

Direct Free Energy Evaluation of Classical and Quantum Many-Body Systems via Field-Theoretic Simulation

Glenn H. Fredrickson^{a,1} and Kris T. Delaney^b

^aDepartments of Chemical Engineering and Materials, Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, CA 93106; ^bMaterials Research Laboratory, University of California at Santa Barbara, Santa Barbara, CA 93106

This manuscript was compiled on July 5, 2022

**1 Free energy evaluation in molecular simulations of both classical
2 and quantum systems is computationally intensive and requires so-
3 phisticated algorithms. This is because free energy depends on the
4 volume of accessible phase space, a quantity that is inextricably
5 linked to the integration measure in a coordinate representation of
6 a many-body problem. In contrast, the same problem expressed as
7 a field theory (auxiliary field or coherent states) isolates the particle
8 number as a simple parameter in the Hamiltonian or action functional
9 and enables the identification of a chemical potential field operator.
10 We show that this feature leads a new “direct” method of free energy
11 evaluation in which a particle model is converted to a field theory
12 and appropriate field operators averaged using a field-theoretic sim-
13 ulation conducted with complex Langevin sampling. These averages
14 provide an immediate estimate of the Helmholtz free energy in the
15 canonical ensemble and the entropy in the microcanonical ensemble.
16 The method is illustrated for a classical polymer solution, a block
17 copolymer melt exhibiting liquid crystalline and solid mesophases,
18 and a quantum fluid of interacting bosons.**

molecular simulation | free energy | field theory | field-theoretic simulation | polymers | quantum fluids | complex Langevin

1 **F**ree energy evaluation is notoriously difficult in molecular
2 simulations, involving laborious procedures such as ther-
3 modynamic integration, particle insertion, histogram reweight-
4 ing, and acceptance ratios (1–4). Because free energy reflects
5 the volume of accessible phase space in the ensemble of interest,
6 there is no simple operator in coordinate representations of
7 classical and quantum many-body systems that can be
8 averaged to obtain a free energy. The closest such operator
9 is the object averaged during Widom test particle insertion
10 to estimate the chemical potential of a fluid (5). However,
11 extensions of the Widom method to polymeric fluids show re-
12 duced efficiency with increasing density and chain length (6–9),
13 melts of high molecular weight polymers being a particularly
14 challenging case. The celebrated Wang-Landau algorithm
15 has significantly simplified free energy calculations based on
16 Monte Carlo sampling for both classical (10, 11) and quantum
17 systems (12). Nonetheless, free energy estimation by such flat
18 histogram methods remains a multi-step procedure that relies
19 on sophisticated algorithms and, in the quantum Monte Carlo
20 case, high temperature or other perturbation expansions.

21 Classical fluids. It is not broadly appreciated that the par-
22 tition function for a classical fluid or polymer model with
23 soft-core pair interactions can be exactly converted into a
24 statistical field theory. This proceeds by separating attractive
25 and repulsive non-bonded interactions and applying Hubbard-
Stratonovich transforms (13, 14). Such field theories contain

one or more *auxiliary fields* (AF) that serve to decouple the
27 non-bonded interactions in the system, facilitating a reduction
28 to a single-molecule statistical mechanics problem. As a simple
29 example, a monatomic fluid with interactions described by a
30 pair potential $u(r)$ has a canonical partition function given
31 by (15)

$$\mathcal{Z}(n, V, T) = \frac{1}{n! \lambda_T^{3n}} \int d^{3n}r \exp \left(-\beta \sum_{j < k} u(r_{jk}) \right) \quad [1]$$

where n is the number of atoms, $\beta \equiv 1/(k_B T)$ the inverse of
36 the thermal energy, k_B the Boltzmann constant, and λ_T the
37 thermal de Broglie wavelength. The sum in this expression is
38 over all pairs of atoms j, k , and $r_{jk} \equiv |\mathbf{r}_j - \mathbf{r}_k|$ is the distance
39 between the pair. The integral extends over all $3n$ coordinates
40 of the particles within the system volume V . For potentials
41 $u(r)$ that are finite on contact and positive definite (purely
42 repulsive), Eq. 1 can be equivalently expressed as an AF-type
43 field theory of the form (14)

$$\mathcal{Z}(n, V, T) = \mathcal{Z}_0 \int \mathcal{D}w \exp(-H[w]) \quad [2]$$

where \mathcal{Z}_0 contains the ideal-gas partition function and an
46 n -independent normalizing factor (see the Supplementary In-
47 formation Appendix, SI). The functional integral in this ex-
48 pression extends over all realizations of the real auxiliary field
49 $w(\mathbf{r})$ with points \mathbf{r} spanning the system volume. $H[w]$ is a
50

Significance Statement

The accurate evaluation of free energies within molecular simulations is important to many scientific fields including fluid and solid phase equilibria, biomolecular condensates, and quantum phase transitions, among others. Unfortunately, free energy estimation is tedious and computationally expensive for molecular models whose degrees of freedom are expressed in particle coordinates. We show that alternative representations of a model as a classical or quantum field theory provide access to a chemical potential operator that can be averaged to yield a direct and low-cost estimate of the Gibbs free energy. The averaging is performed using a “field-theoretic” computer simulation that employs fluctuating fields rather than particles.

G.H.F. and K.T.D. jointly conceived this work and G.H.F. prepared the manuscript. K.T.D. wrote the software, implemented the algorithms described, and produced the figures.

The authors declare no competing interests.

¹To whom correspondence should be addressed. E-mail: ghf@ucsb.edu, kdelaney@mrl.ucsb.edu

51 Hamiltonian functional given by

$$H[w] = \frac{1}{2\beta} \int_V d^3r \int_V d^3r' w(\mathbf{r}) u^{-1}(|\mathbf{r} - \mathbf{r}'|) w(\mathbf{r}') - n \ln Q[iw] \quad [3]$$

52 with $u^{-1}(r)$ the functional inverse of the pair potential and
 53 $Q[iw] \equiv (1/V) \int_V d^3r \exp[-iw(\mathbf{r})]$ the partition function of a
 54 *single atom* experiencing a purely imaginary potential $iw(\mathbf{r})$,
 55 with $i \equiv \sqrt{-1}$.

56 Equations 1 and 2 are mathematically equivalent representations
 57 of the same molecular model, but have dramatically different forms. The conventional coordinate representation
 58 of Eq. 1 has the particle number n intractably embedded in
 59 the integration measure, while n enters the field-theoretic representation Eq. 2 through the ideal gas term \mathcal{Z}_0 and as an
 60 explicit factor in the final contribution to $H[w]$. In the coordinate representation, it is not possible to evaluate the chemical
 61 potential by the thermodynamic expression $\mu = (\partial A / \partial n)_{V,T}$ with $A \equiv -k_B T \ln \mathcal{Z}$ the Helmholtz free energy, so there is no
 62 simple chemical potential operator. In contrast, within the AF representation the same derivative yields

$$\beta\mu = \beta\mu_0 - \frac{\int \mathcal{D}w \ln Q[iw] \exp(-H[w])}{\int \mathcal{D}w \exp(-H[w])} \equiv \beta\mu_0 - \langle \ln Q[iw] \rangle \quad [4]$$

63 where μ_0 is the ideal gas chemical potential and $\langle \dots \rangle$ denotes
 64 an ensemble average in the field theory. A “field operator”
 65 for the excess chemical potential μ_{ex} is thus identified as
 66 $\tilde{\mu}_{\text{ex}}[w] \equiv -k_B T \ln Q[iw]$, a functional whose ensemble average
 67 is μ_{ex} . A similar field operator for the pressure, $\tilde{P}[w]$, is
 68 provided in Eq. S15 of the SI. It is derived by scaling the
 69 coordinate system to unit volume, forming the derivative
 70 $P = -(\partial A / \partial V)_{n,T}$, and then restoring the original volume
 71 scaling (16, 17).

72 This difference in analytic structure between coordinate
 73 and field representations of molecular models greatly simplifies
 74 free energy estimation in the latter. For example, in a fluid phase
 75 within the canonical ensemble, the excess Gibbs free energy can be calculated from $G_{\text{ex}} = n\langle\tilde{\mu}_{\text{ex}}[w]\rangle$, with
 76 the ensemble average approximated by a time average using
 77 field configurations sampled in a field-theoretic simulation.
 78 Similarly, the excess Helmholtz free energy is obtained from
 79 $A_{\text{ex}} = n\langle\tilde{\mu}_{\text{ex}}[w]\rangle - \langle\tilde{P}_{\text{ex}}[w]\rangle V$, involving both excess chemical
 80 potential and pressure field operators. Remarkably, these are
 81 direct operator averages that can be evaluated from data accu-
 82 mulated in a single simulation. Such operators have been used
 83 to conduct field-theoretic simulations of phase coexistence by
 84 matching pressures and chemical potentials (18) and via the
 85 Gibbs ensemble (19–21), but their utility in direct free energy
 86 evaluation has not been appreciated in the literature.

