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ABSTRACT

This study applies adaptive mixture independent component analysis (AMICA) to learn a set of ICA models,
each optimized by fitting a distributional model for each identified component process while maximizing compo-
nent process independence within some subsets of time points of a multi-channel EEG dataset. Here, we applied
20-model AMICA decomposition to long-duration (1-2 h), high-density (128-channel) EEG data recorded while
participants used guided imagination to imagine situations stimulating the experience of 15 specified emotions.
These decompositions tended to return models identifying spatiotemporal EEG patterns or states within single
emotion imagination periods. Model probability transitions reflected time-courses of EEG dynamics during emo-
tion imagination, which varied across emotions. Transitions between models accounting for imagined “grief” and
“happiness” were more abrupt and better aligned with participant reports, while transitions for imagined “con-
tentment” extended into adjoining “relaxation” periods. The spatial distributions of brain-localizable independent
component processes (ICs) were more similar within participants (across emotions) than emotions (across partici-
pants). Across participants, brain regions with differences in IC spatial distributions (i.e., dipole density) between
emotion imagination versus relaxation were identified in or near the left rostrolateral prefrontal, posterior cingu-
late cortex, right insula, bilateral sensorimotor, premotor, and associative visual cortex. No difference in dipole
density was found between positive versus negative emotions. AMICA models of changes in high-density EEG
dynamics may allow data-driven insights into brain dynamics during emotional experience, possibly enabling

the improved performance of EEG-based emotion decoding and advancing our understanding of emotion.

1. Introduction

Emotional experiences are functional states internally generated by
the brain and body that give rise to diverse subjective experiences and
behaviors in our daily lives (Scherer, 2005). Advancing our understand-
ing of emotions, while devising technology for affective computing,
could enable widespread applications in education, healthcare, gam-
ing, and human-computer interaction (Picard, 2000). Despite enormous
progress in cognitive science, psychology, and computer science stud-
ies of emotion, much emotion research relies on subjective verbal or
written reports of participants (Cowen and Keltner, 2017). However,
these subjective reports reflect the conscious awareness of their emo-
tional experiences or the expressed emotion, which might differ from
the underlying emotional states that could be unconscious or shaped
by an individual’s cognitive construct (Barrett et al., 2019; Lindquist
et al., 2012; Picard, 2000). As well, often the reporting task may inter-
rupt and distract from the emotional experience itself. To complement
results from subjective reports, objective measures may be recorded in-
cluding behavioral expressions (Ekman, 1993) and physiological (e.g.
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electrodermal Sequeira et al., 2009) and/or brain signals (e.g., func-
tional magnetic resonance imaging (fMRI) Horikawa et al., 2020; Kober
et al., 2008; Lindquist et al., 2012 and electroencephalography (EEG)
Coan and Allen, 2004; Kim et al., 2013; Lin et al., 2010). Among these,
EEG provides a direct measurement of distributed cortical brain dynam-
ics with high temporal resolution.

Previous EEG-based emotion studies focused mainly on developing
supervised learning approaches to optimize classification accuracy us-
ing subjective ratings of emotions as labels, e.g., affective dimensions
or emotion categories. Such approaches contributed to the building of
emotion classifiers applicable in affective computing, and to the iden-
tification of EEG biomarkers that maximally separate different labeled
emotional conditions. However, these studies often overlooked the tem-
poral dynamics of the emotional states, which normally develop over
seconds to minutes of their elicitation by video (Nie et al., 2011) or
other presented material (Lin et al., 2010). By contrast, Onton and
Makeig (2009) conducted a self-paced emotion imagination experi-
ment during which participants induced 15 distinct emotional states,
each lasting 3-5 min, following their own imagination in response to
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verbally-guided narrative suggestions. A conventional supervised learn-
ing approach assuming that emotion-related brain activity was station-
ary within each 3-5 min emotion imagination period, applied to the
resulting EEG datasets, struggled to achieve high emotion classifica-
tion accuracy with large differences in classification performance across
emotion categories (Kothe et al., 2013).

Furthermore, most EEG-based emotion studies often assumed that
subjective ratings of emotional experiences (e.g., valence and arousal
used in popular DEAP dataset Koelstra et al., 2011) or group-validated
labels of emotional stimuli (e.g., averaged across a pool of subjective
ratings Lin et al., 2010) represent the actual emotional state changes
in the participants. Few studies have aimed to validate or challenge
these assumptions by exploring the relationship between the underly-
ing EEG dynamics and the emotion labels, providing evidence for an-
swers to some key questions in the field: (a) Is the subjective report
of emotional experiences consistent with objective measures from neu-
rophysiological recordings?, (b) Should differences between emotions
be better described using affective dimensions or emotional categories
(Barrett, 1998; Cowen and Keltner, 2017; Mauss and Robinson, 2009)?,
(c) What are the most prominent spatiotemporal EEG dynamic changes
during emotional experience?, and (d) Are activities in specific brain
regions associated with specific emotions (Lindquist et al., 2012)?

These questions motivate the application of unsupervised learning
approaches to characterize emotional state changes by clustering emo-
tional states in terms of EEG activity differences rather than using
subjective labels. To our knowledge, only a few studies have used an
unsupervised-learning approach in EEG-based emotion studies. For ex-
ample, a Gaussian mixture model (GMM) was used for learning segment-
level variability in non-stationary EEG (Zhuang et al., 2014), a hyper-
graph representation was introduced to capture hidden structures in
EEG signals across emotion trials (Liang et al., 2019), and a deep belief
network (DBN) and hidden Markov model (HMM) were employed for
unsupervised feature learning and tracking of emotional stage switching
(Zheng et al., 2014). However, these studies did not explore the relation-
ship between the spatiotemporal structure of the EEG and the associated
emotion state labels.

Alternatively, adaptive mixture independent component analysis
(adaptive mixture ICA, AMICA) (Hsu et al., 2018a; Palmer et al., 2008)
assumes multidimensional data can be modeled by an independent com-
ponent analysis mixture model (ICAMM) (Lee et al., 2000) in which
each model represents a decomposition of the data into (possibly con-
tiguous) segments associated with a distinct set of statistically indepen-
dent component processes. Previous studies have shown that ICAMM, or
its more advanced instantiation in the AMICA algorithm (Palmer et al.,
2008), can separate EEG activities during different sleep stages (Hsu
et al., 2018a; Salazar et al., 2010), fluctuations of drowsiness (Hsu et al.,
2018a; Jung et al., 2000), mental state changes during memory test
(Safont et al., 2017), guided meditation (Hsu et al., 2018b), and emo-
tional video watching (Ran et al., 2020).

This study aims to employ multi-model AMICA as an unsupervised-
learning approach for exploring the brain-state dynamics during dif-
ferent emotional experiences. We applied AMICA to a dataset from
Onton and Makeig (2009), containing high-density (250-channel EEG
data) collected from 31 participants during a self-paced emotion imag-
ination experiment in which the participants induced a series of 15
emotional experiences by following recorded voice narratives with eyes
closed, using their own imagination. Marrying a promising unsupervised
method for modeling EEG nonstationarity with a unique high-density
EEG dataset containing fifteen 3-5 min periods of emotional experi-
ence targeting fifteen different emotions enabled us to investigate, (1)
whether such data-driven segmentation might self-organize and then be
clustered according to affective dimension (e.g., valence), or separate
into distinct models for each emotion, and (2) how does EEG spatiotem-
poral dynamics vary across self-paced experiences of imagined emo-
tion and across participants. We study the putative cortical brain-based
sources active during emotion imagination periods and differences in
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AMICA models across emotions and participants. These results provide
evidence that emotional processes vary across emotions, but not neces-
sarily consistent across participants. Finally, we discuss the studys limi-
tations and make suggestions for the future research, such as comparing
the results with those obtained from supervised methods to validate the
consistency of findings and investigate emotion-specific activities.

