (16, 17). The CL equations 10 for the CS fields are
time-stepped using a similar ETD1 algorithm (40). Equa-
tion 9 is integrated using an explicit Euler-Maruyama method
of weak first-order accuracy (50).

All FTS-CL simulations were conducted using a custom
C++ code base optimized for GPU parallelism on NVIDIA
hardware.

Solid and liquid crystal mesophases. The direct method of
free energy evaluation described in the introduction requires
additional steps to relieve internal stress when simulating lig-
uid crystalline or solid phases. Field-theoretic simulations are
not applicable to atomistic models of molecular or polymer
crystals because the harshly repulsive potentials in such models
demand prohibitive levels of spatial resolution and CL sam-
pling becomes difficult. However, surfactant molecules, liquid
crystals, and block copolymers can form larger-scale periodic
mesophases and be described by soft-core models for which
field-theoretic simulation (FTS) is ideally suited (14). The
diblock copolymer melt model considered here has six known
ordered mesophases at the mean-field (SCFT) level: body-
centered cubic spheres (BCC), face-centered cubic spheres
(FCC), hexagonally-packed cylinders (HEX), lamellae (LAM),
bicontinuous cubic double gyroid (GYR), and bicontinuous
orthorhombic (O70) (51, 52). LAM and HEX are liquid-
crystalline phases with at least one homogeneous direction in
the unit cell; the remaining mesophases listed are solids.

In the case of a liquid-crystalline mesophase, a prerequi-
site to free energy evaluation is to relax the shape of the
cell at fixed n and V until the average internal stress o is
isotropic and equal to —PI with I the unit tensor. This can
be done manually (53), or automatically by an extension of
the Parrinello-Ray-Rahman (PRR) framework (54, 55) to vari-
able cell FTS (56). The necessary stress operator &[w+] is
derived by a procedure analogous to that for the pressure
operator and is provided in Eq. S28 of the SI. The final cell
shape dictates the equilibrium domain spacing of a LAM or
HEX phase (53, 57). Not recognized in prior work, however,
is that the Helmholtz free energy can be directly computed
as an operator average in the equilibrium cell by the formula
A= njifws]) — (Plws]))V.

The case of a solid mesophase is more challenging. Relax-
ation of cell shape at fixed n and V will yield a cell with a
residual isotropic stress because n and/or V are incompati-
ble with an integer number of equilibrium unit cells of the
mesophase. Instead, we consider cell shape and size varia-
tions of the intensive Helmholtz free energy at fixed chain
concentration ¢ = n/V. Specifically, we seek the equilibrium
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condition

O[BA(n,h,T)/V]
oh

_ 0[BAux(n,h,T)/V]
oh

c, T c, T

=0

[13]

where h is the cell tensor defining the shape and volume,
V = deth, of a parallelepiped cell within the PRR frame-
work (54-56). The first equality follows because the ideal gas
contribution to SA/V is constant at fixed c¢. It is shown in
the SI that the requisite cell derivative can be written as

O(BAx/V)

T —
oh h =

c, T

B {fex(b; [w])) T — (BAex/V) T

+  BlFex(h;[w]))

For a fluid or liquid crystal whose cell has been relaxed at fixed
volume to a state of isotropic stress, (Fex(h; [w+])) = —Pexl,
the right hand side of Eq. 14 vanishes if the excess free energy
is computed according to Aex = n{fiex[w+]) — (Pox[ws])V.
This validates our method of equilibrium domain spacing and
free energy determination in the two cases.

For a solid mesophase, a multistep procedure is required.
The first step is to find a cell configuration for which the
average internal stress (Gex) is isotropic by relaxing in shape
at constant volume (56). The resulting “reference” shape h, is
unlikely to satisfy the equilibrium condition (Eq. 13) because
it will be improperly sized. We thus consider variations in cell
volume at fized shape and chain concentration via h(s) = sh,,
where s is a cell dilation/contraction parameter. Equation 14
then reduces to the linear differential equation

d
dlns

where A(s) = BAex(s)/V is the free energy density in ex-
cess of the ideal gas and F(s) = cf(fiex(h(s);[w+])) —
B{Pex(h(s); [w+])) is the linear combination of operator aver-
ages that coincides with the free energy density at the equi-
librium cell size so, A(so) = F(so). Importantly, F(s) can
be computed at any s by an FTS-CL simulation. We thus
require a reference value of A in an isotropically-stressed cell
to integrate Eq. 15 and establish where A(s) crosses F(s). In
many cases the equilibrium cell size is well-approximated by
its mean-field (SCFT) value so,scrr, obtained as described in
Ref. (56). This enables a direct estimate of the equilibrium free
energy by means of A(so) =~ F(so,scrr), the latter quantity
evaluated by a single FTS-CL simulation in the mean-field
cell. Alternatively, thermodynamic integration (17, 58) can be
used to obtain a reference value of A, e.g. A(so,scrr), from
which Eq. 15 can be integrated to obtain a refined estimate of

S0 and A(So) .

