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a b s t r a c t 

This study applies adaptive mixture independent component analysis (AMICA) to learn a set of ICA models, 

each optimized by fitting a distributional model for each identified component process while maximizing compo- 

nent process independence within some subsets of time points of a multi-channel EEG dataset. Here, we applied 

20-model AMICA decomposition to long-duration (1–2 h), high-density (128-channel) EEG data recorded while 

participants used guided imagination to imagine situations stimulating the experience of 15 specified emotions. 

These decompositions tended to return models identifying spatiotemporal EEG patterns or states within single 

emotion imagination periods. Model probability transitions reflected time-courses of EEG dynamics during emo- 

tion imagination, which varied across emotions. Transitions between models accounting for imagined “grief ” and 

“happiness ” were more abrupt and better aligned with participant reports, while transitions for imagined “con- 

tentment ” extended into adjoining “relaxation ” periods. The spatial distributions of brain-localizable independent 

component processes (ICs) were more similar within participants (across emotions) than emotions (across partici- 

pants). Across participants, brain regions with differences in IC spatial distributions (i.e., dipole density) between 

emotion imagination versus relaxation were identified in or near the left rostrolateral prefrontal, posterior cingu- 

late cortex, right insula, bilateral sensorimotor, premotor, and associative visual cortex. No difference in dipole 

density was found between positive versus negative emotions. AMICA models of changes in high-density EEG 

dynamics may allow data-driven insights into brain dynamics during emotional experience, possibly enabling 

the improved performance of EEG-based emotion decoding and advancing our understanding of emotion. 
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. Introduction 

Emotional experiences are functional states internally generated by

he brain and body that give rise to diverse subjective experiences and

ehaviors in our daily lives ( Scherer, 2005 ). Advancing our understand-

ng of emotions, while devising technology for affective computing,

ould enable widespread applications in education, healthcare, gam-

ng, and human-computer interaction ( Picard, 2000 ). Despite enormous

rogress in cognitive science, psychology, and computer science stud-

es of emotion, much emotion research relies on subjective verbal or

ritten reports of participants ( Cowen and Keltner, 2017 ). However,

hese subjective reports reflect the conscious awareness of their emo-

ional experiences or the expressed emotion, which might differ from

he underlying emotional states that could be unconscious or shaped

y an individual’s cognitive construct ( Barrett et al., 2019; Lindquist

t al., 2012; Picard, 2000 ). As well, often the reporting task may inter-

upt and distract from the emotional experience itself. To complement

esults from subjective reports, objective measures may be recorded in-

luding behavioral expressions ( Ekman, 1993 ) and physiological (e.g.
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lectrodermal Sequeira et al., 2009 ) and/or brain signals (e.g., func-

ional magnetic resonance imaging (fMRI) Horikawa et al., 2020; Kober

t al., 2008; Lindquist et al., 2012 and electroencephalography (EEG)

oan and Allen, 2004; Kim et al., 2013; Lin et al., 2010 ). Among these,

EG provides a direct measurement of distributed cortical brain dynam-

cs with high temporal resolution. 

Previous EEG-based emotion studies focused mainly on developing

upervised learning approaches to optimize classification accuracy us-

ng subjective ratings of emotions as labels, e.g., affective dimensions

r emotion categories. Such approaches contributed to the building of

motion classifiers applicable in affective computing, and to the iden-

ification of EEG biomarkers that maximally separate different labeled

motional conditions. However, these studies often overlooked the tem-

oral dynamics of the emotional states, which normally develop over

econds to minutes of their elicitation by video ( Nie et al., 2011 ) or

ther presented material ( Lin et al., 2010 ). By contrast, Onton and

akeig (2009) conducted a self-paced emotion imagination experi-

ent during which participants induced 15 distinct emotional states,

ach lasting 3–5 min, following their own imagination in response to
ary 2022 
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erbally-guided narrative suggestions. A conventional supervised learn-

ng approach assuming that emotion-related brain activity was station-

ry within each 3–5 min emotion imagination period, applied to the

esulting EEG datasets, struggled to achieve high emotion classifica-

ion accuracy with large differences in classification performance across

motion categories ( Kothe et al., 2013 ). 

Furthermore, most EEG-based emotion studies often assumed that

ubjective ratings of emotional experiences (e.g., valence and arousal

sed in popular DEAP dataset Koelstra et al., 2011 ) or group-validated

abels of emotional stimuli (e.g., averaged across a pool of subjective

atings Lin et al., 2010 ) represent the actual emotional state changes

n the participants. Few studies have aimed to validate or challenge

hese assumptions by exploring the relationship between the underly-

ng EEG dynamics and the emotion labels, providing evidence for an-

wers to some key questions in the field: (a) Is the subjective report

f emotional experiences consistent with objective measures from neu-

ophysiological recordings?, (b) Should differences between emotions

e better described using affective dimensions or emotional categories

 Barrett, 1998; Cowen and Keltner, 2017; Mauss and Robinson, 2009 )?,

c) What are the most prominent spatiotemporal EEG dynamic changes

uring emotional experience?, and (d) Are activities in specific brain

egions associated with specific emotions ( Lindquist et al., 2012 )? 

These questions motivate the application of unsupervised learning

pproaches to characterize emotional state changes by clustering emo-

ional states in terms of EEG activity differences rather than using

ubjective labels. To our knowledge, only a few studies have used an

nsupervised-learning approach in EEG-based emotion studies. For ex-

mple, a Gaussian mixture model (GMM) was used for learning segment-

evel variability in non-stationary EEG ( Zhuang et al., 2014 ), a hyper-

raph representation was introduced to capture hidden structures in

EG signals across emotion trials ( Liang et al., 2019 ), and a deep belief

etwork (DBN) and hidden Markov model (HMM) were employed for

nsupervised feature learning and tracking of emotional stage switching

 Zheng et al., 2014 ). However, these studies did not explore the relation-

hip between the spatiotemporal structure of the EEG and the associated

motion state labels. 

Alternatively, adaptive mixture independent component analysis

adaptive mixture ICA, AMICA) ( Hsu et al., 2018a; Palmer et al., 2008 )

ssumes multidimensional data can be modeled by an independent com-

onent analysis mixture model (ICAMM) ( Lee et al., 2000 ) in which

ach model represents a decomposition of the data into (possibly con-

iguous) segments associated with a distinct set of statistically indepen-

ent component processes. Previous studies have shown that ICAMM, or

ts more advanced instantiation in the AMICA algorithm ( Palmer et al.,

008 ), can separate EEG activities during different sleep stages ( Hsu

t al., 2018a; Salazar et al., 2010 ), fluctuations of drowsiness ( Hsu et al.,

018a; Jung et al., 2000 ), mental state changes during memory test

 Safont et al., 2017 ), guided meditation ( Hsu et al., 2018b ), and emo-

ional video watching ( Ran et al., 2020 ). 

This study aims to employ multi-model AMICA as an unsupervised-

earning approach for exploring the brain-state dynamics during dif-

erent emotional experiences. We applied AMICA to a dataset from

nton and Makeig (2009) , containing high-density (250-channel EEG

ata) collected from 31 participants during a self-paced emotion imag-

nation experiment in which the participants induced a series of 15

motional experiences by following recorded voice narratives with eyes

losed, using their own imagination. Marrying a promising unsupervised

ethod for modeling EEG nonstationarity with a unique high-density

EG dataset containing fifteen 3–5 min periods of emotional experi-

nce targeting fifteen different emotions enabled us to investigate, (1)

hether such data-driven segmentation might self-organize and then be

lustered according to affective dimension (e.g., valence), or separate

nto distinct models for each emotion, and (2) how does EEG spatiotem-

oral dynamics vary across self-paced experiences of imagined emo-

ion and across participants. We study the putative cortical brain-based

ources active during emotion imagination periods and differences in
2 
MICA models across emotions and participants. These results provide

vidence that emotional processes vary across emotions, but not neces-

arily consistent across participants. Finally, we discuss the studys limi-

ations and make suggestions for the future research, such as comparing

he results with those obtained from supervised methods to validate the

onsistency of findings and investigate emotion-specific activities. 