2. Materials and methods
2.1. Dataset and preprocessing

2.1.1. Dataset

The dataset used in the study contains 31 recordings collected as de-
scribed in Onton and Makeig (2009). The data are available at HeadIT
website (http://headit.ucsd.edu, Imagined Emotion with Continuous Data
under Studies). EEG data were collected from 250 scalp channels using
a Biosemi ActiveTwo system (Amsterdam, Netherlands) at a sampling
rate of 256 Hz per channel with 24-bit resolution. Caps with a custom
whole-head montage were used to position the electrodes on most of
the scalp, forehead, and lateral face surface, omitting chin and fleshy
cheek areas. Relative 3D locations of the electrodes for each partici-
pant were recorded (Polhemus, Inc.). For more details, see Onton and
Makeig (2009) and the description on the HeadIT website.

2.1.2. Experiment and participants

Thirty-one volunteer participants participated in the emotion imag-
ination experiment (19 females; age 25.5 + 5 years) and gave informed
consent in accordance with UCSD institutional review board require-
ments. All participants reported being able to induce realistic emotional
experiences for most of the suggested emotions by following a recorded
verbal narrative and using their own imagination. For example, for
“anger the narrative suggested that the participant either recall a sit-
uation in which they had been angry, or else imagine a scene in which
they would become angry, giving two examples (“You find someone
smashing your car for no reason with a baseball bat.). Throughout the
experiment, participants were seated comfortably with eyes closed in
a quiet, dimly-lit room, and listened to the narratives through ear-bud
earphones.

Fig. 1 a shows the paradigm of the self-paced emotion imagination
experiment. Each session began with 2 min of silent eyes-closed rest, fol-
lowed by pre-recorded general instructions and then a 5 min guided re-
laxation induction to promote a relaxed, inwardly-focused state of mind.
In 15 following task periods, the participant was presented with a se-
quence of recorded voice-guided inductions instructing them to recall
or imagine scenarios for stimulating a vivid, embodied experience of
the suggested emotion. Participants were encouraged to pay attention
to their somatic state, as such attention tended to increase the vividness
and duration of their emotional experience (Damasio, 1999). Partici-
pants were told to take as much time as they needed to recall or imag-
ine a scenario that would induce a realistic experience of the suggested
emotion. No external time limits or indicators were provided. Partici-
pants pressed a right-hand held thumb button once to signal they had
begun to have a somatic experience of (i.e., to “feel) the targeted emo-
tion, then a left-hand held button when the imagined scene and feeling
began to wane, triggering (40 s) instructions to again relax (through a
following silent 10 s period), letting go of the previously experienced
scene and feeling. Then a 10 s audio clip prepared them for the next
emotion imagination period.

The 15 emotional imagination periods were presented in a pseudo-
random sequence that alternated between one of eight positive-valence
emotions (love, joy, happiness, relief, compassion, contentedness, ex-
citement, awe) followed one of seven negative-valence emotions (anger,
jealousy, disgust, frustration, fear, sadness, grief). The experimental ses-
sion was about 80 min in length. Button-press delimited durations of the
active emotion imagination periods varied between 43 s and 12 min;
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(a) Emotion-imagery Experiment Paradigm
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(b) Data Processing
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Fig. 1. (a) Experimental paradigm for the self-paced emotion imagination experiment. (b) Flowchart of the EEG data processing prior to data decomposition by
adaptive mixture ICA (AMICA). (c) The AMICA model: EEG data, x(¢), are modeled as mixing matrices, A, times independent components (ICs) activities, s,(t), for
model k. Schematically presented post-AMICA data analysis consists of (1) Clustering Models: hierarchical clustering of AMICA models across participants to examine
the relationship between emotion imagination and changes in EEG dynamics detected by the multiple AMICA models, (2) Temporal Dynamics: exploring temporal

dynamics of emotional responses through time-locked and time-warped analysis,

(3) Source Localization: mapping IC equivalent-dipole models of source location for

AMICA model clusters active during the same emotions to dipole density to examine source density differences during different emotional imagination periods, and
(4) Model Similarity: projecting dipole density of individual AMICA models to low-dimension representations through t-distributed stochastic neighbor embedding

(t-SNE) to explore differences across emotions and participants.

most lasted between 3 and 5 min. Transcripts of the verbal narratives are
available in the Supplement Information to Onton and Makeig (2009).

2.1.3. Data preprocessing

The data obtained from the HeadIT portal were already pre-
processed as described in Onton and Makeig (2009) including removal
of bad channels (e.g., involving electrodes with poor skin contact,

judged by their grossly abnormal activity patterns), leaving 134-235
channels per subject (214 + 18, mean + SD), re-referencing to digitally
linked mastoids, and digital filtering above 1 Hz. Data periods contain-
ing broadly distributed, high-amplitude muscle noise and other irregu-
lar artifacts identified by tests for high-kurtosis or low-probability ac-
tivity were removed from analysis using EEGLAB functions (Delorme
and Makeig, 2004; Delorme et al., 2007). The occurrence of eye blinks,
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other eye movements, or tonic muscle tension artifacts were not cri-
teria for data rejection, as these were typically well-separated by ICA
decomposition into separate component processes that were withheld
from subsequent analyses.

Further preprocessing steps were applied to the data prior to the
application of AMICA decomposition as schematized in Fig. 1b. Data
before the first eye-closed rest session and after the last eye-closed rest
session were removed. Data were then re-referenced to a common aver-
age reference. Artifact subspace reconstruction (ASR) (Kothe and Jung,
2016; Mullen et al., 2015) with a cutoff parameter 20 was applied for
automatic removal of large-amplitude artifacts like electrode pops and
motion artifacts, which has been shown to improve subsequent ICA de-
composition (Chang et al., 2019).

Data were reduced to 128 channels by sub-selecting channels in-
volving scalp electrodes that were maximally evenly spaced using the
loc-subsets() function in EEGLAB. The reason for this decimation was
to address the following three practical issues: insufficient samples for
learning a larger number of model parameters (the size of the unmix-
ing matrix is proportional to the square of the number of channels);
computation time (as constrained by resources available); variations
across participants in the number of retained channels. Effects of chan-
nel number on AMICA decomposition performance are further discussed
in Section 4.5.

2.2. Adaptive mixture independent component analysis (AMICA)

AMICA assumes that the multi-channel time-series data can be de-
scribed by a mixture of independent component analysis (ICA) mod-
els. Each model decomposes some portions of the data (possibly non-
contiguous) into independent component (IC) effective source activities.
Each IC has an individual probability density function learned from the
data and parameterized as a mixture of generalized Gaussians. For math-
ematical description of the AMICA model, its learning algorithm, and
effects and selection of learning parameters, see Section in the Supple-
mental Materials. For more technical details, see Palmer et al. (2008) for
the algorithm and Hsu et al. (2018a) for validation.

In this study, 20 AMICA models, 128 ICs (same as the number of
channels), and (only) one generalized Gaussian were used. The choice
of 20 models for AMICA was based on an implicit assumption of the
number of possible EEG states during the experiment, e.g., at most 15
emotion states, three baseline periods, plus inter-trial rest periods. The
effect of the number of models on the learning performance of AMICA
has been investigated in Hsu et al. (2018a) and is here further addressed
in Section 4.1.