87 The restriction to purely repulsive interactions in the
 88 monatomic fluid example is readily overcome since any pair
 89 potential $u(r)$ that is finite at contact can be accurately de-
 90 composed into a sum of purely repulsive and purely attractive
 91 interactions using a basis set such as zero-centered Gaus-
 92 sians. Each successive term requires an additional auxiliary
 93 field to decouple the corresponding interaction (a real field
 94 for an attractive interaction and an imaginary field for a re-
 95 pulsion), but the structure of the field theory is otherwise
 96 unchanged. Long-ranged Coulomb interactions are similarly
 97 treated by introducing an auxiliary field $w_{el}(\mathbf{r})$ that can be
 98 interpreted as a fluctuating electrostatic potential (14, 18).

99 The inverse Coulomb operator, corresponding to the first term
 100 in Eq. 3, results in a quasi-local square-gradient contribution
 101 to the Hamiltonian $\sim |\nabla w_{el}|^2$. Thus, the problematic long-
 102 range character of electrostatic interactions familiar in particle
 103 simulations (1) is avoided in a field-theoretic representation.
 104 While three-body (or higher-order) non-bonded potentials are
 105 not easily accommodated in the AF framework, they can in
 106 principle be included using a different coherent states (CS)
 107 representation discussed below (22).

108 Beyond atomic fluids, particle-based models of classical
 109 polymers are readily converted from coordinate to AF repre-
 110 sentations. For a one-component melt with polymer segments
 111 interacting via a purely repulsive non-bonded potential $u(r)$,
 112 the field-theoretic representation remains the same as Eqs. 2
 113 and 3, but the functional $Q[iw]$ is now the partition function
 114 of a *single polymer* in the purely imaginary field $iw(\mathbf{r})$. Since a
 115 polymer is a one-dimensional chain of bonded segments, $Q[iw]$
 116 can be efficiently computed for a prescribed field $w(\mathbf{r})$ by a
 117 transfer matrix approach (14).

118 **Quantum fluids.** Quantum many-body systems can also be
 119 given either a coordinate or field-theoretic representation. For
 120 a collection of n bosons in the canonical ensemble, the partition
 121 function can be expressed in a coordinate basis as (23)

$$\mathcal{Z}(n, V, T) = \frac{1}{n!} \sum_P \int dR \langle R | \exp(-\beta \hat{H}) | PR \rangle \quad [5]$$

122 where R is a shorthand for the $3n$ particle coordinates in a
 123 three-dimensional volume V , \hat{H} is the Hamiltonian operator,
 124 and the average over all $n!$ permutations P of particle labels
 125 with corresponding permutation operator \mathcal{P} enforces Bose
 126 statistics. In Feynman’s path integral framework (24), the
 127 object $\exp(-\tau \hat{H})$ is viewed as a many-body evolution operator
 128 in an “imaginary time” τ that is periodic with interval $[0, \beta]$.
 129 The imaginary-time particle trajectories included in Eq. 5
 130 are closed cycles, analogous to classical ring polymers, and
 131 the terms in the permutation sum include primary cycles
 132 formed by individual particles and larger linked cycles formed
 133 by exchanging paths of two or more particles. The latter
 134 contribute exchange interactions. By performing a Trotter-
 135 Suzuki decomposition of the evolution operator (25), dividing
 136 the imaginary time interval $[0, \beta]$ into small increments, and
 137 inserting complete sets of intermediate coordinate states,
 138 a quantum theory is obtained that resembles a reactive ensemble
 139 of classical ring polymers. This is the basis for a particle-based
 140 simulation framework known as path integral Monte Carlo
 141 (PIMC) (26, 27). As in the classical partition function of Eq. 1,
 142 the n dependence in Eq. 5 cannot be isolated, so there is no
 143 simple chemical potential operator.

144 There is also a well established route to expressing an equi-
 145 librium quantum many-body system as a field theory. The
 146 method involves re-framing the problem in second quantization
 147 using a complete basis of abstract, single-particle occupation
 148 number states in which Bose or Fermi statistics are embed-
 149 ded (28). A subsequent Trotter-Suzuki decomposition of the
 150 density matrix using linear combinations of the occupation
 151 number states known as “coherent states” (CS) leads to an
 152 imaginary time, path integral representation of the partition
 153 function in field-theoretic form (29). For a fluid of particles
 154 satisfying Bose statistics, the canonical partition function can

$$\begin{aligned}
S(\psi; [\phi^*, \phi]) = & i\psi n + \int_0^\beta d\tau \int_V d^3r \phi^*(\mathbf{r}, \tau+) \frac{\partial}{\partial \tau} \phi(\mathbf{r}, \tau) \\
& + \int_0^\beta d\tau \int_V d^3r \phi^*(\mathbf{r}, \tau+) \left[-\frac{\hbar^2 \nabla^2}{2m} - i\psi k_B T \right] \phi(\mathbf{r}, \tau) \\
& + \frac{1}{2} \int_0^\beta d\tau \int_V d^3r \int_V d^3r' \phi^*(\mathbf{r}, \tau+) \phi^*(\mathbf{r}', \tau+) u(|\mathbf{r} - \mathbf{r}'|) \phi(\mathbf{r}', \tau) \phi(\mathbf{r}, \tau)
\end{aligned} \quad [7]$$

164 be expressed as

$$\mathcal{Z}(n, V, T) = \int_{-\infty}^{\infty} d\psi \int \mathcal{D}(\phi^*, \phi) \exp[-S(\psi; [\phi^*, \phi])] \quad [6]$$

166 where S is an action functional given by Eq. 7. In this ex-
167 pression, ϕ and ϕ^* are complex-valued CS fields in the four-
168 dimensional space of position \mathbf{r} and imaginary time τ and are
169 complex conjugates. They satisfy periodic boundary condi-
170 tions in τ with period β ; periodic conditions on \mathbf{r} are also used
171 in the bulk simulations reported here. The measure $\mathcal{D}(\phi^*, \phi)$
172 implies a functional integration over the real and imaginary
173 parts of these two fields. The real variable ψ is a Lagrange mul-
174 tiplier to enforce a particle number of n , while m is the mass of
175 a boson and $u(r)$ is the pair interaction potential. Finally, the
176 notation $\tau+$ is a symbolic reminder that this expression relies
177 on Itô stochastic calculus, so the ϕ^* field must be advanced in
178 τ relative to ϕ when discretizing the τ variable (29).

179 As in the classical fluid case, the field-theoretic represen-
180 tation of the quantum fluid model isolates the number of
181 particles n as a simple multiplicative factor in the action func-
182 tional of Eq. 7. Application of the thermodynamic formula
183 $\mu = (\partial A / \partial n)_{V,T}$ thus leads to $\beta\mu = \langle i\psi \rangle$, where the angle
184 brackets represent an ensemble average over the ψ , ϕ , and
185 ϕ^* variables with the *complex* statistical weight $\exp(-S)$. It
186 follows that a chemical potential field operator for the theory
187 is $\tilde{\mu}(\psi; [\phi^*, \phi]) = k_B T i\psi$, and the average of ψ must be a pure
188 imaginary number. An expression for the pressure operator,
189 $\tilde{P}(\psi; [\phi^*, \phi])$, is derived by a procedure similar to the classical
190 fluid case and is given in Eq. S30 of the SI.

191 The classical and quantum field theory representations of
192 Eqs. 2 and 6 provide immediate access to field operators that
193 can be averaged to obtain Gibbs and Helmholtz free energies
194 in the canonical ensemble, and by straightforward extension,
195 the entropy in the microcanonical ensemble. Nonetheless,
196 these representations come at a price: the Hamiltonian and
197 action are complex-valued on the functional integration path.
198 As a result, the field theories have a *sign problem* associated
199 with non-positive-definite weights $\exp(-H)$ or $\exp(-S)$ that
200 must be overcome when conducting numerical simulations. A
201 versatile technique for circumventing this problem invokes a
202 complex Langevin (CL) dynamics (30–32) that is the subject
203 of the next section.