. Materials and methods 

.1. Dataset and preprocessing 

.1.1. Dataset 

The dataset used in the study contains 31 recordings collected as de-

cribed in Onton and Makeig (2009) . The data are available at HeadIT

ebsite ( http://headit.ucsd.edu , Imagined Emotion with Continuous Data

nder Studies ). EEG data were collected from 250 scalp channels using

 Biosemi ActiveTwo system (Amsterdam, Netherlands) at a sampling

ate of 256 Hz per channel with 24-bit resolution. Caps with a custom

hole-head montage were used to position the electrodes on most of

he scalp, forehead, and lateral face surface, omitting chin and fleshy

heek areas. Relative 3D locations of the electrodes for each partici-

ant were recorded (Polhemus, Inc.). For more details, see Onton and

akeig (2009) and the description on the HeadIT website. 

.1.2. Experiment and participants 

Thirty-one volunteer participants participated in the emotion imag-

nation experiment (19 females; age 25 . 5 ± 5 years) and gave informed

onsent in accordance with UCSD institutional review board require-

ents. All participants reported being able to induce realistic emotional

xperiences for most of the suggested emotions by following a recorded

erbal narrative and using their own imagination. For example, for

anger the narrative suggested that the participant either recall a sit-

ation in which they had been angry, or else imagine a scene in which

hey would become angry, giving two examples ( “You find someone

mashing your car for no reason with a baseball bat.). Throughout the

xperiment, participants were seated comfortably with eyes closed in

 quiet, dimly-lit room, and listened to the narratives through ear-bud

arphones. 

Fig. 1 a shows the paradigm of the self-paced emotion imagination

xperiment. Each session began with 2 min of silent eyes-closed rest, fol-

owed by pre-recorded general instructions and then a 5 min guided re-

axation induction to promote a relaxed, inwardly-focused state of mind.

n 15 following task periods, the participant was presented with a se-

uence of recorded voice-guided inductions instructing them to recall

r imagine scenarios for stimulating a vivid, embodied experience of

he suggested emotion. Participants were encouraged to pay attention

o their somatic state, as such attention tended to increase the vividness

nd duration of their emotional experience ( Damasio, 1999 ). Partici-

ants were told to take as much time as they needed to recall or imag-

ne a scenario that would induce a realistic experience of the suggested

motion. No external time limits or indicators were provided. Partici-

ants pressed a right-hand held thumb button once to signal they had

egun to have a somatic experience of (i.e., to “feel) the targeted emo-

ion, then a left-hand held button when the imagined scene and feeling

egan to wane, triggering (40 s) instructions to again relax (through a

ollowing silent 10 s period), letting go of the previously experienced

cene and feeling. Then a 10 s audio clip prepared them for the next

motion imagination period. 

The 15 emotional imagination periods were presented in a pseudo-

andom sequence that alternated between one of eight positive-valence

motions (love, joy, happiness, relief, compassion, contentedness, ex-

itement, awe) followed one of seven negative-valence emotions (anger,

ealousy, disgust, frustration, fear, sadness, grief). The experimental ses-

ion was about 80 min in length. Button-press delimited durations of the

ctive emotion imagination periods varied between 43 s and 12 min;

http://headit.ucsd.edu
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Fig. 1. (a) Experimental paradigm for the self-paced emotion imagination experiment. (b) Flowchart of the EEG data processing prior to data decomposition by 

adaptive mixture ICA (AMICA). (c) The AMICA model: EEG data, 𝑥 ( 𝑡 ) , are modeled as mixing matrices, 𝐴 𝑘 , times independent components (ICs) activities, 𝑠 𝑘 ( 𝑡 ) , for 

model 𝑘 . Schematically presented post-AMICA data analysis consists of (1) Clustering Models : hierarchical clustering of AMICA models across participants to examine 

the relationship between emotion imagination and changes in EEG dynamics detected by the multiple AMICA models, (2) Temporal Dynamics : exploring temporal 

dynamics of emotional responses through time-locked and time-warped analysis, (3) Source Localization : mapping IC equivalent-dipole models of source location for 

AMICA model clusters active during the same emotions to dipole density to examine source density differences during different emotional imagination periods, and 

(4) Model Similarity : projecting dipole density of individual AMICA models to low-dimension representations through t-distributed stochastic neighbor embedding 

(t-SNE) to explore differences across emotions and participants. 
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ost lasted between 3 and 5 min. Transcripts of the verbal narratives are

vailable in the Supplement Information to Onton and Makeig (2009) . 

.1.3. Data preprocessing 

The data obtained from the HeadIT portal were already pre-

rocessed as described in Onton and Makeig (2009) including removal

f bad channels (e.g., involving electrodes with poor skin contact,
3 
udged by their grossly abnormal activity patterns), leaving 134–235

hannels per subject (214 ± 18, mean ± SD), re-referencing to digitally

inked mastoids, and digital filtering above 1 Hz. Data periods contain-

ng broadly distributed, high-amplitude muscle noise and other irregu-

ar artifacts identified by tests for high-kurtosis or low-probability ac-

ivity were removed from analysis using EEGLAB functions ( Delorme

nd Makeig, 2004; Delorme et al., 2007 ). The occurrence of eye blinks,
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ther eye movements, or tonic muscle tension artifacts were not cri-

eria for data rejection, as these were typically well-separated by ICA

ecomposition into separate component processes that were withheld

rom subsequent analyses. 

Further preprocessing steps were applied to the data prior to the

pplication of AMICA decomposition as schematized in Fig. 1 b. Data

efore the first eye-closed rest session and after the last eye-closed rest

ession were removed. Data were then re-referenced to a common aver-

ge reference. Artifact subspace reconstruction (ASR) ( Kothe and Jung,

016; Mullen et al., 2015 ) with a cutoff parameter 20 was applied for

utomatic removal of large-amplitude artifacts like electrode pops and

otion artifacts, which has been shown to improve subsequent ICA de-

omposition ( Chang et al., 2019 ). 

Data were reduced to 128 channels by sub-selecting channels in-

olving scalp electrodes that were maximally evenly spaced using the

oc-subsets() function in EEGLAB. The reason for this decimation was

o address the following three practical issues: insufficient samples for

earning a larger number of model parameters (the size of the unmix-

ng matrix is proportional to the square of the number of channels);

omputation time (as constrained by resources available); variations

cross participants in the number of retained channels. Effects of chan-

el number on AMICA decomposition performance are further discussed

n Section 4.5 . 

.2. Adaptive mixture independent component analysis (AMICA) 

AMICA assumes that the multi-channel time-series data can be de-

cribed by a mixture of independent component analysis (ICA) mod-

ls. Each model decomposes some portions of the data (possibly non-

ontiguous) into independent component (IC) effective source activities.

ach IC has an individual probability density function learned from the

ata and parameterized as a mixture of generalized Gaussians. For math-

matical description of the AMICA model, its learning algorithm, and

ffects and selection of learning parameters, see Section in the Supple-

ental Materials. For more technical details, see Palmer et al. (2008) for

he algorithm and Hsu et al. (2018a) for validation. 

In this study, 20 AMICA models, 128 ICs (same as the number of

hannels), and (only) one generalized Gaussian were used. The choice

f 20 models for AMICA was based on an implicit assumption of the

umber of possible EEG states during the experiment, e.g., at most 15

motion states, three baseline periods, plus inter-trial rest periods. The

ffect of the number of models on the learning performance of AMICA

as been investigated in Hsu et al. (2018a) and is here further addressed

n Section 4.1 . 