The AMICA sphering transformation option was engaged (do_pca =
1), and data samples with low probabilities of model fit were rejected
(numreg = 5,rejstart = 2, rejint = 5) from further use for learning AM-
ICA parameters to alleviate the effects of transient artifacts such as elec-
trode pops and discontinuities. AMICA uses expectation-maximization
(EM) to estimate the parameters that maximize data likelihood under
the learned model(s), using an efficient implementation with a paral-
lel computing capability (Palmer et al., 2008). AMICA code is available
at https://github.com/japalmer29/amica and as an open-source plug-in
for EEGLAB (Delorme and Makeig, 2004). The computations were run
on the Comet high-performance computing resource at the San Diego
Supercomputer Center with support from the Neuroscience Gateway
(NSG) project (Sivagnanam et al., 2013). Maximum learning steps were
set to 2000; this required about 48 h of compute time on one computing
node with 24 threads. Retrospective analysis showed that data likeli-
hood reached a plateau near 1000 steps.

It is worth noting that AMICA failed, returning a data likelihood of
zero when applied to 2 of the 31 recordings (Participant IDs 26 and 32)
regardless of the numbers of models and channels used, possibly due
to numerical round-off errors when computing data likelihoods close to
zero. These two recordings were thus removed from further analysis.
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As an unsupervised learning approach assuming the ICA mixture
model, AMICA learns the underlying data source distributions (tempo-
ral pdfs) and quantitatively assesses continuous changes in EEG pattern
likelihood under each learned model, thereby identifying model tran-
sitions. Specifically, the likelihood of each ICA model being active can
be represented as the normalized data likelihood given the estimated
parameters of each model; this may be referred to as “ICA model prob-
ability” that indicates the goodness-of-fit of the ICA model to each data
sample. Subsequent learning steps focus learning for each model on data
points relatively likely to follow that model, thus segregating the data
into (possibly non-contiguous) model domains. A strength of AMICA is
that it provides interpretable models allowing the characterization of
the typically focal spatial distribution and detailed time series of (here)
128 active brain (as well as non-brain “artifact) source processes for
each model for time points within the respective model time domain.

2.3. Post-AMICA data analysis

2.3.1. Clustering AMICA models across participants

To characterize the relationship between AMICA models and emo-
tion states, we clustered across participants the AMICA models active in
the same experiment sections. The procedure is summarized in Fig. 1c
(1) Clustering Models and detailed below. An 18-by-1 feature vector was
created for each model consisting of mean model probability between
the felt emotion-surge button presses to the end of the emotion trial
for each of 18 periods (15 emotion imagination periods, identified by
emotion, plus guided relaxation, pre-session baseline, and post-session
baseline). The models with low mean probability (i.e., below 0.3) in all
18 periods were rejected from further analysis, resulting in retention of
401 of the 580 (on average, 13.8 of the 20 models for the 29 partici-
pants) models. After reordering the emotion periods into an (arbitrary)
common order, correlations (p) between each pair of these period model
probability feature vectors were then computed, giving a correlation ma-
trix of the size 401 x 401. Agglomerative hierarchical clustering into 18
model clusters was then applied to the correlation distance matrix (1
—p) to cluster models across participants having highly-correlated fea-
ture vector patterns, using the linkage() (with group average) and den-
drogram() functions in MATLAB. The feature vectors within each model
cluster were then averaged to obtain a summary cluster-to-emotion map-
ping to examine the relationship between emotion imagination trials
and EEG dynamics segmented into AMICA models with similar proba-
bility profiles.

2.3.2. Time-locked and time-warped temporal dynamics of model transition

Fig. 1 ¢ (2) Temporal Dynamics illustrates the procedure we used to
explore spatiotemporal changes in EEG dynamics during emotion imagi-
nation. Model probability time-series of the AMICA models in the cluster
identified according to Section 2.3.1 were smoothed using mean prob-
abilities in successive (non-overlapping) 5 s windows time-locked to
the guided narrative beginning each emotion-imagination trial, from
2 min before until 8 min after this event. To address the variability
in trial lengths across participants, the model-probability time courses
were linearly time-warped using the timewarp() function in EEGLAB
(Delorme and Makeig, 2004) to equate median participant-response de-
lay (i.e., the median time elapsed from imagination period onset to first
button press) and median trial length (i.e., the time elapsed from the
first button press to end of the trial) so as to be able to compare model
probability courses differences across participants.

2.3.3. Criteria for categorizing model types based on activation time
courses

To help identify and interpret models associated with particular emo-
tions based on their probability time courses, we categorized model
probability time courses into four types, as illustrated in Fig. 3b. For
each model, we calculated the average model probabilities in four time
periods during the emotion imagination trial: P,,,: from 2 min before to

re*


https://github.com/japalmer29/amica

S.-H. Hsu, Y. Lin, J. Onton et al.

Table 1
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Dominance time series Types for models in each of the 15 model clusters, labeled by
their dominant period emotion. The criteria for categorizing models into Types are

described in Section 2.3.3.

Emotion \ Types 1 I 111 v Total 1+ 1I (%) 11T (%) 1V (%)
grief 10 8 0 2 20 90 0 10
excitement 9 8 3 2 22 77 14

happiness 10 6 5 1 22 73 23 5
love 4 9 5 0 18 72 28 0
fear 10 7 5 2 24 71 21

relief 6 7 4 2 19 68 21 11
anger 8 9 3 5 25 68 12 20
sadness 7 5 4 2 18 67 22 11
disgust 8 4 4 2 18 67 22 11
awe 9 6 6 2 23 65 26 9
joy 7 3 5 2 17 59 29 12
compassion 2 5 2 3 12 58 17 25
jealousy 4 6 5 3 18 56 28 17
frustration 3 7 7 4 21 48 33 19
contentment 2 4 8 8 22 27 36 36
average 6.6 6.3 4.4 2.7 19.9 64 22 13

the end of the previous trial; P,,,: from the end of the previous trial to
the start of the current trial instruction; P, from the start of the cur-
rent trial instruction to the first button press; Py,,;: from the first button
press to the end of the current trial.

Selection criteria for the four model types were: Type IV: P, > 0.5,
“activated” (increased in model probability) from the previous emotion
imagination trial period; Type III: excluding Type IV, remaining mod-
els with P, > 0.5, meaning the model was activated during the rest
period and before the current trial started; Type II, remaining models
with P, > 0.5, indicating the model became activated after the guided
emotion narrative began; and Type I, remaining models with P;,,; > 0.5
- those only activated following the first button press through the end
of the trial.

These model types provide a semi-quantitative way to compare tem-
poral dynamics across emotions. The distribution of model types for
each emotion-associated model cluster is summarized in Table 1. For
the subsequent source localization and dipole density analyses, type III
and type IV models were withheld since they became active before the
trial started, suggesting they were not associated with the specific trial

emotion.

2.3.4. Source localization with dipole fitting

To characterize and compare the spatial distribution of brain effec-
tive source ICs for AMICA models in each model cluster, we applied
equivalent dipole source localization to the model learned IC scalp maps
using DIPFIT2 (Acar and Makeig, 2010), available in EEGLAB. Here,
electrode locations were manually co-registered to the template head
model (a 4-layer Boundary Element Method model). A single equivalent
current dipole in the head model was fit to each IC scalp map (projection
pattern) learned for each IC by the AMICA decomposition. For justifi-
cation for use of this source localization method, see (Delorme et al.,
2012). Initial coarse-grid and subsequent fine-grid search for the best-
fitting dipole location were applied using DIPTFIT2. Non-dipolar ICs
(those with a residual variance of the model equivalent dipole scalp
projection from the learned IC scalp map larger than 15%, as well as
those ICs whose equivalent dipole was more than 5 mm located outside
the template brain compartment were removed from further analysis.
On average, 60% of the ICs (approximately 76 of 128) were retained
across participants.

