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ABSTRACT. We compute the spectrum of the category of derived Mackey func-
tors (in the sense of Kaledin) for all finite groups. We find that this space cap-
tures precisely the top and bottom layers (i.e. the height infinity and height
zero parts) of the spectrum of the equivariant stable homotopy category. Due
to this truncation of the chromatic information, we are able to obtain a com-
plete description of the spectrum for all finite groups, despite our incomplete
knowledge of the topology of the spectrum of the equivariant stable homotopy
category. From a different point of view, we show that the spectrum of derived
Mackey functors can be understood as the space obtained from the spectrum
of the Burnside ring by “ungluing” closed points. In order to compute the
spectrum, we provide a new description of Kaledin’s category, as the derived
category of an equivariant ring spectrum, which may be of independent inter-
est. In fact, we clarify the relationship between several different categories,
establishing symmetric monoidal equivalences and comparisons between the
constructions of Kaledin, the spectral Mackey functors of Barwick, the ordi-
nary derived category of Mackey functors, and categories of modules over cer-
tain equivariant ring spectra. We also illustrate an interesting feature of the
ordinary derived category of Mackey functors that distinguishes it from other
equivariant categories relating to the behavior of its geometric fixed points.
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A compelling yet not completely understood phenomenon in hypertopical algebra
is the impression that some stable homotopy theories appear (at least intuitively)
to be “linearizations” of other stable homotopy theories. For example, the derived
category of the integers D(Z) can intuitively be regarded as a kind of “linearization”
of the stable homotopy category of spectra SH. Although it is not our present goal

Date: April 27, 2021.
2010 Mathematics Subject Classification. 1830, 55P91, 55U35.
Second-named author supported by NSF grant DMS-1903429.

1



2 IRAKLI PATCHKORIA, BEREN SANDERS, AND CHRISTIAN WIMMER

to make this notion of “linearization” precise, one can readily find additional exam-
ples; consider, for example, the relationship between the derived category of mo-
tives DMot(k) over a field and the corresponding motivic stable homotopy category
SH(k). In this paper we are interested in the “linearization” of the G-equivariant
stable homotopy category SH(G) for G a finite group.

As the homotopy groups of a G-spectrum X € SH(G) naturally form a graded
G-Mackey functor, it seems plausible that the linearization of SH(G) would be
some kind of derived category of Mackey functors. The category of G-Mackey
functors Mack(G) forms an abelian category, so we can certainly consider its de-
rived category D(Mack(G)), but Kaledin [Kalll] argues that D(Mack(G)) is not
the “correct” definition of the derived category of Mackey functors. He introduces a
new triangulated category of “derived Mackey functors” DMack(G), which contains
Mack(G) as a subcategory, but with better behavior than D(Mack(G)). Part of
Kaledin’s argument against D(Mack(G)) is that it does not behave in a way anal-
ogous to the equivariant stable homotopy category SH(G). From our point of view,
it is Kaledin’s category DMack(G) that is the correct “linearization” of SH(G),
rather than the ordinary derived category D(Mack(G)).

In this paper we will compute the tensor triangular spectrum of the compact
objects in Kaledin’s category of derived G-Mackey functors and explain its close re-
lationship with the spectrum of the stable homotopy category of compact G-spectra
(of which we have a fairly good understanding due to [BS17, BHNT19]). We will
find that the spectrum of DMack(G)¢ captures precisely the top and bottom chro-
matic layers of the spectrum of SH(G)¢. For example, the following diagram depicts
the relationship between the two spaces for G = C), the cyclic group of order p:

(a#p, n>2) (g#p, n>2)
eoeoo eooeo

o—o

Spec(DMack(Cp)¢) € Spec(SH(C,)¢)

Although there remain unresolved questions about the topology of Spec(SH(G)¢)
for nonabelian groups G, we are able to obtain a complete description of the space
Spec(DMack(G)¢) for all finite groups because the unresolved chromatic interac-
tions in the topology of Spec(SH(G)¢) get truncated away at the top and bottom
chromatic layers.

Our description of Spec(DMack(G)¢) is achieved in Theorem 2.22, Theorem 2.36
and Proposition 2.38. The corresponding classification of thick tensor-ideals is
included as Theorem 2.47. Moreover, the precise relationship with Spec(SH(G)®)
is formulated in Corollary 2.40.

There is also a very satisfying relationship with the spectrum of the Burnside
ring. Recall that Spec(A(G)) consists of a number of copies of Spec(Z), one for each
conjugacy class of subgroups, but with certain closed points glued together. We
will see that the spectrum of the category of derived Mackey functors is precisely
the space obtained from the spectrum of the Burnside ring by ungluing these closed
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points. More precisely, Spec(DMack(G)¢) consists of a number of disjoint copies
of Spec(Z), one for each conjugacy class of subgroups, with topological interaction
between the closed points describing the gluing that occurs in Spec(A(G)). The
following picture illustrates this for G = C:

Spec(DMack(C,)°) =

Spec(A(Cyp)) =

Here the two closed points for the prime number p (a green one for the trivial
subgroup and a red one for the whole group G) are glued together in the spectrum
of the Burnside ring but remain distinct in the spectrum of the category of derived
Mackey functors. A precise statement of the relationship between the two spaces
is provided by Corollary 2.42 and additional examples are illustrated in 2.43-2.45.
The category of derived Mackey functors thus lies cleanly between the equivariant
stable homotopy category and the Burnside ring. It is a chromatic truncation of the
former and an equivariant refinement of the latter. This clarifies the two distinct
features noticed in [BS17] that distinguish Spec(SH(G)°) from Spec(A(G)): the
appearance of the chromatic filtration and the ungluing of the closed points.

* % X%

One feature common to the examples of linearization mentioned above
SH ~~ D(Z) and SH(k) ~~ DMot(k)

is that the linearized category can be interpreted as the derived category of modules
over a suitable Eilenberg—MacLane spectrum. Indeed,

SH =D(S) —» D(HZ) 2 D(Z) and  SH(k) — D(HZ,0) 2 DMot (k)

where HZ is the ordinary Eilenberg—MacLane spectrum of the integers and HZ,, .
is the motivic ring spectrum representing motivic cohomology.

We will apply a similar perspective to the linearization of SH(G) and give an al-
ternative description of Kaledin’s category of derived Mackey functors as the derived
category D(HZ¢) of a commutative equivariant ring spectrum HZ g := trivg (HZ)
(see Definition 3.9). In fact, we will establish symmetric monoidal equivalences
between three categories: the derived category of HZg-modules, the category of
HZ-valued spectral G-Mackey functors in the sense of Barwick [Barl7], and the
category of derived G-Mackey functors in the sense of Kaledin [Kalll]. These
equivalences will all arise from equivalences of the underlying symmetric monoidal
oo-categories (see Corollary 4.11, Proposition 4.41 and Theorem 4.50). The com-
parison with Kaledin’s constructions requires some technical care but the main
key is Theorem 4.19 and Corollary 4.32 which establish that Barwick’s effective
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Burnside co-category is an oco-categorical localization of Kaledin’s Waldhausen type
construction on the category of finite G-sets.

A common theme throughout the second half of the paper is the power of
oo-categorical monadicity theorems (e.g. the Barr—Beck—Lurie Theorem) and the
symmetric monoidal universal characterization of the co-category of G-spectra es-
tablished by Gepner-Meier [GM20] and Robalo [Robl5]. As part of the analy-
sis, we will obtain a symmetric monoidal equivalence between the oco-category of
G-spectra and the oo-category of spectral G-Mackey functors (see Proposition 4.1
and Remark 4.4) which may be of independent interest.

* % X%

The details of the construction of D(HZ¢) will be given in Section 3 and the
equivalence D(HZ ) = DMack(G) will be established in Section 4. The actual com-
putation of Spec(D(HZ¢)¢) appears in Section 2. Finally, we discuss in Section 5
what goes wrong if one attempts to apply our method to compute the spectrum of
the ordinary derived category of the abelian category of G-Mackey functors. As ob-
served by Greenlees and Shipley [GS14], this amounts to studying modules over the
Eilenberg—-MacLane G-spectrum associated to the Burnside ring Mackey functor:
D(Mack(G)) = D(HAg). Ultimately things break down because the Eilenberg—
MacLane spectra HAg do not behave well with respect to geometric fixed points.
In fact, our explicit computations in Section 5 illustrate (and give a different per-
spective on) Kaledin’s comments in [Kalll] about the pathological behavior of the
ordinary derived category of Mackey functors. More precisely, we show that the tar-
get category of the geometric fixed point functor ® for D(Mack(G)) depends on
the subgroup H < G. This is quite different than what happens for equivariant cat-
egories like SH(G) and DMack(G) where the geometric fixed point functors ®¥ all
land in the same category, namely the category associated to the trivial group. This
enables us, in those examples, to pull back information from the well-understood
nonequivariant world.

Acknowledgements: We thank Rune Haugseng, Denis Nardin and Thomas Niko-
laus for helpful conversations. We also thank EPFL and the University of Bonn for
their hospitality and for providing the venues where this project first got off the
ground. We also thank John Greenlees for reminding us that the dihedral group of
order 8 has two conjugacy classes of Klein-4 subgroups (see Example 2.43).

2. COMPUTATION OF THE SPECTRUM

We will assume familiarity with the description of SH(G) and the computation
of its spectrum from [BS17]. Following the approach in that work, we will begin by
listing the essential features of the category of derived Mackey functors which are
needed for the computation of its spectrum. The main point is that there is a well-
behaved notion of geometric fixed point functor which aligns with the corresponding
notion for the equivariant stable homotopy category. The crucial feature which
leads to such well-behaved geometric fixed point functors is presented in (F) below.
This feature of Kaledin’s category of derived Mackey functors is not shared by the
ordinary derived category of the abelian category of Mackey functors (as will be
discussed in Section 5).
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For each finite group G, we have a tensor triangulated category D(HZg)
and an adjunction Fg : SH(G) &2 D(HZ¢) : Ug where the left adjoint Fg is
a tensor triangulated functor. The tensor triangulated category D(HZ) is
rigidly compactly generated by { F:(G/H..) | H < G}. Consequently, Ug
is conservative (=reflects isomorphisms) and F preserves compact (=rigid)
objects. Since Fg preserves compact objects, it induces a tensor triangu-
lated functor SH(G)® — D(HZ¢)¢ and hence a continuous map

Spec(D(HZg)¢) 22U, §pec(SH(G)®).
For G = {1} the trivial group, D(HZ¢) = D(HZ) and the adjunction in (A)
is the usual adjunction F' : SH = D(HZ) : U induced by the unit S — HZ
of the Eilenberg—MacLane spectrum HZ.

For any homomorphism a : G — G’ of finite groups, there is an associ-
ated tensor triangulated functor o* : D(HZg ) — D(HZ¢) which preserves
coproducts, such that both squares in

SH(G') —— SH(G)

FGIHUG/ FGHUG

D(HZr) —— D(HZg)

commute up to natural isomorphism. As o* : D(HZg ) — D(HZg) is
a tensor triangulated functor between rigidly compactly generated tensor
triangulated categories, it preserves compact (=rigid) objects and hence
induces a continuous map

Spec(D(HZe)¢) 22U Spec(D(HZe: )9).
For a quotient o : G — G/N, we call inﬂg/N := o the inflation functor
and for an inclusion « : H < G, we call resg := o the restriction functor.
Moreover, we set trivg = imﬂg/g7 regarded as a functor D(HZ) — D(HZ¢).

For a composition G = G’ By qr of group homomorphisms, we have a
G~ ool G

natural isomorphism (5 o a)* = a* o f*. For example, resf = resj oresy;
for K < H <QG.

For any H < G, the restriction functor res§ : D(HZg) — D(HZp) has a
left adjoint ind%, : D(HZ ) — D(HZ¢).

For any normal subgroup N <G, the composite

D(HZ ) 2, D(HZ6) - D(HZG)/ Locs (Fa(G/H,) | H 2 N)

is an equivalence. In other words, D(HZ/x) is a particular finite localiza-
tion of D(HZ¢), obtained by killing the generators of D(HZ) associated
to those subgroups which do not contain N. Define the “geometric fixed
point” functor ®N:¢ : D(HZg) — D(HZg/n) to be the composite

D(HZg) — D(HZ¢)/ Locg (Fo(G/Hy) | H 2 N) = D(HZg/N).

By construction, it is split by inflation: PNC o inﬂg/N = Idg/n- In partic-
ular, taking N = G, we have the geometric fixed point functor

oY - D(HZG) 277, D(HZ¢c) = D(HZ)
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which is (up to equivalence) the localization obtained by killing all genera-
tors except Fo(G/G1) = Ipmzs)-
(G) For H < G, we define ®7:¢ : D(HZ5) — D(HZ) as the composite

G
resy

D(HZ¢) % D(HZy) 225 D(HZ).

These are tensor triangulated functors (preserving compact objects). In
particular, ®-¢ induces a continuous map

Spec(D(HZ)¢) 2220, g oo (D(HZG)).

For each prime ideal p € SpecZ = Spec(D(HZ)®) and H < G, define
Pa(H,p) € Spec(D(HZ)) by
P (H,p) = Spec(®)(p) = (27:9) 71 (p).

(H) For an inner automorphism ¢, = (—)9 : G = G, the induced functor
*:D(HZg) = D(HZg) is naturally isomorphic to the identity functor. It
then follows from (C) that for any subgroup H < G, the left-hand triangle

in
D(HZ¢) D(HZ)

r\eSH\ D(HZ ) <I>

commutes up to natural isomorphism. The right-hand triangle also com-
mutes up to natural isomorphism since ¢} (Fys(H9/K9)) = Fy(H/K) for
any K < H < G (again by (C)). Thus the functor ®#:¢ : D(HZg) — D(HZ)
only depends, up to natural isomorphism, on the G-conjugacy class of
the subgroup H. That is, ®#"¢ = &®M.C for any ¢ € G. As natu-
rally isomorphic functors induces the same map on spectra, it follows that
:PG(va) = ?G(Kvp) it H~¢ K.

(I) Finally, hinting at the reasons behind our choice of notation, Ug(1) =
trivg(HZ) as commutative monoids in SH(G), where the right-hand side is
the Eilenberg—MacLane spectrum of the integers regarded as a G-spectrum
with trivial action. This is the most “explicit” fact about our categories
D(HZ¢) that we will need.

2.1. Remark. The details of the construction of D(HZ) and verification of the
above facts (A) through (I) will be give in Section 3. For the rest of the present
section, we will use the above properties as a black-box in order to compute the
spectrum of D(HZ )¢ and describe its relationship with the spectrum of SH(G)®.

2.2. Remark. The “geometric fixed point” functor ®V-C¢ : D(HZ¢) — D(HZg/N)
in (F) is nothing but the finite localization associated to the thick tensor ideal
of compact objects generated by the Fo(G/H,) for H 2 N. As such it has an
associated idempotent triangle egizn) — 1 — fgzn] — Xegpn] in D(HZg) and
can be conveniently understood simply as tensoring with the right idempotent:

fazn ® — : D(HZG) — fyizn) @ D(HZ¢) = D(HZg ).
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Moreover, the latter equivalence is explicitly given by

\N
farzn) ® D(HZg) — D(HZg) S D(HZq/n)

where (—)¥ denotes the right adjoint of inflation (which exists since inflation pre-
serves coproducts by assumption). In other words, it follows formally from the
definition (F) that the geometric fixed point functor is given as

(2.3) ONVE(X) = (fripn @ X)N.
For further discussion of these tensor idempotents, see [BS17, Section 5] and [BF11].
2.4. Lemma. For any N <G, the diagram
$N,G
SH(G) —— SH(G/N)
(2.5) Fcl lFG/N
FN.G
D(HZg) —— D(HZg/N)
commutes up to isomorphism.

Proof. Let f € SH(G) denote the right idempotent for the finite localization ®V:C
SH(G) — SH(G/N). Applying [BS17, Proposition 5.11] to the functor Fg :
SH(G) — D(HZ¢) and recalling the definitions in (F) and [BS17, (H)], we see
that Fg(f) € D(HZg) is the right idempotent for the finite localization ®N-C
D(HZg) — D(HZg/n). Moreover, the middle square of

FN.G

inﬂg/N

T
SH(G/N) —% SH(G) = f®@SH(G) ——SH(G/N)

FG/N\L Fcl lFG lFG/N
e

G/N

infl ~
D(HZg/n) —— D(HZg) —— Fa(f) ® D(HZg) —— D(HZg/n)
GN.G

evidently commutes. The left-hand square commutes by (C) and the horizontal
composites are the identity. It then follows formally that the right-hand square
also commutes. O

2.6. Remark. Tt follows from Lemma 2.4, (B), (C) and the definitions in (G) that
SH(G) —2" 5 sH

(2.7) o |
D(HZs) 22 D(HZ)

commutes up to isomorphism for any H < G.