204 Models and Methods

205 **Complex Langevin simulations.** The CL method aims to de-
206 velop a Markov chain of statistically important field config-
207 urations by integrating stochastic differential equations in a
208 fictitious time θ . For a classical AF-type field theory, a suitable

209 CL scheme is given by

$$\frac{\partial}{\partial \theta} w(\mathbf{r}, \theta) = -\frac{\delta H[w]}{\delta w(\mathbf{r}, \theta)} + \eta(\mathbf{r}, \theta) \quad [8]$$

211 where $\eta(\mathbf{r}, \theta)$ is a *real* Gaussian white noise whose statisti-
212 cal properties are defined by the moments $\langle \eta(\mathbf{r}, \theta) \rangle = 0$ and
213 $\langle \eta(\mathbf{r}, \theta) \eta(\mathbf{r}', \theta') \rangle = 2\delta(\mathbf{r} - \mathbf{r}')\delta(\theta - \theta')$. Although the origi-
214 nal integration path in Eq. 2 is restricted to the real axis,
215 the Langevin dynamics of Eq. 8 explore complex-valued w
216 configurations near constant-phase paths that pass through
217 *saddle points* $w_s(\mathbf{r})$ of the model. These saddle points satisfy
218 $\delta H / \delta w(\mathbf{r})|_{w_s} = 0$ and correspond to *mean-field* configura-
219 tions. Indeed, with $\eta = 0$, Eq. 8 is a gradient-descent scheme for find-
220 ing mean-field solutions (14). Access to mean-field solutions is
221 an important advantage of the field-theoretic representation
222 that we shall see also aids in free energy estimation.

223 If the stochastic dynamics of Eq. 8 produces a stationary
224 distribution of complex states in the basin of a physically
225 relevant saddle point, it can be proven that ensemble averages
226 of the field theory can be computed as fictitious time averages
227 along the stationary CL trajectory (33, 34). Thus, in a field-
228 theoretic simulation conducted with CL sampling (FTS-CL),
229 the average of a field operator $\tilde{G}[w]$ is obtained from the
230 formula $\langle \tilde{G}[w] \rangle = (1/N_c) \sum_{l=1}^{N_c} \tilde{G}[w^l] + \mathcal{O}(N_c^{-1/2})$, where $w^l(\mathbf{r})$
231 are decorrelated states sampled at N_c discrete time points θ^l
232 along the trajectory. Individual $\tilde{G}[w^l]$ values are complex,
233 but the imaginary part of any physical field operator will
234 vanish upon sufficient averaging. Although convergence to a
235 steady state cannot be proved, we have found the FTS-CL
236 method to be robust for the classes of models considered here.
237 Nonetheless, failures of CL sampling have been documented
238 in the literature (35–38). In some cases, “failure” can be
239 attributed to the use of stochastic integration algorithms with
240 poor stability characteristics. A more legitimate failure mode
241 corresponds to a situation where a simulation remains stable,
242 yet either the imaginary parts of physical operators do not
243 average to zero or the highest Fourier modes of the fields fail to
244 converge to a stationary distribution irrespective of the length
245 of a simulation. Both are useful diagnostics of failure. We
246 have observed such behavior in a few cases of fluid or polymer
247 models with strong core repulsions.

248 A CL dynamics suitable for simulating the Bose fluid model
249 of Eq. 6 evolves the scalar ψ variable by a dynamics similar
250 to Eq. 8 and the ϕ and ϕ^* fields by an off-diagonal stochastic
251 descent scheme (22, 39, 40),

$$\frac{\partial}{\partial \theta} \psi(\theta) = -\lambda \frac{\partial S(\psi; [\phi^*, \phi])}{\partial \psi(\theta)} + \eta_\psi(\theta) \quad [9]$$

$$\begin{aligned}
254 \quad \frac{\partial}{\partial \theta} \phi(\mathbf{r}, \tau, \theta) &= -\frac{\delta S(\psi; [\phi^*, \phi])}{\delta \phi^*(\mathbf{r}, \tau, \theta)} + \eta(\mathbf{r}, \tau, \theta) \\
255 \quad \frac{\partial}{\partial \theta} \phi^*(\mathbf{r}, \tau, \theta) &= -\frac{\delta S(\psi; [\phi^*, \phi])}{\delta \phi(\mathbf{r}, \tau, \theta)} + \eta^*(\mathbf{r}, \tau, \theta) \quad [10]
\end{aligned}$$

256 Here, $\lambda > 0$ is a real relaxation coefficient and η_ψ is a
257 real Gaussian noise with vanishing mean and second moment
258 $\langle \eta_\psi(\theta) \eta_\psi(\theta') \rangle = 2\lambda \delta(\theta - \theta')$. The noise sources in
259 Eq. 10 are *complex conjugates* that can be expressed as
260 $\eta = \eta_1 + i\eta_2$ and $\eta^* = \eta_1 - i\eta_2$, with η_1 and η_2 *real, independent*
261 Gaussian noises. These have zero mean and covariance
262 $\langle \eta_j(\mathbf{r}, \tau, \theta) \eta_k(\mathbf{r}', \tau', \theta') \rangle = \delta_{jk} \delta(\mathbf{r} - \mathbf{r}') \delta(\tau - \tau') \delta(\theta - \theta')$. While
263 ϕ and ϕ^* are complex conjugates on the integration path of
264 Eq. 6, this conjugacy is broken in the complex CL trajectories
265 generated by Eq. 10 and both fields become independently
266 complex. Similarly, the integration path of ψ is real in Eq. 6,
267 but Eq. 9 explores complex ψ values.

268 **Models.** We illustrate the direct approach to free energy evalua-
269 tion in the context of three models: a classical homopolymer
270 solution, a melt of diblock copolymers, and the quantum Bose
271 fluid model described by Eq. 6.

272 The *homopolymer solution model* is an implicit solvent
273 model used by Edwards in analytical studies of excluded vol-
274 ume screening in polymer solutions (41, 42). We choose a non-
275 bonded pair potential acting between polymer segments of the
276 form $u(r) = u_0 \varphi(r)$, where $\varphi(r) = 1/(8\pi^{3/2} a^3) \exp[-r^2/(4a^2)]$
277 is a repulsive Gaussian of range a normalized to have unit vol-
278 ume integral. The excluded volume parameter $u_0 > 0$ reflects
279 the integrated potential strength and is the pseudo-potential
280 coefficient in the contact interaction limit, $u(r) \rightarrow u_0 \delta(\mathbf{r})$
281 for $a \rightarrow 0$. The field-theoretic representation of Eqs. 2 and
282 3 is applicable to the present model, but the single-chain
283 partition function $Q[iw]$ remains to be specified. This func-
284 tional is normalized by the partition function of a free (ideal)
285 chain, so $Q[0] = 1$. Here we adopt the continuous Gaus-
286 sian chain model (14, 43), corresponding to the continuum
287 limit of a harmonic bead-spring chain. The partition func-
288 tion can be computed for a prescribed potential $w(\mathbf{r})$ as
289 $Q[iw] = (1/V) \int_V d^3r q(\mathbf{r}, N; [iw])$, where N is the contour
290 length of the polymer, $q(\mathbf{r}, s; [iw])$ is a chain propagator sat-
291 isfying the modified diffusion equation

$$292 \quad \frac{\partial}{\partial s} q(\mathbf{r}, s; [iw]) = \left[\frac{b^2}{6} \nabla^2 - iw(\mathbf{r}) \right] q(\mathbf{r}, s; [iw]) \quad [11]$$

293 and b is the statistical segment length. The propagator
294 $q(\mathbf{r}, s; [iw])$ represents the statistical weight for the end of
295 a polymer chain of contour length s to be positioned at
296 \mathbf{r} . Equation 11 is solved subject to the “initial” condition
297 $q(\mathbf{r}, 0; [iw]) = 1$; i.e., a polymer of zero length is not influ-
298 enced by the field $iw(\mathbf{r})$. Similar schemes have been devised
299 for computing $Q[iw]$ for discrete bead-spring chain models
300 with arbitrary bonded potentials (14). Finally, with lengths
301 non-dimensionalized by the ideal chain radius-of-gyration
302 $R_g \equiv b(N/6)^{1/2}$, all intensive thermodynamic properties of the
303 homopolymer solution model are a function of three dimen-
304 sionless parameters: a chain concentration $C \equiv nR_g^3/V$, an
305 excluded volume strength $B \equiv \beta u_0 N^2/R_g^3$, and a non-bonded
306 interaction range $\alpha \equiv a/R_g$.

307 The *diblock copolymer melt model* also employs continuous
308 Gaussian chains, each chain consisting of an A block of Nf
309 segments and a B block of $N(1-f)$ segments, f representing
310 the mole/volume fraction of type A segments. We adopt equal
311 statistical segment lengths $b_A = b_B = b$ for the two blocks and
312 a non-bonded interaction of the form $\beta u(r) = \zeta v_0 \varphi(r)$ between
313 all pairs of segments, where v_0 is a reference segment volume, ζ
314 is a dimensionless parameter that controls the compressibility
315 of the melt, and $\varphi(r)$ is the same normalized Gaussian of range
316 a used in the homopolymer model. Dissimilar pairs of A and
317 B segments are subject to an additional interaction of the form
318 $\beta u_{AB}(r) = \chi v_0 \varphi(r)$, where χ is the dimensionless Flory inter-
319 action parameter (44). The limiting case of $\zeta \rightarrow \infty$, $a \rightarrow 0$ is
320 the standard incompressible block copolymer model with con-
321 tact interactions used in mean-field (self-consistent field theory,
322 SCFT) calculations of copolymer phase behavior (45). Beyond
323 SCFT, it is necessary to work with finite compressibility and
324 interaction range to avoid ultraviolet divergences (16, 17).