2.3.5. Automatic IC classification

To investigate and interpret the AMICA models, we categorized the
independent components (ICs) of all the models into seven types (Brain,
Eye, Muscle, Heart, Channel Noise, Line Noise, and Other) using an auto-
matic IC classifier (ICLabel) (Pion-Tonachini et al., 2019), a pre-trained

neural network based on IC power spectra and spatial projection pat-
terns (scalp map). To improve the performance of ICLabel for multi-
model AMICA, we weighted the IC power spectra by the normalized
log-likelihood of the model to which the ICs belonged. We used the Lite
version of ICLabel as this was faster to compute and gave results compa-
rable to those of the default version. ICLabel code and a detailed tutorial
can be found in its github repository https://github.com/sccn/ICLabel.

2.3.6. Equivalent dipole density comparison and bootstrap significance
testing

Overall 3D spatial equivalent dipole densities for the selected ICs
(i.e. ICs with r.v.<15%, located inside the head model and classified as
“Brain” by ICLabel) from all the models active in each experiment period
cluster were obtained by summing over each IC’s contribution spatially
blurred in the template head (to reflect possible dipole location error,
participant head differences, etc.) using a spatial Gaussian-kernel with
full width at half maximum (FWHM) of 8.5 mm. The equivalent dipole
densities were normalized such that the dipole-density values summed
to 1 across all voxels, suggested for comparison between models to re-
duce the effect of the number of dipolar ICs in the models. Here, we used
the dipoleDensity() function in EEGLAB. Equivalent dipole density was
computed for each AMICA model for the t-SNE visualization described
in Section 2.3.7.

To test for significant differences between normalized dipole density
in pairs of emotion-model clusters, we used bootstrapping. Two surro-
gate datasets were generated by drawing two sets of ICs randomly with
replacement from the pool of ICs from all models within the two clus-
ters. The number of ICs in each surrogate dataset equaled the number in
each original emotion dataset. Effective source equivalent dipole densi-
ties for the two surrogate datasets were computed (as described above
in Methods 2.3.4), and their 3D source density difference was obtained.
After repeating this process 500 times, the distribution of surrogate dif-
ferences for each voxel provided a difference value beyond which only
5% of the surrogate values fell, indicating a probability p < .05 (two-
sided) than the actual dataset difference lies beyond that value.

To characterize brain model sources activated during emotion imag-
ination, we also combined all models (likely) active during an emotion
imagination period into one group (Emotion group) and compared these
to models activated during relaxation, pre-session baseline, and post-
session baseline (Baseline group) periods. The same bootstrapping ap-
proach was applied to obtain significance thresholds for differences in
equivalent dipole density between the Emotion and Baseline groups,
again using 500 bootstrap repetitions.

For improved visualization, regions with statistically significant
dipole density differences were plotted in a reconstructed 3D image us-
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ing code snippets from the Measure Projection Toolbox (MPT) (Bigdely-
Shamlo et al., 2013). Each 2 x 2x2-mm template brain voxel was
color-coded by differences in normalized dipole density values. The fig-
ure also shows 2D projections on sagittal, coronal, and axial MR slice
images. Areas of significant differences are labeled with their Broad-
mann areas (BA) defined in the MNI coordinates using the MNI to Ta-
lairach mapping application in the Yale Biolmage Suite (BIS) package
https://bioimagesuiteweb.github.io/webapp/.

2.3.7. Visualization of model similarities using t-distributed stochastic
neighbor embedding (t-SNE)

The t-distributed stochastic neighborhood embedding (t-SNE)
method (van der Maaten and Hinton, 2008) was used to visualize
the similarity between equivalent dipole densities for each AMICA
model by projecting the 91 x 109x91-dimensional dipole density down
to a best-representative two-dimensional space. t-SNE is a nonlinear
dimensionality-reduction method that finds a map in a low-dimensional
space best preserving pairwise similarities between neighboring points
in the high-dimensional space by minimizing the Kullback-Leibler di-
vergence between the two spatial distributions. Here we used the tsne()
function in MATLAB with the Euclidean distance metric.

3. Results

3.1. Unsupervised segmentation of state changes during emotion
imagination

Applied to the high-density EEG data, 20-model AMICA decom-
position was able to characterize and separately distinguish differ-
ences in EEG dynamics across the emotion imagination experiment.
Fig. 2a shows the model likelihood time courses (normalized data log-
likelihoods) across the experiment for the 20 models of a sample sub-
ject. Model M1 was the only model with high model likelihood during
the initial instruction and pre-session baseline periods. Near the begin-
ning of the “relaxation” narrative, M1 likelihood faded and M2 emerged
and became the most likely model. During the first emotion imagination
period, following the “happiness” emotion narrative (solid green line),
model M3 emerged as most likely until the end of the emotion period
(solid white line). Model M4 became dominant in the next “fear” emo-
tion imagination period. Transitions between dominant models some-
times occurred near onsets of the emotion induction narratives (solid
green lines for positive emotions, red lines for negative emotions), but in
other emotion periods (e.g., for “excitement”, “contentment”, “anger”,
and “grief”), transitions occurred at or near first button presses indi-
cating the target emotion was now felt (dashed white lines). For this
participant, AMICA separately modeled the EEG in nearly all the emo-
tion imagination periods (all but “disgust”) and the two resting base-
lines, giving a nearly one-to-one mapping between AMICA models and
imagined emotions.

A similar correspondence between AMICA models and emotion
imagination period markers was observed across most of the partici-
pants. The likelihood time series of the twenty AMICA models from all
participants are shown in Figs. to in the Supplemental Materials. Across
participants, twenty-model AMICA decomposition segmented the EEG
activity into 10 to 18 models (mean, 14) that, typically, were dominant
within only one task period, e.g., that were dominant (mean likelihood
above 0.5) in 12 successive 5 s smoothing windows during the task pe-
riod. The remaining models were most likely to reach dominance only
sporadically or during brief rest periods between emotion imagination
periods.

3.2. EEG activity in different emotion imagination periods fit by distinct
AMICA models

Hierarchical Clustering (HC) was applied to identify models with
similar emotion-related likelihood profiles across participants, e.g.,
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models with high likelihoods in the same emotion imagination period(s).
Fig. 2b shows pairwise correlations between all models across partici-
pants, sorted by the HC result shown at the top of the panel. Each of
the 18 clusters contained 14-30 models. The resulting block-diagonal
pattern shows clear separation between model clusters and high sim-
ilarity within each model cluster, suggesting that models with similar
activation patterns were returned consistently across participants.
Furthermore, the mean likelihood dominance patterns for each
model cluster (columns in Fig. 2c) were focused on only one of the 18 ex-
periment periods. That is, cluster models were dominant in one emotion
imagination period, the two baseline periods, or during relaxation peri-
ods. The mean mapping between model clusters and experiment periods
is nearly one-to-one. A few exceptions were mean model dominance in
both pre-session baseline (“prebase”) and “relax” periods (Clusters 1 and
2), and dominance in both “sadness” and “compassion” (Clusters 13 and
14). Note that these cluster pairs are closer in the HC dendrogram at the
top of the figure. Hence, multi-model AMICA decomposition was able to
blindly separate the EEG dynamics of each of the emotion imagination
periods, allowing HC to identify model clusters of models across partic-
ipants that were dominant during each of the 15 imagined emotions.