The AMICA sphering transformation option was engaged ( 𝑑𝑜 _ 𝑝𝑐𝑎 =
 ), and data samples with low probabilities of model fit were rejected

 𝑛𝑢𝑚𝑟𝑒𝑔 = 5 , 𝑟𝑒𝑗𝑠𝑡𝑎𝑟𝑡 = 2 , 𝑟𝑒𝑗𝑖𝑛𝑡 = 5 ) from further use for learning AM-

CA parameters to alleviate the effects of transient artifacts such as elec-

rode pops and discontinuities. AMICA uses expectation-maximization

EM) to estimate the parameters that maximize data likelihood under

he learned model(s), using an efficient implementation with a paral-

el computing capability ( Palmer et al., 2008 ). AMICA code is available

t https://github.com/japalmer29/amica and as an open-source plug-in

or EEGLAB ( Delorme and Makeig, 2004 ). The computations were run

n the Comet high-performance computing resource at the San Diego

upercomputer Center with support from the Neuroscience Gateway

NSG) project ( Sivagnanam et al., 2013 ). Maximum learning steps were

et to 2000; this required about 48 h of compute time on one computing

ode with 24 threads. Retrospective analysis showed that data likeli-

ood reached a plateau near 1000 steps. 

It is worth noting that AMICA failed, returning a data likelihood of

ero when applied to 2 of the 31 recordings (Participant IDs 26 and 32)

egardless of the numbers of models and channels used, possibly due

o numerical round-off errors when computing data likelihoods close to

ero. These two recordings were thus removed from further analysis. 
4 
As an unsupervised learning approach assuming the ICA mixture

odel, AMICA learns the underlying data source distributions (tempo-

al pdfs) and quantitatively assesses continuous changes in EEG pattern

ikelihood under each learned model, thereby identifying model tran-

itions. Specifically, the likelihood of each ICA model being active can

e represented as the normalized data likelihood given the estimated

arameters of each model; this may be referred to as “ICA model prob-

bility ” that indicates the goodness-of-fit of the ICA model to each data

ample. Subsequent learning steps focus learning for each model on data

oints relatively likely to follow that model, thus segregating the data

nto (possibly non-contiguous) model domains. A strength of AMICA is

hat it provides interpretable models allowing the characterization of

he typically focal spatial distribution and detailed time series of (here)

28 active brain (as well as non-brain “artifact) source processes for

ach model for time points within the respective model time domain. 

.3. Post-AMICA data analysis 

.3.1. Clustering AMICA models across participants 

To characterize the relationship between AMICA models and emo-

ion states, we clustered across participants the AMICA models active in

he same experiment sections. The procedure is summarized in Fig. 1 c

1) Clustering Models and detailed below. An 18-by-1 feature vector was

reated for each model consisting of mean model probability between

he felt emotion-surge button presses to the end of the emotion trial

or each of 18 periods (15 emotion imagination periods, identified by

motion, plus guided relaxation, pre-session baseline, and post-session

aseline). The models with low mean probability (i.e., below 0.3) in all

8 periods were rejected from further analysis, resulting in retention of

01 of the 580 (on average, 13.8 of the 20 models for the 29 partici-

ants) models. After reordering the emotion periods into an (arbitrary)

ommon order, correlations ( 𝜌) between each pair of these period model

robability feature vectors were then computed, giving a correlation ma-

rix of the size 401 × 401. Agglomerative hierarchical clustering into 18

odel clusters was then applied to the correlation distance matrix (1

 𝜌) to cluster models across participants having highly-correlated fea-

ure vector patterns, using the linkage() (with group average) and den-

rogram() functions in MATLAB. The feature vectors within each model

luster were then averaged to obtain a summary cluster-to-emotion map-

ing to examine the relationship between emotion imagination trials

nd EEG dynamics segmented into AMICA models with similar proba-

ility profiles. 

.3.2. Time-locked and time-warped temporal dynamics of model transition

Fig. 1 c (2) Temporal Dynamics illustrates the procedure we used to

xplore spatiotemporal changes in EEG dynamics during emotion imagi-

ation. Model probability time-series of the AMICA models in the cluster

dentified according to Section 2.3.1 were smoothed using mean prob-

bilities in successive (non-overlapping) 5 s windows time-locked to

he guided narrative beginning each emotion-imagination trial, from

 min before until 8 min after this event. To address the variability

n trial lengths across participants, the model-probability time courses

ere linearly time-warped using the timewarp() function in EEGLAB

 Delorme and Makeig, 2004 ) to equate median participant-response de-

ay (i.e., the median time elapsed from imagination period onset to first

utton press) and median trial length (i.e., the time elapsed from the

rst button press to end of the trial) so as to be able to compare model

robability courses differences across participants. 

.3.3. Criteria for categorizing model types based on activation time 

ourses 

To help identify and interpret models associated with particular emo-

ions based on their probability time courses, we categorized model

robability time courses into four types, as illustrated in Fig. 3 b. For

ach model, we calculated the average model probabilities in four time

eriods during the emotion imagination trial: 𝑃 𝑝𝑟𝑒 : from 2 min before to

https://github.com/japalmer29/amica
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Table 1 

Dominance time series Types for models in each of the 15 model clusters, labeled by 

their dominant period emotion. The criteria for categorizing models into Types are 

described in Section 2.3.3 . 

Emotion ∖ Types I II III IV Total I + II (%) III (%) IV (%) 

grief 10 8 0 2 20 90 0 10 

excitement 9 8 3 2 22 77 14 9 

happiness 10 6 5 1 22 73 23 5 

love 4 9 5 0 18 72 28 0 

fear 10 7 5 2 24 71 21 8 

relief 6 7 4 2 19 68 21 11 

anger 8 9 3 5 25 68 12 20 

sadness 7 5 4 2 18 67 22 11 

disgust 8 4 4 2 18 67 22 11 

awe 9 6 6 2 23 65 26 9 

joy 7 3 5 2 17 59 29 12 

compassion 2 5 2 3 12 58 17 25 

jealousy 4 6 5 3 18 56 28 17 

frustration 3 7 7 4 21 48 33 19 

contentment 2 4 8 8 22 27 36 36 

average 6.6 6.3 4.4 2.7 19.9 64 22 13 
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he end of the previous trial; 𝑃 𝑟𝑒𝑠𝑡 : from the end of the previous trial to

he start of the current trial instruction; 𝑃 𝑖𝑛𝑠𝑡𝑟 : from the start of the cur-

ent trial instruction to the first button press; 𝑃 𝑓𝑒𝑒𝑙 : from the first button

ress to the end of the current trial. 

Selection criteria for the four model types were: Type IV: 𝑃 𝑝𝑟𝑒 > 0 . 5 ,
activated ” (increased in model probability) from the previous emotion

magination trial period; Type III: excluding Type IV, remaining mod-

ls with 𝑃 𝑟𝑒𝑠𝑡 > 0 . 5 , meaning the model was activated during the rest

eriod and before the current trial started; Type II, remaining models

ith 𝑃 𝑖𝑛𝑠𝑡𝑟 > 0 . 5 , indicating the model became activated after the guided

motion narrative began; and Type I, remaining models with 𝑃 𝑓𝑒𝑒𝑙 > 0 . 5
 those only activated following the first button press through the end

f the trial. 

These model types provide a semi-quantitative way to compare tem-

oral dynamics across emotions. The distribution of model types for

ach emotion-associated model cluster is summarized in Table 1 . For

he subsequent source localization and dipole density analyses, type III

nd type IV models were withheld since they became active before the

rial started, suggesting they were not associated with the specific trial

motion. 

