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Hardware-Oriented Memory-Limited Online Artifact
Subspace Reconstruction (HMO-ASR) Algorithm

Lan-Da Van
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Abstract—Artifact Subspace Reconstruction (ASR) is a
machine learning technique widely used to remove non-brain
signals (referred to as ‘artifacts”) from electroencephalo-
grams (EEGs). The ASR algorithm can, however, be constrained
by the limited memory available on portable devices. To address
this challenge, we propose a Hardware-Oriented Memory-
Limited Online ASR (HMO-ASR) algorithm. The proposed
HMO-ASR algorithm consists of (1) two-level window-based pre-
processing including PCA-based and z-score-based preprocessing
to clean the data in each window, (2) iterative mean, stan-
dard deviation, and covariance update using a parallel algorithm
to achieve window-based processing, and (3) early eigenvector
matrix determination to save the computation. With the three
schemes, the HMO-ASR method can be implemented on mobile
devices, application-specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs) with limited memory. The
study results showed that the proposed HMO-ASR algorithm can
achieve comparable performance to those obtained by the offline
ASR algorithm with a 98.64% reduction in memory size. An
FPGA implementation is used for silicon proof of the proposed
HMO-ASR algorithm.

Index Terms—Artifact subspace reconstruction, hardware-
oriented, limited memory, and EEG.

I. INTRODUCTION

LECTROENCEPHALOGRAM (EEG) plays an
important role in neuroscience research, clinical
diagnosis [1], and mental state assessment [2]. Nevertheless,
EEG recordings are vulnerable to pervasive contamina-
tion from non-brain signals, i.e., eye movements, muscle
activities, etc., known as “artifacts.” Hence, artifact removal
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is an essential step during EEG analyses. Artifact subspace
reconstruction (ASR) [3]-[5] is one of the popular and
effective artifact-removal methods. ASR can be used to
enhance the signal quality before independent compo-
nent analysis (ICA) [6]-[9]. However, the ASR algorithm
requires considerable memory size, making it inadequate
for performing online artifact removal on portable devices,
application-specific integrated circuits (ASICs) or field
programmable gate arrays (FPGAs). As the demands of daily
health monitoring grow, the disadvantage of the ASR algo-
rithm becomes more problematic. To match the performance
of the offline ASR algorithm, this study developed a
hardware-oriented and memory-constrained online ASR
(HMO-ASR) algorithm. The rest of the paper is organized
as follows. Section II discusses the proposed HMO-ASR
algorithm. Section III discusses the results of the simulations
and implementation. Finally, a remark concludes this work.

II. THE MHO-ASR ALGORITHM

The HMO-ASR algorithm is an online artifact-removal
algorithm that aims to reduce memory requirement with-
out sacrificing effectiveness. It contains three main parts:
(1) the two-level window-based preprocessing, (2) the rejec-
tion threshold calibration processing, and (3) reconstruction
module. Fig. 1 shows the flow chart of the HMO-ASR algo-
rithm. The two-level window-based preprocessing (in the
upper dash-line block) features a PCA-based and a moving
z-score based preprocessing modules to generate and select
a cleaner window, respectively. The rejection threshold cal-
ibration processing (in the lower dash-line block) adopts an
iterative updating scheme and an early eigenvector matrix
determination module to update the corresponding rejection
thresholds. The reconstruction module removes the principal
components (PC) with values greater than the rejection thresh-
old and reconstructs the data using the remaining PCs. Finally,
the non-overlapped reconstructed samples are outputted and
then the next new input window can be processed.

A. Two-Level Window-Based Preprocessing

Offline ASR requires a set of clean sections, where the data
contain no artifacts, to determine the artifact removal thresh-
old. ASR first performs PCA on the whole recording. Next,
ASR calculates channel-wise root-mean-square (RMS) values
with a non-overlapping sliding window and transforms the
values into z-score. Finally, ASR selects the windows with
z-score in range —3 < z < 5 [5] and defines them as clean
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Fig. 1. Main flow chart of the proposed HMO-ASR algorithm.