325 The canonical partition function of the diblock model can
326 be written in an AF form analogous to Eq. 2, but two fields
327 are required to decouple the non-bonded interactions: $w_+(\mathbf{r})$
328 conjugate to the total segment density and $w_-(\mathbf{r})$ conjugate
329 to the difference of A and B segment densities. Both fields are
330 integrated along the real axis. The Hamiltonian functional is
331 given by

$$\begin{aligned}
332 \quad H[w_\pm] &= \frac{\rho_0}{2\zeta + \chi} \int_V d^3r \int_V d^3r' w_+(\mathbf{r}) \varphi^{-1}(|\mathbf{r} - \mathbf{r}'|) w_+(\mathbf{r}') \\
333 &+ \frac{\rho_0}{\chi} \int_V d^3r \int_V d^3r' w_-(\mathbf{r}) \varphi^{-1}(|\mathbf{r} - \mathbf{r}'|) w_-(\mathbf{r}') \\
334 &- n \ln Q[w_A, w_B] \quad [12]
\end{aligned}$$

335 where $\rho_0 = 1/v_0$ is a reference segment density. The single
336 copolymer partition function $Q[w_A, w_B]$ is again computed by
337 solving Eq. 11, but with iw replaced by $w_A \equiv iw_+ - w_-$ for $0 \leq$
338 $s < Nf$ and by $w_B \equiv iw_+ + w_-$ for $Nf < s \leq N$ (13, 14). The
339 parameter v_0 should be viewed as a constant for the purpose
340 of taking n or V derivatives to obtain chemical potential or
341 pressure operators. However, a convenient value is the average
342 volume per segment $v_0 = V/(nN)$. With this choice, the
343 intensive thermodynamic properties of the diblock copolymer
344 model are dictated by five dimensionless parameters: the block
345 segregation strength χN , the A block fraction f , the chain
346 concentration C , the melt compressibility parameter ζN , and
347 the interaction range parameter α .

348 The *Bose fluid model* considered is described by Eqs. 6
349 and 7 with a pseudo-potential approximation for the pair
350 potential, $u(r) = g \delta(\mathbf{r})$. The contact interaction volume g is
351 related to the s-wave scattering length a_s by the expression
352 $g = 4\pi\hbar^2 a_s/m$ and can be tuned in cold atom experiments
353 by accessing Feshbach resonances (46). Convenient choices
354 of length and energy scales for the model are given by $\lambda_r =$
355 $2mg/\hbar^2$ and $\lambda_E = (\hbar^2/2m)^3/g^2$, respectively. All intensive
356 thermodynamic properties can thus be expressed in terms
357 of the dimensionless temperature and density variables $\bar{T} \equiv$
358 $k_B T/\lambda_E$, $\bar{\rho} \equiv n\lambda_r^3/V$.

359 **Numerical methods.** Field operations are conducted by spec-
360 tral collocation with a uniform grid and plane wave basis
361 (14, 47), including the imaginary time τ coordinate of
362 the quantum theory. Periodic boundary conditions are im-
363 posed on the 3d simulation cell in space for the polymer models

364 and on the 4d cell in space and imaginary time for the Bose
 365 model. Spatial derivatives and convolutions are evaluated
 366 spectrally using discrete Fourier transforms. The imaginary
 367 time derivative in Eq. 7 is approximated by a first-order finite
 368 difference formula consistent with the causal properties of the
 369 theory (29, 40). Equation 11 is solved by a second-order Strang
 370 operator splitting algorithm (48, 49), stepping forward in s
 371 from the initial condition at $s = 0$ to the chain end at $s = N$.
 372 The functional derivatives in the CL equations 8 and 10 are
 373 formed analytically and the resulting force operators evaluated
 374 numerically on the computational grid. Equation 8 is stepped
 375 in fictitious time using a exponential time-differencing algo-
 376 rithm with weak first-order accuracy and excellent stability
 377 (ETD1) (16, 17). The CL equations 10 for the CS fields are
 378 time-stepped using a similar ETD1 algorithm (40). Equation
 379 9 is integrated using an explicit Euler-Maruyama method
 380 of weak first-order accuracy (50).

381 All FTS-CL simulations were conducted using a custom
 382 C++ code base optimized for GPU parallelism on NVIDIA
 383 hardware.

384 **Solid and liquid crystal mesophases.** The direct method of
 385 free energy evaluation described in the introduction requires
 386 additional steps to relieve internal stress when simulating liq-
 387 uid crystalline or solid phases. Field-theoretic simulations are
 388 not applicable to atomistic models of molecular or polymer
 389 crystals because the harshly repulsive potentials in such models
 390 demand prohibitive levels of spatial resolution and CL sam-
 391 pling becomes difficult. However, surfactant molecules, liquid
 392 crystals, and block copolymers can form larger-scale periodic
 393 mesophases and be described by soft-core models for which
 394 field-theoretic simulation (FTS) is ideally suited (14). The
 395 diblock copolymer melt model considered here has six known
 396 ordered mesophases at the mean-field (SCFT) level: body-
 397 centered cubic spheres (BCC), face-centered cubic spheres
 398 (FCC), hexagonally-packed cylinders (HEX), lamellae (LAM),
 399 bicontinuous cubic double gyroid (GYR), and bicontinuous
 400 orthorhombic (O70) (51, 52). LAM and HEX are liquid-
 401 crystalline phases with at least one homogeneous direction in
 402 the unit cell; the remaining mesophases listed are solids.

403 In the case of a *liquid-crystalline mesophase*, a prerequi-
 404 site to free energy evaluation is to relax the shape of the
 405 cell at fixed n and V until the average internal stress σ is
 406 isotropic and equal to $-P\mathbf{I}$ with \mathbf{I} the unit tensor. This can
 407 be done manually (53), or automatically by an extension of
 408 the Parrinello-Ray-Rahman (PRR) framework (54, 55) to vari-
 409 able cell FTS (56). The necessary stress operator $\tilde{\sigma}[w_{\pm}]$ is
 410 derived by a procedure analogous to that for the pressure
 411 operator and is provided in Eq. S28 of the SI. The final cell
 412 shape dictates the equilibrium domain spacing of a LAM or
 413 HEX phase (53, 57). Not recognized in prior work, however,
 414 is that the Helmholtz free energy can be directly computed
 415 as an operator average in the equilibrium cell by the formula
 416 $A = n\langle\tilde{\mu}[w_{\pm}]\rangle - \langle\tilde{P}[w_{\pm}]\rangle V$.

417 The case of a *solid mesophase* is more challenging. Relaxa-
 418 tion of cell shape at fixed n and V will yield a cell with a
 419 residual isotropic stress because n and/or V are incompati-
 420 ble with an integer number of equilibrium unit cells of the
 421 mesophase. Instead, we consider cell shape and size varia-
 422 tions of the *intensive* Helmholtz free energy at fixed chain
 423 concentration $c = n/V$. Specifically, we seek the equilibrium

424 condition

$$\left. \frac{\partial[\beta A(n, \mathbf{h}, T)/V]}{\partial \mathbf{h}} \right|_{c,T} = \left. \frac{\partial[\beta A_{\text{ex}}(n, \mathbf{h}, T)/V]}{\partial \mathbf{h}} \right|_{c,T} = 0 \quad [13] \quad 425$$

426 where \mathbf{h} is the cell tensor defining the shape and volume,
 427 $V = \det \mathbf{h}$, of a parallelepiped cell within the PRR frame-
 428 work (54–56). The first equality follows because the ideal gas
 429 contribution to $\beta A/V$ is constant at fixed c . It is shown in
 430 the SI that the requisite cell derivative can be written as

$$\begin{aligned} \left. \frac{\partial(\beta A_{\text{ex}}/V)}{\partial \mathbf{h}} \right|_{c,T} \mathbf{h}^T &= c\beta\langle\tilde{\mu}_{\text{ex}}(\mathbf{h}; [w_{\pm}])\rangle \mathbf{I} - (\beta A_{\text{ex}}/V) \mathbf{I} \\ &+ \beta\langle\tilde{\sigma}_{\text{ex}}(\mathbf{h}; [w_{\pm}])\rangle \end{aligned} \quad [14] \quad 431 \quad 432$$

433 For a fluid or liquid crystal whose cell has been relaxed at fixed
 434 volume to a state of isotropic stress, $\langle\tilde{\sigma}_{\text{ex}}(\mathbf{h}; [w_{\pm}])\rangle = -P_{\text{ex}}\mathbf{I}$,
 435 the right hand side of Eq. 14 vanishes if the excess free energy
 436 is computed according to $A_{\text{ex}} = n\langle\tilde{\mu}_{\text{ex}}[w_{\pm}]\rangle - \langle\tilde{P}_{\text{ex}}[w_{\pm}]\rangle V$.
 437 This validates our method of equilibrium domain spacing and
 438 free energy determination in the two cases.