.3.4. Source localization with dipole fitting 

To characterize and compare the spatial distribution of brain effec-

ive source ICs for AMICA models in each model cluster, we applied

quivalent dipole source localization to the model learned IC scalp maps

sing DIPFIT2 ( Acar and Makeig, 2010 ), available in EEGLAB. Here,

lectrode locations were manually co-registered to the template head

odel (a 4-layer Boundary Element Method model). A single equivalent

urrent dipole in the head model was fit to each IC scalp map (projection

attern) learned for each IC by the AMICA decomposition. For justifi-

ation for use of this source localization method, see ( Delorme et al.,

012 ). Initial coarse-grid and subsequent fine-grid search for the best-

tting dipole location were applied using DIPTFIT2. Non-dipolar ICs

those with a residual variance of the model equivalent dipole scalp

rojection from the learned IC scalp map larger than 15%, as well as

hose ICs whose equivalent dipole was more than 5 mm located outside

he template brain compartment were removed from further analysis.

n average, 60% of the ICs (approximately 76 of 128) were retained

cross participants. 

.3.5. Automatic IC classification 

To investigate and interpret the AMICA models, we categorized the

ndependent components (ICs) of all the models into seven types (Brain,

ye, Muscle, Heart, Channel Noise, Line Noise, and Other) using an auto-

atic IC classifier (ICLabel) ( Pion-Tonachini et al., 2019 ), a pre-trained
5 
eural network based on IC power spectra and spatial projection pat-

erns (scalp map). To improve the performance of ICLabel for multi-

odel AMICA, we weighted the IC power spectra by the normalized

og-likelihood of the model to which the ICs belonged. We used the Lite

ersion of ICLabel as this was faster to compute and gave results compa-

able to those of the default version. ICLabel code and a detailed tutorial

an be found in its github repository https://github.com/sccn/ICLabel . 

.3.6. Equivalent dipole density comparison and bootstrap significance 

esting 

Overall 3D spatial equivalent dipole densities for the selected ICs

i.e. ICs with r.v. < 15%, located inside the head model and classified as

Brain ” by ICLabel) from all the models active in each experiment period

luster were obtained by summing over each IC’s contribution spatially

lurred in the template head (to reflect possible dipole location error,

articipant head differences, etc.) using a spatial Gaussian-kernel with

ull width at half maximum (FWHM) of 8.5 mm. The equivalent dipole

ensities were normalized such that the dipole-density values summed

o 1 across all voxels, suggested for comparison between models to re-

uce the effect of the number of dipolar ICs in the models. Here, we used

he dipoleDensity() function in EEGLAB. Equivalent dipole density was

omputed for each AMICA model for the t-SNE visualization described

n Section 2.3.7 . 

To test for significant differences between normalized dipole density

n pairs of emotion-model clusters, we used bootstrapping. Two surro-

ate datasets were generated by drawing two sets of ICs randomly with

eplacement from the pool of ICs from all models within the two clus-

ers. The number of ICs in each surrogate dataset equaled the number in

ach original emotion dataset. Effective source equivalent dipole densi-

ies for the two surrogate datasets were computed (as described above

n Methods 2.3.4 ), and their 3D source density difference was obtained.

fter repeating this process 500 times, the distribution of surrogate dif-

erences for each voxel provided a difference value beyond which only

% of the surrogate values fell, indicating a probability 𝑝 < . 05 (two-

ided) than the actual dataset difference lies beyond that value. 

To characterize brain model sources activated during emotion imag-

nation, we also combined all models (likely) active during an emotion

magination period into one group (Emotion group) and compared these

o models activated during relaxation, pre-session baseline, and post-

ession baseline (Baseline group) periods. The same bootstrapping ap-

roach was applied to obtain significance thresholds for differences in

quivalent dipole density between the Emotion and Baseline groups,

gain using 500 bootstrap repetitions. 

For improved visualization, regions with statistically significant

ipole density differences were plotted in a reconstructed 3D image us-

https://github.com/sccn/ICLabel
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ng code snippets from the Measure Projection Toolbox (MPT) ( Bigdely-

hamlo et al., 2013 ). Each 2 × 2 ×2-mm template brain voxel was

olor-coded by differences in normalized dipole density values. The fig-

re also shows 2D projections on sagittal, coronal, and axial MR slice

mages. Areas of significant differences are labeled with their Broad-

ann areas (BA) defined in the MNI coordinates using the MNI to Ta-

airach mapping application in the Yale BioImage Suite (BIS) package

ttps://bioimagesuiteweb.github.io/webapp/ . 

.3.7. Visualization of model similarities using t-distributed stochastic 

eighbor embedding (t-SNE) 

The t-distributed stochastic neighborhood embedding (t-SNE)

ethod ( van der Maaten and Hinton, 2008 ) was used to visualize

he similarity between equivalent dipole densities for each AMICA

odel by projecting the 91 × 109 ×91-dimensional dipole density down

o a best-representative two-dimensional space. t-SNE is a nonlinear

imensionality-reduction method that finds a map in a low-dimensional

pace best preserving pairwise similarities between neighboring points

n the high-dimensional space by minimizing the Kullback-Leibler di-

ergence between the two spatial distributions. Here we used the tsne()

unction in MATLAB with the Euclidean distance metric. 

. Results 

.1. Unsupervised segmentation of state changes during emotion 

magination 

Applied to the high-density EEG data, 20-model AMICA decom-

osition was able to characterize and separately distinguish differ-

nces in EEG dynamics across the emotion imagination experiment.

ig. 2 a shows the model likelihood time courses (normalized data log-

ikelihoods) across the experiment for the 20 models of a sample sub-

ect. Model M1 was the only model with high model likelihood during

he initial instruction and pre-session baseline periods. Near the begin-

ing of the “relaxation ” narrative, M1 likelihood faded and M2 emerged

nd became the most likely model. During the first emotion imagination

eriod, following the “happiness ” emotion narrative (solid green line),

odel M3 emerged as most likely until the end of the emotion period

solid white line). Model M4 became dominant in the next “fear ” emo-

ion imagination period. Transitions between dominant models some-

imes occurred near onsets of the emotion induction narratives (solid

reen lines for positive emotions, red lines for negative emotions), but in

ther emotion periods (e.g., for “excitement ”, “contentment ”, “anger ”,

nd “grief ”), transitions occurred at or near first button presses indi-

ating the target emotion was now felt (dashed white lines). For this

articipant, AMICA separately modeled the EEG in nearly all the emo-

ion imagination periods (all but “disgust ”) and the two resting base-

ines, giving a nearly one-to-one mapping between AMICA models and

magined emotions. 

A similar correspondence between AMICA models and emotion

magination period markers was observed across most of the partici-

ants. The likelihood time series of the twenty AMICA models from all

articipants are shown in Figs. to in the Supplemental Materials. Across

articipants, twenty-model AMICA decomposition segmented the EEG

ctivity into 10 to 18 models (mean, 14) that, typically, were dominant

ithin only one task period, e.g., that were dominant (mean likelihood

bove 0.5) in 12 successive 5 s smoothing windows during the task pe-

iod. The remaining models were most likely to reach dominance only

poradically or during brief rest periods between emotion imagination

eriods. 

.2. EEG activity in different emotion imagination periods fit by distinct 

MICA models 

Hierarchical Clustering (HC) was applied to identify models with

imilar emotion-related likelihood profiles across participants, e.g.,
6 
odels with high likelihoods in the same emotion imagination period(s).

ig. 2 b shows pairwise correlations between all models across partici-

ants, sorted by the HC result shown at the top of the panel. Each of

he 18 clusters contained 14–30 models. The resulting block-diagonal

attern shows clear separation between model clusters and high sim-

larity within each model cluster, suggesting that models with similar

ctivation patterns were returned consistently across participants. 