sections. To utilize the information in the data and maximize
the advantage of online algorithm, we propose to make ASR
artifact rejection threshold adaptive. Since a contaminated
data will significantly slow down the convergence speed of
ASR artifact rejection threshold, the incoming data should be
selected before updating the threshold. In our proposed two-
level window-based preprocessing, we first perform PCA on
the incoming window. In the PCA-based window process-
ing module, we transform the eigenvalues into the z-score.
If the eigenvalue based z-score is above 1.5, the correspond-
ing eigenvector will be removed. The eigenvalue based z-score
is defined as

Ay —m
p=2"0 (1)
n

where A, is the k" sorted eigenvalue, and m; and o,
are the mean and standard deviation of the eigenvalues,
respectively. The preserved eigenvectors are then projected
back to the channel domain. Next, in the z-score based
preprocessing with iterative updating module, if the incom-
ing window has a z value between —3 and 5, it will
be sent to the rejection threshold calibration processing to
update the artifact removal threshold. Otherwise, it will
be marked as contaminated and sent to the reconstruction
module.
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B. Iterative Mean, Standard Deviation, Covariance
Matrix Update

To save memory, we use a window-based approach to
update the mean, standard derivation, covariance matrix,
z-score based preprocessing, and rejection threshold itera-
tively. Assume an incoming window X. = {Xs«1,..., Xsn,}
at iteration i has n, samples, four statistical variables includ-
ing the total number of samples n;_1, the overall mean m;_1,
the sample standard deviation s;_1, and the sample covari-
ance matrix C;_; are needed to be updated while reaching the
i jteration. According to the parallel algorithm [10]-[12], we
can derive m,, sx, and c, respectively, for each channel across
samples of X, in an iterative updating way at the i’ iteration
as follows:

nj = ni—1 + ny 2

8 = my — mj_q 3)
Ny ni—1

mi=mi_|+86— =my —6—— 4)
n; n;

Z;;i (Xi—1.p — mi)2 + ZZ*:] (g — mi)2
i1

S =

(it — )2, + (1 — 1)s2 4 0tict
= . (5)
N\ ni—1

Considering two arbitrary channels a, b that have sam-
ples {ai, ..., ay_,} and {by, ..., by_,}, respectively, with new
samples {an, ;4+1,...,an;_14n, ) and {by,_ 41,..., by 4n,} for
the two channels, the covariance matrix in an iterative updating
way is derived as follows:

ni—1+n
_ Zpl:] - (ap - ma,i)(bp — mp,;)

C; =
l ni—1+nye —1
1
= [(ni—1 — Deim1 + (nx — Dcs
n; — 1
N 1N (Mg i1 — Mg ) (Mp i1 — Mp_5)

1 ©
n;

According to Egs. (4)-(6), it only requires parameters from

the (i — 1)™ iteration to update parameters at the i’ iteration.

Therefore, we can achieve window-based processing.

C. Early Eigenvector Matrix Determination

Calculating the square root of the covariance matrix
(sqrtm(C;)) at each iteration is computationally intensive.
Moreover, the benefit of it is little if the eigenvectors of the
incoming data and the previous data are similar. Hence, we
propose to define a threshold to evaluate whether an eigenvalue
decomposition is required for updating the sqrtm(C;).

Let C; and E;_; denote the updated covariance matrix and
the previous eigenvector matrix, respectively. Since C is real-
symmetric and diagonalizable, we can derive:

El \CE,_; =E! \EDE/E;_, (7)

where the off-diagonal elements will be close to zero if E; is
close to E;_; since EiTEi_l ~ I. Based on this characteristic,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 06,2022 at 16:31:54 UTC from IEEE Xplore. Restrictions apply.



VAN et al.: HARDWARE-ORIENTED MEMORY-LIMITED ONLINE ARTIFACT SUBSPACE RECONSTRUCTION (HMO-ASR) ALGORITHM

we define the threshold as
> off-diag(El | C;E;_y)
> diag(El | C;E;i_))

< eigen-threshold ®)

where the eigen-threshold is empirically determined. We use
0.002 for the eigen-threshold for the following analyses.
If the incoming data satisfies Eq. (8), HMO-ASR retains
E;_; to approximate the eigenvector matrix E; of sqrim(C;).
Otherwise, eigenvalue decomposition is required. The eigen-
vector matrix E; of sqrtm(C;) determines the artifact removal
threshold and the reconstruction process.