439 For a solid mesophase, a multistep procedure is required.
 440 The first step is to find a cell configuration for which the
 441 average internal stress $\langle\tilde{\sigma}_{\text{ex}}\rangle$ is isotropic by relaxing in shape
 442 at constant volume (56). The resulting “reference” shape \mathbf{h}_r is
 443 unlikely to satisfy the equilibrium condition (Eq. 13) because
 444 it will be improperly sized. We thus consider variations in cell
 445 volume at *fixed shape and chain concentration* via $\mathbf{h}(s) = s\mathbf{h}_r$,
 446 where s is a cell dilation/contraction parameter. Equation 14
 447 then reduces to the linear differential equation

$$\frac{d}{d \ln s} \mathcal{A}(s) = \mathcal{F}(s) - \mathcal{A}(s) \quad [15] \quad 448$$

449 where $\mathcal{A}(s) \equiv \beta A_{\text{ex}}(s)/V$ is the free energy density in ex-
 450 cess of the ideal gas and $\mathcal{F}(s) \equiv c\beta\langle\tilde{\mu}_{\text{ex}}(\mathbf{h}(s); [w_{\pm}])\rangle -$
 451 $\beta\langle\tilde{P}_{\text{ex}}(\mathbf{h}(s); [w_{\pm}])\rangle$ is the linear combination of operator aver-
 452 ages that coincides with the free energy density at the equi-
 453 librium cell size s_0 , $\mathcal{A}(s_0) = \mathcal{F}(s_0)$. Importantly, $\mathcal{F}(s)$ can
 454 be computed at any s by an FTS-CL simulation. We thus
 455 require a reference value of \mathcal{A} in an isotropically-stressed cell
 456 to integrate Eq. 15 and establish where $\mathcal{A}(s)$ crosses $\mathcal{F}(s)$. In
 457 many cases the equilibrium cell size is well-approximated by
 458 its mean-field (SCFT) value $s_{0,SCFT}$, obtained as described in
 459 Ref. (56). This enables a direct estimate of the equilibrium free
 460 energy by means of $\mathcal{A}(s_0) \approx \mathcal{F}(s_{0,SCFT})$, the latter quantity
 461 evaluated by a single FTS-CL simulation in the mean-field
 462 cell. Alternatively, thermodynamic integration (17, 58) can be
 463 used to obtain a reference value of \mathcal{A} , e.g. $\mathcal{A}(s_{0,SCFT})$, from
 464 which Eq. 15 can be integrated to obtain a refined estimate of
 465 s_0 and $\mathcal{A}(s_0)$.

Results

466 Our first example of direct free energy evaluation is for the
 467 homopolymer solution model, which exhibits only a single
 468 homogeneous fluid phase. Figure 1 reports the intensive free
 469 energy in excess of the mean-field (SCFT) value, i.e. the fluc-
 470 tuation contribution, across five decades of dimensionless chain
 471 concentration C . A cubic cell of side length $L = 6.4 R_g$ was
 472 employed and the non-bonded interaction strength and range
 473 were $B = 2$ and $\alpha = 0.2$, respectively. The filled circles are the
 474 result of the direct method, obtained by averaging chemical
 475 potential and pressure operators at the indicated value of C .
 476

477 At one concentration we report the free energy obtained by
 478 thermodynamic integration (TI) from an Einstein crystal refer-
 479 ence, a method developed in the context of particle simulations
 480 of solids (59, 60) and subsequently extended to field-theoretic
 481 simulations (17, 58). In a third approach, we applied TI
 482 from an ideal gas reference, integrating the average chemical
 483 potential according to $A_{\text{ex}}/n = C^{-1} \int_0^C dC' \langle \bar{\mu}_{\text{ex}}[w] \rangle_{C',T}$.
 484 Gauss-Legendre quadrature was applied with 10 points across
 485 the $[0, C]$ interval. It is seen that all three methods based on
 486 FTS-CL yield consistent values, although the direct method
 487 provides the highest accuracy at an order-of-magnitude lower
 488 computational cost. The solid curve in the figure is an ana-
 489 lytical reference obtained by expanding the Hamiltonian to
 490 quadratic order about the homogeneous saddle point and per-
 491 forming the resulting Gaussian functional integral (17). This
 492 “Gaussian approximation” is asymptotically exact for $C \rightarrow \infty$.

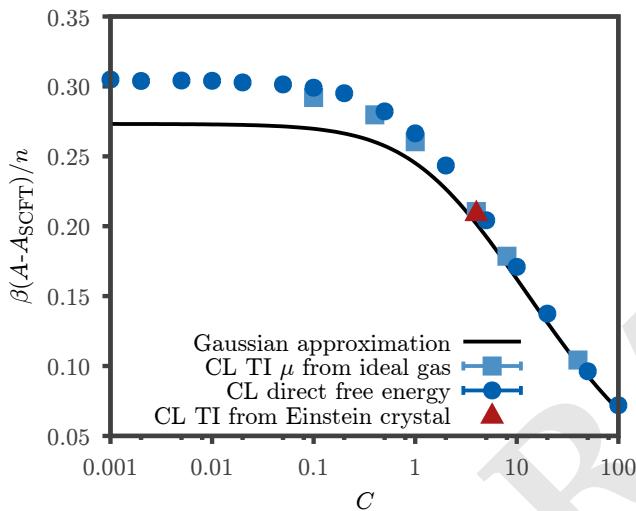


Fig. 1. Fluctuation contribution to the Helmholtz free energy per chain for the homopolymer solution model as a function of dimensionless chain concentration $C = nR_g^3/V$. Three free energy estimation methods were employed based on FTS-CL simulations: the direct method described here, thermodynamic integration of the chemical potential from the ideal gas reference, and thermodynamic integration from an Einstein crystal reference. The solid curve is a Gaussian approximation to the partition function integral that is asymptotic at large C .

493 As a second example, we illustrate the cell optimization
 494 used to determine the equilibrium domain spacing D_0 and
 495 free energy of a diblock copolymer melt in the lamellar (LAM)
 496 mesophase, an example of a liquid crystalline phase. If the
 497 phase is oriented with layer normals along the x axis, one can
 498 fix the lateral cell dimensions to a value $L = h_{yy} = h_{zz}$ much
 499 greater than the correlation length and then sweep $L_x = h_{xx}$ at
 500 fixed chain concentration C until the averages of the diagonal
 501 stress elements all agree. This procedure is demonstrated in
 502 Fig. 2 for the AB diblock copolymer model with parameters
 503 $\chi N = 20$, $f = 0.5$, $\alpha = 0.2$, and $\zeta N = 100$. Two periods of
 504 the stable lamellar phase were captured, oriented as described
 505 above. In panel (a), we see for the case of $C = 10$ that the
 506 three diagonal components of the average excess stress can
 507 be brought into agreement by adjusting L_x to approximately
 508 $8.69 R_g$. Panel (b) shows how the optimal (single period)
 509 domain spacing D_0 obtained from this protocol using FTS-CL
 510 simulations varies with the dimensionless chain concentration

511 As expected, D_0 approaches the value predicted from
 512 SCFT for $C \rightarrow \infty$, a limit in which mean-field theory is
 513 asymptotically exact (61). Nonetheless, for $C > 4$ we see that
 514 D_0 in a fluctuating system differs from the SCFT value by
 515 less than 0.4%. Remarkably, once the cell tensor \mathbf{h} has been
 516 found that renders the stress isotropic, the free energy of the
 517 mesophase can be obtained by a simple averaging of chemical
 518 potential and pressure operators.