[14]

A(s) = F(s) = Als) [15]

Results

Our first example of direct free energy evaluation is for the
homopolymer solution model, which exhibits only a single
homogeneous fluid phase. Figure 1 reports the intensive free
energy in excess of the mean-field (SCFT) value, i.e. the fluc-
tuation contribution, across five decades of dimensionless chain
concentration C. A cubic cell of side length L = 6.4 R, was
employed and the non-bonded interaction strength and range
were B = 2 and a = 0.2, respectively. The filled circles are the
result of the direct method, obtained by averaging chemical
potential and pressure operators at the indicated value of C.
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At one concentration we report the free energy obtained by
thermodynamic integration (TI) from an Einstein crystal refer-
ence, a method developed in the context of particle simulations
of solids (59, 60) and subsequently extended to field-theoretic
simulations (17, 58). In a third approach, we applied TI
from an ideal gas reference, integrating the average chemi-
cal potential according to Aex/n = C™* fOC dC" {fiex|[w])cr -
Gauss-Legendre quadrature was applied with 10 points across
the [0, C] interval. It is seen that all three methods based on
FTS-CL yield consistent values, although the direct method
provides the highest accuracy at an order-of-magnitude lower
computational cost. The solid curve in the figure is an ana-
lIytical reference obtained by expanding the Hamiltonian to
quadratic order about the homogeneous saddle point and per-
forming the resulting Gaussian functional integral (17). This
“Gaussian approximation” is asymptotically exact for C — co.

0.35
0'30.. 000 ...
2 o
i 0.25 1
B
=
% 0.20 1
=
I
Q (.15 4
Gaussian approximation
0.10 o CL TI y from ideal gas ~ll—
CL direct free energy =—@—
CL TT from Einstein crystal
0.05 T T T T 1
0.001 0.01 0.1 1 10 100
C
Fig. 1. Fluctuation contribution to the Helmholtz free energy per chain for the

homopolymer solution model as a function of dimensionless chain concentration
C = nR3/V. Three free energy estimation methods were employed based on
FTS-CL simulations: the direct method described here, thermodynamic integration of
the chemical potential from the ideal gas reference, and thermodynamic integration
from an Einstein crystal reference. The solid curve is a Gaussian approximation to
the partition function integral that is asymptotic at large C'.

As a second example, we illustrate the cell optimization
used to determine the equilibrium domain spacing Dy and
free energy of a diblock copolymer melt in the lamellar (LAM)
mesophase, an example of a liquid crystalline phase. If the
phase is oriented with layer normals along the x axis, one can
fix the lateral cell dimensions to a value L = hyy = h,. much
greater than the correlation length and then sweep L, = ha, at
fixed chain concentration C' until the averages of the diagonal
stress elements all agree. This procedure is demonstrated in
Fig. 2 for the AB diblock copolymer model with parameters
xN =20, f = 0.5, a = 0.2, and (N = 100. Two periods of
the stable lamellar phase were captured, oriented as described
above. In panel (a), we see for the case of C' = 10 that the
three diagonal components of the average excess stress can
be brought into agreement by adjusting L, to approximately
8.69 Ry. Panel (b) shows how the optimal (single period)
domain spacing Dy obtained from this protocol using FTS-CL
simulations varies with the dimensionless chain concentration

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

C. As expected, Dy approaches the value predicted from
SCFT for C — oo, a limit in which mean-field theory is
asymptotically exact (61). Nonetheless, for C' > 4 we see that
Dy in a fluctuating system differs from the SCFT value by
less than 0.4%. Remarkably, once the cell tensor h has been
found that renders the stress isotropic, the free energy of the
mesophase can be obtained by a simple averaging of chemical
potential and pressure operators.