3.3. Differences in model transitions during emotion imagination

Once the best-fitting models for each emotion were identified, we
examined their model likelihood time series to study the timing of state
transitions to and from emotion imagination. Fig. 3a shows the (5 s
smoothed) model likelihood time series for AMICA models in Cluster #8
(Fig. 2 c) that were dominant during “happiness” emotion periods, time-
locked to period onsets (onset of the “happiness” narrative; red line). The
participants emotion induction delay, the duration from narrative onset
to first button press (black line), varied across participants from 0.6 to
7.2 min; whole emotion imagination period lengths were 1.5-9.4 min.

To better visualize transitions between dominant AMICA models dur-
ing the emotion imagination trials, we time-warped the likelihood time
series of the AMICA models between first (dashed black line) and final
(dash gray line) button presses to their median values across partici-
pants, as shown in Fig. 3c for “happiness”, “contentment”, “anger”, and
“grief”. Results for all 15 emotions are shown in Fig. and in the Supple-
mental Materials. Models became dominant (moving from low (blue) to
high (yellow) model likelihood) at different points during the emotion
imagination periods. Based on this observation, models were further cat-
egorized into four types based on their activation patterns, as shown in
Fig. 3b. Some model dominance onsets were time-locked to first button
presses (Type I) or to narrative onsets (Type II). Other models that were
dominant before the emotion narrative were presented (Type III), while
other models remained the dominance they gained during the previous
emotion period (Type IV). Exact criteria for categorizing the four types
of models are described in Section 2.3.3.

Fig. 3 ¢ shows that the dominance patterns, as described by model
type, varied significantly across emotions. For instance, 45% and 50%
of the models in the “happiness” and “grief” clusters, respectively, were
of Type I, the highest such percentages among the emotion clusters.
This indicates EEG activity during these emotion periods was distinct
in some way from that in the previous emotion and rest periods and
emerged only as the participant began to feel the targeted emotion. The
“anger” cluster included more Type II than Type I models, suggesting the
modeled EEG changes tended to occur immediately following the emo-
tion narrative (perhaps consistent with the oft-quoted phrase, “quick to
anger.). Types III and IV models were the most common for “content-
ment” dominant models (of which 36% were of Type III and 36% of
Type 1IV), suggesting the EEG activities during imagined “contentment”
were not distinguishable from those during the preceding rest period or
near the end of the previous emotion trial.

Numbers and percentages of model types for the 15 emotions are
summarized in Table 1. Across all emotion models, 64% of model likeli-
hood time series were Types I and II, which were more likely related to


https://bioimagesuiteweb.github.io/webapp/

S.-H. Hsu, Y. Lin, J. Onton et al.

(a)

@ (N :\\0‘\ (\e‘f’
e N
R G SR i

Model ID
BERNO®moaN

N =
o o

1000 1500 2000

AMICA Models
Correlation

150 200 250

AMICA Models

((\ ’6
§(0

Prebase
Relax 0.9
Awe
Disgust .
Jealousy
Excitement .
Frustration
Happiness i
Contentment
Anger ’
Relief .
Postbase
Sadness .
Compassion
Joy i
Grief
Love .
Fear 0

Neurolmage 249 (2022) 118873

o o
e ,00“ d“ o 450 e
7" 0% o0

PXQ N 6(\3 \0\3 63(\ o ?0‘9

2500
Time (sec)

3000 3500 4000

(c)

O]

o (=] o o o (=]
w e o o ~ ©
Mean Model Probability

o
()

o
o

123456 7 8 9101112131415161718
Model Cluster ID

Fig. 2. (a) Probability time series of 20 models learned by AMICA for a single subject. Model ordered by the period of maximum likelihood. Colored vertical lines
indicate the start of each emotion imagination trial with positive (green) and negative (red) emotions. Dashed and solid white lines mark first button presses that
indicate the subject had begun to feel the emotion, and final button presses when the subject no longer felt the emotion. (b) Pairwise correlation coefficients between
all AMICA models from all participants using model likelihood patterns, i.e., the mean model likelihood in each of the 18 task periods (15 emotion periods plus
relaxation and two baseline periods), sorted according to the results of hierarchical clustering using 18 model clusters. A dendrogram for the clustering result is
shown at the top; here colors represent individual model clusters. (c) Mean model likelihood patterns for each model cluster, with the dendrogram representing
inter-cluster distances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the imagined emotions given that their occurrence was approximately
locked to the start of the audio narrative or the button press. The per-
centages ranged from 27% for “contentment” to more than 70% for
“grief” and “happiness”. On average, 22% of models were Type III, sug-
gesting the EEG activities learned by the models during the emotion
imagination trials resembled those during the preceding rest period. Fi-
nally, 13% of models were of Type IV, and thus unlikely to be related to
the specific emotion, given that they were also active during the previ-
ous emotion (of opposite valence). Possibly either the participants con-
tinued to feel the previous emotion, were not or no longer feeling that
emotion when the trial ended, or the new emotion was not successfully
elicited. Therefore, models of Types III and IV were rejected from the
succeeding source distribution analyses.

Fig. 3 d summarizes, for each emotion, the distribution across the
four Types of model dominance transitions, showing the median values
of model likelihood across all models in the same emotion cluster for

each 5 s window during the emotion imagination trials. Grand average
model likelihood time series for all emotions are shown as gray curves.
Models with Type IV dominance profiles were excluded as they did not
likely capture specific emotion-related activities.

For all emotions, similar inverted U-shaped likelihood time courses
were found, rising and falling near the beginning, middle, or end of
the emotion imagination trials. The onset, slope and duration of the
rising phase, the plateau, and the falling phase of the dominance pe-
riod varied across emotions. Small increases in model likelihood began
as early as the beginning of the rest period following the previous emo-
tion trial (gray line). The rising phase continued, and for some emotions
the slope increased during the audio narrative (red line). Model likeli-
hood reached near peak values when the participants pressed a button
to indicate they were feeling the emotion (dashed black line), and then
plateaued until a final button press indicated the feeling had waned
(dash gray line). Model likelihood decreased immediately after partic-
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Fig. 3. (a) Model likelihood time series for all the AMICA models for 22 participants in the model cluster dominant during periods of imagined happiness. Vertical
lines mark the end of the previous emotion period (white, R™!), the onset of the “happiness narrative (red, I™), the first button press signaling that the subject was
feeling the emotion (black, P"), and the end of the imagination period as signaled by a second button press (gray, R"). (b) Illustration of four model types (I-IV) based

on the timing of their dominance periods (detailed criteria as defined in Section 2.3.3). (c) Model-likelihood time-series for “happiness”, “contentment”,

» o« » o«

anger”,

and “grief” imagination periods. The times of the first “feeling it” button press (dashed black line) and the end of the imagination period (dash gray line) were
time-warped to the median first-press latencies from all participants contributing a model to the cluster. Models were then sorted according to the four dominance
pattern types. See Table 1 for detailed information. Results for all 15 emotions are shown in Fig. and in the Supplemental Materials. (d) Across participants median
model-likelihood time series for each emotion cluster (blue curve) and mean likelihood time series across all emotions (gray curve), time-locked to the start of the
interstitial resting period (gray vertical line) and the onset of the new emotion narrative (red line). The first and second button press times, time-warped to their
median values across participants, are shown with dashed black and gray lines respectively. The number of models in each cluster is indicated in parentheses. Models
related to positive (left column) versus negative (right column) emotions are sorted by their median imagination period lengths. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

ipants after this trial end moment, as the participant entered the ensu-
ing guided relaxation and rest period. These dominance cycles lasted
4-6 min on average.