D. Threshold Update and Reconstruction

The procedures of determining the artifact-removal thresh-
old in offline ASR are as follows: ASR first filters the clean
sections of the data with an IIR-filter to get (X.) and cal-
culates the eigenvector matrix E. of the square root of the
covariance matrix of X.. The IIR filter is used to emphasize
the frequencies where artifacts commonly appear. Next, X, are
projected onto the principal component space Y, = ECT - Xe.
Then, Y, are splited into several windows and the RMS val-
ues for principal components are computed within the window.
Finally, the mean w. and standard deviation o, of the RMS
values across all the windows are computed and a fixed rejec-
tion threshold I, is defined as I'c = . +f - 0., where f is the
adjustable cutoff parameter. In the HMO-ASR algorithm, once
the incoming data X, satisfy the z-score range, the HMO-ASR
updates the rejection thresholds. Firstly, HMO-ASR follows
the procedures above (with eigenvector matrix described in
Section II.C) and calculates u, and o,. Next, the overall w;
and o; are updated by the iterative updating scheme. Since E;
and E;_; may be different, we project n;—; and o;_; onto E;
before performing the update. Finally, an adaptive threshold
is defined as

Ci=wpi+f-o &)

After updating the rejection threshold, the contaminated data
X; will enter the reconstruction module. First, X is ﬁlteredby
an IIR filter and is divided into multiple sub-windows X.
Second, for each Xy, PCA is applied to obtain C; = EkaE,{.
Third, compare A;; and the rejection thresholds I'; projected
from E; onto E, the inequality equation can be repeated as:

DD (rp<ei),{(ek>z)2
p

lth

(10)

where Ay is the element in diag(Dy). If the inequal-
ity holds, the corresponding principal components (ex); are
replaced with zero vectors, and we obtain a projection matrix
(E,{sqrtm(Ci)) and reconstruct X; by:

trunc

E/X, (1)
where { denotes a pseudo inverse operator. Once all sub-
windows are proceeded, HMO-ASR can free the memory used

by Xj.

.}_
) trunc

X0 ctean = sqrtm(C;) (Ef sqrtm(C;)

III. RESULTS AND DISCUSSION

This section presents results and hardware

verification.

study
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Fig. 2. Data modified and variance reduction. (a) HMO-ASR and (b) offline

ASR.

A. Experiment and Data Acquisition

To evaluate the proposed algorithm, we used EEG record-
ings in a cued-artifact experiment. Ten healthy, college-
aged subjects participated in the cued-artifact experiments in
a purely voluntary manner, after providing informed writ-
ten consents, under experimental protocols approved by the
Institutional Review Board of the University of California,
San Diego (#190706). For each subject, 30-channel EEG
data were recorded using Cognionics Quick-30 dry EEG
system at 500Hz sampling rate. There are two sessions in
the experiment, in which we cue subjects to perform specific
movements. In the eye-related cued-artifact session, subjects
performed blinks and saccades. We asked subjects to reduce
head/body movements throughout the session. In the motion-
related cued-artifact session, subjects performed head-turning,
nodding, and walking in the same place. The recorded data
are down-sampled to 250Hz and bad channels are removed
for each dataset for the simulation in Section III.B and
implementation in Section IIL.D.

B. Performance Comparison

We follow the methods used in [5] to compare the
performance of the proposed HMO-ASR and the offline
ASR. We first characterize how the algorithm modifies data.
Next, we investigate whether the algorithm preserves brain
signals and removes artifacts. To separate brain signals from
noise, we use an IC classifier called /CLabel, [13], a plug-
in of EEBLAB [14]. Finally, we evaluate how the algorithm
improves the quality of ICA decompositions. The correlation
coefficient we used to determine whether an IC is preserved
is 0.8 and the dipolarity we used to define a dipolar IC is
95. Both classification and dipolarity calculations were pro-
cessed using EEGLAB plug-in functions. Fig. 2 shows that
the HMO-ASR with cutoff parameter f = 10 modifies 25% of
data and reduces 85% of the variance, which approached the
performance of the offline ASR with f = 50.
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Next, we compare the percentage of preserved ICs
within each class after the HMO-ASR and offline ASR.
Fig. 3(a) shows that the HMO-ASR preserves 80% of dipolar
brain ICs and removes 40% of IC from other classes when
using f = 10. This result is comparable to the performance of
offline ASR with f = 50 as shown in Fig. 3(b). Finally, we
compare the percentage of ICs in each class after the HMO-
ASR and offline ASR. Fig. 4(a) shows that the percentage
of dipolar brain ICs increases from 8% to 16% and the per-
centage of eye ICs drops from 15% to 11% after HMO-ASR
cleaning with f = 5. On the other hand, Fig. 4(b) shows that
offline ASR has comparable performance when using f = 20.
In summary, the empirical results show that the HMO-ASR
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TABLE I
FPGA RESOURCE UTILIZATION