Furthermore, the mean likelihood dominance patterns for each

odel cluster (columns in Fig. 2 c) were focused on only one of the 18 ex-

eriment periods. That is, cluster models were dominant in one emotion

magination period, the two baseline periods, or during relaxation peri-

ds. The mean mapping between model clusters and experiment periods

s nearly one-to-one. A few exceptions were mean model dominance in

oth pre-session baseline ( “prebase ”) and “relax ” periods (Clusters 1 and

), and dominance in both “sadness ” and “compassion ” (Clusters 13 and

4). Note that these cluster pairs are closer in the HC dendrogram at the

op of the figure. Hence, multi-model AMICA decomposition was able to

lindly separate the EEG dynamics of each of the emotion imagination

eriods, allowing HC to identify model clusters of models across partic-

pants that were dominant during each of the 15 imagined emotions. 

.3. Differences in model transitions during emotion imagination 

Once the best-fitting models for each emotion were identified, we

xamined their model likelihood time series to study the timing of state

ransitions to and from emotion imagination. Fig. 3 a shows the (5 s

moothed) model likelihood time series for AMICA models in Cluster #8

 Fig. 2 c) that were dominant during “happiness ” emotion periods, time-

ocked to period onsets (onset of the “happiness ” narrative; red line). The

articipants emotion induction delay, the duration from narrative onset

o first button press (black line), varied across participants from 0.6 to

.2 min; whole emotion imagination period lengths were 1.5–9.4 min. 

To better visualize transitions between dominant AMICA models dur-

ng the emotion imagination trials, we time-warped the likelihood time

eries of the AMICA models between first (dashed black line) and final

dash gray line) button presses to their median values across partici-

ants, as shown in Fig. 3 c for “happiness ”, “contentment ”, “anger ”, and

grief ”. Results for all 15 emotions are shown in Fig. and in the Supple-

ental Materials. Models became dominant (moving from low (blue) to

igh (yellow) model likelihood) at different points during the emotion

magination periods. Based on this observation, models were further cat-

gorized into four types based on their activation patterns, as shown in

ig. 3 b. Some model dominance onsets were time-locked to first button

resses (Type I) or to narrative onsets (Type II). Other models that were

ominant before the emotion narrative were presented (Type III), while

ther models remained the dominance they gained during the previous

motion period (Type IV). Exact criteria for categorizing the four types

f models are described in Section 2.3.3 . 

Fig. 3 c shows that the dominance patterns, as described by model

ype, varied significantly across emotions. For instance, 45% and 50%

f the models in the “happiness ” and “grief ” clusters, respectively, were

f Type I, the highest such percentages among the emotion clusters.

his indicates EEG activity during these emotion periods was distinct

n some way from that in the previous emotion and rest periods and

merged only as the participant began to feel the targeted emotion. The

anger ” cluster included more Type II than Type I models, suggesting the

odeled EEG changes tended to occur immediately following the emo-

ion narrative (perhaps consistent with the oft-quoted phrase, “quick to

nger.). Types III and IV models were the most common for “content-

ent ” dominant models (of which 36% were of Type III and 36% of

ype IV), suggesting the EEG activities during imagined “contentment ”

ere not distinguishable from those during the preceding rest period or

ear the end of the previous emotion trial. 

Numbers and percentages of model types for the 15 emotions are

ummarized in Table 1 . Across all emotion models, 64% of model likeli-

ood time series were Types I and II, which were more likely related to

https://bioimagesuiteweb.github.io/webapp/
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Fig. 2. (a) Probability time series of 20 models learned by AMICA for a single subject. Model ordered by the period of maximum likelihood. Colored vertical lines 

indicate the start of each emotion imagination trial with positive (green) and negative (red) emotions. Dashed and solid white lines mark first button presses that 

indicate the subject had begun to feel the emotion, and final button presses when the subject no longer felt the emotion. (b) Pairwise correlation coefficients between 

all AMICA models from all participants using model likelihood patterns, i.e., the mean model likelihood in each of the 18 task periods (15 emotion periods plus 

relaxation and two baseline periods), sorted according to the results of hierarchical clustering using 18 model clusters. A dendrogram for the clustering result is 

shown at the top; here colors represent individual model clusters. (c) Mean model likelihood patterns for each model cluster, with the dendrogram representing 

inter-cluster distances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he imagined emotions given that their occurrence was approximately

ocked to the start of the audio narrative or the button press. The per-

entages ranged from 27% for “contentment ” to more than 70% for

grief ” and “happiness ”. On average, 22% of models were Type III, sug-

esting the EEG activities learned by the models during the emotion

magination trials resembled those during the preceding rest period. Fi-

ally, 13% of models were of Type IV, and thus unlikely to be related to

he specific emotion, given that they were also active during the previ-

us emotion (of opposite valence). Possibly either the participants con-

inued to feel the previous emotion, were not or no longer feeling that

motion when the trial ended, or the new emotion was not successfully

licited. Therefore, models of Types III and IV were rejected from the

ucceeding source distribution analyses. 

Fig. 3 d summarizes, for each emotion, the distribution across the

our Types of model dominance transitions, showing the median values

f model likelihood across all models in the same emotion cluster for
7 
ach 5 s window during the emotion imagination trials. Grand average

odel likelihood time series for all emotions are shown as gray curves.

odels with Type IV dominance profiles were excluded as they did not

ikely capture specific emotion-related activities. 

For all emotions, similar inverted U-shaped likelihood time courses

ere found, rising and falling near the beginning, middle, or end of

he emotion imagination trials. The onset, slope and duration of the

ising phase, the plateau, and the falling phase of the dominance pe-

iod varied across emotions. Small increases in model likelihood began

s early as the beginning of the rest period following the previous emo-

ion trial (gray line). The rising phase continued, and for some emotions

he slope increased during the audio narrative (red line). Model likeli-

ood reached near peak values when the participants pressed a button

o indicate they were feeling the emotion (dashed black line), and then

lateaued until a final button press indicated the feeling had waned

dash gray line). Model likelihood decreased immediately after partic-
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Fig. 3. (a) Model likelihood time series for all the AMICA models for 22 participants in the model cluster dominant during periods of imagined happiness. Vertical 

lines mark the end of the previous emotion period (white, 𝑅 

n-1 ), the onset of the “happiness narrative (red, 𝐼 n ), the first button press signaling that the subject was 

feeling the emotion (black, 𝑃 n ), and the end of the imagination period as signaled by a second button press (gray, 𝑅 

n ). (b) Illustration of four model types (I–IV) based 

on the timing of their dominance periods (detailed criteria as defined in Section 2.3.3 ). (c) Model-likelihood time-series for “happiness ”, “contentment ”, “anger ”, 

and “grief ” imagination periods. The times of the first “feeling it ” button press (dashed black line) and the end of the imagination period (dash gray line) were 

time-warped to the median first-press latencies from all participants contributing a model to the cluster. Models were then sorted according to the four dominance 

pattern types. See Table 1 for detailed information. Results for all 15 emotions are shown in Fig. and in the Supplemental Materials. (d) Across participants median 

model-likelihood time series for each emotion cluster (blue curve) and mean likelihood time series across all emotions (gray curve), time-locked to the start of the 

interstitial resting period (gray vertical line) and the onset of the new emotion narrative (red line). The first and second button press times, time-warped to their 

median values across participants, are shown with dashed black and gray lines respectively. The number of models in each cluster is indicated in parentheses. Models 

related to positive (left column) versus negative (right column) emotions are sorted by their median imagination period lengths. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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pants after this trial end moment, as the participant entered the ensu-

ng guided relaxation and rest period. These dominance cycles lasted

–6 min on average. 