Comparing temporal dynamics of model dominance across emotions,
we found that the rising phases of the likelihood time series between 1™
and P" were more steeply sloping for happiness, sadness, anger, and
grief, compared to the model mean profile (gray curves). The likeli-
hood time series before P" and after R" were lower than average for
grief and excitement and were higher for emotions including content-
ment and relief. For happiness, excitement, and most of the negative
emotions, model likelihoods dropped faster than average immediately
following the emotion period (R"); while for emotions including love
and contentment, model dominance tended to descend more gradually.

3.4. AMICA models learned a high percentage of dipolar brain ICs

Among all the models in the emotion dominance clusters, Table 2
shows that on average 24.4+8.6% of the 128 ICs from each model were
classified by ICLabel as Brain ICs, while only 6.5+3.8% and 3.1+2.8%
were classified as muscle-related or eye-related, respectively (Pion-
Tonachini et al., 2019). The remaining ICs were mostly labeled Other
(44.6+8.5%).

To validate the quality of IC decompositions produced by multi-
model AMICA, we examined the percentage of dipolar ICs for each
model (i.e., ICs whose projection patterns (scalp maps) matched the
projection of a single equivalent dipole located in the template brain
volume, a metric suggested by Delorme et al. (2012). We found that on
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Table 2
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(Top) Mean and standard deviation percentage of ICs in each category as classified by ICLabel across all
AMICA models. (Bottom) Percent dipolar ICs (with r.v.<15%) within each class and among all dipolar

ICs.
Percentage (%) Brain  Muscle Heart  Line Noise = Channel Noise = Other
Mean Percent 24.4 6.5 0.3 13.8 7.3 44.6
STD 8.6 3.8 0.4 5.2 4.4 8.5
Dipolar ICs 92.2 31.5 62.7 74.1 29.5 48.1
Total dipolar ICs account for ~ 37.3 3.5 0.4 16.8 3.7 35.8
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Fig. 4. Projecting dipole densities of all AMICA models onto a 2-dimensional
feature space using t-SNE, color-coded by subject index.

average 60% of the ICs were dipolar, here defined as having less than
15% residual variance. Of the dipolar ICs, 37% of the ICs were labeled
as Brain ICs, while only 3.5% and 2.5% were labeled as Muscle and Eye
ICs.

We also found that the AMICA models rejected from the clustering
analysis had a lower percentage of Brain ICs (20%) and a higher percent-
age of Other ICs (49%). However, there were no significant differences
in the percentage of Brain ICs between models in different emotion clus-
ters.

3.5. Dipole densities of brain ICs in the AMICA models

To quantitatively compare the equivalent dipole locations of brain
effective source ICs across AMICA models, we computed dipole density
of each AMICA model in the 3D template head brain model, excluding
non-dipolar ICs (residual variance of the single equivalent dipole model
>15%) and non-Brain ICs (identified by ICLabel). See Section 2.3.5 for
details. Fig. in Supplemental Materials shows the normalized dipole den-
sity of dipolar brain ICs from all AMICA models during baseline and re-
laxation periods. We found the highest IC location density was in the
bilateral occipital and central parietal regions.

The t-distributed stochastic neighborhood embedding (t-SNE)
method was used to visualize (dis)similarities between dipole densities
of different AMICA models by projecting the 91 x 109x91-dimension
dipole-density features down to two dimensions. Fig. 4 illustrates that
IC source location distributions were far more similar across emotion
models for the same participant than for the same emotion across par-
ticipants.

3.6. Spatial distribution of brain sources dominant during emotion
imagination

When we first compared the equivalent dipole densities of AMICA
model clusters between pairs of emotions, we found that the differences
could be biased by which participants’ models were in the clusters, be-
cause of variability in dipole density across participants (as shown in
Fig. 4) and the limited number of models in each cluster (e.g., the “con-
tentment” dominant cluster only had six Type I and II models, Table 1).
To address this subject selection bias, we pooled model dominance clus-
ters for the eight positive emotions (97 models) and compared the aggre-
gated equivalent dipole density with the mean density for model clusters
dominant during the seven negative emotions (96 models) using boot-
strapping (see Section 2.3.6). No significant equivalent dipole density
difference was found between the positive and negative emotion mod-
els.

Finally, we pooled together AMICA models from all 15 emotion clus-
ters (“Emotion cluster”) and compared the aggregated equivalent dipole
density with mean density for model clusters dominant in the three
baseline and relaxation periods (“Baseline cluster”). Fig. 5 shows lower
dipole density in the Emotion cluster compared to the Baseline cluster
in the premotor cortex (Brodmann Area (BA) 6), primary somatosensory
cortex (BA 1), and primary motor cortex (BA 4), with the right hemi-
sphere showing a broader effect than the left hemisphere. Additionally,
Fig. 5 shows slight reductions in dipole density in the Emotion cluster
in the left dorsolateral prefrontal cortex (BA 9), left anterior prefrontal
cortex (BA10), and right insula (BA13). In contrast, the Emotion cluster
showed significant increases in dipole density in the associative visual
cortex (BA 19), left angular gyrus (BA 39), and ventral posterior cingu-
late cortex (BA 23).

4. Discussion

This study aims to explore EEG dynamics during emotional expe-
riences using a unique “top-down approach. We applied unsupervised
multi-model AMICA decomposition to high-density EEG data recorded
during a self-paced emotion imagination experiment. The experiment
used a guided imagination approach to include fifteen active emotions.
This enabled us to investigate: (1) Could AMICA identify EEG dynamic
models that became dominant only during emotion imagination? (2)
How do such models relate to the natures of the 15 emotions (e.g.,
would the relationship be dimensional or categorical)? (3) When do rel-
evant changes in spatiotemporal EEG dynamics occur during narrative
induced, self-paced imagination of emotional scenes or scenarios, and
how do they vary across emotions and participants?, and (4) What neu-
rophysiological sources become active (or, e.g., available to discovery
by ICA decomposition) during emotion imagination?

4.1. Data-driven multi-model AMICA decomposition recognizes changes in
EEG dynamics during rest and imagination of different emotions

Here we first showed that decomposition of 1-2 h of high-density
EEG data by multi-model AMICA was able to reliably resolve EEG mod-
els dominant in 10 or more of 18 distinct task periods throughout an
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Fig. 5. The difference in normalized equivalent dipole density of dipolar brain ICs in AMICA models dominant in emotion periods versus models dominant during
baseline periods (i.e., pre- and post-session baseline and relaxation periods), masked by the result of a significance test (p < .05) using bootstrapping. The result is
superimposed on a 3D brain model with selected sagittal, coronal and axial slices of a template MR image shown for reference. Here Brodmann areas (BA) were

identified by their MNI brain template coordinates.

emotion imagination experiment across 29 participants. EEG activities
in each state could be separately modeled by one of 20 ICA models for
partitions of the data learned by AMICA (Fig. 2a). Further, unsupervised
segmentation of these states clearly corresponded to the beginning and
end of each emotion imagination period.

Interestingly, the EEG models did not cluster according to important
affective dimensions including valence or arousal. Rather, for each of
the 18 experiment periods AMICA returned a distinct cluster of models
across participants in which cluster models were only dominant (i.e.,
most likely to model the data) in that period (Fig. 2c). The clustered
models were near-dominant in more than one experiment period in only
a few cases such as during “prebase” and “relax” or in “sadness” and
“compassion”. The latter conforms to self-reports by some participants
that to experience “compassion” they imagined witnessing a sad scene
(an accident victims suffering, for example).