2.8. Lemma. For any N <G, we have ® = ®G/N o NG,

Proof. Consider the two localizing ®-ideals £1 C Lo of D(HZg) given by

Ly :=Locg(Fe(G/Hy) | H 2 N) and Lg:=Locg(Fa(G/Hy)| H<G).
As Verdier quotients can be “nested”, the localization
(2.9) D(HZg) — D(HZg)/ Lo
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coincides with the composite
(2.10) D(HZ¢) 4 D(HZc)/L1 — (D(HZG)/£1)/q(£2).
Note that D(HZ¢) — D(HZg) /£ = D(HZ) is ®C while D(HZs) — D(HZg) /L1 =
D(HZg/n) is ®NG_ We just need to show that the quotient
D(HZg/n) = D(HZg)n) /@™ (L2)

is nothing but the finite localization defining ®&/V - D(HZg/n) — D(HZ). Now
®N:G(L,) is the localizing tensor-ideal generated by { NG (Fe(G/Hy)) |H< G}
(see [Ver96, Prop. 2.31] and [NeeO1, Cor. 3.2.11]). This coincides with the localizing
tensor-ideal generated by { Fg,n((G/N)/(H/N);)|N < H < G } since

~ ~ 0 ifH2N
N (Fo(G/Hy)) = Fo n(9NV9(G/HY)) =
(Fo(G/H) = Fepn @ OGrH 24y 2
by Lemma 2.4 and [LMS86, Cor. 11.9.9]. |
G/N

2.11. Lemma. For N < K < G with N <G, we have ;I;NvKores?( ~ res /N o®dN:G,

Proof. Let fspn],¢ denote the right idempotent in D(HZq) for ®N-C as in Re-
mark 2.2. By [BS17, Prop. 5.11], its restriction res?{(f?[Z)N},G) is the right idem-
potent for a finite localization of D(HZ k), namely the localization associated to
the compact thick tensor ideal generated by { res§ (Fo(G/H.))|H < G,H 2 N }.
Using (C) and the Mackey formula, this coincides with the thick tensor ideal
generated by { Fx(K/L.)|L < K,L 2 N }. In other words, res?(fszn),c) =
fa12n), Kk 18 the idempotent in D(HZ ) for ®N-K Now, by (D), inﬂg/N o resgﬂ\]] =
res% oinﬂg/N. Applying this equation to ®V:¢(X) and post-composing by &K
we obtain

resg  (BNC(X)) 2 SV K (res (infl y (BVF(X))))
(foran),K ®fesg(inﬂg/N(&’N’G(X )
(res§ (frrzn).c) © resg (infig (P 9(X))))
= ANV (res (faan,6 @ infig ) (@VF(X))))
(res
(

l
>
=z
=
oy

= MK (vesF (frrzpn,e © X))
2 AV (fan) 1 @ resF (X))
= SN K (resF (X))
where AV-X denotes the right adjoint of inﬂg /n- Here we have used that
frizn ® inﬂg/N(‘T)N’G(X)) = frany @ X
for any X in D(HZs). This follows from the fact that
=Y
ferany ® D(HZg) — D(HZg) —— D(HZg/N)

is an equivalence with quasi-inverse

inflg
D(HZgn) — 2 D(HZg) — fzn) ® D(HZc)

as explained in Remark 2.2. g
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2.12. Lemma. Let K < H < G. The map
Spec(res$) : Spec(D(HZ ;7)¢) — Spec(D(HZ¢)°)
sends Py (K,p) to Pa (K, p).

Proof. This is immediate from the definition of ®**# and ®/¢ (see (G)) and the

relation res§ = resf ores§ (see (D)). O

2.13. Proposition. For any H < G, the image of the map
Spec(res$) : Spec(D(HZ ;)¢) — Spec(D(HZ)°)
coincides with supp(Fg(G/Hy)).

Proof. Since the restriction functor resg preserves coproducts (C), its left adjoint
ind%, (E) necessarily preserves compact objects (see [Nee96, Thm. 5.1] for instance).
Hence the adjunction indg a res% restricts to an adjunction

ind% : D(HZ )¢ = D(HZ¢)® : res$;

on the subcategories of compact objects. Moreover, as the category D(HZg) is
rigidly compactly generated (A), its subcategory of compact objects D(HZs)¢ is a
rigid category (i.e. all objects are dualizable) so the duality D provides an equiva-

lence between D(HZ )¢ and its opposite category. It follows that D indg D is right

adjoint to resg on the categories of compact objects. We can then invoke [Ballg,

Thm. 1.7] to conclude that the image of Spec(res%) equals supp(D ind§ D1). This
coincides with supp(ind% (1)) since D1 = 1 and supp(DX) = supp(X) (by [Bal07,
Prop. 2.7] for instance). Finally, by (C) we have res$ oUg = Uy o res$. Taking
left adjoints, ind$ oFyr 22 Fg 0 ind$ so indG (1) = ind% (Fi (1)) 2 Fg(ind$ (1)) 2
Fo(G/Hy). O

2.14. Lemma. Let N < K < G with N <G. The map
Spec(inflg ) : Spec(D(HZ¢)") — Spec(D(HZg/n)°)
sends Pa(K,p) to Po/n(K/N,p).

Proof. Unravelling the definitions and factoring the composite K — G — G/N as
K — K/N — G/N, property (D) reduces our claim to the assertion that ®< o
inﬂg/N >~ ®G/N . This follows from Lemma 2.8 since inﬂg/N splits ¢, O

2.15. Lemma. Let N < K < G with N <IG. The map
Spec(®N'C) : Spec(D(HZ ¢,/ n)¢) — Spec(D(HZ)®)
sends Pa N (K/N,p) to Pa(K,p).
Proof. This follows from Lemma 2.8 and Lemma 2.11 and the definitions. O

2.16. Corollary. Let N < K < G with N<G. Then Pg(K,p) C Pq(G,q) if and
only if P n(K/N,p) € Pa/n(G/N,q).

Proof. The induced maps on spectra preserve inclusions. Thus (=) follows from
Lemma 2.14 and (<) follows from Lemma 2.15. O
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2.17. Remark. Recall the prime ideals of the nonequivariant stable homotopy cat-
egory of finite spectra SH. They are of the form €, , where p is a prime number
and 1 <n < oo is a “chromatic” number. Recall that €, = SHSr —. Co,1 is the
subcategory of finite torsion spectra, independently of p. It is the unique generic
point of Spec(SH), while the points €, o are the closed points. Similarly recall
that the prime ideals of SH(G)¢ are of the form P(H,p,n) for H < G, p a prime
number and 1 < n < oco. Again, P(H,p,1) is independent of p and sometimes
written P(H, 1) or P(H,0,1).

2.18. Proposition. The map Spec(D(HZ)¢) M Spec(SH€) sends a prime ideal
p € SpecZ = Spec(D(HZ)®) to Cp o if p = (p) and to Co1 if p = (0).

Proof. Tt follows from the Hurewicz theorem that the functor HZ A — : SH — SH is
conservative on compact objects. That is, if X € SH® then HZA X = 0 if and only if
X = 0. As a corollary, the functor F' : SH® — D(HZ)® is conservative: if F(X) =0
then HZA X 2 UF(X) =0, hence X = 0. Thus by [Ball8, Thm. 1.2], the induced
map on spectra ¢ := Spec(F) : Spec(D(HZ)¢) — Spec(SH®) hits all the closed
points €, o of Spec(SH). Now, the unit map S — HZ induces an isomorphism of
rings m(S) — 7o (HZ) which, under the usual identifications of both sides with the
ring of integers, is just the identity. This is precisely the map on endomorphism
rings Endsu(1) — Endpz) (1) induced by the functor F': SH® — D(HZ)®. Since
the comparison map p : Spec(X) — Spec(Endx (1)) of [Ball0a, Section 5] is natural,
we have a commutative diagram

Spec(D(HZ)¢) —Y— Spec(SHC)

ﬂJZ Jp
Spec(mo(HZ)) = Spec(mo(9))

I= I=

Spec(Z) =———— Spec(Z)

and the left-hand comparison map is just the usual identification of the spectrum
of D(HZ)¢ = D(Z)¢ with the spectrum of the integers. Thus the top map ¢ sends
the prime (0) in Spec(D(HZ)) to a point in the fiber (with respect to p) of (0) in
Spec(SH®). There is only one such point in the fiber, namely €o; = SH**". On
the other hand, the prime (p) in Spec(D(HZ)¢) maps to a point in the fiber of (p)
in Spec(SH€). Since all the closed points of Spec(SH®) are hit, the closed point
Cp,o in the fiber over (p) must be hit. Since (p) in Spec(D(HZ)°) is the only point
mapping to the fiber over (p), the only possibility is that it maps to the closed point
Cp.oo- O
2.19. Corollary. For any H < G, the map Spec(D(HZs)®) SpeclFa), Spec(SH(G)°)
sends Pa(H,p) to Pa(H,p,00) and Pe(H,0) to Pg(H,0,1).

Proof. This follows immediately from (2.7) and Proposition 2.18. |

2.20. Remark. By formal nonsense, the adjunction in (A) provides an isomorphism

EndD(HZG) (]].) =~ 7rO(UG(]]-))
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of commutative rings, where Ug(1) is regarded as a commutative monoid in SH(G)
via the induced lax monoidal structure on the functor Ugs. Moreover, the map on
endomorphism rings mo(1) = Endgp () (1) — Endpz,) (1) ~ m(Ug(1)) induced
by the functor Fg is just post-composition by the unit of Ug(1). Property (I)
asserts that we have an isomorphism Ug(1) ~ trivg(HZ) of commutative monoids
in SH(G). The map on endomorphism rings can then be identified with the map

mo((trivg(S)Y) — mo(HZ A trive(S)9)
induced by the unit of the Eilenberg-MacLane spectrum HZ. This is an isomor-
phism by the Hurewicz theorem since the spectrum trivg(S)© is connective (being
a wedge sum of suspension spectra by the tom Dieck splitting theorem). In this

way, we have an identification A(G) ~ Endgp (1) ~ Endppz,)(1) between the
Burnside ring and the endomorphism ring of the unit in D(HZ¢).

2.21. Corollary. The comparison map p : Spec(D(HZs)®) — Spec(A(G)) sends
P(H,p) to p(H,p) € Spec(A(G)) and sends P(H,0) to p(H,0) € Spec(A(G)).

Proof. Naturality of the comparison map gives a commutative diagram

Spec(D(HZ)®) —2) ., §pec(SH(G)?)

Spec(Endp pze)(1)) —— Spec(Endsp(c)(1))

lg lg

Spec(A(G)) === Spec(4A(G))

and the claim follows from Corollary 2.19 and [BS17, Proposition 6.7] (see Re-
mark 2.20). The spectrum of the Burnside ring is recalled in [BS17, Section 3]. O

2.22. Theorem. Let G be a finite group. FEvery prime ideal of D(HZg)¢ is of the
form P(H,p) for some H < G and p € SpecZ. Moreover, the prime P(H,p) is
completely determined by the G-conjugacy class of H and the prime ideal p. That
is, P(H,p) = P(K,q) if and only if H ~¢ K and p = q.

Proof. We will prove the theorem by induction on the order |G|. By construc-
tion (F), the geometric fixed points ®¢ : D(HZg) — D(HZ) is a finite localization.
Hence by the Neeman-Thomason localization theorem [Nee92, Thm. 2.1], the in-
duced map

Spec(D(HZ)¢) 22D, §pee(D(HZG))
is a homeomorphism onto the subset V(Fg(G/Hy) | H < G) C Spec(D(HZ¢)¢)
consisting of those primes P € Spec(D(HZ¢)¢) which contain Fg(G/H,) for all
H < @. In particular,

{P(G,p)|peSpecZ} =V(Fe(G/Hy) | HLG).
The complement is thus given by

Spec(D(HZ)®) \ { P(G,p) |p € SpecZ } = | J supp(Fa(G/H}))

H<G

= |J im(Spec(resf;))

H<G
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where the last equality is given by Proposition 2.13. By the inductive hypothesis,
every prime in D(HZy) (for H < G) is of the form Py (K,p) for some K < H
and p € Spec(Z). By Lemma 2.12, it gets mapped to Pg(K,p) under Spec(res$).
This completes the proof that every prime is of the required form. The uniqueness
statement follows from (H), Corollary 2.19 and [BS17, Theorem 4.14]. d

2.23. Remark. In other words, Spec(D(HZ¢)°) is covered by copies of Spec(Z), one
copy for each conjugacy class of subgroups H < G. These copies are disjoint, so as
a set Spec(D(HZ)¢) is just the disjoint union of these copies of Spec(Z). However,
the copies of Spec(Z) are related by the topology of Spec(D(HZs)¢). Our next
task is to determine this topology. This will follow from a series of reductions
culminating in Theorem 2.36.

2.24. Remark. Understanding the topology boils down to understanding the in-
clusions among the primes (i.e. understanding the irreducible closed sets) and the
comparison map to the spectrum of the Burnside ring (see Remark 2.20 and Corol-
lary 2.21) greatly restricts the possible inclusions (Lemma 2.26 below).

2.25. Remark. A subgroup H < G is said to be a p-subnormal subgroup if there
exists a subnormal tower from H to G all of whose subquotients have order p. We
refer the reader to [BS17, Section 3] for more details.

2.26. Lemma. Let K, H < G be two subgroups and p,q € SpecZ. Suppose
Pa(K,p) C Pa(H,q) in D(HZg)C. Then:

(a) If p = (0) then q = (0) and K ~g H (in which case the inclusion is an

equality).
(b) If p = (p) then K is G-conjugate to a p-subnormal subgroup of H and
q=(p) or (0).

Proof. This follows from Corollary 2.19 and [BS17, Proposition 6.9] together with
Corollary 2.21 and what is known about the inclusions among the prime ideals of
the Burnside ring (e.g. from [BS17, Theorem 3.6] or the original [Dre69]). O

2.27. Remark. On the other hand, we know that Pg(H,p) C Pe(H,0) for any
subgroup H < @ since the map Spec(®*) : Spec(D(HZ)¢) — Spec(D(HZ¢)¢) pre-
serves inclusions and the identification Spec(D(HZ)¢) = Spec(Z) reverses inclu-
sions. Armed with Lemma 2.26 and this observation, all that remains to deter-
mine the topology of Spec(D(HZ¢)¢) is to understand when we have an inclusion
Pa(K,p) C Pe(H,p) when K is G-conjugate to a p-subnormal subgroup of H. We
will show that this inclusion always holds (see Proposition 2.35 and Theorem 2.36
below). To prove this we will use a series of reductions which ultimately reduces
the problem to the case G = C,, the cyclic group of order p.

2.28. Remark. The following result explains how vanishing of the Tate construction
relates to the geometry of the Balmer spectrum.

2.29. Proposition. Let T be a rigidly-compactly generated tensor triangulated cat-
egory and let KX := T¢ denote its subcategory of compact-rigid objects. For any
Thomason subset Y C Spec(X), let KXy = {Jc € ‘JC| supp(z) C Y} be the corre-
sponding thick tensor-ideal of X, and let ey — 1 — fy — Yey be the idempotent
triangle in T for the associated finite localization. For any object x € K, the fol-
lowing are equivalent:
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(a) The Tate construction ty (x) = 0 vanishes.
(b) The exact triangle

ey Qr > — fy Qr — Yey Qx

splits; that is, fy @ x — Yey ® x is the zero map.
(c) The support of = is a disjoint union of closed sets

supp(x) = Zy U Zs

with Z1 CY and ZoNY = 0.
(d) supp(z) N (Spec(K) \'Y) is Thomason.

Proof. Recall that ty : T — T is defined by ty = [fy,Xey ® —] where [—, —]
denotes the internal hom in T (see [BS17, Definition 5.7] or [Gre01]).

(a) = (b): The kernel of ¢ty : T — T is a thick subcategory of T which is closed
under tensoring with compact-rigid objects. Thus, ty(z) = 0 iff ty(Dzx ® ) =
[fy ® z,Xey ® x] = 0. This implies (b) since Homg (a, b) = Hom<(1, [a, b]).