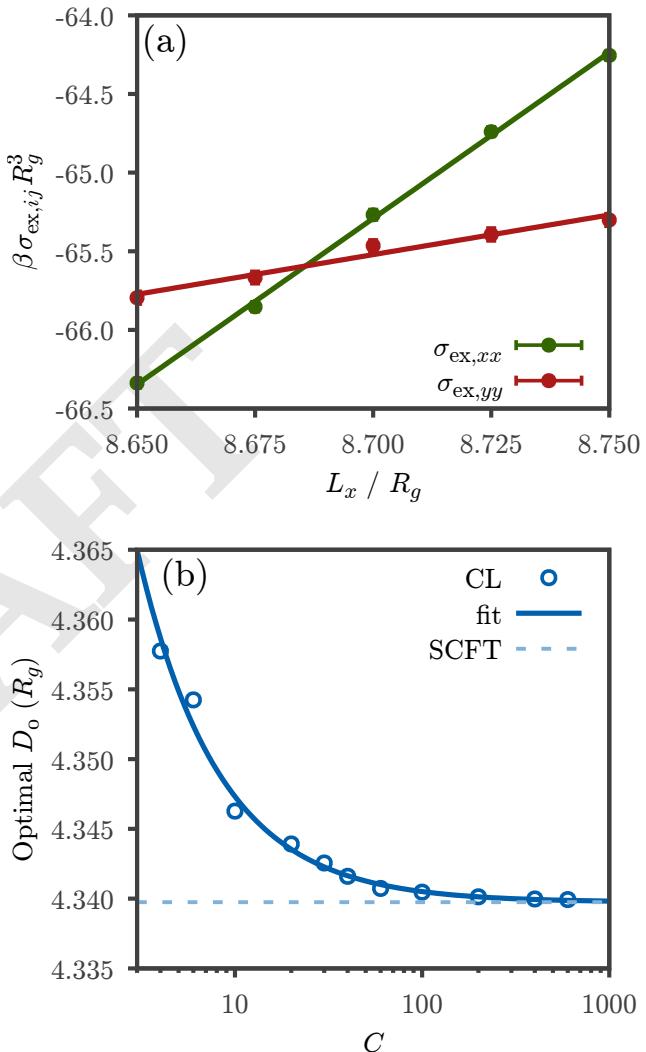


Fig. 2. Panel (a): Example of varying the cell dimension along the interface normal, $L_x = h_{xx}$, of two periods of the lamellar phase of a symmetric diblock copolymer while maintaining the chain concentration and cell dimensions $h_{yy} = h_{zz}$ in the transverse homogeneous directions constant. Under FTS-CL sampling, the average of the three principal stress components can be brought into agreement, determining the equilibrium cell size. Panel (b): The equilibrium FTS-CL domain spacing, D_0 , approaches the SCFT prediction at large dimensionless chain concentrations C . The solid curve is a fit of the form $D_0 - D_0, \text{SCFT} \sim C^{-1}$ to the simulation data. The lateral cell size is $L_y = L_z = 6.0 R_g$ for all simulations.

519 Our third example of direct free energy evaluation is for
 520 a solid diblock copolymer mesophase, the bicontinuous dou-
 521 ble gyroid phase (GYR). At the value of dimensionless chain
 522 concentration chosen, $C = 7$, the cubic equilibrium cell con-
 523 figuration is well-approximated by the SCFT cell to better
 524 than 0.1%, so we make the approximation $s_0 \approx s_{0, \text{SCFT}}$ and

525 pre-compute the SCFT cell prior to estimating the free energy
 526 via the formula $\mathcal{A}(s_0) \approx \mathcal{F}(s_0, SCFT)$ by an FTS-CL simulation.
 527 Results from this procedure are shown in Fig. 3, where
 528 the excess Helmholtz free energy per chain is reported for
 529 the GYR phase of the diblock copolymer melt model across
 530 a range of A-block fraction f . The model parameters are
 531 $\alpha = 0.25$, $\chi N = 16$, $\zeta N = 100$, and $C = 7$. We observe
 532 quantitative agreement between free energy predictions from
 533 the direct method and a method based on thermodynamic
 534 integration from an Einstein crystal reference (17, 58), also
 535 using the SCFT cubic cell. A significant fluctuation correction
 536 to the SCFT free energy is found in this case. The direct
 537 method yields results that are not only more accurate than
 538 those obtained by TI, but each data point requires only a single
 539 FTS-CL simulation and operator average, whereas greater
 540 than ten of those operations were needed to obtain each TI
 541 data point.

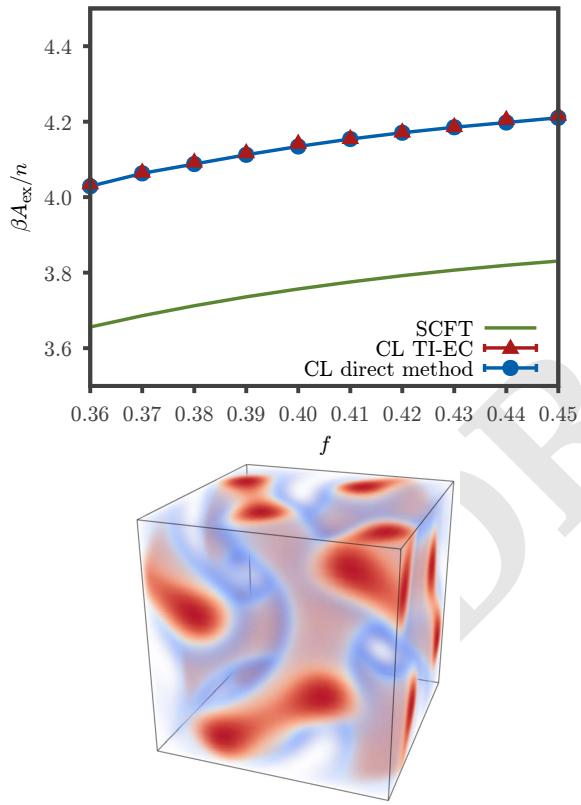


Fig. 3. (Top) Free energy comparison between the direct method (blue circles) and thermodynamic integration from an Einstein crystal reference (red triangles) in the equilibrium SCFT cell for a melt of diblock copolymers in the cubic double gyroid mesophase for various A-block fractions, f . The two methods are in quantitative agreement on the magnitude of fluctuation corrections from the SCFT free energy (green curve). (Bottom) 3D volumetric render of the A domain of the SCFT density for a single conventional cubic cell of the GYR phase at $f = 0.36$.

542 As a final example of direct free energy evaluation, we
 543 consider the Bose fluid model of Eqs. 6 and 7. For an ideal
 544 gas (Fig. 4, top panel), the Helmholtz free energy per particle
 545 is computed by the direct method of CL-averaging chemical
 546 potential and pressure operators given in the SI. The results

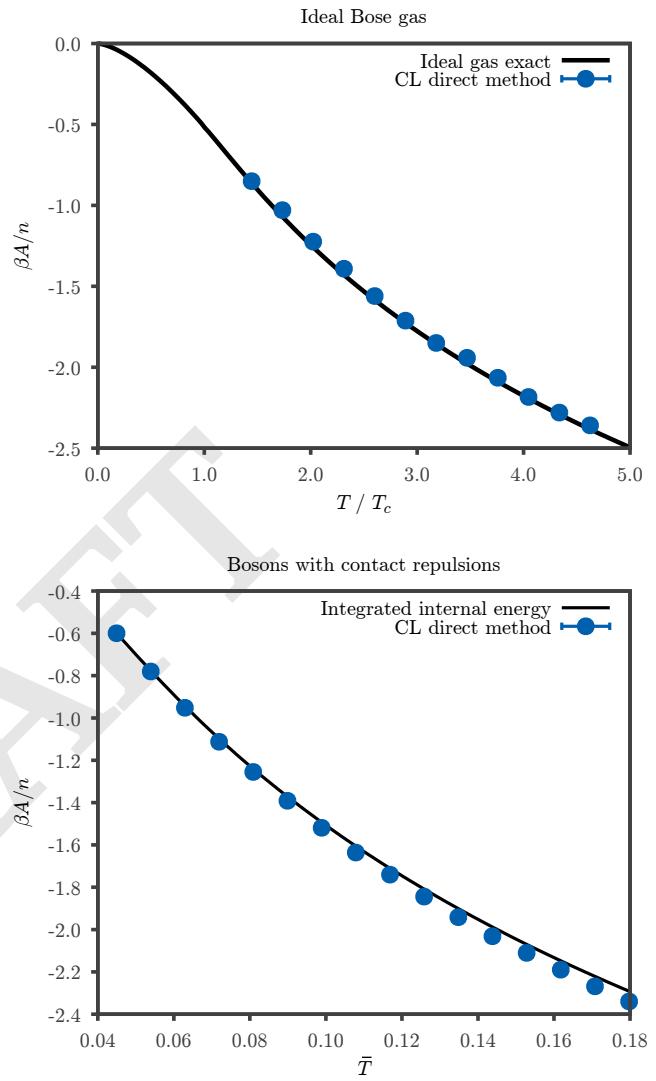


Fig. 4. (Top) Helmholtz free energy per particle of an ideal gas of bosons as a function of reduced temperature. Direct free energy calculations (blue circles) from complex Langevin simulations match the exact ideal gas result of Eq. 16 (black line). The CL simulations used 64 imaginary time samples and 16 spatial samples in each direction, the particle density was fixed at $n/V = 2.61$ in units of λ_c^{-3} , where λ_c is the thermal de Broglie wavelength at T_c , and the simulation cell size was set to $2.7 \lambda_c$. (Bottom) For bosons with repulsive contact interactions, $g > 0$, the Helmholtz free energy per particle computed with the direct method is compared to the internal energy integrated over temperature using Eq. 17. The direct free energy estimate at the lowest temperature is used as a reference to align the integrated energy. The dimensionless particle density is $\bar{\rho} = 4.5 \times 10^{-4}$ and the simulation cell size is fixed at $2.65 \lambda_r$. The action (Eq. 7) is discretized with 32 collocation mesh points in each spatial direction and 64 imaginary time slices.