-64.0

(a)

-64.5

-65.0

3
B Oex,ij Rg

-65.5

-66.0

—0—
—0—i

Oex,zx

Tex,yy

8.725

—66.5 L] T T
8.650 8.675 8.700

L,/ R,

8.750

4.365
CL O

(b)

4.360 1

4.355 1

4.350 1

4.345 1

Optimal D, (R,)

4.340 1

4.335 T T

10 100 1000

Fig. 2. Panel (a): Example of varying the cell dimension along the interface normal,
L, = hgzq, of two periods of the lamellar phase of a symmetric diblock copolymer
while maintaining the chain concentration and cell dimensions h,, = h.. inthe
transverse homogeneous directions constant. Under FTS-CL sampling, the average
of the three principal stress components can be brought into agreement, determining
the equilibrium cell size. Panel (b): The equilibrium FTS-CL domain spacing, Dy,
approaches the SCFT prediction at large dimensionless chain concentrations C. The
solid curve is a fit of the form Do — Dg scrr ~ C~! to the simulation data. The
lateral cell size is L, = L, = 6.0 R, for all simulations.

Our third example of direct free energy evaluation is for
a solid diblock copolymer mesophase, the bicontinuous dou-
ble gyroid phase (GYR). At the value of dimensionless chain
concentration chosen, C' = 7, the cubic equilibrium cell con-
figuration is well-approximated by the SCFT cell to better
than 0.1%, so we make the approximation sp ~ so,scrr and
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pre-compute the SCFT cell prior to estimating the free energy
via the formula A(so) =~ F(so,scrr) by an FTS-CL simula-
tion. Results from this procedure are shown in Fig. 3, where
the excess Helmholtz free energy per chain is reported for
the GYR phase of the diblock copolymer melt model across
a range of A-block fraction f. The model parameters are
a = 0.25, xN = 16, (N = 100, and C' = 7. We observe
quantitative agreement between free energy predictions from
the direct method and a method based on thermodynamic
integration from an Einstein crystal reference (17, 58), also
using the SCFT cubic cell. A significant fluctuation correction
to the SCFT free energy is found in this case. The direct
method yields results that are not only more accurate than
those obtained by TI, but each data point requires only a sin-
gle FTS-CL simulation and operator average, whereas greater
than ten of those operations were needed to obtain each TI
data point.

4.4 1

4.2 1

BAex/n

e -/_
SCFT ——

3.6 1 CL TI-EC +—A—
CL direct method —@—
0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45

f

5

Fig. 3. (Top) Free energy comparison between the direct method (blue circles) and
thermodynamic integration from an Einstein crystal reference (red triangles) in the
equilibrium SCFT cell for a melt of diblock copolymers in the cubic double gyroid
mesophase for various A-block fractions, f. The two methods are in quantitative
agreement on the magnitude of fluctuation corrections from the SCFT free energy
(green curve). (Bottom) 3D volumetric render of the A domain of the SCFT density for
a single conventional cubic cell of the GYR phase at f = 0.36.

As a final example of direct free energy evaluation, we
consider the Bose fluid model of Eqgs. 6 and 7. For an ideal
gas (Fig. 4, top panel), the Helmholtz free energy per particle
is computed by the direct method of CL-averaging chemical
potential and pressure operators given in the SI. The results
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Ideal Bose gas

0.0
Ideal gas exact m—
CL direct method

-0.5 1

-1.0 1

BA/n

-2.0 1

Bosons with contact repulsions

-0.4

Integrated internal energy =——

CL direct method ~—@—

-0.6 1
0.8 4
-1.0 1
1.2 4

1.4 4

BA/n

-1.6 1
-1.8 1
-2.0 1

-2.2 1

-2.4

0.06 0.08

Fig. 4. (Top) Helmholtz free energy per particle of an ideal gas of bosons as a function
of reduced temperature. Direct free energy calculations (blue circles) from complex
Langevin simulations match the exact ideal gas result of Eq. 16 (black line). The
CL simulations used 64 imaginary time samples and 16 spatial samples in each
direction, the particle density was fixed at n/V = 2.61 in units of )\6_3, where A,
is the thermal de Broglie wavelength at 7., and the simulation cell size was set to
2.7 .. (Bottom) For bosons with repulsive contact interactions, g > 0, the Helmholtz
free energy per particle computed with the direct method is compared to the internal
energy integrated over temperature using Eq. 17. The direct free energy estimate
at the lowest temperature is used as a reference to align the integrated energy. The
dimensionless particle density is p = 4.5 X 10~* and the simulation cell size is
fixed at 2.65 \,.. The action (Eq. 7) is discretized with 32 collocation mesh points in
each spatial direction and 64 imaginary time slices.
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are compared to an exact reference (28),

T\3/2 ¢((5/2)

A _ 7(??) a7 T <T. BEC

n — L?E’/Q(z) +Inz T > T, normal fluid
Liz /5 (2)

[16]
where Lis(z) the polylogarithm function of order s, {(x) is
the Riemann zeta function, z is the activity in the normal
fluid equation of state Liz»(2) = nA}/V, and T, is the critical
temperature where a Bose-Einstein condensate (BEC) appears.