(b) = (c): If the exact triangle splits then z ~ (ey ® ) ® (fy ® z). In particular,
the objects ey ® z and fy ® x are both contained in X (i.e. are compact). Then
defining Z; := supp(ey ® ) and Zs := supp(fy ® ), we have supp(z) = Z; U Zo,
a disjoint union of closed sets. Finally, recall that Loc(Ky) = ey ® T. Thus, for
any ¢ € X, supp(c) C Y is equivalent to fy ® ¢ = 0. Similarly, if supp(c)NY =0
then for any d € Ky, d ® ¢ = 0; hence ey ® ¢ = 0. Conversely, if ey ® ¢ = 0 then
d®c~d®ey ®c=0 for any d € Xy. It follows that supp(c)NY = () is equivalent
to ey ® ¢ = 0. This proves (c) by considering ¢ := ey ® z and ¢ := fy ® .

(¢) = (d): Observe that Spec(X) \ Zz = Z; U (Spec(X) \ supp(z)) is a union
of two quasi-compact subsets of Spec(X), and hence is itself quasi-compact. The
closed set Zy = supp(x) N (Spec(X) \ V) thus has quasi-compact complement, and
hence is a Thomason closed subset.

(d) = (a): The hypothesis implies that

supp(z) = (supp(x) N'Y) U (supp(x) N (Spec(X) \ Y))
is a decomposition into disjoint Thomason sets. Then by the generalized Carlson
theorem [Bal07, Theorem 2.11] we have  ~ a @ b for two objects a,b € K with
supp(a) C Y and supp(b) NY = (. Then ty(x) = ty(a) @ ty(b) vanishes since
fy ® Da=0and ey ® b=0. [l

2.30. Proposition. Let e¢ — 1 — fo — Yeq be the idempotent triangle in SH(G)
associated to the trivial family of subgroups. (That is, e = EG4 and fg = EG}
For G = Cp, this triangle does not split after tensoring with trive(HF,); that is,
the map

trivg (H[Fp) ® fG — tI‘iVG(H[Fp) R Yeg

in SH(G) is not the zero map.

Proof. For notational simplicity, let H := trivg(HF,). If the map H - H®fq has
a section in SH(G), then the map of G-Mackey functors 7, (H) — 7, (H® fg) would
have a section:

(2.31) - -
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The Mackey functor my(H) can be identified with A ® F, where A denotes the
Burnside ring G-Mackey functor G/H — A(H). On the other hand, for G = C),
the Mackey functor m,(H® f¢) satisfies

mo(H®f6)(G/G) = nf (H®fc) = mo(@° (H)) & mo(HF,) 2 T,
and

mo(H®fe)(G/{1}) = m§ (Hofo) = mo(HF, @ rest;) (fa)) = 0.
Now A(C,) is the ring Z[X]/(X? — pX) with restriction A(Cp) — A({1}) = Z
given by X — p and with transfer Z = A({1}) — A(C,) given by 1 — X. A
splitting (2.31) of Cp-Mackey functors would thus look like

Fp —— B[X]/(X?) —
I [l Il
0 F, 0

where the vertical maps represent restriction and transfer. Since the right-hand
map commutes with transfers, it must map X to 0 in F,,. Hence, in order for the
composite to be the identity, the left-hand map ¢ must map 1 € [, to an element of
the form 1+mX € F,[X]/(X?). Since the middle restriction map sends X to 0 € F,,
the element 1 4+ mX is mapped to 1 € F,,. On the other hand, since ¢ commutes
with restrictions, 1 +mX must be mapped to 0 € F,,. This is a contradiction. [

2.32. Proposition. Consider G = C,. Then P(1,p) C P(Cy,p) in D(HZc,).

Proof. Recall that if FF : X — £ is a tensor triangulated functor and ¢ :=
Spec(F) : Spec(L) — Spec(X) is the induced map on spectra, then for any z € X,
supp, (F(x)) = ¢~ (suppyc(x)). Then consider the mod-p Moore spectrum M (p).
Its support in Spec(SH€) is precisely {Cp2} = {Cpn | 2 < n < c0}. We can then
pass to the G-equivariant stable homotopy category by giving the mod-p Moore
spectrum a trivial G-action. By [BS17, Cor. 4.6], the support of trivg(M(p)) in
SH(G)® is {P(H,p,n)|H < G,2 < n < 0o} C Spec(SH(G)¢). Finally, using
Fe : SH(G)¢ — D(HZ¢)¢, we can consider Fg(trivg(M(p))) in D(HZg)°. By
Corollary 2.19, its support is { P(H,p) ‘ H<G } For G = C), this is precisely two
points:

supp(Fg (trivg (M (p))) = {P(1,p), P(Cp, p)} C Spec(D(HZg)").
We know from Lemma 2.26 that P(1,p) is a closed point and that P(G, p) is either

a closed point or else {P(G,p)} = {P(1,p), P(G,p)}. We claim that the latter holds
i.e. that P(1,p) is contained in the closure of P(G,p). To this end, let

eqg = 1 — fag = Xeq
be the idempotent triangle in SH(G) associated to the Thomason closed subset
supp(G4) = { Pa(l,p,n) | all p,n } (that is, all the primes for the trivial subgroup).
By [BS17, Prop. 5.11], Fg(eg) — 1 — Fo(fa) — XFg(eq) is the idempotent
triangle in D(HZ) associated to Y := supp(Fa(G4)) = {P(1,p)| all p }. Note
that if P(1,p) € P(G,p) then

supp(Fe(trive(M(p)))) = {P(1,p)} U{P(G,p)} = {P(1,p)} U{P(G,p)}
is a disjoint union of closed sets Z; LI Z with Z; CY and Z; NY = . Invoking
Proposition 2.29 and letting Z := supp(Fg(trive(M (p)))) = {P(1,p), P(G,p)}, we
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see that P(1,p) C P(G, p) if and only if Z = {P(G, p)} if and only if Z is irreducible
if and only if Z is connected if and only if the idempotent triangle

Fg(ec) — 1 — Fg(fg) — EFg(eg)

does not split after tensoring with Fg(trivg(M(p))). Suppose for a contradiction
that it did split. Then passing back to SH(G) by applying Ug and using that
UcFe = trivg(HZ) ® — by (I) and the projection formula [BDS16, Prop. 2.15], it
would follow that the sequence eq — 1 — fg — Yeg splits after tensoring with
trivg(HZ) ® trivg(M(p)) ~ trivg(HZ @ M(p)) ~ trivg(HF,) which contradicts
Proposition 2.30. (]

2.33. Corollary. Let K be a subgroup of a finite p-group G. Then Pg(K,p) C
(PG(G,p) m D(HZG)

Proof. As G is a p-group, there is a subnormal tower K = Ko<+ <, Kt =G
where each subquotient has order p. By Proposition 2.32, Pk, k, ,(1,p) is con-
tained in P, k, ,(Ki/K;_1,p) for all i = 1,...,¢t. Hence by Corollary 2.16,
TKi(Ki—lyp) - :])K7(Klap) for all ¢ = 1;"'at' Hence ?G(Ki—l,p) c :])G(Kzap)
foralli=1,...,t by Lemma 2.12, so that Pg(K,p) C Pa(G,p). O

2.34. Proposition. If K is a p-subnormal subgroup of a finite group G, then

Pa(K,p) C Pe(G,p) in D(HZg).

Proof. The fact that K is p-subnormal in G implies that O?(G) C K (see [BS17,

Lem. 3.3]). By Corollary 2.16, Pg(K,p) C P(G,p) if and only if
Pasore)(K/OP(G),p) C Payore)(G/ OP(G),p).

As G/ OP(G) is a p-group, the claim follows from Corollary 2.33. O

2.35. Proposition. Let K, H be subgroups of a finite group G. If K is G-conjugate
to a p-subnormal subgroup of H then Pq(K,p) C Pe(H,p) in D(HZg).

Proof. By assumption K ~g K’ where K/ < H is p-subnormal. By Proposi-
tion 2.34, Py (K',p) C Py (H,p) in D(HZ ). Tt then follows from Lemma 2.12 that
Pa(K,p) =Pa(K',p) € Pe(H,p) in D(HZg). 0

2.36. Theorem. Let G be a finite group, let K, H < G be subgroups and let p,q €
SpecZ. Then Pe(K,p) C Pe(H,q) if and only if either

(a) p = (p), K is G-conjugate to a p-subnormal subgroup of H, and q = (p) or

(0); or
(b) p=1(0), q=(0) and K ~g H (in which case the primes are equal).
Proof. This follows from Lemma 2.26, Remark 2.27 and Proposition 2.35. (I

2.37. Remark. The irreducible closed subsets of Spec(D(HZg)¢) can thus be com-
pletely described as follows:

o {P(H,p)} = {P(K,p) ’ K a p-subnormal subgroup of H }; and

o {P(H,0)} = {P(H,0)} UU, prime {P(H,p)}-
These irreducible closed subsets completely determine the topology:

2.38. Proposition. The space Spec(D(HZ¢)¢) is noetherian. Consequently, the
closed subsets are precisely the finite unions of irreducible closed sets (equivalently,
the closures of finite subsets). Moreover, the Thomason subsets are just the special-
ization closed subsets, that is, arbitrary unions of closed sets.
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Proof. By Theorem 2.22; the space Spec(D(HZs)¢) is covered by the images of the
continuous maps Spec(®) : Spec(D(HZ)¢) — Spec(D(HZg)®) for H < G. The
claim that Spec(D(HZ¢)¢) is noetherian follows from the fact that Spec(D(HZ)®) =
Spec(Z) is noetherian, that a continuous image of a noetherian space is noetherian,
and that any space covered by finitely many noetherian subspaces is noetherian.
For the second claim just note that every subspace of a noetherian space is noe-
therian and that a noetherian space has finitely many irreducible components. The
description of the Thomason subsets is immediate from the definition as every sub-
space of a noetherian space is quasi-compact (cf. [Ball0b, Remark 12]). All of this
is standard: see [Sta20, Section 0050] or [GD71, §2.2]. O

2.39. Remark. Theorem 2.22 and Theorem 2.36 together with Proposition 2.38 thus
provide a complete description of the topological space Spec(D(HZ)¢) for any finite
group G. We now explain the precise relationship, alluded to in the introduction,
between the three spaces: Spec(D(HZ¢g)¢), Spec(SH(G)), and Spec(A(G)). It may
be helpful to refer to the examples depicted on pages 2 and 3 in the introduction.

2.40. Corollary. For any finite group G, the map
Spec(Fg) : Spec(D(HZ)¢) — Spec(SH(G)°)

is a homeomorphism of Spec(D(HZ¢)¢) onto its image, which is the subspace of
Spec(SH(G)®) consisting of the chromatic height 0 and chromatic height oo points.

Proof. This follows from Cor. 2.19 and our descriptions of the two spaces; in partic-
ular, from Thm. 2.22, Thm. 2.36, [BS17, Thm. 4.14], [BS17, Prop. 6.9], and [BS17,
Cor. 8.4]. O

2.41. Remark. From the second point of view, both Spec(D(HZ)¢) and Spec(A(G))
consist of a number of copies of Spec(Z), one for each conjugacy class of subgroups
of G, except that in Spec(A(G)) the closed points p(K,p) and p(H,p) are glued
together when OP (K) ~¢ OP(H). Stated differently, each point p(H, p) is identified
with p(OP(H),p). For example, if G is a p-group then OP(H) is trivial for every
H < G, so all the copies of (p) — one for each copy of Spec(Z) — are glued into a
single point. In contrast, if p does not divide |G| then OP(H) = H for all H < G,
so no gluing of the copies of (p) occurs. The picture given of Spec(A(C,)) on page 3
is indicative of the situation for any p-group.

This gluing p(H,p) = p(OP(H),p) in Spec(A(G)) manifests in Spec(D(HZs))
by the fact that P(OP(H),p) is contained in the closure of P(H,p). Or, rather, the
gluing in Spec(A(Q)) is explained by these topological relations in Spec(D(HZ¢)®).
2.42. Corollary. For any finite group G, the comparison map

p: Spec(D(HZg)¢) — Spec(A(G))
is a quotient map which identifies points of height > 1 whose closures intersect.
In more detail, if P,Q € Spec(D(HZg)®) are distinct points then p(P) = p(Q) if
and only if P and Q are points of height > 1 with m N @ # (0 if and only if
P =P(H,p) and Q = P(K,p) for some prime number p and subgroups H, K < G
such that H N K is a p-subnormal subgroup of both H and K.

Proof. The points of height 0 are precisely the points P(H,0) while the points of
height > 1 are the points P(H,p). (They can have height greater than 1 because of
the inclusions among them.) According to Corollary 2.21, [BS17, Theorem 3.6] and
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Theorem 2.22, p(P(H,0)) # p(P(K,p)) for any p, while p(P(H,0)) = p(P(K,0))
ift H ~¢ K iff P(H,0) = P(K,0). Also, p(P(H,p)) # p(P(K,q)) for p # ¢, while
p(P(H,p)) = p(P(K,p)) iff OP(H) ~g OP(K). Thus the only identifications made
by p are for primes P(H, p) and P(K, p) corresponding to the same prime number p,
precisely when O (H) ~¢ OP(K). By Remark 2.37, the closure of P(H, p) consists
of those P(K,p) for K a p-subnormal subgroup of H. So if O?(H) ~g OP(K) then
P(OP(H),p) = P(OP(K),p) is a point in the intersection {P(H,p)} N {P(K,p)}.
Conversely, if P = P(H, p) and Q = P(K, q) are height > 1 points with {P}N{Q} #
then p = ¢ and there exists a subgroup L which is G-conjugate to a p-subnormal
subgroup of H and also G-conjugate to a p-subnormal subgroup of K. It follows
that OP(H) ~¢g OP (L) ~¢ OP(K) and hence that p(P) = p(Q).

Also note that if OP(H) ~¢ OP(K) then OF(H) = OP(KY) for some g € G and
hence H N K9 is a p-subnormal subgroup of both H and KY. The converse also
holds. We conclude that p(P) = p(Q) if and only if P = P(H,p) and Q = P(K,p)
for some prime number p and subgroups H, K < G satisfying OP(H) = OP(K)
(equivalently, with H N K a p-subnormal subgroup of both H and K).

Finally, one readily checks using Remark 2.37 that the surjective continuous
map p is a closed map, hence a quotient map. ([l

2.43. Example. Consider G = Dg the dihedral group of order 8. Its lattice of
conjugacy classes of subgroups is

and the following diagram depicts the comparison map for the spectrum of D(HZ p, )
localized at the prime 2:

Spec(D(HZ p,)¢,)) ———~—— Spec(A(Ds) )

Closure goes up and to the left. For example, the closure of the point P(Cjy,0)
consists of four points:

{P(C4,0)} = {P(C4,0), P(Cy, 2), P(C2, 2), P({1},2) }

Similarly, the closure of P(Vy,0) consists of five points (for either choice of V) and
the closure of P(C3,2) consists of two points (for any choice of Cs). Observe that
there is a unique closed point in Spec(A(Ds)(2)) and that the fiber over this point is
a copy of the lattice of conjugacy classes of subgroups of Dg. The reason is that for
p = 2, a subgroup K is a p-subnormal subgroup of H if and only if K is a subgroup
of H. On the other hand, at a prime p # 2, there is no gluing in the Burnside ring
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and the comparison map is the simple bijection of eight copies of Spec(Z ,)):

Spec(D(HZ p,)¢, ) —————— Spec(A(Ds),))

2.44. Remark. The above example for G = Dyg is illustrative of the situation for
any p-group G. Localized at a prime ¢ # p nothing interesting happens: both
spaces are just a disjoint union of copies of Spec(Zg4)). Localized at the prime p,
on the other hand, the spectrum of the Burnside ring has a single closed point
and the fiber over that unique closed point is a copy of the lattice of conjugacy
classes of subgroups of G. Again, the reason is that the relation “is conjugate to a
p-subnormal subgroup of” reduces to “is conjugate to a subgroup of”. For example,
a diligent reader can immediately write down the 2-local comparison map for the
quaternion group G = Qg once they recall the lattice of (conjugacy classes of)
subgroups of Qg.

2.45. Example. Take G = S35 the symmetric group on three symbols. Its lattice of
conjugacy classes of subgroups is

/03\
\02/

and there are two primes of interest: p = 2,3. Here is the 2-local comparison map

1 Ss

and here is the 3-local comparison map

Spec(D(HZs, )¢,) ————— Spec(A(S3))
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Note that although Cy has index 3 in S3, it is not a 3-subnormal subgroup (since
it is not a normal subgroup). The reader might find it interesting to compare with
Example 8.14 in [BS17].