While our results show that for most participants AMICA detected
differences in EEG dynamics during imagination of most of the imag-
ined emotions, models dominant during different emotions might have
many shared dynamic aspects. We thus conducted an exploratory anal-
ysis, applying AMICA decomposition to the same dataset using different
numbers of models. When 5 models were learned (Fig. ), in some cases
several consecutive emotion imagination trials shared the same dom-
inant model (e.g., pre-session baseline, relaxation and awe for Model
1; compassion, fear, contentment, and jealousy for Model 5). When the
number of learned models was increased to 10, several models were ac-
tive in two successive trials of the same valence (e.g., frustration and
anger for Model 2, joy and happiness for Model 3, sadness and grief for
Model 4, love, relief and excitement for Model 5). When the number
of models was increased to 15, model distinctions between individual
emotion imagination periods became clearer, and when the number of
models returned to 20, nearly every emotion period was distinctly sepa-
rated into different dominant models. This combined evidence suggests
that even though EEG activities in each of the emotion imagination pe-
riods could be distinctly separated when enough models were available,
the periods for emotions with the same valence might share more similar
EEG activities that could be account by one model when fewer models
were available. We did not extend this exploration to other participants
data.
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4.2. Temporal dynamics of emotion-period models and their variability
across emotions

Our earlier report showed that multi-model AMICA decomposition
can assist in characterizing changes in EEG spatiotemporal dynamics
with sub-second resolution (Hsu et al., 2018a). Here we found that
transitions between best-fitting models could be well aligned to emo-
tion imagination periods (Fig. 3). A third of the models dominant in
each emotion imagination period became dominant as the participant
listened to the emotion induction narrative (Type II models); another
third became dominant as the participant pressed a thumb button to in-
dicate they were actively feeling the suggested emotion (Type I models)
(Table 1). For most of these models, model dominance “faded out” when
the participant ended the period with a final button press and listened
to the ensuing relaxation narrative. Thus, dominant model likelihood
waxed and waned at the beginning and end of one emotion imagina-
tion period, providing strong evidence that the models separated EEG
activities uniquely occurring (or co-occurring) during just one emotion
period.

Comparing the temporal dynamics of different emotional-period
models, we found that emotion trials such as grief, excitement, and
happiness induced more distinctive activity shifts detected by AMICA,
evidenced by a higher percentage of Type I and II models (Table 1 and
Fig. 3). Some emotion-dominant models (during Love, Contentment, and
Relief trials) remained dominant longer after the end of the imagination
trial. These temporal features might be used as new measures to char-
acterize differences in EEG supporting different emotions.

We also found that one-third of the models became dominant during
the rest period prior to the emotion imagination trial (Type III models)
or even during the previous emotion-imagination trial (Type IV mod-
els). Jealousy and Compassion trials had a higher percentage of Type
III and IV dominant models (Table 1). Perhaps here the new emotion
targets did not produce a change in the EEG model as the participant
had become fatigued or otherwise failed to feel the requested emotion.
In some cases, the EEG source dynamics prevailing during the new emo-
tion may have been similar to those in the preceding resting state (Type
III) or even the previous emotion (Type IV). In particular, the imagined
experience of “Contentment” might well be supported by dynamics pre-
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vailing during the preceding rest state; indeed, Contentment trials had
the highest percentage of Type III and IV models (73%).

4.3. Emotions with less distinctive state changes in EEG activities during
imagination were classified less accurately

In other cases, distinctive emotional states might not always have
been achieved during emotion imagination. This is also consistent
with the relatively low accuracy in emotion classification obtained
in a previous study using this dataset (Kothe et al., 2013). There,
Kothe et al. (2013) applied a machine learning model to data from a
12-subject subset given the goal of predicting the (positive or negative)
valence of the emotion imagined emotion. They found that valence ac-
curacies were the highest (above 90%) for Grief and Happiness and low-
est for Awe, Jealousy, Contentment, and Frustration (below 65%) (see
Fig. 1 in Kothe et al., 2013). Their valence classification accuracies for
different emotions correlates well with the percentages of Type I and
II models for each emotion in this study (Table 1). Thus, in this study
emotions that were not successfully induced and/or those whose EEG
dynamics were less distinguishable from relaxation (as evidenced by a
lower percentage of Type I and II models) were the emotion that gave
close to chance level accuracy in the Kothe et al. (2013) study.

These results pose AMICA as a promising tool for assessing whether
and when emotion-relevant states are induced in emotion studies (e.g.,
studies comparing emotion induction paradigms). Possibly, using multi-
model AMICA to select appropriate time windows for classification
might improve emotion classification performance.

4.4. Neurophysiological sources activated during emotion imagination and
inter-subject variability

Toward a neurophysiological interpretation of the dominant AMICA
models and model switches, we first examined the quality of the AM-
ICA decomposition. On average, 60% of ICs were dipolar (i.e., their
scalp maps could be fit with a single equivalent dipole located in
the template brain volume with less than 15% residual variance). In
Delorme et al. (2012) comparing blind decomposition methods to 71-
channel data from another study, a higher percentage of dipolar ICs was
associated with a more successful ICA decomposition method, i.e., pro-
duced more overall mutual information reduction. In their study, AM-
ICA gave the most dipolar components and highest mutual information
reduction of 22 blind decomposition methods. Our (60% dipolar) result
is consistent with the AMICA results in that report. This suggests that
the decomposition quality of AMICA did not degrade significantly when
learning a large number (20) of models.

Further, ICLabel (Pion-Tonachini et al., 2019) revealed that 37% of
the dipolar ICs were brain-related ICs (Table 2), suggesting AMICA mod-
els were able to identify multiple independent brain processes. Notably,
we have observed a higher percentage of “Others ICs (45%) than in
single-model ICA decomposition (29%), which is likely due to the high
number of ICs (128 x 20) found in the data by multi-model AMICA de-
composition.

Dipolar and brain ICs were used to compute the spatial distribution
of dipole density in the brain model. A sample dipole density plot of the
dipolar brain ICs in the Baseline dominant model clusters (Fig. ) shows
dipolar brain sources were located most densely in the occipital and
parietal cortices.

Visualizing dipole densities of all AMICA models in a 2D t-SNE fea-
ture space (Fig. 4) revealed that the dipole distributions were more
highly similar across emotion-dominant models for the same partici-
pant rather than for the same emotion across participants. That is, each
participant appears to have a core set of brain ICs whose locations in
the brain model did not change significantly across AMICA models. It
is, however, in IC probability density functions (pdfs) that AMICA uses
to assign data to models it is not clear whether small differences in the
locations of model equivalent dipoles in different models for the same
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participant represent inherent (noise) variability or actual small changes
in cortical generating area (and source pdfs) in different emotions.

The minor differences in dipole distributions between models dom-
inant for different emotions did not rise to significance across partici-
pants. Further, when we pooled together model dipole clusters domi-
nant in positive emotions and compared them to those dominant during
negative emotions, we found no significant dipole density difference
(p > .05). This result is consistent with a review paper on neuroimaging
evidence of brain activity supporting emotion (Lindquist et al., 2012),
in which meta-analytic analysis found “little evidence that discrete emo-
tion categories can be consistently and specifically localized to distinct
brain regions.”

However, it is important to point out another explanation to our
finding of non-significant dipole-density differences between emotions.
Brain activity during the emotion imagination periods might be too in-
dividualized to exhibit consistent IC expressions across participants. For
example, it might be determined by specific scenarios the participant
imagined rather than by the overall emotion experienced by the partic-
ipant.