Comparing temporal dynamics of model dominance across emotions,

e found that the rising phases of the likelihood time series between 𝐼 n 

nd 𝑃 n were more steeply sloping for happiness, sadness, anger, and

rief, compared to the model mean profile (gray curves). The likeli-

ood time series before 𝑃 n and after 𝑅 

n were lower than average for

rief and excitement and were higher for emotions including content-

ent and relief. For happiness, excitement, and most of the negative

motions, model likelihoods dropped faster than average immediately

ollowing the emotion period ( 𝑅 

n ); while for emotions including love

nd contentment, model dominance tended to descend more gradually.
8 
.4. AMICA models learned a high percentage of dipolar brain ICs 

Among all the models in the emotion dominance clusters, Table 2

hows that on average 24.4 ± 8.6% of the 128 ICs from each model were

lassified by ICLabel as Brain ICs, while only 6.5 ± 3.8% and 3.1 ± 2.8%

ere classified as muscle-related or eye-related, respectively ( Pion-

onachini et al., 2019 ). The remaining ICs were mostly labeled Other

44.6 ± 8.5%). 

To validate the quality of IC decompositions produced by multi-

odel AMICA, we examined the percentage of dipolar ICs for each

odel (i.e., ICs whose projection patterns (scalp maps) matched the

rojection of a single equivalent dipole located in the template brain

olume, a metric suggested by Delorme et al. (2012) . We found that on
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Table 2 

(Top) Mean and standard deviation percentage of ICs in each category as classified by ICLabel across all 

AMICA models. (Bottom) Percent dipolar ICs (with r.v. < 15%) within each class and among all dipolar 

ICs. 

Percentage (%) Brain Muscle Eye Heart Line Noise Channel Noise Other 

Mean Percent 24.4 6.5 3.1 0.3 13.8 7.3 44.6 

STD 8.6 3.8 2.8 0.4 5.2 4.4 8.5 

Dipolar ICs 92.2 31.5 43.0 62.7 74.1 29.5 48.1 

Total dipolar ICs account for 37.3 3.5 2.5 0.4 16.8 3.7 35.8 

Fig. 4. Projecting dipole densities of all AMICA models onto a 2-dimensional 

feature space using t-SNE, color-coded by subject index. 
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verage 60% of the ICs were dipolar, here defined as having less than

5% residual variance. Of the dipolar ICs, 37% of the ICs were labeled

s Brain ICs, while only 3.5% and 2.5% were labeled as Muscle and Eye

Cs. 

We also found that the AMICA models rejected from the clustering

nalysis had a lower percentage of Brain ICs (20%) and a higher percent-

ge of Other ICs (49%). However, there were no significant differences

n the percentage of Brain ICs between models in different emotion clus-

ers. 

.5. Dipole densities of brain ICs in the AMICA models 

To quantitatively compare the equivalent dipole locations of brain

ffective source ICs across AMICA models, we computed dipole density

f each AMICA model in the 3D template head brain model, excluding

on-dipolar ICs (residual variance of the single equivalent dipole model

 15%) and non-Brain ICs (identified by ICLabel). See Section 2.3.5 for

etails. Fig. in Supplemental Materials shows the normalized dipole den-

ity of dipolar brain ICs from all AMICA models during baseline and re-

axation periods. We found the highest IC location density was in the

ilateral occipital and central parietal regions. 

The t-distributed stochastic neighborhood embedding (t-SNE)

ethod was used to visualize (dis)similarities between dipole densities

f different AMICA models by projecting the 91 × 109 ×91-dimension

ipole-density features down to two dimensions. Fig. 4 illustrates that

C source location distributions were far more similar across emotion

odels for the same participant than for the same emotion across par-

icipants. 
9 
.6. Spatial distribution of brain sources dominant during emotion 

magination 

When we first compared the equivalent dipole densities of AMICA

odel clusters between pairs of emotions, we found that the differences

ould be biased by which participants’ models were in the clusters, be-

ause of variability in dipole density across participants (as shown in

ig. 4 ) and the limited number of models in each cluster (e.g., the “con-

entment ” dominant cluster only had six Type I and II models, Table 1 ).

o address this subject selection bias, we pooled model dominance clus-

ers for the eight positive emotions (97 models) and compared the aggre-

ated equivalent dipole density with the mean density for model clusters

ominant during the seven negative emotions (96 models) using boot-

trapping (see Section 2.3.6 ). No significant equivalent dipole density

ifference was found between the positive and negative emotion mod-

ls. 

Finally, we pooled together AMICA models from all 15 emotion clus-

ers ( “Emotion cluster ”) and compared the aggregated equivalent dipole

ensity with mean density for model clusters dominant in the three

aseline and relaxation periods ( “Baseline cluster ”). Fig. 5 shows lower

ipole density in the Emotion cluster compared to the Baseline cluster

n the premotor cortex (Brodmann Area (BA) 6), primary somatosensory

ortex (BA 1), and primary motor cortex (BA 4), with the right hemi-

phere showing a broader effect than the left hemisphere. Additionally,

ig. 5 shows slight reductions in dipole density in the Emotion cluster

n the left dorsolateral prefrontal cortex (BA 9), left anterior prefrontal

ortex (BA10), and right insula (BA13). In contrast, the Emotion cluster

howed significant increases in dipole density in the associative visual

ortex (BA 19), left angular gyrus (BA 39), and ventral posterior cingu-

ate cortex (BA 23). 

. Discussion 

This study aims to explore EEG dynamics during emotional expe-

iences using a unique “top-down approach. We applied unsupervised

ulti-model AMICA decomposition to high-density EEG data recorded

uring a self-paced emotion imagination experiment. The experiment

sed a guided imagination approach to include fifteen active emotions.

his enabled us to investigate: (1) Could AMICA identify EEG dynamic

odels that became dominant only during emotion imagination? (2)

ow do such models relate to the natures of the 15 emotions (e.g.,

ould the relationship be dimensional or categorical)? (3) When do rel-

vant changes in spatiotemporal EEG dynamics occur during narrative

nduced, self-paced imagination of emotional scenes or scenarios, and

ow do they vary across emotions and participants?, and (4) What neu-

ophysiological sources become active (or, e.g., available to discovery

y ICA decomposition) during emotion imagination? 

.1. Data-driven multi-model AMICA decomposition recognizes changes in 

EG dynamics during rest and imagination of different emotions 

Here we first showed that decomposition of 1–2 h of high-density

EG data by multi-model AMICA was able to reliably resolve EEG mod-

ls dominant in 10 or more of 18 distinct task periods throughout an
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Fig. 5. The difference in normalized equivalent dipole density of dipolar brain ICs in AMICA models dominant in emotion periods versus models dominant during 

baseline periods (i.e., pre- and post-session baseline and relaxation periods), masked by the result of a significance test ( 𝑝 < . 05 ) using bootstrapping. The result is 

superimposed on a 3D brain model with selected sagittal, coronal and axial slices of a template MR image shown for reference. Here Brodmann areas (BA) were 

identified by their MNI brain template coordinates. 
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motion imagination experiment across 29 participants. EEG activities

n each state could be separately modeled by one of 20 ICA models for

artitions of the data learned by AMICA ( Fig. 2 a). Further, unsupervised

egmentation of these states clearly corresponded to the beginning and

nd of each emotion imagination period. 

Interestingly, the EEG models did not cluster according to important

ffective dimensions including valence or arousal. Rather, for each of

he 18 experiment periods AMICA returned a distinct cluster of models

cross participants in which cluster models were only dominant (i.e.,

ost likely to model the data) in that period ( Fig. 2 c). The clustered

odels were near-dominant in more than one experiment period in only

 few cases such as during “prebase ” and “relax ” or in “sadness ” and

compassion ”. The latter conforms to self-reports by some participants

hat to experience “compassion ” they imagined witnessing a sad scene

an accident victims suffering, for example). 