Resource Utilization Available | Utilization (%)
LUT 100946 230400 43.81
LUT RAM 4291 101760 4.22
FF 115904 460800 25.15
BRAM 197.5 312 63.3
URAM 35 96 36.46
DSP 866 1728 50.12

with f between 5 and 10 can achieve comparable performance
to the offline ASR with f between 20 to 50, which covers the
suggesting range for the offline ASR [5]. These results sug-
gested that the performance of our HMO-ASR can approach
the optimal performance of offline ASR with limited memory.

C. Memory Size Comparison

Since the offline ASR needs to store the overall raw data
in the memory, according to our experimental setting in
Section III-A, the approximate memory size as an example
of 30 channels is:

Apm, offiine-ask = 30(channels)
x 1397.848(second)
x 250(sample rate) x 32bits

= 41935.44 KByte (12)

where 32 is the bits of floating points. Considering the
proposed HMO-ASR algorithm (c.f. Fig. 1), according to
our experimental setting in Section III-A, the approximate
memory size is profiled and calculated as follows: (1) The
memory size of two-level window-based preprocessing is esti-
mated as 60.24 KByte. (2) The memory size of rejection
threshold calibration processing is estimated as 51.72 Kbyte.
(3) The memory size of the reconstruction module is esti-
mated as 99.32 KByte. (4) The global temporary memory for
the above-mentioned processes (1), (2) and (3) is estimated as
360 KByte. Hence, the total approximate memory size of the
proposed HMO-ASR is

Ap.amo-asg = 60.24 +51.72 +99.32 + 360

— 571.28 KByte (13)

Comparing the memory sizes of Eqs. (12) and (13),
the proposed HMO-ASR algorithm significantly reduces the
memory size by 98.64% while obtaining satisfactory quality
as shown in Figs. 24, allowing us to deploy the proposed
algorithm to portable or edge devices for healthy monitoring
in near real-time is possible.

D. FPGA Implementation

Hardware implementation uses Xilinx Zynq UltraScale +
MPSoC ZCU104 for the silicon proof of HMO-ASR. We use
high-level synthesis (HLS) to synthesize the C++ code and
deploy it to the FPGA board. We adopt IEEE 754 floating-
point single precision for the computation with a clock rate of
150 MHz. Table I shows the utilization of FPGA resources.
The used memory, including both BRAM and URAM, is about
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2.0975 MB. As compared to Eq. (13), the reason for the
increased memory size is the use of more temporary regis-
ters and memory for computation. Note that this number is
still much less than that in Eq. (12). We collected the first 12
seconds of recording for each dataset to test the FPGA imple-
mentation. Test signals were EEG signals contaminated by eye
and motion artifacts from 10 subjects. Figs. 5 and 6 present
the raw EEG data, along with the results of the HMO-ASR
algorithm and the FPGA implementation of this algorithm.
To demonstrate the performance of the proposed algorithm
on a variety of datasets, Fig. 7 shows the root mean square
error (RMSE) distributions based on the HMO-ASR algo-
rithm and FPGA implementation. Because of the precision,
a small portion of the FPGA output signals does not match
the HMO-ASR algorithm output for datasets such as s01, s05,
and s09 motion.

IV. CONCLUSION

This work proposed an online ASR solution (HMO-ASR)
for hardware-oriented memory-limited devices (such as
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edge devices) and ICs/FPGAs. The solution integrates two-
level window-based preprocessing, mean/standard deviation/
covariance iterative updating, and early eigenvector matrix
determination schemes. Experimental results demonstrate
the proposed HMO-ASR algorithm with cutoff parameter
5 to 10 exhibits comparable performance with the original
offline ASR algorithm with cutoff parameter 20 to 50. The
HMO-ASR algorithm can be efficiently implemented with
FPGA hardware.
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