2.46. Remark. Finally, we can translate our computation of Spec(D(HZ¢)¢) into a
classification of the thick tensor-ideal subcategories of D(HZ )¢

2.47. Theorem. Let G be a finite group. Say that a subset Y C Conj(G) x Spec(Z)
is admissible if it satisfies the following closure properties:
(a) If (H,0) €Y then (H,p) € Y for all prime numbers p.
(b) If (H,p) € Y then (K,p) € Y for all (conjugacy classes of ) p-subnormal
subgroups K of H.

There is an inclusion-preserving bijection between the set of admissible subsets of
Conj(G) x Spec(Z) and the collection of thick tensor-ideal subcategories of D(HZ )¢
given by

Y — { X e D(HZg)® | @™ (X) € p if (H,p) €Y }
and

€+ {(H,p) € Conj(G) x Spec(Z) | (X)) & p for some X € ¢}

Proof. We have an identification of sets Spec(D(HZ¢g)¢) = Conj(G) x Spec(Z) by
Theorem 2.22. By Remark 2.37, the “admissible” subsets Y C Conj(G) x Spec(Z)
are precisely those corresponding to specialization-closed subsets of Spec(D(HZg)¢).
Moreover, these are precisely the Thomason subsets by Proposition 2.38. Finally,
all thick tensor-ideals of D(HZ )¢ are radical by [Bal07, Prop. 2.4] since all objects
are dualizable (A). In this way, the theorem is just a translation of the abstract
thick subcategory classification theorem of [Bal05, Theorem 4.10]. O

3. CONSTRUCTION OF D(HZ;) AND EQUIVARIANT SPECTRA

Our next goal is to construct the tensor triangulated category D(HZg) and
establish properties (A)—(I) from Section 2.

3.1. Definition. For a finite group G, let Sp® denote the oo-category of genuine
G-spectra as constructed in [GM20, Appendix C]. It is presentable, stable, has a
symmetric monoidal structure and comes equipped with a symmetric monoidal left
adjoint

(3.2) »o: 8¢ 5 p¢

where 8¢ denotes the symmetric monoidal oo-category of pointed G-spaces. By
Elmendorf’s theorem, S¢ is equivalent as a symmetric monoidal oo-category to
Fun(O(G)°P, S,) with its pointwise monoidal structure, where O(G) denotes the
usual orbit category of transitive G-sets and G-equivariant maps.

3.3. Remark. The symmetric monoidal co-category Sp® can be constructed in
several different ways. For example, it is equivalent to the underlying symmet-
ric monoidal oo-category [Lurl7, §1.3.4 and §4.1.7] of the simplicial model cate-
gory of orthogonal G-spectra Spg [MMO02]. In particular, its homotopy category
SH(G) = Ho(SpG) is equivalent as a tensor triangulated category to the usual
equivariant stable homotopy category of [LMS86] and [HHR16, Appendix B]. The
approach taken by [GM20, Appendix C] instead defines Sp“ as the colimit of a di-
agram of copies of S¢ parametrized by a certain poset of G-representations. That
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this is equivalent to the other construction follows from [GM20, Prop. C.4 and
Prop. C.9]. The advantage of this definition is that it leads (following work of
Robalo [Rob15]) to a very convenient method for constructing symmetric monoidal
functors on Sp®. More precisely, as established in [GM20, Corollary C.7] and
[Rob15, Corollary 2.22], the functor (3.2) enjoys the following universal property:

3.4. Theorem (Robalo, Gepner—Meier). Let G be a finite group and let pg de-
note the reqular representation of G. Given a presentably symmetric monoidal
oo-category D and a symmetric monoidal left adjoint F : S¢ — D with the property
that F(S?P<) is invertible, there exists an essentially unique symmetric monoidal left
adjoint F : Sp© — D such that F o ¥°° ~ F as symmetric monoidal functors.

3.5. Remark. Here and in the sequel, when we say that a functor is essentially
unique, we mean that the collection of such functors is parametrized by a con-
tractible Kan complex. Any two such choices will be equivalent (in a suitable
oo-category of functors) and will induce naturally isomorphic functors at the level
of homotopy categories.

3.6. Remark. We now recall the universal property of the stable co-category of
nonequivariant spectra Sp. As explained in [Lurl7, §4.8.2], the co-category Pr* of
presentable stable oo-categories and colimit preserving functors has a symmetric
monoidal stucture whose commutative algebra objects are the presentably sym-
metric monoidal stable co-categories, that is, symmetric monoidal co-categories C®
whose underlying oco-category C is presentable and stable and has the property that
the bifunctor —® — : €x € — € commutes with small colimits in each variable. The
oo-category of spectra Sp is the unit of Pr* and consequently is the initial com-
mutative algebra object in Prt. In other words, given any presentably symmetric
monoidal stable oco-category D® € CAlg(Prs'), there is an essentially unique sym-
metric monoidal functor Sp® — D® whose underlying functor Sp — D commutes
with colimits [Lurl7, Cor. 4.8.2.19].

3.7. Example. For any finite group G, there is an essentially unique symmetric
monoidal functor
trive : Sp — Sp¢

which commutes with colimits.

3.8. Remark. If C® is a presentably symmetric monoidal stable co-category then
for any commutative algebra A € CAlg(C®), the category of A-modules A - Mod%
is also a presentably symmetric monoidal stable oo-category [Lurl7, Thm. 3.4.4.2].
Moreover, the forgetful functor Uy : A-Mode — € has a left adjoint Fiy : € —
A-Mode which can be equipped with a symmetric monoidal structure, and the
composite Ug F4 is the functor A® — : € — € (cf. [Lurl?, Cor. 4.2.3.7, Cor. 4.2.4.8,
Thm. 4.5.2.1, §4.5.3]). Furthermore, any symmetric monoidal functor 6 : €¥ — D®
induces a functor CAlg(€®) — CAlg(D®) between the co-categories of commuta-
tive algebra objects. Moreover, for any A € CAlg(C®) there is an induced symmet-
ric monoidal functor A-Mod§ — 6(A)-Mod$ for which both squares in

e—*f%

fo

A-Mode —%— 6(A)-Modyp
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commute up to equivalence. Moreover, if 8 : € — D commutes with limits or
colimits then so does the induced functor 6 : A-Mode — 6(A)-Modyp (cf. [Lurl?,
Cor. 4.2.3.3 and Cor. 4.2.3.5]).

3.9. Definition. Let HZ € CAlg(Sp) denote the Eilenberg-MacLane spectrum of the
integers. For any finite group G, let HZ¢ := trivg(HZ) € CAlg(Sp®) and consider
its oo-category of modules HZg - Mod := HZ¢ - Modg,c. We define

D(HZ¢) := Ho(HZ g - Mod)
to be its homotopy category.

3.10. Remark. By construction, we have a free-forgetful adjunction

Sp¢
FGHUG
HZ - Mod

and Ug (1) & trive(HZ) as commutative algebras in Sp©.

3.11. Remark. If C® € CAlg(Pr) is a presentably symmetric monoidal stable
oo-category then Ho(C) has the structure of a triangulated category as well as a
closed symmetric monoidal structure that is compatible with the triangulation (in
the sense of [HPS97, Def. A.2.1]). Moreover, if € is compactly generated by a set of
objects G then for any commutative algebra A € CAlg(€®), the stable co-category
A-Mode is compactly generated by the set Fi4(G). Note that an object of a stable
oo-category D is compact if and only if it is compact as an object of Ho(D) in the
usual triangulated category sense (see [Lurl7, Prop. 1.4.4.1]). Moreover, a set G of
compact objects generates D under colimits if and only if § generates Ho(D) in the
usual triangulated category sense (see the proof of [Lurl7, Cor. 1.4.4.2]).

3.12. Fxample. The stable co-category HZ s - Mod is compactly generated by
{Fo(G/H.) | H < G.

Moreover, since these compact generators are dualizable and the unit 1 is com-
pact, it follows that an object of D(HZ¢) is dualizable if and only if it is compact
(cf. [HPS97, Theorem A.2.5]). In other words, D(HZ) is a rigidly-compactly gen-
erated tensor triangulated category.

3.13. Remark. Any homomorphism of groups a : G — G’ induces a left adjoint
(3.14) o1 8 5 86

which can be constructed as follows. Restriction along « provides a functor from
the category of G’-sets to the category of G-sets. This functor always has a left
adjoint which sends transitive G-sets to transitive G’-sets and hence restricts to a
functor ay : O(G) — O(G’) on the orbit categories. Restricting along oy provides
the functor (3.14). Note that it preserves colimits hence is a left adjoint (since S,
is presentable).

By Theorem 3.4, there is an essentially unique symmetric monoidal left adjoint

a® : Sp '%SpG
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such that the diagram

[e3%

, *
8¢ = 8¢

zfxl lz“
SpG/ AN Sp¢

commutes up to an equivalence of symmetric monoidal functors.
By the universal property of Remark 3.6, the composite

Sp trivg, SpG' £> SpG

is equivalent as a symmetric monoidal functor to trivg : Sp — SpG. In particular,
o*(HZg) &2 HZ as commutative algebras in SpG. Hence by Remark 3.8, there is
a symmetric monoidal left adjoint o* : HZg - Mod — HZg - Mod such that both

squares in
/ *
« SpG

SpG
FG,\HUG/ FngUG
HZ & -Mod —%— HZ - Mod

commute up to equivalence.

3.15. Remark. f G % G' 2 G is a composite of group homomorphisms, it
follows from the constructions that the functor (5o «)* is equivalent to a* o 8* (in
the relevant oo-category of symmetric monoidal functors) at the level of spaces S&,
spectra Sp®, and HZ ¢ - Mod.

3.16. Remark. As usual, for a quotient a : G — G/N, we call inﬂg/N = a* the
inflation functor and for an inclusion « : H < G, we call resg := o the restriction
functor. Since the functor res$ : Sp® — Sp!! preserves limits, the induced functor
resg : HZ¢ -Mod — HZp -Mod also preserves limits (Rem. 3.8) and hence has a
left adjoint (see [Lur09, Cor. 5.5.2.9 and Cor. 5.4.7.7]).

3.17. Remark. The smashing Bousfield localizations of a presentably symmetric
monoidal stable co-category € correspond to the smashing Bousfield localizations
of the tensor triangulated category Ho(C). More precisely, smashing Bousfield lo-
calizations correspond to idempotent commutative algebras (in € or Ho(€) respec-
tively) and the co-category of idempotent commutative algebras in € is equivalent to
the ordinary category (in fact poset) of idempotent commutative algebras in Ho(C)
(see [Lurl7, §4.8.2] and [BF11]).

3.18. Proposition. Let €® € CAlg(Prst) be a presentably symmetric monoidal
stable co-category and let L : € — € be a smashing Bousfield localization. For any
commutative algebra A € CAlg(C®), the induced functor (Rem. 3.8)

(319) A —Mode — LA —MOdLe

is a smashing Bousfield localization. Moreover, if C is rigidly-compactly gener-
ated and L is the finite localization associated to a set G of compact objects in C
then (3.19) is the finite localization associated to the set Fa(S) of compact objects
in A-Mode.
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Proof. Given two algebras A, B € CAlg(€), the extension-of-scalars Fg : C —
B-Mode induces a functor A-Mode — Fp(A)-Modp-moed. by Remark 3.8 which
under the equivalences

Fp(A)-Modg - Mode =~ UpFg(A)-Mode
~ (B® A)-Mode
~ (A® B)-Mode
~ UaF4(B)-Mode
~ F4(B)-Mod - Mode

is the extension-of-scalars A-Mode — F4(B)-Moda_mod. associated to Fa(B) €
CAlg(A-Mode). (Nesting of module categories behaves as expected for symmetric
monoidal co-categories: see [Lurl7, §3.4.1 and §3.2.4].) Next recall from [Lurl?7,
Prop. 4.8.2.10] that up to symmetric monoidal equivalence, the smashing Bousfield
localization L : € — LC is nothing but extension-of-scalars € — L1-Mode with
respect to the idempotent algebra L1 € CAlg(C). Taking B = L1 above, we
find that the the functor A-Mode — LA-Modye induced by L : € — LC is the
smashing Bousfield localization associated to the idempotent algebra F4(L1) €
CAlg(A-Mode).

To prove the second part, it suffices to check (at the level of homotopy cate-
gories) that F4(L1) is the smashing idempotent associated to the indicated finite
localization. This is the content of [BS17, Proposition 5.11]. O

3.20. Remark. The following useful proposition is a variation on ideas that have
appeared in a few different places (e.g. [MNN17, §5.3]).

3.21. Proposition. Let F': C — D be a symmetric monoidal functor between pre-
sentably symmetric monoidal stable co-categories which admits a right adjoint G.
If C is generated by a set of compact-rigid objects then the functor F is an equiva-
lence if and only if

(a) the functor F sends a set of compact generators of € to a set of compact
generators of D, and
(b) the commutative algebra G(1p) is equivalent to the commutative algebra Le.

Proof. The (=) direction is immediate once we recognize that the unit n : 1e¢ —
GF(le) ~ G(1p) is a map of algebras. On the other hand, hypothesis (a) im-
plies that the right adjoint G preserves colimits and is, moreover, conservative.
Hence the adjunction F' - G is monadic by the Barr-Beck—Lurie Theorem [Lurl?7,
Theorem 4.7.3.5]. Now the projection formula G(z)®y — G(x®F(y)) is an equiva-
lence under our assumptions (as can be checked at the level of homotopy categories
[BDS16, Prop. 2.15]) and the natural equivalence G(1) ® y ~ GF'(y) provides an
isomorphism between the monad associated to the algebra object G(1) € CAlg(C)
and the monad GF of the adjunction (see the proof of [BDS15, Lemma 2.8]). The
functor F is thus, up to equivalence, just extension of scalars € — G(1) - Mode with
respect to the algebra G(1). This is an equivalence by the second hypothesis. O

3.22. Proposition. Let N <G be a normal subgroup and let
L :HZg-Mod — HZ¢ -Mod



24 IRAKLI PATCHKORIA, BEREN SANDERS, AND CHRISTIAN WIMMER

be the finite localization associated to the set { Fo(G/Hy)|H 2 N }. The compos-
ite

inflg
(3.23) HZ ¢y -Mod —2%5 HZ ¢ - Mod £ L(HZ - Mod)
is an equivalence of symmetric monoidal co-categories.

Proof. We first establish the analogous statement for SpG/ N namely that if L :
Sp¥ — SpY is the finite localization associated to the set {G/H, ‘ H 2 N} then
the composite

inflg
(3.24) SpC/N SN G Ly 1(Sp9)

is an equivalence of symmetric monoidal co-categories. This is well-known at the
level of homotopy categories (see [LMS86, Cor. I1.9.6]) but we will provide a proof
that holds at the level of co-categories. For simplicity of notation, let f* denote the
composite (3.24) and let f, denote a right adjoint. The functor f* has a symmetric
monoidal structure (being a composite of such) and we just need to establish that it
is an equivalence. First note (e.g. by Remark 3.11) that the smashing localization L
maps the set of compact generators { G/Hy } H< G} of SpY to a set of compact
generators for L(SpG) which is thus compactly generated by { L(G/Hy) ’ HDN }

Note that these are precisely the images under f* of the generators of SpG/ N We
can thus invoke Proposition 3.21 if we prove that the homomorphism of algebras
Se/nv =1 = fif*1 = (EF[ZN])" is an equivalence. This can be checked in the
homotopy category, where it is well-known (see [LMS86, Prop. 11.9.10.(ii)] or the
proof of [MNN17, Thm. 6.11]).

The result now follows from Proposition 3.18. Indeed, (3.23) is obtained from
(3.24) by taking A := HZg/ny € CAlg(Sp®/N) and invoking Remark 3.8 and
Proposition 3.18 (for the second functor). Moreover, note (either directly or as
the special case of Proposition 3.18 correponding to a trivial finite localization)
that if 6 : € — D is a symmetric monoidal equivalence, then the induced functor
A-Mode — 0(A)-Modyp is a symmetric monoidal equivalence. Thus, the fact that
(3.24) is an equivalence implies that (3.23) is an equivalence. O

3.25. Remark. For any g € G, consider the inner automorphism o := ¢4, = (—)9 :
G = G. The induced automorphism of the category of G-sets is naturally isomor-
phic to the identity functor. Consequently, the induced functor a* : S& — S& of
Remark 3.13 is equivalent (as a symmetric monoidal functor) to the identity func-
tor. It follows that the same is true for the induced functors cj : Sp® — Sp¢ and
c; :HZ & -Mod — HZ ¢ - Mod.