We did find consistent differences across participants in dipole den-
sity of models dominant during periods of emotion imagination com-
pared to models accounting for intervening periods of guided relaxation.
A possible interpretation is that some brain areas began to or no longer
produced the same local spatially coherent EEG signals when the par-
ticipant shifted from self-absorbed relaxation to active imagination of
emotionally charged scenarios. The primary somatomotor and premo-
tor cortex had lower dipole density (Fig. 5) during emotion imagina-
tion than during relaxation. This may relate to absence, during emotion
imagination periods, of specific “idling rhythm (e.g., circa 10-Hz mu
rhythm) activities in motor areas during guided relaxation. Right dorso-
lateral prefrontal cortex (DLPFC, BA9), left rostrolateral prefrontal cor-
tex (RLPFC, BA10), and right insula (BA13) also exhibited lower model
IC dipole density during emotion imagination.

Previous studies have reported that the right DLPFC is associated
with behavioral inhibition and self-control (Aupperle et al., 2012; Ker-
estes et al., 2012; Morawetz et al., 2016; Ray and Zald, 2012; Shack-
man et al., 2009; Viviani, 2014). The left RLPFC is generally believed
to be related to memory recall and coordination of information process-
ing (Ramnani and Owen, 2004), and is found to be activated during
emotion-regulation tasks (Bramson et al., 2018; Koch et al., 2018). Re-
cent studies found that the anterior insula could be related to emotion
recognition and emotional awareness (Craig, 2009; Motomura et al.,
2019). The BOLD signal results could be consistent with our findings if
the activity in these areas shifted from predominantly lower-frequency
(sub-gamma) activity to low-amplitude high-frequency activity, which
is more difficult for ICA to resolve into dipolar sources.

Areas with higher dipole density in models accounting for emotion
imagination than intervening relaxation were posterior: bilateral asso-
ciative visual cortex (BA19), which BOLD studies have shown to be ac-
tivated during both actual and imagined visual information processing
(Fink et al., 2018; Kaas et al., 2010), left angular gyrus, associated with
self-referential memory retrieval (Seghier, 2013), and posterior cingu-
late cortex (PCC), known to be active during focused attention and mem-
ory retrieval (Leech and Sharp, 2014; Rolls, 2019). In a review paper,
Lindquist et al. (2012) reported a set of brain regions commonly in-
volved during emotion experience across discrete emotion categories.
This includes the motor cortex supporting language and executive at-
tention, the visual cortex connecting with areas involved in core affect
like the amygdala, and the prefrontal cortex and medial posterior group
involved with conceptualization (Kober et al., 2008).

Taken together, the emotion-related brain areas identified by AMICA
decomposition are thus largely consistent with those identified in many
neuroimaging studies. Further analysis of these results might study what
types of independent EEG sources in these areas produced during emo-
tion imagination.
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4.5. Limitations and future work

Although AMICA successfully characterized brain-state changes dur-
ing the emotion imagination experiment, here we did not find ways in
which the resulting models are consistent within emotions rather than
participants. In particular, we found no difference in propensity for ICA
decomposition to find independent components localizing to the bilat-
eral temporal areas shown by Onton and Makeig (2009) in these same
data to exhibit clear valence-related activity (stronger high-frequency
broadband activity to more positive emotions), a result since replicated
in several fMRI BOLD signal studies using positive, neutral and nega-
tive valence stimuli (music, speech, etc.). Evidently, distinct EEG source
activity in these areas was no more likely to be found by AMICA mod-
els accounting for positive versus negative emotion imagination peri-
ods, nor for guided relaxation versus self-produced emotion imagination
periods. Future work with these data could explore more completely
dynamic (rather than spatial) differences between the different model
clusters. Future replication of this experiment might include a control
condition presenting motor or sensory imagery in a perceptual task, to
test whether emotion imagination trials and the sensorimotor percep-
tion conditions would share the same AMICA models.

Since the sub-selected 128-channel EEG montage for training AMICA
models covered the whole scalp and partial facial and neck areas (i.e.,
“whole montage”), it could be argued that the facial and neck muscle
artifacts significantly contributed to the separation of EEG activities be-
tween different emotion-imagination trials. To test the hypothesis, we
sub-selected a subset of 128 channels only from electrodes placed above
the ears (i.e., “scalp montage”), the AMICA decompositions showed con-
sistent results in terms of separating EEG segments that corresponded to
emotion periods. Besides, the IC classification of the 128-channel whole
montage using ICLabel shows that the numbers of artifactual ICs such as
eye, heart, and muscle components were much smaller than the number
of brain ICs (Table 2). The evidence suggests that the unsupervised seg-
mentation of AMICA was not solely due to the contributions of muscle
and eye artifacts, especially from facial and neck muscles.

For a neurophysiological interpretation of the AMICA models, we
used dipole density to map the high-dimensional AMICA parameters of
each model onto the same brain space. This enables systematic compar-
ison and statistical testing of spatial distributions across AMICA models.
However, this mapping involves user-defined thresholds for selecting
dipolar ICs and types of ICs, which would affect the resulting dipole den-
sity. Alternative approaches to systematically compare and quantify the
distance between the AMICA models in a high-dimensional parameter-
space would advance AMICA results’ interpretability and provide further
neurophysiological insights.

As discussed in the previous section, AMICA models — albeit able to
separate different emotions — seem to be individualized and specific to
each participant. This could be the result of over-fitting, given that there
were approximately 338K parameters to learn (for 20 AMICA models,
each with 128 ICs) with 1.38M data samples (for a 90 min recording). In
fact, we have tried to further sub-select 64 channels for training AMICA
models. The empirical result showed that the AMICA models with 64 ICs
could still consistently segment the EEG data, but transitions between
segments (i.e., changes in which model likelihood was dominant) were
not as distinct compared with the results from 128- and 250-IC AMICA.

An important future direction could be testing whether the AMICA
models associated with emotion imagination can be found again in the
EEG activity of a separate test session, or in sessions using emotion-
eliciting approaches. Although training AMICA models imposes a rel-
atively heavy computational burden, models trained on a first dataset
could be used to make statistical inferences on test data in a near-real-
time fashion, enabling online emotion decoding.

For future advancement of emotion classification, it is important to
compare and even leverage the insights gained from unsupervised meth-
ods with those from supervised methods. For example, training a super-
vised classifier after unsupervised AMICA decomposition would enable
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emotion identification that may better generalize across participants.
Comparing source locations from multi-model AMICA decomposition
with those from single-model ICA applied to individual emotion peri-
ods in a supervised manner, we could examine the validity of subjective
emotion labels and separate emotion activities from those not related to
emotion.

5. Conclusions

Our results demonstrate that multi-model decomposition of high-
density (128-channel) EEG data by AMICA can detect shifts in EEG dy-
namics associated with differences in task (here guided rest versus active
emotional scenario imagination), even when the data are to be segre-
gated into as many as twenty models. As in our earlier report (Hsu et al.,
2018a), the timing of model transitions can accurately reflect timing of
changes in task orientation, and differences in timing of model transi-
tions (as studied here) may reveal details about the timing and degree
of shifts in mental goals and focus.

Brain regions with the biggest difference in dipole density during
emotion imagination compared to rest were identified in the left dorsal
lateral and anterior prefrontal cortex, posterior cingulate cortex, right
insula, motor cortex, and visual cortex, consistent with previous emotion
studies. Yet, no significant difference in dipole densities was found be-
tween positive and negative emotions. The spatial distributions of brain-
localizable ICs showed higher similarity within-subject across emotions
than within-emotion across participants. The results presented here sug-
gest that continued work to characterize essential differences in AM-
ICA models dominant in different time periods could be valuable. This
study provides and validates a framework, i.e., AMICA and post-AMICA
analyses, for data-driven discovery of brain state dynamics in an emo-
tion imagination experiment, shedding light on the neurophysiological
underpinnings of emotional experiences, thereby improving the perfor-
mance of emotion decoding for EEG-based affective computing and ad-
vancing our understanding of emotion.
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