While our results show that for most participants AMICA detected

ifferences in EEG dynamics during imagination of most of the imag-

ned emotions, models dominant during different emotions might have

any shared dynamic aspects. We thus conducted an exploratory anal-

sis, applying AMICA decomposition to the same dataset using different

umbers of models. When 5 models were learned (Fig. ), in some cases

everal consecutive emotion imagination trials shared the same dom-

nant model (e.g., pre-session baseline, relaxation and awe for Model

; compassion, fear, contentment, and jealousy for Model 5). When the

umber of learned models was increased to 10, several models were ac-

ive in two successive trials of the same valence (e.g., frustration and

nger for Model 2, joy and happiness for Model 3, sadness and grief for

odel 4, love, relief and excitement for Model 5). When the number

f models was increased to 15, model distinctions between individual

motion imagination periods became clearer, and when the number of

odels returned to 20, nearly every emotion period was distinctly sepa-

ated into different dominant models. This combined evidence suggests

hat even though EEG activities in each of the emotion imagination pe-

iods could be distinctly separated when enough models were available,

he periods for emotions with the same valence might share more similar

EG activities that could be account by one model when fewer models

ere available. We did not extend this exploration to other participants

ata. 
10 
.2. Temporal dynamics of emotion-period models and their variability 

cross emotions 

Our earlier report showed that multi-model AMICA decomposition

an assist in characterizing changes in EEG spatiotemporal dynamics

ith sub-second resolution ( Hsu et al., 2018a ). Here we found that

ransitions between best-fitting models could be well aligned to emo-

ion imagination periods ( Fig. 3 ). A third of the models dominant in

ach emotion imagination period became dominant as the participant

istened to the emotion induction narrative (Type II models); another

hird became dominant as the participant pressed a thumb button to in-

icate they were actively feeling the suggested emotion (Type I models)

 Table 1 ). For most of these models, model dominance “faded out ” when

he participant ended the period with a final button press and listened

o the ensuing relaxation narrative. Thus, dominant model likelihood

axed and waned at the beginning and end of one emotion imagina-

ion period, providing strong evidence that the models separated EEG

ctivities uniquely occurring (or co-occurring) during just one emotion

eriod. 

Comparing the temporal dynamics of different emotional-period

odels, we found that emotion trials such as grief, excitement, and

appiness induced more distinctive activity shifts detected by AMICA,

videnced by a higher percentage of Type I and II models ( Table 1 and

ig. 3 ). Some emotion-dominant models (during Love, Contentment, and

elief trials) remained dominant longer after the end of the imagination

rial. These temporal features might be used as new measures to char-

cterize differences in EEG supporting different emotions. 

We also found that one-third of the models became dominant during

he rest period prior to the emotion imagination trial (Type III models)

r even during the previous emotion-imagination trial (Type IV mod-

ls). Jealousy and Compassion trials had a higher percentage of Type

II and IV dominant models ( Table 1 ). Perhaps here the new emotion

argets did not produce a change in the EEG model as the participant

ad become fatigued or otherwise failed to feel the requested emotion.

n some cases, the EEG source dynamics prevailing during the new emo-

ion may have been similar to those in the preceding resting state (Type

II) or even the previous emotion (Type IV). In particular, the imagined

xperience of “Contentment ” might well be supported by dynamics pre-
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ailing during the preceding rest state; indeed, Contentment trials had

he highest percentage of Type III and IV models (73%). 

.3. Emotions with less distinctive state changes in EEG activities during 

magination were classified less accurately 

In other cases, distinctive emotional states might not always have

een achieved during emotion imagination. This is also consistent

ith the relatively low accuracy in emotion classification obtained

n a previous study using this dataset ( Kothe et al., 2013 ). There,

othe et al. (2013) applied a machine learning model to data from a

2-subject subset given the goal of predicting the (positive or negative)

alence of the emotion imagined emotion. They found that valence ac-

uracies were the highest (above 90%) for Grief and Happiness and low-

st for Awe, Jealousy, Contentment, and Frustration (below 65%) (see

ig. 1 in Kothe et al., 2013 ). Their valence classification accuracies for

ifferent emotions correlates well with the percentages of Type I and

I models for each emotion in this study ( Table 1 ). Thus, in this study

motions that were not successfully induced and/or those whose EEG

ynamics were less distinguishable from relaxation (as evidenced by a

ower percentage of Type I and II models) were the emotion that gave

lose to chance level accuracy in the Kothe et al. (2013) study. 

These results pose AMICA as a promising tool for assessing whether

nd when emotion-relevant states are induced in emotion studies (e.g.,

tudies comparing emotion induction paradigms). Possibly, using multi-

odel AMICA to select appropriate time windows for classification

ight improve emotion classification performance. 

.4. Neurophysiological sources activated during emotion imagination and 

nter-subject variability 

Toward a neurophysiological interpretation of the dominant AMICA

odels and model switches, we first examined the quality of the AM-

CA decomposition. On average, 60% of ICs were dipolar (i.e., their

calp maps could be fit with a single equivalent dipole located in

he template brain volume with less than 15% residual variance). In

elorme et al. (2012) comparing blind decomposition methods to 71-

hannel data from another study, a higher percentage of dipolar ICs was

ssociated with a more successful ICA decomposition method, i.e., pro-

uced more overall mutual information reduction. In their study, AM-

CA gave the most dipolar components and highest mutual information

eduction of 22 blind decomposition methods. Our (60% dipolar) result

s consistent with the AMICA results in that report. This suggests that

he decomposition quality of AMICA did not degrade significantly when

earning a large number (20) of models. 

Further, ICLabel ( Pion-Tonachini et al., 2019 ) revealed that 37% of

he dipolar ICs were brain-related ICs ( Table 2 ), suggesting AMICA mod-

ls were able to identify multiple independent brain processes. Notably,

e have observed a higher percentage of “Others ICs (45%) than in

ingle-model ICA decomposition (29%), which is likely due to the high

umber of ICs (128 × 20) found in the data by multi-model AMICA de-

omposition. 

Dipolar and brain ICs were used to compute the spatial distribution

f dipole density in the brain model. A sample dipole density plot of the

ipolar brain ICs in the Baseline dominant model clusters (Fig. ) shows

ipolar brain sources were located most densely in the occipital and

arietal cortices. 

Visualizing dipole densities of all AMICA models in a 2D t-SNE fea-

ure space ( Fig. 4 ) revealed that the dipole distributions were more

ighly similar across emotion-dominant models for the same partici-

ant rather than for the same emotion across participants. That is, each

articipant appears to have a core set of brain ICs whose locations in

he brain model did not change significantly across AMICA models. It

s, however, in IC probability density functions (pdfs) that AMICA uses

o assign data to models it is not clear whether small differences in the

ocations of model equivalent dipoles in different models for the same
11 
articipant represent inherent (noise) variability or actual small changes

n cortical generating area (and source pdfs) in different emotions. 

The minor differences in dipole distributions between models dom-

nant for different emotions did not rise to significance across partici-

ants. Further, when we pooled together model dipole clusters domi-

ant in positive emotions and compared them to those dominant during

egative emotions, we found no significant dipole density difference

 𝑝 > . 05 ). This result is consistent with a review paper on neuroimaging

vidence of brain activity supporting emotion ( Lindquist et al., 2012 ),

n which meta-analytic analysis found “little evidence that discrete emo-

ion categories can be consistently and specifically localized to distinct

rain regions. ”

However, it is important to point out another explanation to our

nding of non-significant dipole-density differences between emotions.

rain activity during the emotion imagination periods might be too in-

ividualized to exhibit consistent IC expressions across participants. For

xample, it might be determined by specific scenarios the participant

magined rather than by the overall emotion experienced by the partic-

pant. 