For bosons with repulsive pair interactions, g > 0, an exact
analytic reference is not available for the Helmholtz free energy.
In this case, we use standard thermodynamic relations to
compute a reference by integrating the temperature-dependent
average internal energy,

BA(T) = BA(T) — L / ar () 2Oy

where U is an internal energy field operator whose form is
given in Eq. S32 of the SI. In the bottom panel of Fig. 4,
we use the lowest temperature as the reference Tp, integrate
the internal energy by first fitting a cubic spline between CL
estimates of S(U)/T, and use the direct method to determine
BA (Ty) for alignment of the integrated result to the same
absolute reference. Again, excellent agreement is seen between
free energies obtained by the direct method with reference
values.

Discussion

‘We have presented a new “direct” approach to free energy eval-
uation that relies on the existence of a chemical potential field
operator for many-body problems expressed in the canonical or
microcanonical ensemble and framed in a field-theoretic repre-
sentation. The method represents the most efficient technique
for free energy evaluation within field-theoretic simulations,
and for soft-core models normally studied in a coordinate rep-
resentation, provides a new venue for free energy estimation
by analytical conversion of the model to a field theory.
Beyond the ease and efficiency of free energy evaluation,
field-theoretic simulations of classical systems have a number
of advantages over traditional particle-based Monte Carlo and
MD methods (1-3), including a computational cost that is
nearly independent of density or polymer chain length (62),
more straightforward and efficient treatment of long-range elec-
trostatic interactions (18, 21, 63), and direct access to mean-
field solutions for homogeneous and inhomogeneous systems
that become increasingly accurate at high concentration (14).
In spite of these advantages, there are a number of barriers
preventing the wide scale adoption of field-theoretic represen-
tations and simulation methods. An important limitation is
that the techniques are relatively new and little open source
software exists. The approach is also not suitable for atomic
scale models with hard-core potentials. This restriction is not
fatal, as methods such as variational coarse-graining (64) and
relative entropy minimization (65) exist for mapping classical
all-atom models to softer, coarse-grained models that are faith-
ful to mesoscopic structure and thermodynamics. Moreover,
soft-core models are a common starting point in soft matter
simulations using tools such as dissipative particle dynamics
(DPD) (66-68). Such models can be analytically converted to

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

a field theory, allowing for efficient phase diagram construc-
tion via SCFT or FTS-CL (69), the latter utilizing the free
energy method presented here. Nonetheless, the extra step
of coarse-graining represents a barrier if the starting model is
atomistic.

For quantum many-body systems, the most significant lim-
itation is that the approach advocated here is inapplicable to
particles with Fermi statistics. The CS representation in this
case involves integrals over fields satisfying Grassmann algebra,
rather than conventional Riemann integrals in the Bose CS
case. While an AF representation is possible, the action is
plagued with branch point singularities associated with zeros
of the fermion determinant (29, 70), which defy CL sampling.
Fortunately, there are many interesting continuum and lattice
problems involving Bose statistics that can be tackled with
FTS-CL and the present free energy method, including some
with sign problems that do not succumb to existing quantum
Monte Carlo algorithms.

An important advantage of the present method is that it
enables a “pointwise” estimate of the free energy at specified
model parameters by averaging operators within a single sim-
ulation. Flat histogram approaches such as the Wang-Landau
method (10), its extension to quantum Monte Carlo (12), and
the closely related metadynamics (71) must perform a random
walk in some collective coordinate (e.g. energy) to converge
and gain statistics. The diffusive timescale (and hence com-
putational effort) of the latter methods grows approximately
as the square of both the coordinate range and the number
of particles (72). Conversely, the timescale to equilibrate a
field-theoretic simulation and obtain a pointwise free energy
estimate is independent of the particle number n (at constant
V). Flat histogram algorithms are also complicated to im-
plement and to prove convergence, especially in the quantum
case. They have found limited utility in mapping liquid-
solid and solid-solid phase boundaries, notably surfactant and
polymer systems with multiple liquid crystalline and/or solid
mesophases.

The most compelling case for the field-theoretic approach
currently involves dense assemblies of long polymers, partic-
ularly charged polymers and self-assembling systems such as
block copolymers, but we expect similar examples to be found
in Bose quantum systems at high density and low temperature.
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