547 are compared to an exact reference (28),

$$\frac{\beta A}{n} = \begin{cases} -\left(\frac{T}{T_c}\right)^{3/2} \frac{\zeta(5/2)}{\zeta(3/2)} & T < T_c \text{ BEC} \\ -\left(\frac{\text{Li}_{5/2}(z)}{\text{Li}_{3/2}(z)} + \ln z\right) & T > T_c \text{ normal fluid} \end{cases} \quad [16]$$

548 where $\text{Li}_s(z)$ the polylogarithm function of order s , $\zeta(x)$ is
 549 the Riemann zeta function, z is the activity in the normal
 550 fluid equation of state $\text{Li}_{3/2}(z) = n\lambda_T^3/V$, and T_c is the critical
 551 temperature where a Bose-Einstein condensate (BEC) appears.
 552

553 For bosons with repulsive pair interactions, $g > 0$, an exact
 554 analytic reference is not available for the Helmholtz free energy.
 555 In this case, we use standard thermodynamic relations to
 556 compute a reference by integrating the temperature-dependent
 557 average internal energy,

$$\beta A(T) = \beta A(T_0) - \frac{1}{k_B} \int_{T_0}^T dT' (T')^{-2} \langle \tilde{U}(T') \rangle \quad [17]$$

558 where \tilde{U} is an internal energy field operator whose form is
 559 given in Eq. S32 of the SI. In the bottom panel of Fig. 4,
 560 we use the lowest temperature as the reference T_0 , integrate
 561 the internal energy by first fitting a cubic spline between CL
 562 estimates of $\beta \langle \tilde{U} \rangle / T$, and use the direct method to determine
 563 $\beta A(T_0)$ for alignment of the integrated result to the same
 564 absolute reference. Again, excellent agreement is seen between
 565 free energies obtained by the direct method with reference
 566 values.

568 Discussion

569 We have presented a new “direct” approach to free energy evalua-
 570 tion that relies on the existence of a chemical potential field
 571 operator for many-body problems expressed in the canonical or
 572 microcanonical ensemble and framed in a field-theoretic repre-
 573 sentation. The method represents the most efficient technique
 574 for free energy evaluation within field-theoretic simulations,
 575 and for soft-core models normally studied in a coordinate rep-
 576 resentation, provides a new venue for free energy estimation
 577 by analytical conversion of the model to a field theory.

578 Beyond the ease and efficiency of free energy evaluation,
 579 field-theoretic simulations of classical systems have a number
 580 of advantages over traditional particle-based Monte Carlo and
 581 MD methods (1–3), including a computational cost that is
 582 nearly independent of density or polymer chain length (62),
 583 more straightforward and efficient treatment of long-range elec-
 584 trostatic interactions (18, 21, 63), and direct access to mean-
 585 field solutions for homogeneous and inhomogeneous systems
 586 that become increasingly accurate at high concentration (14).

587 In spite of these advantages, there are a number of barriers
 588 preventing the wide scale adoption of field-theoretic represen-
 589 tations and simulation methods. An important limitation is
 590 that the techniques are relatively new and little open source
 591 software exists. The approach is also not suitable for atomic
 592 scale models with hard-core potentials. This restriction is not
 593 fatal, as methods such as variational coarse-graining (64) and
 594 relative entropy minimization (65) exist for mapping classical
 595 all-atom models to softer, coarse-grained models that are faith-
 596 ful to mesoscopic structure and thermodynamics. Moreover,
 597 soft-core models are a common starting point in soft matter
 598 simulations using tools such as dissipative particle dynamics
 599 (DPD) (66–68). Such models can be analytically converted to

600 a field theory, allowing for efficient phase diagram construc-
 601 tion via SCFT or FTS-CL (69), the latter utilizing the free
 602 energy method presented here. Nonetheless, the extra step
 603 of coarse-graining represents a barrier if the starting model is
 604 atomistic.

605 For quantum many-body systems, the most significant lim-
 606 itation is that the approach advocated here is inapplicable to
 607 particles with Fermi statistics. The CS representation in this
 608 case involves integrals over fields satisfying Grassmann algebra,
 609 rather than conventional Riemann integrals in the Bose CS
 610 case. While an AF representation is possible, the action is
 611 plagued with branch point singularities associated with zeros
 612 of the fermion determinant (29, 70), which defy CL sampling.
 613 Fortunately, there are many interesting continuum and lattice
 614 problems involving Bose statistics that can be tackled with
 615 FTS-CL and the present free energy method, including some
 616 with sign problems that do not succumb to existing quantum
 617 Monte Carlo algorithms.

618 An important advantage of the present method is that it
 619 enables a “pointwise” estimate of the free energy at specified
 620 model parameters by averaging operators within a single sim-
 621 ulation. Flat histogram approaches such as the Wang-Landau
 622 method (10), its extension to quantum Monte Carlo (12), and
 623 the closely related metadynamics (71) must perform a random
 624 walk in some collective coordinate (e.g. energy) to converge
 625 and gain statistics. The diffusive timescale (and hence com-
 626 putational effort) of the latter methods grows approximately
 627 as the square of both the coordinate range and the number
 628 of particles (72). Conversely, the timescale to equilibrate a
 629 field-theoretic simulation and obtain a pointwise free energy
 630 estimate is *independent* of the particle number n (at constant
 631 V). Flat histogram algorithms are also complicated to im-
 632 plement and to prove convergence, especially in the quantum
 633 case. They have found limited utility in mapping liquid-
 634 solid and solid-solid phase boundaries, notably surfactant and
 635 polymer systems with multiple liquid crystalline and/or solid
 636 mesophases.

637 The most compelling case for the field-theoretic approach
 638 currently involves dense assemblies of long polymers, partic-
 639 ularly charged polymers and self-assembling systems such as
 640 block copolymers, but we expect similar examples to be found
 641 in Bose quantum systems at high density and low temperature.

642 **ACKNOWLEDGMENTS.** The authors are grateful to M. S. Shell
 643 for helpful discussions. This work was supported by the Condensed
 644 Matter and Materials Theory Program of the National Science
 645 Foundation (NSF), Award No. DMR-2104255. Use was made of
 646 computational facilities purchased with funds from the NSF (OAC-
 647 1925717) and administered by the Center for Scientific Computing
 648 (CSC). The CSC is supported by the California NanoSystems Insti-
 649 tute and the NSF MRSEC (DMR-1720256) at UC Santa Barbara.

1. D Frenkel, B Smit, *Understanding molecular simulation*. (Academic Press, London), (1996).
2. MP Allen, DJ Tildesley, *Computer Simulation of Liquids*. (Oxford University Press, New York), (1987).
3. DP Landau, K Binder, *A Guide to Monte Carlo Simulation in Statistical Physics*. (Cambridge University Press, Cambridge), (2000).
4. MS Shell, A Panagiotopoulos, A Pohorille, Methods Based on Probability Distributions and Histograms in *Springer Ser. Chem. Phys.*, eds. C Chipot, A Pohorille. (Springer, Berlin) Vol. 86, pp. 77–118 (2007).
5. B Widom, Some Topics in the Theory of Fluids. *J. Chem. Phys.* **39**, 2808–2812 (1963).
6. J Batoulis, K Kremer, Statistical properties of biased sampling methods for long polymer chains. *J. Phys. A. Math. Gen.* **21**, 127–146 (1988).
7. D Frenkel, GCAM Mooij, B Smit, Novel scheme to study structural and thermal properties of continuously deformable molecules. *J. Phys. Condens. Matter* **4**, 3053–3076 (1992).
8. D Frenkel, B Smit, Unexpected length dependence of the solubility of chain molecules. *Mol. Phys.* **75**, 983–988 (1992).

665 9. JJ de Pablo, M Laso, UW Suter, Estimation of the chemical potential of chain molecules by
666 simulation. *J. Chem. Phys.* **96**, 6157–6162 (1992).

667 10. F Wang, DP Landau, Efficient, Multiple-Range Random Walk Algorithm to Calculate the Den-
668 sity of States. *Phys. Rev. Lett.* **86**, 2050–2053 (2001).

669 11. NA Mahynski, et al., Flat-histogram extrapolation as a useful tool in the age of big data. *Mol.*
670 *Simul.* **47**, 395–407 (2021).

671 12. M Troyer, S Wessel, F Alet, Flat Histogram Methods for Quantum Systems: Algorithms to
672 Overcome Tunneling Problems and Calculate the Free Energy. *Phys. Rev. Lett.* **90**, 4 (2003).

673 13. GH Fredrickson, V Ganeshan, F Drollet, Field-Theoretic Computer Simulation Methods for
674 Polymers and Complex Fluids. *Macromolecules* **35**, 16–39 (2002).

675 14. GH Fredrickson, *The Equilibrium Theory of Inhomogeneous Polymers*. (Oxford University
676 Press, Oxford), (2006).