We did find consistent differences across participants in dipole den-

ity of models dominant during periods of emotion imagination com-

ared to models accounting for intervening periods of guided relaxation.

 possible interpretation is that some brain areas began to or no longer

roduced the same local spatially coherent EEG signals when the par-

icipant shifted from self-absorbed relaxation to active imagination of

motionally charged scenarios. The primary somatomotor and premo-

or cortex had lower dipole density ( Fig. 5 ) during emotion imagina-

ion than during relaxation. This may relate to absence, during emotion

magination periods, of specific “idling rhythm (e.g., circa 10-Hz mu

hythm) activities in motor areas during guided relaxation. Right dorso-

ateral prefrontal cortex (DLPFC, BA9), left rostrolateral prefrontal cor-

ex (RLPFC, BA10), and right insula (BA13) also exhibited lower model

C dipole density during emotion imagination. 

Previous studies have reported that the right DLPFC is associated

ith behavioral inhibition and self-control ( Aupperle et al., 2012; Ker-

stes et al., 2012; Morawetz et al., 2016; Ray and Zald, 2012; Shack-

an et al., 2009; Viviani, 2014 ). The left RLPFC is generally believed

o be related to memory recall and coordination of information process-

ng ( Ramnani and Owen, 2004 ), and is found to be activated during

motion-regulation tasks ( Bramson et al., 2018; Koch et al., 2018 ). Re-

ent studies found that the anterior insula could be related to emotion

ecognition and emotional awareness ( Craig, 2009; Motomura et al.,

019 ). The BOLD signal results could be consistent with our findings if

he activity in these areas shifted from predominantly lower-frequency

sub-gamma) activity to low-amplitude high-frequency activity, which

s more difficult for ICA to resolve into dipolar sources. 

Areas with higher dipole density in models accounting for emotion

magination than intervening relaxation were posterior: bilateral asso-

iative visual cortex (BA19), which BOLD studies have shown to be ac-

ivated during both actual and imagined visual information processing

 Fink et al., 2018; Kaas et al., 2010 ), left angular gyrus, associated with

elf-referential memory retrieval ( Seghier, 2013 ), and posterior cingu-

ate cortex (PCC), known to be active during focused attention and mem-

ry retrieval ( Leech and Sharp, 2014; Rolls, 2019 ). In a review paper,

indquist et al. (2012) reported a set of brain regions commonly in-

olved during emotion experience across discrete emotion categories.

his includes the motor cortex supporting language and executive at-

ention, the visual cortex connecting with areas involved in core affect

ike the amygdala, and the prefrontal cortex and medial posterior group

nvolved with conceptualization ( Kober et al., 2008 ). 

Taken together, the emotion-related brain areas identified by AMICA

ecomposition are thus largely consistent with those identified in many

euroimaging studies. Further analysis of these results might study what

ypes of independent EEG sources in these areas produced during emo-

ion imagination. 
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.5. Limitations and future work 

Although AMICA successfully characterized brain-state changes dur-

ng the emotion imagination experiment, here we did not find ways in

hich the resulting models are consistent within emotions rather than

articipants. In particular, we found no difference in propensity for ICA

ecomposition to find independent components localizing to the bilat-

ral temporal areas shown by Onton and Makeig (2009) in these same

ata to exhibit clear valence-related activity (stronger high-frequency

roadband activity to more positive emotions), a result since replicated

n several fMRI BOLD signal studies using positive, neutral and nega-

ive valence stimuli (music, speech, etc.). Evidently, distinct EEG source

ctivity in these areas was no more likely to be found by AMICA mod-

ls accounting for positive versus negative emotion imagination peri-

ds, nor for guided relaxation versus self-produced emotion imagination

eriods. Future work with these data could explore more completely

ynamic (rather than spatial) differences between the different model

lusters. Future replication of this experiment might include a control

ondition presenting motor or sensory imagery in a perceptual task, to

est whether emotion imagination trials and the sensorimotor percep-

ion conditions would share the same AMICA models. 

Since the sub-selected 128-channel EEG montage for training AMICA

odels covered the whole scalp and partial facial and neck areas (i.e.,

whole montage ”), it could be argued that the facial and neck muscle

rtifacts significantly contributed to the separation of EEG activities be-

ween different emotion-imagination trials. To test the hypothesis, we

ub-selected a subset of 128 channels only from electrodes placed above

he ears (i.e., “scalp montage ”), the AMICA decompositions showed con-

istent results in terms of separating EEG segments that corresponded to

motion periods. Besides, the IC classification of the 128-channel whole

ontage using ICLabel shows that the numbers of artifactual ICs such as

ye, heart, and muscle components were much smaller than the number

f brain ICs ( Table 2 ). The evidence suggests that the unsupervised seg-

entation of AMICA was not solely due to the contributions of muscle

nd eye artifacts, especially from facial and neck muscles. 

For a neurophysiological interpretation of the AMICA models, we

sed dipole density to map the high-dimensional AMICA parameters of

ach model onto the same brain space. This enables systematic compar-

son and statistical testing of spatial distributions across AMICA models.

owever, this mapping involves user-defined thresholds for selecting

ipolar ICs and types of ICs, which would affect the resulting dipole den-

ity. Alternative approaches to systematically compare and quantify the

istance between the AMICA models in a high-dimensional parameter-

pace would advance AMICA results’ interpretability and provide further

europhysiological insights. 

As discussed in the previous section, AMICA models – albeit able to

eparate different emotions – seem to be individualized and specific to

ach participant. This could be the result of over-fitting, given that there

ere approximately 338K parameters to learn (for 20 AMICA models,

ach with 128 ICs) with 1.38M data samples (for a 90 min recording). In

act, we have tried to further sub-select 64 channels for training AMICA

odels. The empirical result showed that the AMICA models with 64 ICs

ould still consistently segment the EEG data, but transitions between

egments (i.e., changes in which model likelihood was dominant) were

ot as distinct compared with the results from 128- and 250-IC AMICA.

An important future direction could be testing whether the AMICA

odels associated with emotion imagination can be found again in the

EG activity of a separate test session, or in sessions using emotion-

liciting approaches. Although training AMICA models imposes a rel-

tively heavy computational burden, models trained on a first dataset

ould be used to make statistical inferences on test data in a near-real-

ime fashion, enabling online emotion decoding. 

For future advancement of emotion classification, it is important to

ompare and even leverage the insights gained from unsupervised meth-

ds with those from supervised methods. For example, training a super-

ised classifier after unsupervised AMICA decomposition would enable
12 
motion identification that may better generalize across participants.

omparing source locations from multi-model AMICA decomposition

ith those from single-model ICA applied to individual emotion peri-

ds in a supervised manner, we could examine the validity of subjective

motion labels and separate emotion activities from those not related to

motion. 

. Conclusions 

Our results demonstrate that multi-model decomposition of high-

ensity (128-channel) EEG data by AMICA can detect shifts in EEG dy-

amics associated with differences in task (here guided rest versus active

motional scenario imagination), even when the data are to be segre-

ated into as many as twenty models. As in our earlier report ( Hsu et al.,

018a ), the timing of model transitions can accurately reflect timing of

hanges in task orientation, and differences in timing of model transi-

ions (as studied here) may reveal details about the timing and degree

f shifts in mental goals and focus. 

Brain regions with the biggest difference in dipole density during

motion imagination compared to rest were identified in the left dorsal

ateral and anterior prefrontal cortex, posterior cingulate cortex, right

nsula, motor cortex, and visual cortex, consistent with previous emotion

tudies. Yet, no significant difference in dipole densities was found be-

ween positive and negative emotions. The spatial distributions of brain-

ocalizable ICs showed higher similarity within-subject across emotions

han within-emotion across participants. The results presented here sug-

est that continued work to characterize essential differences in AM-

CA models dominant in different time periods could be valuable. This

tudy provides and validates a framework, i.e., AMICA and post-AMICA

nalyses, for data-driven discovery of brain state dynamics in an emo-

ion imagination experiment, shedding light on the neurophysiological

nderpinnings of emotional experiences, thereby improving the perfor-

ance of emotion decoding for EEG-based affective computing and ad-

ancing our understanding of emotion. 
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