3.26. Remark. To summarize, we have established (A) through (I) as follows: (A)
by Definition 3.9, Remark 3.10 and Example 3.12; (B) by construction (Definition
3.9); (C) by Remark 3.13; (D) by Remark 3.15; (E) by Remark 3.16; (F) by Propo-
sition 3.22; (G) is just a definition; (H) by Remark 3.25; and (I) by Remark 3.10.

3.27. Remark. The approach we have taken is not the only way to construct the
tensor triangulated category D(HZs). An alternative approach is to consider the
inflation functor e, : Sp@ — Spg in the context of orthogonal G-spectra. We
can take a cofibrant replacement HZ° — HZ of associative algebras with respect
to the model structure given in [MMO02, Section II1.7]. The homotopy category
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Ho(e;HZ® - Mod) is then a model for D(HZ¢). However, there are subtleties con-
cerning the commutative structures on e5;HZ". One can show that e HZ® is not
a genuine G-E-ring spectrum (see Example 3.28 below). It does however have a
naive Eoo-structure (see [BH15]) and this is good enough to produce the symmetric
monoidal structure on D(HZg). Alternatively one can do the same thing using the
stable model category Spg of G-equivariant symmetric spectra of [Haul7] based
on simplicial sets. The latter is monoidally Quillen equivalent to Spg but has the
advantage that it is combinatorial. It turns out however that making this all work
brings forth a number of point-set level technicalities and some of the delicate issues
related to model categories of modules over naive equivariant E..-ring spectra that
are still not covered in the literature. Instead we have chosen to construct D(HZ¢)
using simple universal properties and stable co-categories.

3.28. Example. We show that e HZ® for G = C5 cannot be modelled by a genuine
Cs-E-ring spectrum. Indeed, if this were the case, then eg, HZ°¢ would admit a
strictly commutative orthogonal spectrum model as a Cy-equivariant ring spectrum.
We would then have a commutative diagram in the homotopy category of spectra

HZ —2 ©(Nep, HZ®) —— %2(e, HZ®) = HZ

| |

HZ —2— (Nep, HZ)'C> — H7'C

where N is the Hill-Hopkins—Ravenel norm, the top A is the Hill-Hopkins—Ravenel
diagonal [HHR16, Proposition B.209] and (—)!“2 is the Tate construction [GM95,
NS18]. The lower A is the Tate diagonal of [NS18]. Tt follows from [NS18, Theorem
IV.1.15] that the lower horizontal composite (which is the Tate valued Frobenius)
splits as a sum containing all even Steenrod squares if we use the splitting of HZz!¢:
coming from the canonical HZ-module structure. On the other hand, with respect
to the same splitting, the right-hand vertical map is the inclusion of a summand and
hence does not contain any non-trivial Steenrod squares. This gives a contradiction.

4. EQUIVALENCE WITH THE CATEGORIES OF KALEDIN AND BARWICK

Our goal in this section is to prove that the category D(HZg) constructed in
Section 3 and whose spectrum was computed in Section 2 is equivalent to Kaledin’s
category of derived Mackey functors [Kalll]. We will achieve this in two steps by
passing first through the category of spectral Mackey functors [Barl7, BGS20].

Spectral Mackey Functors. Recall the effective Burnside oco-category A% (Fing)
introduced by [Barl7]. Its objects are finite G-sets and its n-simplices are n-fold
spans of finite G-sets (see Definition 4.16 below). It is a semi-additive co-category
with biproduct given by the disjoint union and with a symmetric monoidal structure
provided by [BGS20, Section 2]. A spectral Mackey functor is an additive functor
A°®(Fing) — Sp. The oo-category of spectral Mackey functors

Fun,qq ([l\eff (Fing), Sp)

is a smashing localization of the functor category Fun(A*® (Fing), Sp). As such, it is
stable, presentable and can be equipped with the localized Day convolution product
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(see [Glal6] and [BGS20, Lemma 3.7]). It also comes equipped with a symmetric
monoidal left adjoint

»: SE - Funaqq (A (Fing), Sp)

which inverts representation spheres (see [CMNN20, Proposition A.10] and [Narl7,
Appendix A]) and whose right adjoint 2°° is induced by the inclusion

O(G)F — AT (Fing).

4.1. Proposition. For any finite group G, the essentially unique colimit-preserving
symmetric monoidal functor

(4.2) F: Sp® — Funuga(A*f (Fing), Sp)
which commutes with %°° is an equivalence of symmetric monoidal co-categories.

Proof. The existence and essential uniqueness of the functor F follows from the
universal property of Theorem 3.4. To prove the claim it suffices to check that [
is an equivalence of underlying oo-categories. Moreover, since [ is an exact func-
tor between stable oo-categories, it suffices to check that the induced functor on
homotopy categories

F: Ho(SpG) — Ho(FunadQl(Aeff(Fing)7 Sp))

is an equivalence. Note that both homotopy categories are equivalent as triangu-
lated categories to the homotopy category of orthogonal G-spectra. For Sp® this
is established in [GM20, Appendix C] while for spectral Mackey functors it goes
back to [GM17]. We do not need the full strength of these results (just certain
facts about the homotopy categories, such as the fact that they are both generated
by suspension spectra of orbits) but morally what the following proof really does
is establish that any system of endofunctors on the equivariant stable homotopy
categories satisfying certain compatibility properties must be an equivalence. It is
a rigidity result. With these comments in mind, let us continue.

Note that the tensor triangulated category Ho(SpG) is rigidly-compactly gener-
ated by

{(X*(G/Hy) | H <G}
and, by construction, the universal functor F commutes with suspension spectra:
F(S(G/Hy)) = 5%(G/Hy).

Moreover, these suspension spectra rigidly-compactly generate the tensor triangu-
lated category of spectral Mackey functors Ho(Fun,qq (A (Fing), Sp)) by [Narl7,
Lemma A.8]. Since F preserves coproducts, a thick subcategory argument reduces
the problem of showing that [ is an equivalence to the problem of showing that

(43)  F:[S%(G/Hy), B%(G/EL)]S — [F(5%(G/HL)), F(E=(G/KL))]Y

is an isomorphism for all H, K < G. Here we use the notation [—, —]% to denote
graded morphisms in the homotopy categories.

The degree zero morphisms [ (G/H, ), ¥%°(G/K)]|§ are in both cases gener-
ated by conjugations, restrictions and transfers subject to the same relations. The
functor | preserves conjugations and restrictions since they come from morphisms
of G-spaces and FX*° ~ ¥°°, Transfers are preserved since transfers are duals of
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restrictions and F commutes with duality (being a symmetric monoidal functor).
Hence we conclude that

F: [S%(G/Hy), 5% (G/EL)]§ — [F(5%(G/H4)), F(E*(G/KL))]§

is an isomorphism for any two subgroups H and K.

Now, to prove that (4.3) is an isomorphism in general, it suffices by [Patl6,
Proposition 5.1.1] to establish the H = K case. For this, we use induction on the
order of H. The fact that Sp is the free stable co-category on one generator [Lurl?7,
Corollary 1.4.4.6] implies that the diagram

Sp L Funadd(ACH(Finl)v Sp)

G+/\7J{ J/G+/\_

SpG L} Fun,qq (Aeﬁ (FinG’>7 Sp)

commutes up to equivalence and, moreover, that the top arrow is an equivalence.
Furthermore, for both homotopy categories we have an isomorphism

[2°G,,5°G, )¢ = [S,9]. ® [E°G ., 2°G,]§
induced by the functor G4 A —. Combining the latter two results we conclude that
Fi [5G, 576 ]S = [F(E°G,),F(E°G,)|¢

is an isomorphism.

To do the induction step we need the geometric fixed point functors. For SpG
they are defined in the proof of Proposition 3.22 while for the category of spectral
Mackey functors Fun,qq (A% (Fing), Sp) they are defined in [Nar16, Example A.20].
Both are smashing localizations, hence are symmetric monoidal, and the essential
uniqueness of Theorem 3.4 implies that F®N-¢ ~ &N-CF. For a subgroup H < G
with normalizer N(H) and Weyl group W (H) := N(H)/H, let ®-C denote the
composite SHN(H) o res%(H). We will use the notation EP(H) for the classifying
space of the family of proper subgroups of H. Then consider the following diagram
(in which we have suppressed the X*° symbols):

(G/Hy,G x g EP(H))¢ —2 s (G/H,,G/H S —25 s (wW(H),, w(H), )

I e e

[F(G/H.),F(G xi EP(H))IE % [F(G/HL ), F(G/HO)NE 225 [F(W(H),), F(W(H) ).

It follows from [Pat16, Proposition 6.3.2] that the top row is a short exact sequence.
Since F commutes with suspension spectra, so is the bottom row (as it is isomorphic
to the analog of the top row in the homotopy category of spectral Mackey functors).
The left square commutes by the functoriality of F and the right square commutes
by the fact that F commutes with geometric fixed points. Since G xy EP(H)
has smaller isotropy than H (see [Pat16, Proof of Lemma 7.2.2]), the induction
hypothesis implies that the left-hand map is an isomorphism. On the other hand,
the right-hand map is an isomorphism by the base case of the induction. It follows
that the middle map is also an isomorphism and this completes the proof. (I

4.4. Remark. Combined with [GM20, Proposition C.9], Proposition 4.1 provides a
symmetric monoidal equivalence between the symmetric monoidal co-category of or-
thogonal G-spectra and the symmetric monoidal co-category of spectral G-Mackey
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functors. Such an equivalence is also established by different methods in [CMNN20,
Appendix A].

4.5. Remark. Evaluation at the object G/G € A°(Fing) admits a symmetric
monoidal left adjoint
Fy: Sp — Fun(A°® (Fing), Sp)
whose composition with the localization
L : Fun(A* (Fing), Sp) — Fun,gq (AT (Fing), Sp)

is the essentially unique symmetric monoidal left adjoint LF; making the diagram

S, —= 4 Sp

trivGJ/ J/LFI

S¢ =7, Fun,qq (NH (Fing), Sp)

commute up to an equivalence of symmetric monoidal functors. This follows by
taking right adjoints and noting that the inclusion functor {G/G} — A°f(Fing)
factors through the nerve of O(G)°P. Moreover the universal property also implies
that LF} coincides with the composite

trivg

Sp —<5 Sp© =5 Funaaqe (A% (Fing), Sp)
up to equivalence of symmetric monoidal functors. An immediate consequence is:

4.6. Corollary. There is an equivalence of symmetric monoidal co-categories
HZg -Mod ~ LF1HZ -Mod.

4.7. Remark. Our next task is to compare LFiHZ - Mod with HZ-valued spectral
Mackey functors: Fun,qq (A (Fing), HZ - Mod).

4.8. Proposition. Let C® and D® be symmetric monoidal oo-categories with C
small, D presentable and — @ —: D x D — D preserving colimits in each variable.
Equip Fun(C, D) with the Day convolution.
(a) The left adjoint Fy : D — Fun(C, D) to evaluation at the unit 1 € D has a
symmetric monoidal structure.
(b) Let A € CAlg(D) be a commutative algebra. There exists an essentially
unique symmetric monoidal equivalence

Fun((?, A- MOer) ~ Fle —MOdF\un(Qp)

where the left-hand side is equipped with the Day convolution. Moreover,
this equivalence commutes with the free-forgetful adjunctions to Fun(C, D).

Proof. Part (a) is established by [Nik16, Corollary 3.8]. To prove part (b) note
that the free-forgetful adjunction F': D = A-Modyp : U induces an adjunction on
functor categories

F,.: Fun(€, D) = Fun(C, A-Modyp) : U,
by post-composition. We then apply the monadic machinery used in the proof of
Proposition 3.21 (cf. [Lurl7, Corollary 4.8.5.21]). The Day convolution product
preserves colimits in each variable by [Glal6, Lemma 2.13] and F is symmetric

monoidal by [Nik16, Corollary 3.7]. Since equivalences and colimits in functor
categories are detected pointwise, it follows that the right adjoint U, preserves
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colimits and is conservative. The projection formula can also be verified pointwise
by using the equivalence

Mappyne, 0y (F @ Ui (G), H) ~ MapF‘un(CX(?,D)(®D o (Fx UG)),Hog%)

of mapping spaces (see e.g. [Nik16, Corollary 3.6]) and the fact that U, is also a
left adjoint. Thus the adjunction F, - U, is monadic.

Finally, to see that Fj A is equivalent as a commutative algebra to the image
under U, of the unit of the Day convolution on Fun(C, A-Mod) just observe that
in the following commutative diagram

D 1 Fun(C, D) —= Fun(C, A-Modyp)

o Jo-. Jo-

D —2, Fun(C, D) =———— Fun(€, D)
the top row is symmetric monoidal and hence, in particular, preserves units. O

As a consequence we obtain
4.9. Proposition. There is an equivalence of symmetric monoidal co-categories
LF HZ -Mod ~ Fun,gq (A" (Fing), HZ - Mod).
Proof. Proposition 4.8 provides an equivalence of symmetric monoidal co-categories
(4.10) FyHZ - Mod ~ Fun(A* (Fing), HZ - Mod)

which commutes with the forgetful functors to Fun(A°®(Fing), Sp). Then consider

Fun(A*f (Fing), Sp) L, Funadd(Aeff(Fing),Sp)

= |

Fun(A*® (Fing), HZ - Mod) —=— F;HZ-Mod ——— LF}HZ - Mod

where L denotes the smashing localization onto the full subcategory of additive
functors. By Proposition 3.18, the induced functor F1HZ - Mod — LF1HZ - Mod is
also a smashing localization. Moreover, since the forgetful functor is conservative,
an application of the projection formula shows that the local objects of the induced
localization are precisely those that are sent under the forgetful functor to a local
object of the original localization (that is, to an additive functor). As additivity is
detected by the forgetful functors, we conclude that the bottom row is the smashing
localization of Fun(A°¥ (Fing), HZ - Mod) whose local objects are the additive func-
tors. In particular, Fun,qq(A°® (Fing, HZ - Mod) with its localized Day convolution
is equivalent to LF1HZ - Mod as a symmetric monoidal co-category. O

4.11. Corollary. There is an equivalence of symmetric monoidal co-categories
HZ -Mod ~ Fun,qq (A°" (Fing), HZ - Mod)

and, consequently, an equivalence of tensor triangulated categories
D(HZg) ~ Ho(Fun,gq (A (Fing), HZ - Mod))

for any finite group G.

Proof. This follows from Corollary 4.6 and Proposition 4.9. O

* ok ok
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Comparison to Kaledin’s derived Mackey functors. Our next task is to show
that the tensor triangulated category

Ho(Funaqq (A% (Fing), HZ - Mod))

is equivalent to Kaledin’s category of derived Mackey functors from [Kalll]. This
section is based on the arguments of [Kalll, Sections 3-5] modified as appropriate to
the oo-categorical context to facilitate comparison with Barwick’s spectral Mackey
functors.

4.12. Remark. Kaledin [Kalll] provides two different constructions of the triangu-
lated category of derived Mackey functors DMack(G). His first definition is in terms
of an A..-category associated to the (2, 1)-category of spans of finite G-sets, while
a second approach uses a Waldhausen type construction on the category of finite
G-sets. We will take the latter construction as our starting point (see Definition 4.38
below). Nevertheless, as the monoidal structure [Kalll] constructs on DMack(G)
uses the Ao-approach, we will ultimately need to recall this construction as well
(see Definition 4.46).

4.13. Definition. For a small category € with pullbacks, Kaledin [Kalll, Section 4]
defines a category SC as a subcategory of the Grothendieck fibration associated
with

Fun(—,C)°P : A°? — Cat.
In more detail, SC is the category whose objects are the pairs

([n],XO —)Xl —_— —)Xn)

where Xg — X; — -+ — X, is a diagram in € for n > 0. A morphism («, f) :
([n], Xo) — ([m],Ys) consists of a map « : [n] = [m] in A and f : a*(Y,) — X,
such that for each ¢ > j the commutative square

fi
Yoy — X

Lo

Ya(i) I x;

is cartesian. The morphism is called special if « is the inclusion of an end-segment
and all the maps f; are isomorphisms. We denote the set of special morphisms
by I.

4.14. Remark. The case of interest is € = Fing the category of finite G-sets. Our
first task is to relate Kaledin’s category S Fing to Barwick’s co-category A°f (Fing).
This will be achieved in Theorem 4.19 which will recognize A% (Fing) as the infinity-
categorical localization of S Fing with respect to the class of special morphisms.
We begin with some general notation and then recall the definition of A°®(Fing).