677 15. D Chandler, *Introduction to Modern Statistical Mechanics*. (Oxford University Press, Oxford),
678 (1987).

679 16. MC Villet, GH Fredrickson, Efficient field-theoretic simulation of polymer solutions. *J. Chem.*
680 *Phys.* **141**, 224115 (2014).

681 17. KT Delaney, GH Fredrickson, Recent Developments in Fully Fluctuating Field-Theoretic Simu-
682 lations of Polymer Melts and Solutions. *J. Phys. Chem. B* **120**, 7615–7634 (2016).

683 18. KT Delaney, GH Fredrickson, Theory of polyelectrolyte complexation—Complex coacervates
684 are self-coacervates. *J. Chem. Phys.* **146**, 224902 (2017).

685 19. AZ Panagiotopoulos, Direct determination of phase coexistence properties of fluids by Monte
686 Carlo simulation in a new ensemble. *Mol. Phys.* **61**, 813–826 (1987).

687 20. RA Riddleman, GH Fredrickson, Field-theoretic simulations in the Gibbs ensemble. *J. Chem.*
688 *Phys.* **132**, 024104 (2010).

689 21. J McCarty, KT Delaney, SPO Danielsen, GH Fredrickson, JE Shea, Complete Phase Diagram
690 for Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. *J. Phys. Chem. Lett.*
691 **10**, 1644–1652 (2019).

692 22. X Man, KT Delaney, MC Villet, H Orland, GH Fredrickson, Coherent states formulation of
693 polymer field theory. *J. Chem. Phys.* **140**, 024905 (2014).

694 23. RP Feynman, *Statistical Mechanics: A Set of Lectures*. (Addison-Wesley, New York), (1972).

695 24. RP Feynman, AR Hibbs, *Quantum Mechanics and Path Integrals*. (McGraw-Hill, New York),
696 (1965).

697 25. M Suzuki, Relationship between d-Dimensional Quantal Spin Systems and (d+ 1)-
698 Dimensional Ising Systems. *Prog. Theor.* **56**, 1454 (1976).

699 26. DM Ceperley, Path integrals in the theory of condensed helium. *Rev. Mod. Phys.* **67**, 279–355
700 (1995).

701 27. M Boninsegni, N Prokof’ev, B Svistunov, Worm Algorithm for Continuous-Space Path Integral
702 Monte Carlo Simulations. *Phys. Rev. Lett.* **96**, 070601 (2006).

703 28. AL Fetter, JD Walecka, *Quantum Theory of Many-Particle Systems*. (McGraw-Hill, New York),
704 (1971).

705 29. JW Negele, H Orland, *Quantum Many-particle Systems (Advanced Books Classics)*.
706 (Addison-Wesley, New York), (1988).

707 30. G Parisi, Y Wu, Perturbation Theory Without Gauge Fixing. *Sci. Sin.* **24**, 483 (1980).

708 31. G Parisi, On complex probabilities. *Phys. Lett. B* **131**, 393–395 (1983).

709 32. JR Klauder, A Langevin approach to fermion and quantum spin correlation functions. *J. Phys.*
710 *A Math. Gen.* **16**, 317–319 (1983).

711 33. WJ Schoenmaker, Monte Carlo simulations and complex actions. *Phys. Rev. D* **36**, 1859–
712 1867 (1987).

713 34. S Lee, The convergence of complex Langevin simulations. *Nucl. Phys. B* **413**, 827–848
714 (1994).

715 35. G Aarts, E Seiler, IO Stamatescu, Complex Langevin method: When can it be trusted? *Phys.*
716 *Rev. D* **81**, 054508 (2010).

717 36. G Aarts, et al., Stability of complex Langevin dynamics in effective models. *J. High Energy*
718 *Phys.* **2013**, 73 (2013).

719 37. M Scherzer, E Seiler, D Sexty, IO Stamatescu, Complex Langevin and boundary terms. *Phys.*
720 *Rev. D* **99**, 014512 (2019).

721 38. D Nilsson, B Bozorg, S Mohanty, B Söderberg, A Irbäck, Limitations of field-theory simulation
722 for exploring phase separation: The role of repulsion in a lattice protein model. *J. Chem.*
723 *Phys.* **156**, 015101 (2022).

724 39. G Aarts, Can Stochastic Quantization Evade the Sign Problem? The Relativistic Bose Gas
725 at Finite Chemical Potential. *Phys. Rev. Lett.* **102**, 131601 (2009).

726 40. KT Delaney, H Orland, GH Fredrickson, Numerical Simulation of Finite-Temperature Field
727 Theory for Interacting Bosons. *Phys. Rev. Lett.* **124**, 070601 (2020).

728 41. SF Edwards, The statistical mechanics of polymers with excluded volume. *Proc. Phys. Soc.*
729 **85**, 613–624 (1965).

730 42. SF Edwards, The theory of polymer solutions at intermediate concentration. *Proc. Phys. Soc.*
731 **88**, 265–280 (1966).

732 43. M Doi, SF Edwards, *The Theory of Polymer Dynamics*. (Oxford University Press, Oxford),
733 (1986).

734 44. PG de Gennes, *Scaling Concepts in Polymer Physics*. (Cornell University Press, Ithaca),
735 (1979).

736 45. MW Matsen, M Schick, Stable and unstable phases of a diblock copolymer melt. *Phys. Rev.*
737 *Lett.* **72**, 2660–2663 (1994).

738 46. C Chin, R Grimm, P Julienne, E Tiesinga, Feshbach resonances in ultracold gases. *Rev.*
739 *Mod. Phys.* **82**, 1225–1286 (2010).

740 47. D Gottlieb, SA Orszag, *Numerical Analysis of Spectral Methods*. (Society for Industrial and
741 Applied Mathematics (SIAM), Philadelphia), (1977).

742 48. KØ Rasmussen, G Kalosakas, Improved numerical algorithm for exploring block copolymer
743 mesophases. *J. Polym. Sci. Part B Polym. Phys.* **40**, 1777–1783 (2002).

744 49. G Tzermes, KØ Rasmussen, T Lookman, A Saxena, Efficient computation of the structural
745 phase behavior of block copolymers. *Phys. Rev. E* **65**, 041806 (2002).

746 50. PE Kloeden, E Platen, *Numerical Solution of Stochastic Differential Equations*. (Springer-
747 Verlag, Berlin), (1999).

748 51. CA Tyler, DC Morse, Orthorhombic Fddd Network in Triblock and Diblock Copolymer Melts.
749 *Phys. Rev. Lett.* **94**, 208302 (2005).

52. MW Matsen, Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts.
53. B Vorselaars, P Stasiak, MW Matsen, Field-Theoretic Simulation of Block Copolymers at
54. M Parrinello, A Rahman, Polymorphic transitions in single crystals: A new molecular dynamics
55. JR Ray, A Rahman, Statistical ensembles and molecular dynamics studies of anisotropic
56. JL Barat, GH Fredrickson, SW Sides, Introducing Variable Cell Shape Methods in Field
57. RKW Spencer, B Vorselaars, MW Matsen, Continuous Thermodynamic Integration in Field-
58. EM Lennon, K Katsov, GH Fredrickson, Free Energy Evaluation in Field-Theoretic Polymer
59. JQ Broughton, GH Gilmer, Molecular dynamics investigation of the crystal–fluid interface. I.
60. D Frenkel, AJC Ladd, New Monte Carlo method to compute the free energy of arbitrary solids.
61. GH Fredrickson, E Helfand, Fluctuation effects in the theory of microphase separation in block
62. GH Fredrickson, KT Delaney, Field-theoretic simulations: An emerging tool for probing soft
63. J Lee, YO Popov, GH Fredrickson, Complex coacervation: A field theoretic simulation study
64. WG Noid, et al., The multiscale coarse-graining method. I. A rigorous bridge between atom-
65. MS Shell, The relative entropy is fundamental to multiscale and inverse thermodynamic prob-
66. PJ Hoogerbrugge, JMV Koelman, Simulating Microscopic Hydrodynamic Phenomena with
67. P Español, P Warren, Statistical Mechanics of Dissipative Particle Dynamics. *Eur. Lett.* **30**,
68. RD Groot, PB Warren, Dissipative particle dynamics: Bridging the gap between atomistic and
69. N Sherck, et al., Molecularily Informed Field Theories from Bottom-up Coarse-Graining. *ACS*
70. DJ Scalapino, RL Sugar, Method for Performing Monte Carlo Calculations for Systems with
71. A Laio, M Parrinello, Escaping free-energy minima. *Proc. Natl. Acad. Sci.* **99**, 12562–12566
72. MS Shell, PG Debenedetti, AZ Panagiotopoulos, Flat-Histogram Dynamics and Optimization
73. in Density of States Simulations of Fluids. *J. Phys. Chem. B* **108**, 19748–19755 (2004).