4.15. Notation. Given an oo-category D, we use the notation
Mapy, (2, y) = {} xp Fun(A', D) xp {y}

for the mapping space between two objects z,y € D (see [Lur09, §1.2.2]). Fur-
thermore, we will use the symbol |D| for the Kan complex replacement (which is
equivalent to inverting all arrows or to geometric realization) and D~ C D will
denote the co-groupoid core (the maximal Kan subcomplex).
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4.16. Definition. Let C be a small category with pullbacks. The co-category A°T(C)
is defined in simplicial degree n to be the subset of cartesian diagrams

AT (@),, C Fun(Tw([n])°?, €)

where Tw([n]) denotes the twisted arrow category of [n] with objects (i, j) for 0 <
i < j < n and exactly one morphism (i1, j1) — (i2,j2) for ia < iy and j; < jo.
Cartesian here means that a diagram X is contained in A% (€),, if and only if the
square

o

Xig — X
is cartesian for all integers 0 <i <k <[ <j<n.

4.17. Remark. The mapping spaces in A°®(€) can be concretely identified as spans
in the following way. Given objects X and Y of €, we denote by Spane(X,Y") the
category with objects the spans X <— Z — Y and morphisms Z — Z’ lying over X
and Y. There is a natural equivalence of Kan complexes

Map,ere ey (X,Y) — N Spang (X, Y)~
(see [Barl7, 3.7]) which sends an n-simplex f : Al x A" — Af(€) to the n-tuple
of isomorphisms
Fro
flarxqoy ELN flatxqiy oy flatx(ny

in Spane(X,Y). Here the map f; is the vertical composition in the commutative
diagram

X(iZH_l*}Y

E

X W; Y

[ .
X 7 Y

in € encoded by the two 2-simplices of f|a1 ;413 in the Burnside category (think-
ing of a square subdivided with a diagonal into two triangles), where the bottom
and top row are the spans associated with f[a1x gy and flatxfit1y-

4.18. Construction. We define a functor NSC — A°f(@) as follows: On objects it
sends ([n], Xe) to X,, and on morphisms it sends (a, f) : ([n], Xe) = ([m],Ys) to
the span

X, & Vi) — Vi
It sends a 2-simplex
([n0], X0.6) —= ([n1], X1.0) — ([n2], X2.0)

to
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X2,a1 (a0 (no))
Xl,ao(no) X2,041(TL1)
XO,’I’L() Xl,n1 X21n2

A general k-simplex

([n0], Xo,0) = ([m1], X1,0) = ... —— ([n], Xi.a)
is sent to the obvious diagram Y with

Yjiti = Xitjaypioi(@eioa(a(ny)))
for 0 <7 <k —j. The cartesian condition on morphisms in SC gives the cartesian
condition for A®f(€). The functor NS€ — A°f(€) sends special morphisms to
equivalences.

4.19. Theorem. The functor NSC — A (C) exhibits the effective Burnside oo-
category as the oo-categorical localization NSC[I~1] ~ A°®(C) of SC with respect to
the class of special morphisms I.

In order to prove Theorem 4.19, we consider the following more general situation:

4.20. Definition ([Kalll, Definition 4.3]). Let ® be a small category with distin-
guished classes of morphisms I and P. Then (P, I) forms a complementary pair if
the following axioms are satisfied:

(a) The classes P and I are closed under composition and contain all isomor-
phisms.

(b) For every object b € @, the full subcategory q)fb C @, of the slice category
consisting of the maps in I admits an initial object iy : ¢(b) — b.

(¢) Every map f in ® factors uniquely (up to unique isomorphism) as f =
i(f) op(f) with i(f) € I and p(f) € P.!

(d) For every pair of morphisms by L b5 byin @ withp e P and i € I, there
exists a pushout square

b —L— b
bg L> b12
with i’ € I and p’ € P.
4.21. Example. Take ® = SC, I the class of special morphisms, and P the collection

of morphisms (a, f) : ([n], Xe) — ([m],Ys)) such that a(0) = 0. This pair (P, I) is
complementary by [Kalll, Lemma 4.8].

4.22. Construction. Let R® be the category of diagrams b, Ay bs such that
11,132 € I. Using the canonical projections 7,75 : R® — ® we construct for every
presentable co-category D an endofunctor

Spcl : Fun(®, D) — Fun(®, D)

I'Note that there is a typo in part (iii) of [Kalll, Definition 4.3].
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as the composition Spcl = (71)10(m2)* of restriction along 7o with left Kan extension
along 7. The common section § : & — R® of the projections 71, ms provides a
natural transformation 7 : Id — Spcl which is defined as

Id=¢6"omy — 6" omi o(m)1omy = (m)oms.

4.23. Lemma. The value of Spcl on a functor F € Fun(®, D) can be computed at
b e ® as the colimit

Spcl(F)(b) ~ colimg, 7" F
where @y, is the full subcategory of the under category ®,,, with objects the maps
b —=belandnm: ®, — & is the projection to ®. Under this identification the
natural transformation T corresponds to the canonical map

(np)(b) : Fb — colimg, m*F
into the colimit system at the initial map 1b — b.

Proof. We use the pointwise formula for Kan extensions [Lur09, Lemma 4.3.2.13
and Definition 4.3.3.2]. It follows from the axioms that the projection 7y : R® — @
is a weak op-fibration (cofibered functor). Hence the left Kan extension can be
computed at b € @ as the colimit (using cofinality, see e.g. [Lur09, Theorem 4.1.3.1])

Spcl(F)(b) = (m )imy (F)(b) ~ colim, 1, 75 F
over the fiber 7, !(b). Moreover, there is an adjunction
i (b) = @y

where the right adjoint sends b < b — b to the composite tb — b — b with the
unique arrow tb — b lying over b. O

4.24. Proposition. Let ® be a small category together with a complementary pair
(P, I) of classes of maps and let D be a presentable co-category. Then Spcl is a
localization functor with local objects the functors F € Funl(q), D) that invert the
maps in 1.

Proof. We first claim that if F € Fun(®, D) inverts morphisms in I, then the map
7 : F — Spcl(F)

is an equivalence. This follows from the object-wise description of Lemma 4.23
together with the observation that the natural transformation from the constant
functor is an equivalence F(ic) ~ n*F of functors ®. — D whose source has an
initial object [Lur09, Corollary 4.4.4.10]. Moreover, for any F € Fun(®,D) the
functor Spcl(F') inverts morphism in I, since for ¢ : ¢ — ¢ € I there is a unique
isomorphism tc = 1’ lying over i, which induces an equivalence of the relevant slice
categories [Kalll, Section 4.3]. This shows that the essential image of Spcl is given
by the I-inverting functors and that

Tspel(F) : Opcl(F) — Spcl(Spcl(F))

is an equivalence for all F': ® — D. It remains to show that the map
Spcl(rr) : Spcl(F) — Spcl(Spcl(F))

is an equivalence. Under the zigzag of equivalences

Spcl(GQ) = (m1)1(m2)*G ~ (m1)1(m1)*G
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for I-inverting G it is given by the unit map

(T )1 Mg
(m 73 F R TN (my )17} (m )1 F,

which can be seen pointwise by evaluating 7.; r at the zig-zag of (horizontal) mor-
phisms

Cl < Cl2 — C2

R

C12 Clg — C2

I

C2 Cp =——— C2

in R®. The counit egpeyry is a left inverse and so it suffices to show that it is
an equivalence. Furthermore, for any I-inverting functor G, under the zigzag of
equivalences Spcl(G) ~ (71 )17 G, the natural map 7¢ corresponds to

8 M px
G=4§mG — e, 0y (m G = (m )imi G.
This is an equivalence (using the first paragraph of the proof) with a left inverse

ec = 0*mjeq, which is thus also an equivalence. ([l

4.25. Remark. A formal consequence of the Yoneda Lemma [Lur09, 5.1.3] is that
the mapping spaces in the oo-categorical localization (N ®)[I~1] can be identified
as

Map(y ¢y7-17(c1, €2) = Spel(®(e1, —))(c2).

4.26. Definition. Let Q(by, bs) be the category of cospans by B bv& by withpe P
and ¢ € I. Forgetting the map p and composing with the map tby — bo defines a
functor j : Qr(b1,ba) — ®p,. Recall that we also have the functor 7 : &, — ®. An
object ¢ € € is called simple if the map tc — ¢ is an isomorphism.

4.27. Lemma. For a simple by, the natural transformation
A = (b, ), (p,d) =
of functors Qr(by,be) — S exhibits the functor m*®(by, —) as a left Kan extension
T*®(by, —) ~ 51(A?)

along j. Here A is the constant functor associated with the point and S the co-
category of spaces.

Proof. We fix a map ¢’ : tby — b’ € I and consider the slice category j/ with
objects the diagrams

Sending such a diagram to the composite by — b’ defines a functor to the discrete
category ®(by,b") = 7*®(by, —)(¢'), which is a left adjoint by unique factorization
(Property (c) of Definition 4.20). In fact the right adjoint is given by the unique
factorization and using that by is simple. The claim now follows from the pointwise
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formula for Kan extensions [Lur09, Lemma 4.3.2.13 and Definition 4.3.3.2] and
cofinality [Lur09, Theorem 4.1.3.1]. O

4.28. Corollary. The localization of the corepresented functor ®(c1,—) evaluated
at a simple object co is given by

Spcl(@(c1, —))(c2) = |Q1(e1, ca)|

and the universal arrow is induced by the functor ®(c1,c2) — Qr(c1,c2) that sends
f=1io0op:cy — co to the cospan

P
c] —> 4 LC = co.

4.29. Ezample. In the case of the complementary pair from Example 4.21 (where
® = SC) the map from the above corollary is given as follows:

SC(X,Y) =C(Y,X) — Qr(X,Y)
(Y = X) = (([0], X) = ([0], Y)) =— ([0, X) — ([0}, Y') = ([0], Y')
for simple objects ([0], X) and ([0],Y), i.e. X,Y € C.

We can now show that the effective Burnside category Af(C) is obtained from
SC by inverting the special maps:

Proof of Theorem /.19. The functor NS€ — A°f(€) is clearly essentially surjective
and so it suffices to consider its effect on mapping spaces. By inspection of the
definitions one sees that the composite

Mapyge(X,Y) — Mapjer ¢y (X,Y) — N Spang(X,Y)”~

is induced by the map SC(X,Y) — Spane(X,Y) that sends X <L ¥ to the span
X < v =¥, 1t factors as the composition

SC(X,Y) — Qr(X,Y) — Spane(X,Y)™
of the map from Corollary 4.28 with the second functor defined by sending a cospan
(10], X) = ([n], Za) < ([0],Y)
to the span
Xz, z,2v.

This is a right adjoint and so induces an equivalence on classifying spaces. Hence
the above composite is a universal arrow. It follows from Corollary 4.28 that

Mapnse)r-1)(X, Y) ~ Spel(SC(X, —))(Y) —+ Map i (e) (X, Y)

is a weak equivalence. Finally, we note that any object in NSC[I~!] is equivalent
to an object of the form ([0], X). O

4.30. Remark. Let C be a small category with pullbacks and a terminal object .
The cartesian product of € does not induce a symmetric monoidal structure on SC.
It only yields a functor

SCxaSCX=S(ExC)— SC.

However it passes to a product
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SEexe) — 5 5¢

! !

(SEYI1] > (S - » (Se)[I

on the localization. Here the left vertical arrow exhibits the target as the localization
S(€ x C)[I~1] which follows from the description of the mapping spaces in the proof
of Theorem 4.19. We now promote this to a full symmetric monoidal structure.

4.31. Construction. We use notation from [Lurl7, Section 2.1.1]. The symbol (n)
stands for the pointed set {x,1,2,...,n} and (n)° for the set {1,2,...,n}. We
write Fin, for the category of finite pointed sets.

The product on € can be rectified to a functor

€* : Fin, — Cat, (n) — Fun"(P((n)°), @)

where P(—) denotes the poset of all subsets and Fun' (P((n)°), @) is the full sub-
category of those functors F' : P((n)°) — € such that for every S C (n)° restricting
to the elements of S exhibits F(S) = [],.q F({s}) as a product (F(#) = ). In
particular, evaluating at the elements of (n)° induces an equivalence

Fun' (P((n)°), €) = " .

The construction S(—)[I~1] preserves products and equivalences. Applying it ob-
jectwise, we thus obtain a functor

SC*[I™']: NFin, — Cat,

that still satisfies the Segal conditions S€*[I71]((n)°) ~ (S€)[I~!]" and thus en-
codes a symmetric monoidal structure on S€[I~!]. Similarly, we obtain a ‘pointwise’
symmetric monoidal structure

A°T(@) = A°T 6 €% : NFin, — Catoo

using the fact that AT preserves products and sends equivalences of ordinary cat-
egories to equivalences of co-categories.

4.32. Corollary. The comparison functor NSC — A°®(@) of Theorem /.19 induces
an equivalence S€*[I71] =5 AT*(@) of symmetric monoidal co-categories.

4.33. Remark. The symmetric monoidal structure we have constructed on AT (C)
agrees with the one constructed in [BGS20, Section 2]. To explain this, we need to
recall the relative nerve construction (see [Lur09, Section 3.2.5]).

4.34. Definition. Let f : D — Seta be a functor from a small category D to the
category of simplicial sets. The relative nerve of f is the simplicial set N; with an
n-simplex consisting of a chain

. ¢n—1

do 2% dy 25 .. 0 g,

in D together with a collection of diagrams {7; : A7 — f(d;)};c[n indexed by
the non-empty subsets of [n], where j € J denotes the maximal element of J.
These are compatible in the following sense: For any inclusion of non-empty subsets
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J' C J C [n], with maximal elements j’ < j, the diagram

Ty

A —"> f(d;)

»

AT —= f(d))
commutes.

4.35. Remark. Let D be a small category and F' : D — Cat a functor such that
f(d) has pullbacks for any object d and for any ¢: d — d’, the functor F(¢)
preserves pullbacks. Then we get a functor AT oF: D — Seta. It follows from
[Lur09, 3.2.5.21] that the canonical map Nyettp — ND is a cocartesian fibration
classified by the functor A® oF': ND — Cat,. Now suppose that € is a small
category with pullbacks and a terminal object. Consider the special case of the
latter D = Fin, and F' = Fun"(P((—)°), C). A direct but tedious inspection shows
that Nyerrp agrees with the total space A®T(C)® of the cocartesian fibration of
[BGS20, Proposition 2.14 and Notation 2.6]. As a consequence we obtain:

4.36. Corollary. The cocartesian fibration AT(C)® — NFin, is classified by the
functor
A°T(@) = A°T 0 % : NFin, — Cateo .

Consequently, the symmetric monoidal structure on AT (C) defined in [BGS20)
agrees with the symmetric monoidal structure provided by Construction 4.51.

4.37. Corollary. For any finite group G, there is an equivalence of symmetric
monoidal co-categories

Fun,aqq (A" (Fing), HZ - Mod) ~ Fun,qq(S(Fing)[I ], HZ - Mod)
where both sides are equipped with localized Day convolutions.

Proof. Corollary 4.36 provides an equivalence of symmetric monoidal oco-categories
Fun(A°® (Fing), HZ - Mod) ~ Fun(S(Fing)[I '], HZ - Mod)

where both sides are equipped with Day convolution products. Additive functors
correspond under this equivalence and after localizing we get the desired compati-
bility of localized Day convolution products [BGS20, Lemma 3.7]. O

4.38. Definition. Cousider the derived category D(Fun(SFing, Ab)) of the abelian
category of all functors SFing — Ab. Note that the objects of the derived category
can be regarded as functors SFing — Ch(Z). The triangulated category of derived
Mackey functors in the sense of Kaledin can be defined as the full subcategory

DMack(G) € D(Fun(SFing, Ab))

consisting of all functors SFing — Ch(Z) which send the special morphisms of
SFing to quasi-isomorphisms and which are “additive” in the sense that their
restriction along the embedding FinZ’ < SFing results in a functor Fin® —
Ch(Z) that preserves products up to quasi-isomorphism. In Kaledin’s notation this
category is denoted DSaq4(Fing, Ab) and defined in [Kalll, Def. 4.1 and Def. 4.11].
It follows from [Kalll, Thm. 4.2 and Prop. 4.7] that it is equivalent to the category
defined in [Kalll, Def. 3.3] (cf. Remark 4.47 below).
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4.39. Remark. For any small category C, the abelian category
Ch(Fun(C, Ab)) = Fun(€, Ch(Z))

can be equipped with the projective model structure. The underlying co-category
D*°(Fun(C, Ab)) is equivalent to the functor oo-category Fun(NC, D>(Z)), where
D°(Z) denotes the underlying oco-category of D(Z). In particular, we have an
equivalence of triangulated categories

(4.40) D(Fun(€, Ab)) = Ho(Fun(N€, D(Z))).

If I € Mor(C) is a class of morphisms, then under the equivalence (4.40), the
full subcategory of D(Fun(€, Ab)) consisting of functors that send morphisms in I
to quasi-isomorphisms is equivalent to the full subcategory of the right-hand side
consisting of functors of oo-categories NC — D> (Z) which send morphisms in I
to equivalences in D*°(Z). Similarly, if € is semi-additive, the full subcategory of
D(Fun(C, Ab)) consisting of functors which are additive up to quasi-isomorphism
is equivalent to the full subcategory of additive functors N€ — D°(Z). Also note
that there is a symmetric monoidal equivalence D*°(Z) = HZ-Mod by [Lurl?,
Thm. 7.1.2.13] which is an oo-categorical version of a theorem of Schwede and
Shipley [SS03].

4.41. Proposition. There is an equivalence of triangulated categories
Ho(Fun,gq (A (Fing), HZ - Mod)) 22 DMack(G)

for any finite group G.
Proof. According to Definition 4.38 and Remark 4.39, DMack(G) is equivalent to
the full subcategory of Ho(Fun(NSFing, HZ-Mod)) consisting of those functors
which send the special morphisms in SFing to equivalences in HZ - Mod and whose
restriction along NFing? < NSFing sends products to direct sums. By the univer-
sal property of localization we have an equivalence of co-categories

Fun’ (NSFing, HZ - Mod) ~ Fun(NS(Fing)[I '], HZ - Mod)
and since NSFing[I~!] ~ A°®(Fing) by Theorem 4.19, it remains to understand
the additivity condition. To this end note that the composite

Fingy — SFing — SFing[I '] ~ A°T(Fing)

is the (opposite) of the usual embedding. This embedding Fingy — A (Fing) sends
products to direct sums (see the proof of [Bar17, Prop. 4.3]) and, consequently, since
the embedding is surjective on objects, a functor A% (Fing) — HZ - Mod preserves
direct sums if and only if the composite Fing — AT (Fing) — HZ-Mod sends
products to direct sums. The diagram

NSFing £ HZ - Mod

A

NFing? A% (Fing)

then shows that for a functor F' : NSFing — HZ-Mod which maps special mor-
phisms to equivalences, the induced functor F' is additive if and only if the restric-
tion of F' to Finy preserves products. Putting everything together, we conclude
that the homotopy category of

Fun,qq (NSFing[I 1], HZ - Mod) ~ Fun,qq (A (Fing), HZ - Mod)
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is equivalent to the triangulated category DMack(G) of Definition 4.38. O

4.42. Corollary. For any finite group G, there is an equivalence of triangulated
categories

D(HZ¢) = DMack(G)
Proof. This follows from Corollary 4.11, Corollary 4.37 and Proposition 4.41. [

4.43. Remark. The last thing that remains is to compare the monoidal structure of
D(HZ¢) with the monoidal structure of DMack(G) defined in [Kalll, Section 5.2].
This monoidal structure is actually constructed on an equivalent triangulated cat-
egory (denoted DMackg(G) below) which Kaledin constructs using A -categories.
We briefly recall the construction.

4.44. Remark. Every 2-category € gives rise to an associated A.-category B(C)
which has the same objects and whose complex of morphisms (for a pair of objects
X and Y) is the simplicial chain complex C,(C(X,Y")) of the nerve of the category
C(X,Y). See [Kalll, Sections 1.5-1.6] for details. We can then consider its derived
category of A-modules D(B(C)), that is, the derived category of A-functors from
B(C) to the dg-category Ch(Z) (see [Kel01] for instance).

4.45. Example. Applied to an ordinary category €, the resulting A..-category B(C)
is quasi-isomorphic to the additive category Z[C] (obtained by linearizing the hom
sets) regarded as a dg-category whose morphism complexes are concentrated in
degree 0. In this case, an A.-module is just an ordinary functor € — Ch(Z) and
the derived category D(B(C)) is simply the derived functor category D(Fun(C, Ab)).

4.46. Definition. Let Q(Fing) denote the (2,1)-category of spans of finite G-sets
whose 2-morphisms are the isomorphisms of spans. The usual embedding Finy —
Q(Fing) can be regarded as a 2-functor and it induces a map between the associated
Aso-categories Z[Fin}] — B(Q(Fing)). Kaledin considers the full subcategory

DMackq(G) € D(B(Q(Fing)))
of the derived category of A,,-modules consisting of those A,-functors
B(Q(Fing)) — Ch(2)

that are additive in the sense that their restriction (to an ordinary functor) Fingy —
Ch(Z) preserves products up to quasi-isomorphism (see [Kalll, Definition 3.2]).

4.47. Remark. The category DMackg(G) is equivalent to the triangulated category
DMack(G) defined in Definition 4.38. This is established in [Kalll, Section 4] but
we reformulate the result in a way that suits our purposes. Regarding S(Fing) as
a discrete 2-category, there is a 2-functor ¢ : S(Fing) — Q(Fing) given on objects
and morphisms exactly like the functor NS(Fing) — A°®(Fing) from Construc-
tion 4.18 (see [Kalll, Section 4.2]). This functor ¢ preserves products (disjoint
unions) when restricted to Finy and sends morphisms in I to equivalences. Fur-
ther, it induces an A -functor ZS(Fing) — B(Q(Fing)) where ZS(Fing) is the
linearization of the category S(Fing) (see Example 4.45). Restricting along this
Ao-functor provides a triangulated functor

(4.48) X : DMackqg(G) — DMack(G)

which one proves is an equivalence by combining [Kalll, Theorem 4.2] and [Kalll,
Proposition 4.7].
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4.49. Construction. We now recall the symmetric monoidal structure that [Kalll,

Section 5.2] constructs on DMackg(G). The Cartesian product of finite G-sets
induces a 2-functor

m: Q(Fing x Fing) — Q(Fing)
which provides a functor

m*: D(B(Q(Fing))) — D(B(Q(Fing x Fing))).

Let m?dd denote the left adjoint of the composite functor

DMackq (G) — D(B(Q(Fing))) ™ D(B(Q(Fing x Fing))).

Using the Alexander—Whitney map one can define an external product

D(B(Q(Fing))) x D(B(Q(Fing))) = D(B(Q(Fing x Fing))))

and the symmetric monoidal product on DMackq (G) is defined to be the composite
m?d o Ko (i x i) where i : DMackg(G) < D(B(Q(Fing))) denotes the inclusion.
The original category DMack(G) then obtains a symmetric monoidal structure via
the equivalence 4.48.

4.50. Theorem. There is an equivalence of tensor triangulated categories
D(HZ¢) = DMack(G)
for any finite group G.

Proof. We have already established a symmetric monoidal equivalence
HZ ¢ - Mod ~ Fun,gq(S(Fing)[I '], HZ - Mod)

which provides a triangulated equivalence D(HZs) = DMack(G) at the level of
homotopy categories (Cor. 4.42). It remains to show that the triangulated equiva-
lence x : DMackg(G) = DMack(G) of Remark 4.47 is symmetric monoidal when
DMack(G) is equipped with the symmetric monoidal structure induced by the lo-
calized Day convolution product on Fun,gq(S(Fing)[I 1], HZ - Mod).

To this end, note that we have a strictly commutative diagram of 2-functors

S(Fing) x S(Fing) 2% Q(Fing) x Q(Fing)

[ §

(4.51) S(Fing x Fing) —>— Q(Fing x Fing)

[ [

S(Fing) Q(Fing)
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where m: S(Fing x Fing) — S(Fing) is induced from the Cartesian product.
We can apply the B(—) construction (Rem. 4.44) to obtain a corresponding di-
agram of A.-categories. For example, the bottom arrow of the diagram be-
comes the A.-functor ZS(Fing) — BQ(Fing) which in turn provides a func-
tor D(BQ(Fing)) — D(ZS(Fing)) = D(Fun(S(Fing), Ab)) by restriction (Exam-
ple 4.45). Moreover, we can add the following piece to the top of the diagram

Z5(Fing) ® Z8(Fing) “ %P9 B(Fing) © BQ(Fing)

(4.52) ZT T

Z[S(Fing) x S(Fing)] —2*?, B(Q(Fing) x Q(Fing))
where ® denotes tensor product of A,.-categories and where the right-hand vertical
functor is induced by the Alexander—Whitney map. That the diagram commutes
simply follows from the observation that the Alexander—Whitney map is an isomor-
phism in degree zero (given by the Cartesian product of basis sets). Finally, let’s
arm ourselves with the following commutative diagram of oo-categories

S(Fing) x S(Fing) —=%5 S(Fing)[I 7] x S(Fing)[I Y]

| I

(4.53) S(Fing x Fing) —————— $(Fing x Fing)[I7!]
S(Fing) 1 S(Fing)[I~"]

where we have omitted nerves in the notation (cf. Rem. 4.30). We are now prepared
to compare the monoidal structures. Writing

D(D) := D(Fun(D, Ab)) = Ho(Fun(ND, HZ - Mod))
for an ordinary category D and then using the abbreviations
DM := DMack(G), DMy :=DMacky(G), and C:= Fing,

consider the following diagram

add

DM, x DMy, <% D(BQE) x D(BQE) —Z—— D(BQ(E x €)) — = DM,
JN (3) ~lx

T?L?dd
~{xxx ) ~| 6" x¢* @ D(S(Ex@e) 1) ——— DM

lN (4) Tadd
X1

DM x DM <% D(SC[I1]) x D(SC[I~Y]) & D(SE[I~1] x Se[I~1]) - D(Se[I~1)).
Here ﬁz?dd denotes the left adjoint of
DMack(G) < D(S(Fing)[I~1]) > D(S(Fing x Fing)[I™'])
(cf. Comns. 4.49) and ¢, denotes the left adjoint of restriction along
S(Fing)[I™'] x S(Fing)[I~'] — S(Fing)[I .

The lower K is the external product Fun(A, B) x Fun(A, B) — Fun(A x A, B) for the
symmetric monoidal co-categories A = S(Fing)[I~!] and B = HZ - Mod. The com-
posite t; o X is the Day convolution on Fun(S(Fing)[/ 1], HZ-Mod) (see [Nik16]).
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The commutativity of the diagram (up to isomorphism) can be established as
follows. Region (1) comes directly from the definition of the comparison functor x
(Rem. 4.47) while the more involved region (2) can be checked using the commu-
tative diagrams (4.51), (4.52) and (4.53). For the commutativity of (3) note that

DMacko(G) — D(BQ(Fing)) —™— D(BQ(Fing x Fing))

lx J{W Jfb*
DMack(G) —— D(S(Fing)[I~1]) —=— D(S(Fing x Fing)[I~1])

commutes. Kaledin [Kalll, Section 4] establishes that all three vertical functors
are equivalences. Hence, we can replace the top and bottom rows with their left
adjoints and the diagram still commutes. Finally, the commutativity of region (4)
is immediate from the definitions. This completes the proof that the localized
Day convolution on DMack(G) coincides with the symmetric monoidal structure
on DMack(G) = DMackg(G) constructed by Kaledin. O

5. MODULES OVER THE BURNSIDE RING MACKEY FUNCTOR

Instead of considering modules over the equivariant ring spectrum HZg :=
trivg(HZ), a natural alternative is to consider modules over the equivariant ring
spectrum HAg, that is, the Eilenberg-MacLane G-spectrum associated to the Burn-
side G-Mackey functor Ag. As observed by Greenlees—Shipley [GS14, Section 5],
the derived category of HAg-modules is equivalent to the ordinary derived cate-
gory of G-Mackey functors. We will begin by providing a new proof of this fact —
one which takes the monoidal structures into account — and then explain how the
story changes with HZ g replaced by HA¢ (i.e. with the category of derived Mackey
functors replaced with the ordinary derived category of Mackey functors).

5.1. Remark. The ordinary abelian category of G-Mackey functors Mack(G) is
equivalent to the heart of the standard ¢-structure on SpG. Under this equiva-
lence, every Mackey functor M € Mack(QG) is associated to its Eilenberg-MacLane
G-spectrum HM e SpY. The inclusion NMack(G) = (SpG)O < Sp% is lax sym-
metric monoidal and hence induces a functor

NCAlg(Mack(G)) = CAlg(NMack(G)) — CAlg(SpY).

Thus the Eilenberg-MacLane G-spectrum of a commutative Green functor has the
structure of a commutative algebra in the symmetric monoidal co-category SpG.

5.2. Remark. The homotopy category Ho(A®®(Fing)) of the effective Burnside
oo-category (Def. 4.16) is the ordinary effective Burnside category B&! whose ob-
jects are finite G-sets and whose morphisms are isomorphism classes of spans. It
is a semi-additive category whose group completion is the usual Burnside cate-
gory Bg. Since the category of abelian groups is additive, there is an equivalence
Funuaq(Bg, Ab) = Funadd(BgH,Ab). In other words, although G-Mackey functors
are usually defined to be additive functors Bs — Ab, they can equivalently be
defined as functors B&! — Ab which are “additive” in the sense that they preserve
biproducts (equivalently, preserve products).

5.3. Remark. For each finite G-set T' € B¢, we have the evaluation functor
evy : Mack(G) — Ab
M = M(T)
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which, by the Yoneda lemma, is representable: evy = Hom yqcr(q) (M, —) where
Mr = Hompg, (T, —) € Mack(QG) is the Mackey functor represented by T € Bg.

5.4. Ezample. The Burnside G-Mackey functor Ag is the representable Mackey
functor M¢g/. It is the unit for the Day convolution product on Mack(G) (see
Example 5.9 below).

5.5. Definition. For any finite group G, let HAg € CAlg(SpG) denote the Eilenberg—
MacLane G-spectrum associated to the Burnside G-Mackey functor Ag (see Re-
mark 5.1 and Example 5.4). We let

D(HAg) := Ho(HAg - Modg,c)
denote the homotopy category of the co-category of HAg-modules.

5.6. Lemma. The triangulated category D(Mack(G)) is compactly generated by
the set of Mackey functors {/\/lg/H | H< G} regarded as complexes concentrated
in degree 0.

Proof. Since every finite G-set is a finite coproduct of orbits, a Mackey functor N
is zero in Mack(G) if and only if evg, g (N) = 0 for all H < G. Since the functor
evg/m : Mack(G) — Ab is exact, the representing object M,y is projective, and
we have

(57) HomD(Mack(G))(MG/H[n]a/\/:> = Hn(eVG/H(M)) = eVG/H<Hn(~A/:>)

for any complex of Mackey functors N,. A complex is thus zero in D(Mack(G))
if and only if (5.7) vanishes for all H < G and n € Z. Morever, (5.7) also shows
that the Mg, (0] are compact objects of D(Mack(G)) since the right-hand side
commutes with coproducts. ([l

5.8. Remark. If C is a small symmetric monoidal additive category, then the category
of additive functors Fun,qq(C, Ab) is closed symmetric monoidal with respect to the
additive Day convolution. The tensor product is given by the coend

(e1,¢2)
(F ®adda G)(c) = / F(e1) ® G(ea) ® C(e1 ® ez, ¢)

which implicitly uses that the target category Ab is copowered over the enriching
category (Ab itself). This is not the same as the Day convolution on Fun(€, Ab)
that does not use the Ab-enrichment. For example, the unit of the additive Day
convolution on Fun,qq(C, Ab) is the functor which maps ¢ € € to the abelian group
C(1L, ¢), while the unit of the non-enriched Day convolution on Fun(€, Ab) is the
functor which maps ¢ € € to the free abelian group generated by the set C(L,c).

5.9. Ezample. The category of Mackey functors Mack(G) = Fun,qq(Bg, Ab) is
closed symmetric monoidal under the additive Day convolution (with respect to the
symmetric monoidal structure on Bg induced from the cartesian product of finite
G-sets). This symmetric monoidal structure is sometimes called the “box product”
of Mackey functors. The unit is the Mackey functor corepresented by the unit of
the monoidal structure on Bg, that is, the Burnside Mackey functor Ag = Mg/q-
We equip the derived category D(Mack(G)) with the derived symmetric monoidal
structure.
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5.10. Theorem. There is an equivalence of tensor triangulated categories
D(HAg) = D(Mack(G))
for any finite group G.

Proof. For any pointed simplicial presheaf Y € Fun(O(G)°P,sSet, ), the relative
normalized simplicial chain complex C,(Y) := C,(Y(—),*) can be regarded as a
complex of coefficient systems. This provides a functor

(5.11) Cu(—) : Fun(O(G)°P, sSet, ) — Ch(Fun(O(G)°P, Ab))

which, using the Eilenberg—Zilber map, is lax symmetric monoidal with respect to
the pointwise smash product on

Fun(O(G)°P, sSet.)
and the pointwise monoidal structure on
Ch(Fun(O(G)°?, Ab)) = Fun(O(G)°?, Ch(Z)).

To pass from coefficient systems to Mackey functors, we use the induction functor
ir: Fun(O(G)°P, Ab) — Mack(G), which is left adjoint to the restriction functor
along i : O(G)°® — Bg. The induction functor ¢ is symmetric monoidal with
respect to the pointwise monoidal structure on the category of coefficient systems
and the box product monoidal structure on the category of Mackey functors (see
Example 5.9). It then induces a symmetric monoidal functor

(5.12) i1 : Ch(Fun(O(G)°P, Ab)) — Ch(Mack(G))

on the categories of chain complexes.

These categories are symmetric monoidal model categories when equipped with
the projective model structures, and the functors (5.11) and (5.12) are left Quillen
functors. We denote the composite i (C,(—)) by C,(—, Ag). This choice of notation
can be explained as follows: If X is a pointed G-simplicial set then G/H ~ XH
gives a cofibrant pointed simplicial presheaf on O(G) and a straightforward calcu-
lation (using [MPNOG, Section 3], for example) shows that the associated complex
of Mackey functors i;(C,(X(7))) is nothing but the Mackey-valued Bredon chain
complex of X with coefficients in Ag (see [tD87, Section 11.9]).

All told, we have a lax symmetric monoidal left Quillen functor

C.(—, Ag): Fun(O(G)°P,sSet,) — Ch(Mack(Q@))
whose lax monoidal structure maps are weak equivalences. By [NS18, Theorem A.7]
(see also [Lurl7, Example 4.1.7.6]), we obtain a symmetric monoidal left adjoint

(5.13) C.(— Ag): 8¢ = D®(Mack(G))

between the underlying symmetric monoidal co-categories. We would like to show
that (5.13) induces a symmetric monoidal functor Sp® — D> (Mack(G)). To in-
voke Theorem 3.4, we need to show that Q.(S’JG,Ag) is invertible. This can be
checked at the level of homotopy categories. Indeed, given a finite G-CW spec-
trum X (i.e. a finite G-spectrum with a preferred cellular decomposition in the
homotopy category), we can define the cellular chain complex C*(X, Ag) using

the relative equivariant stable homotopy groups (see [BDP17, Section 4]) and it is
straightforward to check that the following equivalences hold in D(Mack(G)):

CeMNE®(G/Gy), Ag) ~ Mg cl0] = Ac[0]
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and
CUX AY, hg) ~ CN X, Ag) © CUY, Ag).

Moreover, it follows from [BDP17, Section 4] that C,(SP¢, Ag) is quasi-isomorphic
to C(SPe Ag). Since orbits are self-dual, a cellular structure on SP¢ induces
a cellular structure on S~7¢ and the cellular chain complex C“{(S~°¢ Ag) is an
inverse of C (579, Ag) in D(Mack(G)). We can thus invoke Theorem 3.4 and assert
that there is an essentially unique symmetric monoidal left adjoint

L: Sp® — D®(Mack(Q))
such that L o X ~ C (—,Ag). If R denotes a right adjoint to L then
(5.14) ml R(N,) = H (N, (G/H))

for any complex of Mackey functors A, since L(X*°G/H,) ~ Mg u[0]. More-
over, since L sends a set of compact generators to a set of compact generators
(see Lemma 5.6), the right adjoint R commutes with colimits and is conserva-
tive. Hence the adjunction is monadic by the Barr-Beck—Lurie Theorem [Lurl7,
Theorem 4.7.3.5]. Since the projection formula holds, we conclude that there is a
symmetric monoidal equivalence

D> (Mack(G)) ~ R(1) - Modg,c

and it remains to show that R(1) is equivalent as a commutative algebra to HA¢.
The unit map S — R(1) = R(A¢[0]) is a morphism of commutative algebras and
truncates to an isomorphism 7o(S) = mo(R(A[0])) in the heart (see Rem. 5.1
and [Lurl7, Exa. 2.2.1.10]), since both sides are abstractly isomorphic to Ag and
the latter is the initial commutative Green functor. This provides an isomorphism
HAg = R(1) since R(1) has non-trivial homotopy groups only in degree 0. O

5.15. Remark. Many of the basic features of the category D(HZs) developed in
Section 3 hold just as well for D(HAg) by simply replacing all instances of HZ ¢
with HAg. Indeed, properties (A)—(E) all hold for D(HAg). The crucial property
that does not hold is property (F) which says that we obtain D(HZ) if we kill off all
the generators of D(HZ¢) associated to proper subgroups. From the authors’ point
of view, the geometric fixed point functor ®¢ of an equivariant category is this
localization killing off all the generators for proper subgroups (morally, killing ev-
erything that comes by induction from proper subgroups). For SH(G) the result of
this localization is the category associated with the trivial subgroup: the nonequiv-
ariant stable homotopy category SH. Property (F) asserts that the same is true for
the category of derived Mackey functors D(HZ¢): the result of the localization is
D(HZ,) =2 D(HZ). We will show below that property (F) fails for D(HA¢) even for
the smallest nontrivial group G = C5. Nevertheless, Proposition 3.18 does provide
a general description of the localization, as follows:

5.16. Corollary. For any finite group G, the finite localization of HAg - Modg,c
associated to the set { Fo(G/Hy)|H < G} is, up to equivalence, the functor on
module categories

HAG -Modg,e — ¢ (HA¢) -Mods,
induced by the geometric fized point functor ®C : SpG — Sp. In particular,
D(HAG)/ Locs (Fa(G/H,) | H < G) = D(@(HAG)).
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5.17. Remark. In other words, the target of the “geometric fixed point” functor ®¢
associated to the category D(HAg) is the derived category D(®%(HAg)) of the ring
spectrum ®¢(HAg) € CAlg(Sp). More generally, for any subgroup H < G, the
target of the geometric fixed point functor ® on D(HAg) is the derived category
of the ring spectrum ®¥ (HAg) = ®(HAg) € CAlg(Sp). The heart of the issue
is that the equivariant Eilenberg-MacLane spectra HAg do not behave well with
respect to geometric fixed points. For categorical fixed points, it is immediate from
the definition that the non-equivariant spectrum (HAg)* is the Eilenberg-MacLane
spectrum HA(H) associated to the Burnside ring A(H). In contrast, the geometric
fixed points ® (HAg) seem more mysterious and more complicated.

5.18. Proposition. The homotopy ring 7.®2HAc, is isomorphic to the graded
ring Z[z]/(2x) where x has degree two. In particular, ®“>HAc, is not equivalent to
HZ.

Proof. Let HZ denote the Cs-equivariant Eilenberg-MacLane spectrum associated
to the constant Mackey functor Z. It follows from the Tate square of [GM95] and the
Tate cohomology of Cy that m,®“2HZ is the polynomial algebra Fo[x] where 2 has
degree two. Comparing the isotropy separation sequences for HZ and HA¢,, we con-
clude that the canonical map ®“2HA¢, — ®“2HZ induces an isomorphism on homo-
topy groups in positive degrees. On the other hand, again using the isotropy separa-
tion sequence, we know that my of geometric fixed points is isomorphic to my of gen-
uine fixed points modulo proper transfers. Hence mo®“2HAp, = A(Cy)/[C2] = Z.
This completes the proof. (I

5.19. Corollary. The derived category of the integers D(HZ) is not equivalent as a
triangulated category to the homotopy category of modules over ®“2HA¢, .

Proof. If P is any compact generator in D(HZ) then it is a perfect complex and
hence quasi-isomorphic to a direct sum of finitely generated abelian groups. This
implies that the endomorphism ring spectrum of P has bounded homotopy groups.
But the homotopy groups of ®“2HA¢, are not bounded by Proposition 5.18. ([

5.20. Remark. This demonstrates that for the ordinary derived category of Mackey
functors D(Mack(G)) = D(HAg), the target category of the geometric fixed point
functor ®¥ varies with the subgroup H. For example, D(HZ) is always the target
of the geometric fixed point functor ®! = res{’ associated to the trivial subgroup,
but if G contains a subgroup H = Cy then the target of ® is D(®“2(HA,)) which
is not equivalent to D(HZ). This is in stark contrast to examples like SH(G) or
the category of derived Mackey functors D(HZs) where the geometric fixed point
functors ® always land in the same category, namely the category associated to

the trivial group.

REFERENCES

[Bal05] Paul Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine
Angew. Math., 588:149-168, 2005.

[Bal07] Paul Balmer. Supports and filtrations in algebraic geometry and modular representa-
tion theory. Amer. J. Math., 129(5):1227-1250, 2007.

[Ball0a] Paul Balmer. Spectra, spectra, spectra — tensor triangular spectra versus Zariski spec-
tra of endomorphism rings. Algebr. Geom. Topol., 10(3):1521-1563, 2010.

[Ball0b] Paul Balmer. Tensor triangular geometry. In International Congress of Mathemati-

cians, Hyderabad (2010), Vol. II, pages 85-112. Hindustan Book Agency, 2010.



[Bal18]

[BDS15]

[BDS16]
[BF11]
[BS17]
[BDP17]

[BHNt19]

[Bar17]
[BGS20]
[BH15]
[CMNN20]
[Dre69]
[GM20]
[Glal6]

[Gre01]

[GM95]
[GS14]

[GD71]
[GM17]

[Haul7]
[HHR16]
[HPS97]

[Kall1]
[Kel01]

[LMS86]

[Lur09]

[Lurl7]
[MMO2]

THE SPECTRUM OF DERIVED MACKEY FUNCTORS 47

Paul Balmer. On the surjectivity of the map of spectra associated to a tensor-
triangulated functor. Bull. Lond. Math. Soc., 50(3):487-495, 2018.

Paul Balmer, Ivo Dell’Ambrogio, and Beren Sanders. Restriction to finite-index sub-
groups as étale extensions in topology, KK-theory and geometry. Algebr. Geom. Topol.,
15(5):3025-3047, 2015.

Paul Balmer, Ivo Dell’Ambrogio, and Beren Sanders. Grothendieck—Neeman duality
and the Wirthmiiller isomorphism. Compos. Math., 152(8):1740-1776, 2016.

Paul Balmer and Giordano Favi. Generalized tensor idempotents and the telescope
conjecture. Proc. Lond. Math. Soc. (8), 102(6):1161-1185, 2011.

Paul Balmer and Beren Sanders. The spectrum of the equivariant stable homotopy
category of a finite group. Invent. Math., 208(1):283-326, 2017.

Noé Barcenas, Dieter Degrijse, and Irakli Patchkoria. Stable finiteness properties of
infinite discrete groups. J. Topol., 10(4):1169-1196, 2017.

Tobias Barthel, Markus Hausmann, Niko Naumann, Thomas Nikolaus, Justin Noel,
and Nathaniel Stapleton. The Balmer spectrum of the equivariant homotopy category
of a finite abelian group. Invent. Math., 216(1):215-240, 2019.

Clark Barwick. Spectral Mackey functors and equivariant algebraic K-theory (I). Adv.
Math., 304:646-727, 2017.

Clark Barwick, Saul Glasman, and Jay Shah. Spectral Mackey functors and equivari-
ant algebraic K-theory, II. Tunis. J. Math., 2(1):97-146, 2020.

Andrew J. Blumberg and Michael A. Hill. Operadic multiplications in equivariant
spectra, norms, and transfers. Adv. Math., 285:658-708, 2015.

Dustin Clausen, Akhil Mathew, Niko Naumann, and Justin Noel. Descent and vanish-
ing in chromatic algebraic K-theory via group actions. Preprint, 47 pages, available
online at arXiv:2011.08233v1, 2020.

Andreas Dress. A characterisation of solvable groups. Math. Z., 110:213-217, 1969.
David Gepner and Lennart Meier. On equivariant topological modular forms. Preprint,
44 pages, available online at arXiv:2004.10254, 2020.

Saul Glasman. Day convolution for co-categories. Math. Res. Lett., 23(5):1369-1385,
2016.

J. P. C. Greenlees. Tate cohomology in axiomatic stable homotopy theory. In Cohomo-
logical methods in homotopy theory (Bellaterra, 1998), volume 196 of Progr. Math.,
pages 149-176. Birkh&user, Basel, 2001.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Mem. Amer. Math.
Soc., 113(543):viii+178, 1995.

J. P. C. Greenlees and Brooke Shipley. Fixed point adjunctions for equivariant module
spectra. Algebr. Geom. Topol., 14(3):1779-1799, 2014.

A. Grothendieck and J. Dieudonné. Eléments de géométrie algébrique 1. 1971.
Bertrand Guillou and J. P. May. Models of G-spectra as presheaves of spectra.
Preprint, 38 pages, available online at arXiv:1110.3571v4, 2017.

Markus Hausmann. G-symmetric spectra, semistability and the multiplicative norm.
J. Pure Appl. Algebra, 221(10):2582-2632, 2017.

M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of
Kervaire invariant one. Ann. of Math. (2), 184(1):1-262, 2016.

Mark Hovey, John H. Palmieri, and Neil P. Strickland. Axiomatic stable homotopy
theory. Mem. Amer. Math. Soc., 128(610), 1997.

D. Kaledin. Derived Mackey functors. Mosc. Math. J., 11(4):723-803, 822, 2011.
Bernhard Keller. Introduction to A-infinity algebras and modules. Homology Homo-
topy Appl., 3(1):1-35, 2001.

L. G. Lewis, Jr., J. P. May, and M. Steinberger. Equivariant stable homotopy theory,
volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With
contributions by J. E. McClure.

Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009.

Jacob Lurie. Higher algebra. 1553 pages, available from the author’s website, 2017.
M. A. Mandell and J. P. May. Equivariant orthogonal spectra and S-modules. Mem.
Amer. Math. Soc., 159(755):x+108, 2002.



48

[MPN06]
[MNN17]

[Nar16]

[Narl7]

[Nee92]

[Nee96]
[Nee01]
[Nik16]
[NS18]
[Pat16]
[Rob15]
[SS03]
[Sta20]
[tD87]

[Ver96]

IRAKLI PATCHKORIA, BEREN SANDERS, AND CHRISTIAN WIMMER

Conchita Martinez-Pérez and Brita E. A. Nucinkis. Cohomological dimension of
Mackey functors for infinite groups. J. London Math. Soc. (2), 74(2):379-396, 2006.
Akhil Mathew, Niko Naumann, and Justin Noel. Nilpotence and descent in equivariant
stable homotopy theory. Adv. Math., 305:994-1084, 2017.

Denis Nardin. Parametrized higher category theory and higher algebra: Exposé IV —
Stability with respect to an orbital co-category. Preprint, 21 pages, available online
at arXiv:1608.07704v4, 2016.

Denis Nardin. Stability and distributivity over orbital co-categories. PhD thesis, MIT,
available from the author’s website, 2017.

Amnon Neeman. The connection between the K-theory localization theorem of
Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and
Ravenel. Ann. Sci. Ecole Norm. Sup. (4), 25(5):547-566, 1992.

Amnon Neeman. The Grothendieck duality theorem via Bousfield’s techniques and
Brown representability. J. Amer. Math. Soc., 9(1):205-236, 1996.

Amnon Neeman. Triangulated categories, volume 148 of Annals of Mathematics Stud-
ies. Princeton University Press, 2001.

Thomas Nikolaus. Stable co-Operads and the multiplicative Yoneda lemma. Preprint,
27 pages, available online at arXiv:1608.02901, 2016.

Thomas Nikolaus and Peter Scholze. On topological cyclic homology. Acta Math.,
221(2):203—-409, 2018.

Irakli Patchkoria. Rigidity in equivariant stable homotopy theory. Algebr. Geom.
Topol., 16(4):2159-2227, 2016.

Marco Robalo. K-theory and the bridge from motives to noncommutative motives.
Adv. Math., 269:399-550, 2015.

Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules.
Topology, 42(1):103-153, 2003.

The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu,
2020.

Tammo tom Dieck. Transformation groups, volume 8 of De Gruyter Studies in Math-
ematics. Walter de Gruyter & Co., Berlin, 1987.

J.-L. Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, 239, 1996.



	1. Introduction
	2. Computation of the spectrum
	3. Construction of D(HZG) and equivariant spectra
	4. Equivalence with the categories of Kaledin and Barwick
	5. Modules over the Burnside ring Mackey functor
	References

